CIFECENTER FOR INTEGRATED FACILITY ENGINEERING

The Conceptimator:
An Expert System for Conceptual Cost
Estimating of Building Foundations

by

Ellen R. Tauber, Raymond E. Levitt,
Gaye A. Oralkan, Felix C. Reinberg, Timothy J. Walsh

CIFE Working Paper
Number 14

June, 1992

Stanford University

Table Of Contents

To ADSTIACE wvvveeieietec et ettt s e e 1
2. INETOAUCHON ettt bbb s bbb 1
2.1. Conceptual Cost Estimating Definedc...ccoccceevnnns s b 2

2.2. Types of Problem Solving: Synthesis versus Classification 2

2.3. How Conceptual Estimating is Done Todayc.c.ccecoevrenee. SRR 3

2.4. How The Conceptimator Does Conceptual Estimating RS 5

2.5. What The Conceptimator DOes.......coevvererierriiiennnecininiiiiiiinininies 6

3. Methodology ettt nenen OO RS PIOPROSPO 6
3.1. Compilation of KNowledgecccuerieeccnciiiiniiiiiennes 6

3.2, Implementation ...t 6

3.3, Validation .ccoeeeeeveiiniiiiiiininct e 7

4. The Conceptimator System Architecturecoeiiniiiie 7
4.1, DESIGNH+ ottt 7

4.2. Component LiDrariescooiiienieincniinncccine e 8

4.3. Product StIUCLUTE ..ottt s 9

4.4, USer INPUL oovcviriiee ettt s 9

4.5. Product Model ...t 11

4.6. The Process: How Design++ Creates a Product Model 11

4.7. DIalog BOXESovvviminiriiiiieiiiti st s 12

4.8. Other Outputs from Design++ ...c.coceevennniiniinniiiiiies 12

5. Project RESULLS ...cccoiviviiiiiiiiinicicitic ittt 13
6. RELEIBICES ..cuvvrriiiiiniiiiicicctc ettt st 14
7. APPENAIX crviviiiiiniiii s 15
7.1 FIGUIES ottt et s e 16
Figure A1l: The Conceptimator Libraryc.c.ccoomeenninn 17

Figure A2: Example Library Componentcccoceveveiiniinninenn, 18

Figure A3: The Conceptimator Asking for User Input................... 19

Figure A4: Example Product Modelcccooviiinnncinnniiiiinin 20

Figure A5: Example Dialog BoXcccccoevvvieennee. reereeestenne st 21

Figure A6: Example Autocad Drawingcceecvennncininiinnnnne 22

Figure A7: Oracle Database Valuesccccceceenuneee et reaeaens 23

7.2. Conceptimator Product Structure File ... 24

7.3. Conceptimator Rule Filescccooiiiveninennnce rerererter et v 28

The Conceptimator: An Expert System for Conceptual
Cost Estimating of Building Foundations

By Ellen R. Tauber, Raymond E. Levitt,
Gaye A. Oralkan, Felix C. Reinberg, and Timothy J. Walsh

1. Abstract

The Conceptimator is an expert system we wrote which generates conceptual
cost estimates of building foundations by simulating the design process. It is
designed to be used not by civil engineers or building construction experts,
but rather by non-technical users, such as land owners who have an idea for a
building project. The Conceptimator puts the knowledge of many experts in
the building construction field into the hands of the future building owner by
producing a detailed conceptual estimate at a stage of the project when some
of the data needed to estimate unambiguously are missing. The system
outputs: a product model for the designed building, which shows the selected
foundation; an Autocad drawing of the foundation; and a report
summarizing the inputs to the system, the allowable foundation types and
cost for each one, and a detailed description of geometry and cost of the
chosen foundation. The Conceptimator is a working system which is a proof
of concept prototype; it shows that conceptual estimating can be done by
design rather than classification. The Conceptimator’s building design and
estimate can be used as a new component in project cost control in the role of
a defending champion. Since it generates a detailed design at an early stage in
the project, it could be used by the project owner as a comparator to
competing design ideas proposed later in the project by human specialists,
such as the structural engineer or contractor. If the estimated costs later in the
project are above that of The Conceptimator’s cost estimation, the owner can
hold The Conceptimator’s estimation as the defending champion against new
solutions proposed by the contractor. New solutions must defeat The
Conceptimator’s estimate on a cost versus functionality trade-off before they

are accepted.

2. Introduction

In this paper, we describe in detail an expert system which produces
conceptual cost estimates and designs for building foundations. We will first

1

discuss, in this section, why The Conceptimator is a new approach to
conceptual estimating by differentiating between two types of problem
solving. Then we will review the methodology of the project in section 3,
followed in section 4 by a detailed description of the expert system shell,
Design++, and the design of The Conceptimator’s architecture. In section 5,
we review the results of the project. The Appendix shows some of the code
for the system.

2.1. Conceptual Cost Estimating Defined

Cost estimating involves predicting expected costs for a future project or task.
Conceptual refers to a stage in a project or task when the final product is not
fully defined. Specifically, during the conceptual phase, those involved focus
on function more than form and do so in a high-level, abstract manner (Dym
and Levitt, p. 248). Thus, conceptual cost estimating is the task of predicting
expected costs for a future project when the form of the final-product is not
completely defined. Conceptual estimates are made in the early phases of a
project to “tell an owner whether a contemplated project scope is anywhere
near to being economically feasible”(Barrie and Paulson, p. 199).

The name Conceptimator is derived from the words conceptual and
estimator. There are other common types of conceptual estimating, such as
conceptual time estimating. Therefore, although the conceptual estimating
task performed by The Conceptimator is only a cost estimation, we will
sometimes omit the term cost when referring to the system and will simply
use the term conceptual estimating, by which we mean conceptual cost
estimating.

2.2. Types of Problem Solving: Synthesis vs. Classification

Saul Amarel outlines a spectrum of problem-solving tasks which can be used
to divide all engineering tasks into two broad categories: derivation or
classification tasks versus synthesis or formation tasks (Amarel in Dym and
Levitt, pp. 2-3). Derivation tasks involve picking a solution from a small
number of possible solutions. The problem solver can use associative
heuristics to derive a solution from data describing previous problems and
historical unit factors. Thus, one can solve a classification problem by simply
choosing a position along a one-dimensional scale. In contrast, synthesis
_tasks involve the formation of a solution from primitive elements. These
type of tasks require the formation of solutions in a semi-infinite solution
space, because the problem solver’s task is to design a solution that meets
certain constraints. Typically, derivation problems are the easier of the two

because the possible solutions are few in number and known in advance,
while synthesis problems necessitate the design of new solutions.

The formalization and automation of engineering tasks parallels their
difficulty; although many computer systems exist which can be used by the
engineer to aid his or her work for analysis tasks, few computer tools in use
today by civil engineers can perform design synthesis tasks. The difficult task
of synthesis is left to the person (Dym and Levitt, pp. 2-4).

The Conceptimator is a new approach to conceptual estimating, and is
interesting as an expert system, because it uses model-based reasoning for
synthesis rather than associative reasoning for classification. That is, itis a
system which treats conceptual cost estimating as a synthesis problem
involving the detailed design of a building rather than as a classification
problem which estimates the cost of a present building by placing it along a
range of costs.

2.3. How Conceptual Cost Estimating is Done Today

As stated earlier, conceptual estimates are made in the early phases of a
project in order to tell an owner if a proposed project is economically feasible.
Since the engineering design of a project is not complete at the conceptual
stage, detailed estimates based on computed quantities are impossible. The
owner can only provide the estimator with the general concept, site
information, and location. The contractor can make an educated guess by
using factored historical unit costs and his or her own experience and
construction knowledge to give a rough judgement of the proposed project’s
cost (Barrie and Paulson, pp. 198-199). Figure 1 shows how conceptual
estimating happens today as a classification problem in which the estimator
relates proposed project to the cost of a past project using an empirical scaling
factor in order to form the estimate.

Specifically, according to Barrie and Paulson, there are four common types of
preliminary estimating methods: time-referenced cost indices, cost-capacity
factors, component ratios, and parameter costs (pp. 201-208). All use past
project data and order of magnitude scaling factors to predict a new project’s
cost. Cost indices are best for estimating changes in cost over time. They use
a base reference period to get an index for current costs. Many indices are
published. Cost-capacity factors are best for figuring changes in size, scope,
and capacity from previous projects. They most commonly take the form of
exponential equations. Component ratios are used to estimate the cost of
components. Lastly, parameter costs method of preliminary estimating
“relates all costs of a project to just a few physical measures, or ‘parameters,’
that reflect the size or scope of that project.”(p. 208). Parameter costs are often

t Past
Projects

$

Conceptual Estimating: o
O A Classification Problem o
O Howrit is done now . ..
o o]
« factored
« order of magnitude
» rationale for estimate usually
not recorded
Estimator Owner
converts owner's input into @ PrOvides estimator general concept,
set of project parameters site information, and location

intuitively knows historical costs based on
experience and construction knowledge

$ = capacity ¥ x historical unit cost ————————p- Project Cost ($)

\. .
Figure 1: How Conceptual Estimating is Done Today
e N
estimates costs for allom
foundation types
= /”w
i (/ -
Estimator o e
(Contracter) (Conceptual Estimating: |
A Design Problem rchitect
What Conceptimator Replicates . . . rouch schematics
- i Lootprjnt
% #uOlf ‘f-IO—O'I’S
Structural Engineer Geotechnical
determines column loads Engmeer
designs allowable foundations conducts site investigation
provides soils information :
. , y

Figure 2: The Process which The Conceptimator Replicates

published. A popular parameter for estimating building costs is cost/square
foot based on the type of building.

2.4. How The Conceptimator Does Conceptual Estimating

The Conceptimator generates conceptual estimates by simulating the design
process. It allows the owner to utilize knowledge from many experts in the
field by replicating the process of detailed design, but at the conceptual stage of
the project. Figure 2 shows the process The Conceptimator replicates. The
Conceptimator contains the knowledge of the process pictured and places it
within the computer.

An approach to cost estimating by modeling the design process was outlined
in 1978 by Robert D. Logcher, et al. Their project was called “COSTMOD.”

‘The system was “an attempt to model the role of the estimator”(p. 16) for
“accurate cost estimation both in the initial phases of design and

continuously thereafter”(p. 1). The system was developed without the benefit
of Al technologies, and has not been extended beyond a prototype stage.

The owner using The Conceptimator on the computer interacts as shown in
Figure 3, but has access to the process pictured in Figure 2. Specifically, the
user can input a set of project parameters to generate a product model,
Autocad drawing, and a summary report.

Outputs

Inputs

+ rough building geomet
« functional reqt's of builgng
* environmental constraints
+ site conditions

The Conceptimator '
How it works . . .

. J

Figure 3: How a User Interacts with The Conceptimator

5

2.5. What The Conceptimator Does

The Conceptimator gathers information from the user about a proposed
building by asking questions about the building itself (What is the length of
the building?) and about the surrounding area (How far are the adjacent
structures?). It selects a set of feasible foundation systems based on
approximate engineering calculations and reasoning about environmental
considerations. It then designs the components of the feasible systems,
accesses an Oracle database for cost information which was created for use
with The Conceptimator, computes the costs for each feasible foundation, and
selects the least expensive foundation. It then generates the 3-D geometry of
the selected foundation and displays it using Autocad, along with a detailed
written report (which is incomplete at this time). Also, through the use of
dialog boxes, the user can look into the system and change values in order to
perform a what if analysis. For example, the user could change the value of
the top soil’s material, which would propagate through the system, possibly
resulting in new values of other attributes, and maybe even changing the
chosen foundation.

3. Methodology

3.1. Compilation of Knowledge

Felix Reinberg, a Construction Engineering masters student with estimating
experience, gathered the original conceptual estimating knowledge for the
system. Felix also interviewed local companies to gather detailed design
estimating knowledge.

3.2. Implementation

Ellen Tauber, a masters student in Computer Science, designed and
implemented the majority of the system during the summer of 1991. Ellen
worked with Felix to organize the raw knowledge into heuristics and rules
which were appropriately formed for the computer system. Much of the
design of the system evolved at that time.

Once we had a body of properly outlined knowledge, Ellen implemented the
system using Design++, a design automation expert system shell which is
described in detail in section 5.1. Gaye Oralkan, a PhD student in Civil
Engineering, implemented the geometric rules in the system. As mentioned

above, the implementation of the system's report output, described in section
4.8, is not yet complete. Therefore, there is no example system report
included in this working paper.

3.3. Validation

The goal of validation is to verify the accuracy of the foundation design rules
and the cost data. Tim Walsh, a masters student in Construction Engineering
and Management, has studied the present system and is in the process of
testing it using four recently constructed Bay Area buildings with four
foundations: spread footing, mat, belled caisson, and pre-cast concrete piles.
Through comparison of The Conceptimator’s results with actual design and
costs of the already constructed buildings, we can determine the source of
discrepancies and make appropriate changes to rules and knowledge in the
system. Target accuracy is choice of the correct foundation and estimates
which are within 10% of actual cost. Also, we are documenting sources of
rules and data. First indications based on cursory tests of the present
-application indicate that the system is behaving appropriately.

4. The Conceptimator System Architecture

The Conceptimator was implemented using Design++, Version 2.1, running
on a Sun Sparc Station. It uses Autocad, Version 11, and an Oracle relational
database management system.

4.1. Design++

Design++ is a design configuration system built on top of KEETM, an expert
system shell based on object-oriented programming concepts, which is, in
turn, built on Lisp. An expert system shell is like a high level programming
language for writing expert systems. Expert-system-building tools, such' as
Design++, “differ from conventional programming languages in that they
provide convenient ways to represent complex, high-level
concepts”(Waterman, p. 9). Design++ is a one level higher tool than a
general purpose expert system shell because it provides the designer with
mechanisms to do the following: create libraries of components which store
general rules and use inheritance, create specific product models which
represent one possibility for the combination of those library components,
and interface with Autocad and Oracle. It is the product of a local computer
software company, Design Power, Inc., in Cupertino, California.

When the user sits down at The Conceptimator, as with any system built
using De51gn++ the object is to produce one product model. The product
model is a tree-structure. In this case, it is a building structure which has one
selected foundation within it. As shown by the figure below, there are three
things used by Design++ to produce a product model: component libraries,
product structure, and user input.

Library
Product - Product
Structure Model
User
Input

we will go through the library, product structure, and user input, and we will
then describe the resulting product model in depth.

4.2. Component Libraries

The system designer defines all of the components of the system in libraries.
Thus, the library defines all the types of components which can be used to
create a product model. The libraries are tree structures which are object-
oriented and exploit inheritance. Thus, the most general objects are closer to
the root of the tree, and the more specific objects of each type are further from
the root. General rules which define how the components’ values are
determined are stored in the library in association with the components.
Also stored in the library is other information which defines the component,
such as its possible values (valueclass) and a default value. The
Conceptimator system has one library which is shown in the Appendix,
Figure A1. /

An example library component which has been “opened” from the library
tree is pictured in the Appendix, Figure A2. The component pictured is
top_soil and its attribute material is shown. As you can see, the rule lives in
the library and defines how top_soil material will be determined. The rule
language is a combination of lisp and Design++'s design rule language. The

valueclass limits the possible values of material to one of: mud, organic, rock,
sand, soft_clay, hard_clay, or silt.

4.3. Product Structure

The product structure is a text file which specifies a generic structure for
combining library components. It is somewhat like a recipe which gives an
outline to guide the system in creating a product model from the library
components. Product structures list, in order, the components to put in the
product model. For example, The Conceptimator’s product structure, shown
in the Appendix, section 10.2, lists building first so that every product model
created by The Conceptimator will have building at the root of its product
model tree. If you look at the product structure, you will notice that some of
the components are listed giving only their name and some have :n before
them. The first component listed in that fashion in The Conceptimator's
product structure is :n mat. All components listed by name must appear
exactly one time in the product model at the exact place specified by the
product structure. Clearly, if all components were listed only by name, the
system would be less flexible; the only variation would be in the attributes --
geometric and functional -- of components. Design++ allows components to
be included based on rules, so the number of instances of the component
which will appear in the product model at that place is undefined in general.
For example, :n mat means that some number of mat foundations -- based on
the evaluation of a rule in the mat library element -- can appear in the ‘
product model under foundation. That number may be 0. Thus, Design++
uses user input to flesh out an instance of the product structure with library
elements, by evaluating design rules contained in the elements.

4.4. User Input

The user must provide three types of information. First is information about
the building itself:

esize and configuration of the building footprint:

The building is assumed to be rectangular at this time. If the system is
expanded, it is conceivable that the user could enter any footprint shape using
Autocad. :

etype of facility to be designed:

The user may choose between hospital, industrial, residential, office,
manufacturing, or other. The type of building determines the live and dead
load requirements

earea of the building:

The area is figured from the number of floors and the building footprint. In
order to do so, the system assumes the building is prismatic. That is, the

configuration of the superstructure must follow the same shape as the
building footprint.

ebay size

The user must specify both the bay length and width.

ebasement depth

The second type of user input involves site and subsurface inquiries.
Specifically, the system must have values for the following attributes:

eTop Soil: bearing capacity, material

*Sub Soil: bearing condition, condition, material

eBottom Soil: location, bearing support for piles

However, since the inputs are expected to be furnished by a future building
owner, not a construction expert, the system does not ask the values directly
from the user. Instead, the user may provide one of three types of analyses:
boring sample, user inspection of the site, or a United States Geological
Survey (USGS) Map. The first level of analyses, and the most desirable one, is
the boring sample. If the user has information from a boring sample, s/he
can enter that information into the system directly. If not, the system asks the
user if s/he has visited the site. If so, the system asks simple questions such as
what it looked like, and what the soil felt like. The system can then use the
answers to those simple questions to determine the desired information for
the top soil. If there was an existing cut that the user observed on the site,
s/he can provide similar information for the system to determine the sub soil
characteristics. The third and final level of analysis is the USGS map. The
USGS makes easily obtainable, detailed maps for most areas of the United
States. We provide a map with the system. If the user does not have a boring
sample or personal information about the site, s/he can locate the site on the
USGS map, enter the USGS code, and the system will locate the desired
values in a database attached to the system.

The third type of user information required is information about local
environmental conditions. These are often important in deciding if certain
pile systems are feasible for a given site. For example, the system investigates
concerns regarding allowable noise levels. If the community regulations
regarding noisy driven pile systems are strict, those systems will be
eliminated from consideration. The system also considers how existing
structures will react to new construction by asking questions about the
distance of adjacent buildings, the type of area in which the building will
built, such as residential or commercial, and the strength of the foundations
of adjacent buildings.

To get an idea of what interacting with the system is like, see the Appendix,

Figure A3, which shows the screen of the Design++ system as it is asking the
user to enter the length of the building which s/he is creating.

10

4.5. Product Model

As shown in the diagram above, the product model is created from a
combination of libraries, product structure, and user input. To be more
specific about the interaction of the four parts, the product model is a unique
instance of the product structure, built of library elements, and based on rules
in the library elements which reference user input. By looking at the sample
product model shown in the Appendix, Figure A4, you can see that the
product model, like the library, is a tree-structure. The product model, whose
root is the product (in this case, a building), is the result of one run of the
system. The product model for the designed building shows the selected
foundation. In the example product model, we see that the chosen
foundation is spread footing.

4.6. The Process: How Design++ Creates a Product Model

Now that you are familiar with the parts and output of the system, we will
describe the process Design++ goes through when the user asks it to create a
product model. To run the system, the user tells it to create a new model.
The system asks which product structure to use, which in this case is the
building_struct shown in the Appendix, section 10.2. The system goes
through the product structure line-by-line, adding instances of the listed
components to the product model it is creating. The components in the
product structure have no values at this time. For example, building is in the
product model and the attribute length is associated with the building
instance, but length does not have a numerical value yet. The system
continues to add single instances of each component until it reaches the first
ambiguous line in the product structure, which is :n mat.

The system must find out how many instances of the component mat to add
to the product model before it can proceed to the next line of the product
structure. Therefore, it looks to see if there is a rule which will tell it what to
do. In fact, there is a rule foundation nr_mat which says if the foundation
f_type (the foundation type) equals mat, the number of mat is 1, otherwise
the number is 0. Thus, in order to get the value for this nr_mats, the system
must have the value for foundation f type. The system thus looks for a rule
to give the value of foundation f type. There is a rule which says that
foundation f type is the minimum cost value from the list of
allowable_types_and_cost under foundation_evaluation. Now, the system
goes to find a rule for foundation_evaluation allowable_types_and_cost.

The backwards chaining process continues until the small details, such as the
water_table depth and building bay_length, needed to determine the upper-

11

level choices are reached and instantiated. Then, the rules chain back up to
the top level of the system, and the original value which prompted the work
of the system, which was in this example nr_mat, is determined. The system
continues through the product structure, forcing the rules in the components
to fire, thereby causing calculation of their values, until the product structure
is completely instantiated.

It is interesting to note that the system only fires rules which are necessary for
the completion of the product model. If the system does not need to have a
value for some component, it is left valueless. When the system is done
running through the product structure, a product model tree like the one in
the Appendix, Figure A4, will be displayed on the screen showing the
completely constructed building. The Autocad 3-D model and report are
easily produced at that time (see section 4.8). Not all applications using
Design++ run in this exact manner. Some require the user to ask for one

- value within the product model in order to start the required calculations,
rather than the method used here which is to force all needed calculations
when the product model is being created. However, both methods use the
backward chaining method described.

4.7. Dialog Boxes

Design++ can be used to provide a what if scenario. Once the system is run,
the user can open a dialog box for any component in the product model. See
the Appendix, Figure A5, for a sample dialog box. The user can alter any
value manually, and that new information will propagate through the
system, changing any values which were calculated using the adjusted
attribute. The user can see the results of the change within minutes. For
example, in one run of the system, we switched the feel of the top soil from
granular to crumbly. That change caused the top_soil material to change
from sand to hard_clay, thereby decreasing the bearing_capacity of the
top_soil. Since the bearing capacity was less, the spread footings had to be
bigger in order to support the weight of the building. The greater spread
footings were more expensive. Thus, a different foundation, steel piles,
replaced spread footing as the chosen foundation because they were now less
expensive than the bigger spread footings.

4.8. Other Outputs from Design++

Other than the product model itself, Design++ provides a report facility and a
connection to Autocad and Oracle, all of which can be used for output. For
example, by producing a report, producing an Autocad drawing, and by
storing calculated values in a database, respectively. The Conceptimator
utilizes three of these four facilities for output. First, the system outputs a

12

product model for the designed building, which shows the selected
foundation. Second, the system generates an Autocad 3-D model of the
foundation, which can be viewed from any angle. See the Appendix, Figure
A6, for an example Autocad drawing. Third, the report summarizes the
inputs to the system, the allowable foundation types and cost for each one,
and gives a detailed description of geometry and cost of the chosen
foundation. Although The Conceptimator uses the database to get inputs to
the system, it does not output any values to the database.

5. Project Results

The Conceptimator shows that we can gather conceptual design knowledge
about building foundations and implement the knowledge in a computer
system in order to expedite the conceptual design and estimating process. The
Conceptimator is a working prototype system; it produces conceptual cost
estimates by simulating the design process at a stage in the project when the
data to do so is ambiguous or missing. It successfully takes a task which has
historically been solved as a classification problem and shows that it can be
solved as a synthesis problem. The synthesis solution is more complete and
accurate, the rationale for the estimate is explicit and traceable, and it provides
an easy means for a what if analysis.

An unexpected outcome of the project is a serendipitous new idea for project
control: the defending champion. The Conceptimator’s estimate can be
upheld against later contractor statements of design and cost. Any more
expensive design must be explained in relation to the defending champion,
which is The Conceptimator’s design. The Conceptimator can be overruled
but serves as a defending champion in the sense that it must be successfully
challenged by a new idea, on a cost versus functionality trade-off, in order to
be defeated.

This project could be extended to other parts of the building. However, the
next planned step is an extension of the concept to a more difficult domain:
hazardous waste remediation. That project will use the form and concepts of
this building project in the new domain.

13

References

Barrie, D. S., and Paulson, B. C. (1992). Professional Construction
Management, Third Edition. McGraw-Hill, Inc.,, New York, 198-251.

Dym, C. L., and Levitt, R. E. (1991). Knowledge-Based Systems in Engineering.
McGraw-Hill, Inc., New York.

Levitt, R. E. (1990). “CIFE Seed Research Proposal: Knowledge-Based Time
and Cost Estimating of Facility Projects.” Unpublished.

Logcher, R. D., et al (1978). “Costmod: An Approach to Cost Estimating for
Planning and Design.” Proceeding of the Second International Symposium
on Organization and Management of Construction of CIB-W65, Israel
Institute of Technology, Haifa, Israel.

Retik, A., and Warszawski, A. (1991). “Knowledge Based System for Design of
Prefabricated Buildings.” Artificial Intelligence and Civil Engineering, Civil-
Comp Publications, Edinburgh, Scotland, 187-195.

“Streamlining Facility Development: Developing an Entire Facility Plan in
less than a Day.” (1991) SARA Systems, Inc.

Waterman, D.A. (1986). A Guild to Expert Systems. Addison-Wesley
Publishing Company, Inc., Menlo Park, California.

14

7. Appendix

15

7.1. Figures

- 16

Figure A1: The Conceptimator Library

[l findex] Library CONCEPTIMATOR_LIB

building
building parameters
bullding systems
looting eval
']{’ _program eval
_cap_eval
cost_eval components gg: S;;Ioﬁ eval
slab_eval
wall_eval

wall footing_eval
engineering requirements
environment
foundation
foundation_evaluation

b caisson eval
foundation_eval comp oncnts-< non_pile_eval components !:;; oti; 381_0‘791

pile_eval components

lassemblies hor_gridline
sofl
bottorn_soil
sofl_comp onents< sub_soll
top_soil
subsurface
superstructure
augured p
b _calsson
&3
eb_pipe
ebSteel 7
types_of_foundations ~mat
‘ pipe p
precast p
steel p
s_footing
timber p
vert_gridliine
water_table
Lconcepﬁmator lib_index
footing
plle
plle_cap
parts slab
story
wall
wall footing

17

Figure A2: Example Library Component

Superclasses:
SOIL_COMPONENTS in Librery CONCFPTIMATOR_LIB
Subclasses:

Comment <<not spedfied>>

MATERIAL
Comment: <<not specified>>
Defanlt: <<not specified>>
Dedgn Rule:
(! SELF
MATERIAL
(IF(EQUAL (:? SUBSURFACE HAVE_BORING_SAMPLE)
"YES)
(PROGN
(PROMPT 'DLGBX
"Please select the material of the top layer of the boring sample.”)
(FROM-MENU
{LIST "MUD
'"ORGANIC
"ROCK
"SAND
'SOFT CLAY
"HARD CLAY
"'SILT)))
(IF (EQUAL (:? SUBSURFACE VISITED_SITE)
"YES)
(IF (EQUAL (:? MY LOOK) 'MARSHY)
"ORGANIC
(IF(EQUAL (\? MY LOOK)
"ROCKY_PROTRUSIONS})
"ROCK
(CASE (:7 MY FEEL)
(ORITTY "MUD)
(SPONGY 'ORGANIC)
(GRANULAR 'SAND)
(NOT COHESIVE 'SAND)
(STICKY 'SOFT CLAY)
(ROLL BETWEEN FINGERS 'HARD_CLAY)
"(CRUMBLY "HARD CLAY)
(GRITTY_AND CRUMBLY 'SILT)}))
"MUD)))
Valueclass: (ONE.OF MUD ORGANIC ROCK SAND SOFT_CLAY-HARD_CLAY SILT)
Valve: <<not specified>>

18

Figure A3: A View of The Conceptimator Asking for User Input

. 31-May-1663

models utiitles

[[create] Libruies I [cveate] Models . I

7 A gy

conceptimator_lb dpl

example

TNy

A
our_building ¥

stanford-medical -]

conc_str

core f'"' e table BUILDING’s LENGTH, Enter the length of the building in feet
ﬂ —m plant_dem

?A il
IE towers

i

= 78 feet, 6 inches) (FLOAT):

(you may also enter Inches as a dedmal fraction, for emmple: 78.§

table project

the_conceptimator |

o d
e

19.

Figure A4. Example Product Model

[findex] Model STANFORD-

environment
water table
parameters subsuxtace<soﬂ ;_«:\ i?x% ssziill
bottom_soil
engineering requirements
mat_eval
b_calsson_eval
slat&;‘cval
foo eval
’—t°°ﬁng—°v°1<wan tsooﬁng eval
wall_eval
timber p eval
evaluation ste cl_p’Pé_v al
precas Jp_cval
eb_ste eval
clp _p_cval
pipe p eval
augured p_eval
eb_pipe p eval
i s
wall.3
foundation wall4
systems wall footing.1
wall footing 2
wall footing.3
wall footing.4
slab
vert_gridiine.1 tooting
vert_gridiine.2
vert_gridiine.3
hor_gridline.1 vert gﬂdﬂned
vert_gridiine.§
s_footing vert_gridline 4
vert_gridline.7
hor_gridiine.2
hor_gridliine.3
hor_gridline 4
hor_gridline.§
hor_gridiine.6
superstructure

MEDICAL-CLINIC

20

Figure A5: Example Dialog Box

{BEARING CAPACITY:

f2000

FEEL:

O spoNoy O ORITTY_AND_CRUMBLY

(O ROLL_BETWEEN_FINGERS O CRUMBLY
QOGORITTY OSTICRY

® ORANULAR O NOT_COHESIVE

[HISTORY:

*STANFORD - MEDICAL - CLINIC, ELLEN,
1992 23:19:11°)

IO ROCKY_PROTRUSIONS O MARSHY

[MATERIAL:

0 Comporient TOP_SOIL in model STANFORD-MEDICAL-CLINIC

[Lock

[Lock

1 Lock

O Lock

I Remove

' Remove

21

Figure A6: Example Autocad Drawing

Fila vy Sollds r)

H
1 Viewpt!
2 Viewpt
4 viewpt
Save vpt

-

Highlite
Pan Cosp
ZoonConp,
Save+Hap

Axegs

EditPoly
D++Hlite
Desattrs
Auto-Geo
Geomotry
Update

Hove

Assist ©) Drav ¥) _Modify v} Display v) Settings v) options r} Utility r)

0¥ Designes
P2

—

=

1=}

=]

=]

t=3

=)

o

=3

=}

o
>
4
™
©
=
o
o
o
]
-
-
©

N h=5-5-}

“ EE&C

@ LR

> .

@ r el

pig =5=¥]
(oXwiw]

22

Figure A7: Oracle Database Values

Connected to: ORACLE RDBMS V6.0.26.8.1, transaction processing option - Production
SQL> select * from f_costs:

ELEMENT TYPE DEPTH HEIGHT M_COST L_COST

SLAB MAT 127.5 118.75
PILE BC 30.15 36.85
FOOTING SF 103.75 125
PILE TIMBER 5.4 6.6
PILE STEEL 6.3 7.7
PILE PRE 6.38 8.53
PILE CIp 7.2 8.8
PILE PIPE 7.865 - 8.35
PILE AUG 3 1
PILE EB_STEEL 6.53 7.98
PILE EB_PIPE 7.88 9.63
ELEMENT TYPE DEPTH HEIGHT M_COST L_COST
SLAB 6 1.5 .88
SLAB . 8 2.06 .94
SLAB 12 3.08 1.09
PILE_CAP 101.25 110
PILE_CUT_OFF 8.75 166.25
I_P_PROGRAM 0 5000
WALL_FOOTING 8 3.95 5.85
WALL 8 3.95 5.85
WALL 14 4.92 9.65
WALL 20 5.9 11.57

21 records selected.
SQL> select * from soil;

CODE TOP_MATL SUB_MATL SUB_CONSIS BOTTOM_LOC BOTTOM_B_SUPP

QM MUD MUD NOT_ROCKY 120 UNACCEPTABLE
QA1 SAND SAND NOT_ROCKY 120 UNACCEPTABLE
QTS HARD_CLAY HARD_CLAY ROCKY 60 ACCEPTABLE
TMZS ROCK ROCK ROCKY 20 ACCEPTABLE
KG ROCK ROCK ROCKY 60 ACCEPTABLE
KIF ROCK ROCK ROCKY 60 ACCEPTABLE
R MuD MUD NOT_ROCKY 120 UNACCEPTABLE

7 records selected.

sQL>

23

7.2. Concéptimator Product Structure File

24

building struct.lisp

7

12

7

7

;77 created by Ellen Tauber
;;:; August, 1991

;::: May, 1992

(building

{building parameters
{environment)
{subsurface

(water table)
(soil
(top_soil)
(sub_so0il)
(bottom so0il)))

Wed Jun 10 01:04:02 1992

;7:; modified by Gaye Oralkan

(engineering requirements))

(building systems
{(foundation

(foundation evaluation

(mat_eval
(slab_eval)

(wall footing eval)

(wall eval))
(b_caisson_eval

{slab_eval)

{(pile eval)

(wall footing eval)

{(wall eval))
{(s_footing eval
(slab_eval)
(footing eval)

(wall footing eval)

(wall eval))
(timber p eval
{(slab_eval)
(pile eval)
{(pile_cap eval)

(pile_cut_off eval)
(i_p_program eval)
(wall footing eval)

(wall eval))
(steel p eval
{slab_eval)
{pile eval)
(pile cap eval)

(pile_cut_off eval)
(i_p program eval)
{(wall footing eval)

(wall eval))
{(precast _p eval
{slab_eval)
(pile eval)
(pile_cap_eval)

(pile_cut_off eval)
(i_p program eval)
{(wall footing eval)

(wall eval))
(eb_steel p eval
(slab_eval)
{pile _eval)
(pile_cap eval)

(pile_cut_off_eval)
(i p program eval)
(wall footing eval)

(wall eval))

building struct.lisp

(
(

(cip p eval
{slab_eval)
(pile_eval)
(pile_cap_eval)
{pile_cut_ off eval)
{i_p program eval)
(wall footing eval)
(wall eval))

(pipe p eval
(slab_eval)

(pile _eval)
(pile cap eval)
(pile _cut_ off eval)
(i_p program eval)
(wall footing eval)
(wall eval))

(augured p eval
(slab_eval)

(pile eval)
{(pile_cap eval)
(pile_cut_off eval)
(i_p program eval)
{(wall footing eval)
(wall eval))

(eb_pipe p eval
(slab_eval)
{(pile_eval)
(pile_cap_eval)
{pile_cut_off eval)
{i_p_ program eval)
(wall footing eval)
(wall eval)))

(:n wall)

(:n wall footing)

in

:n

o]

mat
(slab))
b caisson
{slab)
(:n hor gridline
(:n vert gridline
(pile))))
s_footing
{slab)
(:n hor gridline
(:n vert_gridline
(footing))))
timber p
(slab)
(:n hor_gridline
(:n vert gridline
(pile_cap)
(:n pile))))
steel p
(slab)
(:n hor gridline
(:n vert gridline
(pile cap)
(:n pile))))
precast p
(slab)
(:n hor gridline
(:n vert gridline
(pile_cap)
(:n pile))))

Wed Jun 10 01:04:02 1992

building struct.lisp Wed Jun 10 01:04:02 1992
(:n cip p
(slab)
{(:n hor gridline
(:n vert_gridline
(pile_ cap)
(:n pile))))
(:n pipe p
(slab)
(:n hor gridline
(:n vert_gridline
(pile_cap)

(:n pile))))
(:n augured p

(slab)
(:n hor gridline
(:n vert gridline
(pile cap)

(:n pile))))
(:n eb steel p

{slab)
(:n hor _gridline
(:n vert gridline
(pile_ cap)
(:n pile))))
(:n eb pipe p
(slab)
{(:n hor gridline
(:n vert gridline
(pile_cap)

(:n pile)))))
(superstructure)))

7.3. Conceptimator Rule Files

28

building rules.lisp Wed Jun 10 01:12:26 1992 1

{(in-—

rrr

(:!

v

package 'kee)

A N NN

Mon 12-Aug-91 10:16:50 by Ellen Tauber

in square feet, currently = building length * building width but can
be entered by user directly if building is not assumed to be rectangular
BUILDING FOOTPRINT

(* (:? my length) (:? my width)))

Mon 12-Aug-91 10:30:43 by Ellen Tauber

;7 # in square feet = bay length * bay width
:! BUILDING BAY SIZE
(* (:? my bay length) (:? my bay width)))

P

;77 Mon 12-Aug-91 10:34:54 by Ellen Tauber

;: # in feet, gross_area = # _of stories * footprint
; glves total floor space :

(:! BUILDING GROSS_AREA

(* (:? my number_of stories) (:? my footprint)))

e N

;7:; Mon 12-Aug-91 10:38:58 by Ellen Tauber
in pounds/ square feet, weight = gross_area * (dead_load + live load)
(:! BUILDING WEIGHT
(* (:? my gross_area)
(+ (:? my dead load) (:? my live load))))

;77; Mon 12-Aug-91 11:11:14 by Ellen Tauber
;7; # in pounds/square feet, depends upon building type
(:! BUILDING DEAD LOAD
(CASE (:? my building type)

(hospital 150)

(industrial 125)

(residential 150)

(office 150)

{manufacturing 135)

(other 150)))

;:7; Mon 12-Aug-91 11:11:14 by Ellen Tauber
;7: # in pounds/square feet, depends upon building type
(:! BUILDING LIVE LOAD
(CASE (:? my building type)
(hospital 100)
(industrial 125)
(residential 50)
(office 50)
(manufacturing 100)
(other 50)))

;77 Thu 15-Aug-91 17:16:33 by Ellen Tauber
;7: # in feet, perimeter = squareroot of footprint
(:! BUILDING PERIMETER
(+
(* 2 (:? building width))
(* 2 (:? building length))))

building rules.lisp Wed Jun 10 01:12:26 1992 2

A A A A N N NN

;; Mon 12-Aug-91 11:55:34 by Ellen Tauber

:! ENVIRONMENT NOISE LEVEL

(if
(or
{(equal (:? my community scrutiny) ‘strict)
(and
{equal (:? my type of area) ‘commercial)
(equal (:? my adjacent_structures_distance) ‘close))
(and

{(equal (:? my community_ scrutiny) ’average)

(equal (:? my type of area) ’residential)

(equal (:? my adjacent_structures_distance) ‘close)))
"unacceptable
facceptable))

;77 Mon 12-Aug-91 12:36:13 by Ellen Tauber

(:! ENVIRONMENT VIBRATION LEVEL
(if
{or
(and
{equal (:? my adjacent_structures distance) ’close)
(or
(or_equal (:? my type of area) ' (commercial residential))
(equal (:? my adjacent structures_ strength) ‘weak)))
(and
(equal (:? my adjacent structures_ strength) ’weak)
(equal (:? my adjacent structures_distance) ’'moderate)))
'unacceptable
"acceptable))
P iRl il i iR iR iR iiiiiiiiiiiiiiiiiiiiiiiiiiiii:
JRiiiiiiiiiiiiiiiiii ENGINEERING REQUIREMENTS Piiiiiiiiiiiiiiiiiiiiiiiiiii
Pl i i i i i iRl iR i iiiii i iiiiiiiiiiiiiiiiiii;

r

;7 Mon 12-Aug—-91 14:45:05 by Ellen Tauber

:! ENGINEERING_REQUIREMENTS BENDING RESISTANCE REQUIREMENT

I

(if

(> (:? building number of stories) 5)
‘high

flow))

;77 Mon 12-Aug-91 02:44:00 by Ellen Tauber

(:! ENGINEERING REQUIREMENTS DIFFERENTIAL SETTLEMENT

(if
(or
{(equal (:? my settlement in 30 feet) ’strict)
(equal (:? my column_settlement) ’strict))
!strict
standard))

building rules.lisp Wed Jun 10 01:12:26 1992 3

............................... SOIL 4 % + 3 8 9 4 e 8 s % 4 s 4 s ® e e o e a s e s e & e s s s s e s s s s oa s
rrrrr ot trrrr LI I r NI IO N NN NN

A A A e N N e

;77 Mon 12-Aug—91 15:32:44 by Ellen Tauber
in lbs/square feet; depends upon soil’s material
:! TOP_SOIL BEARING CAPACITY
(case (:? my material)
(mud 100)
(organic 2000)
(rock 50000)
(sand 12000)
(soft_clay 1000)
(hard clay 8000)

(silt 6000)))
;77; Thu 15-Aug-91 10:58:50 by Ellen Tauber
(:1 TOP_SOIL MATERIAL
(if
{equal (:? subsurface have boring sample) ’yes)
{(progn

(prompt ‘dlgbx "Please select the material of the top layer of the
boring sample.")
(from-menu (list ‘mud ‘organic ‘rock ’'sand ‘soft clay ‘hard clay ’‘silt)))
(if
(equal (:? subsurface visited site) ’yes)
(if
(equal (:? my look) 'marshy)
"organic
(if
(equal (:? my look) 'rocky protrusions)
frock
(case (:? my feel)
(gritty ’mud)
(spongy ‘organic)
(granular ’sand)
(not_cohesive "sand)
(sticky ’soft clay)
(roll_between fingers ‘hard_clay)
(crumbly "hard clay)
(gritty and crumbly ’silt))))

(intern
(car
(comr::flatten
(rdb-sqgl

(format nil
"SELECT TOP_MATL FROM SOIL WHERE CODE = /~A’ ;"
(:? subsurface map code_value)) 'ELLEN))) ’'kee))))

;;:7 Thu 15-Aug-91 10:58:50 by Ellen Tauber
(:! SUB_SOIL MATERIAL
(if
(equal (:? subsurface have boring sample) ’yes)
(progn
(prompt ‘dlgbx "Please select the material of the majority of the middle
layers of the boring sample.™)
(from-menu (list ‘mud ‘organic ‘rock ’sand ‘soft_clay "hard clay ’silt)))
(1f
(and
(equal (:? subsurface visited site) 'yes)

building rules.lisp Wed Jun 10 01:12:26 1992 4

{equal (:? subsurface existing cut) ’yes))
(1f
(equal (:? my look) ’'marshy)
"organic
(1f
(equal (:? my look) ’rocky protrusions)
frock

{case (:? my feel)
(gritty "mud)
(spongy ’organic)
(granular ’sand)
(not_cohesive ’sand)
(sticky ’soft_clay)
(roll between fingers ’'hard clay)
{crumbly "hard clay)
(gritty and crumbly ‘silt))))

(intern
(car
{(comr::flatten
(rdb-sql

(format nil
"SELECT SUB_MATL FROM SOIL WHERE CODE = ’'~A’;"
(:? subsurface map_code_value)) ’'ELLEN))) ‘kee))))

;77; Mon 12-Aug-91 15:59:01 by Ellen Tauber
;:; depends upon soil’s material
(:! SUB SOIL BEARING CONDITION
(case (:? my material)
(mud ‘compressible)
{(organic ‘compressible)
{rock 'non_compressible)
(sand ’'non_compressible)
{soft_clay ’compressible)
(hard clay ’'non_compressible)
(silt 'non_compressible)))

;7:;; Mon 12-Aug=-91 16:01:46 by Ellen Tauber
7;; measure of amount of shear friction available to support piles
(:! SUB SOIL CONDITION
(case (:? my material)

(mud ’unacceptable)

(organic ‘unacceptable)

(rock ’"unacceptable)

(sand ’acceptable)

{soft_clay ’'unacceptable)

{(hard clay "acceptable)

(silt ’acceptable)))

;77 Mon 12-Aug-91 16:05:31 by Ellen Tauber
(:! SUB SOIL CAVE_IN

(if

(oxr
(equal (:? water_ table depth) "high)
(equal (:? water_table depth) ’very high)
(equal (:? my material) 'mud)
(equal (:? my material) ‘organic))

"true

'false))

;777 Thu 15-Aug-91 11:36:27 by Ellen Tauber

building rules.lisp Wed Jun 10 01:12:26 1992 5

;i % of rocks/boulders/etc. that may damage a pile
(:! SUB_SOIL CONSISTENCY
(if
(equal (:? subsurface have boring sample) ‘yes)
{progn

{(prompt ’‘digbx "What is the overall consistency of the boring sample
(were rocks and boulders found in the excavation)? YOU MAY CHOOSE
FROM THE FOLLOWING: rocky, not_rocky")
(from-menu (list ‘rocky ‘not_rocky)))
(if
(and .
{equal (:? subsurface visited site) ‘yes)
(equal (:? subsurface existing cut) ‘yes))
(progn
(prompt ‘dlgbx "From the existing cut you saw during the site visit,
judge the consistency of the majority of the middle layers? YOU MAY
CHOOSE FROM THE FOLLOWING: rocky, not_ rocky"™)
(from-menu (list ’rocky ‘not_rocky)))

{intern
{car
(comr::flatten
(rdb-sql

(format nil
"SELECT SUB_CONSIST FROM SOIL WHERE CODE = ’~A’;"
(:? subsurface map code value)) ‘ELLEN))) ‘kee))))

;777 Thu 15-Aug=-91 11:53:08 by Ellen Tauber .
;77 indicates either the location of bedrock or the stopplng point of the boring
A sample if bedrock was not reached
(:! BOTTOM_ SOIL LOCATION
(if
(equal (:? subsurface have_boring sample) ‘yes)
{(prompt-and-read ’'dlgbx "Enter the depth of the boring (point at which refusal
was met or excavation was stopped. ENTER A NUMBER IN FEET AND
DECIMAL INCHES. (78.5 = 78feet 6inches)™)
(if
(equal (:? subsurface visited site) ’yes)
(case (:? subsurface rocky protrusions_or_hills)

{(rocky protrusions 20) ; location_range = high
(hills 50) ; location_range = medium
(neither 100)) ; later go to table for neither
(car
(comr::flatten
(rdb-sqgl

(format nil
"SELECT BOTTOM LOC FROM SOIL WHERE CODE = ’~Af;"
(:? subsurface map_code_value)) ’'ELLEN))))))

;i77 Thu 15-Aug-91 12:07:30 by Ellen Tauber
(:! BOTTOM_SOIL BEARING_SUPPORT_FOR_PILES
(if
(equal (:? subsurface have_boring sample) ’yes)
(if
(and
{equal
(progn
(prompt ‘dlgbx "What is the bottom layer of the boring sample? YOU MAY
CHOOSE FROM THE FOLLOWING: rock, hard clay, other")
(from-menu (list ’rock ‘hard_clay ‘other)))
(or
"rock

building rules.lisp Wed Jun 10 01:12:26 1992 6

"hard clay))
(not
(< (:? my location) 100)))
facceptable
’unacceptable)
(1f
{equal (:? subsurface visited site) ’yes)
(if
{(or
(equal (:? subsurface rocky protrusions_or hills) ‘hills)
(equal (:? subsurface rocky protrusions_or hills) ‘rocky protrusions))
"acceptable
"unacceptable)
{intern
(car
{comr::flatten
(rdb-sql
(format nil
"SELECT BOTTOM B_SUPPORT FROM SOIL WHERE CODE = ’'~A';"
(:? subsurface map code_value)) ’ELLEN))) ‘kee))))

...

LA A A A A A A N NN e e e
WATER TABLE A A A A A A A A A A A R A A A R A R A A

LA A AR A A A A A SN RN e ey

;777 Thu 15-Aug-91 16:21:16 by Ellen Tauber
(:! WATER TABLE DEPTH

(if
{(equal (:? subsurface have boring sample) ’yes)
{progn
(prompt "dlgbx "At what depth was ground water encountered in the boring
hole? YOU MAY CHOOSE FROM THE FOLLOWING: very high (<=0ft), high
(0-3ft), medium (3-22ft), low (>22ft)")
{(from-menu (list 'very high "high ‘medium "low)))
(if
(equal (:? subsurface visited site) ‘yes)
(case

(progn
{prompt ‘dlgbx "What does the surface look like regarding wetness? YOU
MAY CHOOSE FROM THE FOLLOWING: underwater, marshy, other"™)
(from-menu (list "underwater 'marshy ’other)))
(underwater ’'very high)
(marshy ’very high)
(other ’low))
(case (:? subsurface map_color)
(white ‘very high)
(blue "high)
(green "medium)
(red ’"low)))))

A AR A A A e NN NN
..
rrtrr sttt b r I I L rrrr Ly END OF FILE Fr TP r L r LR rr L rrr L L rLLI YIRS

A A A A A N N N NN

foundation_ rules.lisp Wed Jun 10 00:59:39 1992 1

(in-package 'kee)

A A NN

;7:7 Mon 9-Sept-91 23:32:09 by Ellen Tauber
;7; chooses the foundation with the lowest cost from allowable_ types_and cost
(:! FOUNDATION F_TYPE
(let* ((ty (min-type-from-list-of-lists
(:? foundation evaluation allowable types_and cost))))
(:? ty type)))

AN AN AT AR AR AN AN AN AN AN A A AR AR A AR AR AN N R N R NN
PPiiiiiiiiiiiiiiiiiii FOUNDATION_ EVALUATION Fiiiiiiiiiiiiiiiiiiiiiiiiiiiii

..

I e R e NN NN

;7:; Tue 13-Aug-91 10:57:47 by Ellen Tauber
;;; true if pile systems are acceptable based upon environmental and

;:; soil conditions

(:! FOUNDATION_ EVALUATION PILE_SYSTEM_ACCEPTABLE
(if
(and

{equal (:? environment noise level) 'acceptable)
{equal (:? environment vibration level) ’acceptable)
{equal (:? sub_soil consistency) ‘not_ rocky)
(not
(equal (:? top_soil material) ‘rock))
(not
(equal (:? sub_soil material) ‘rock)))
"true
ffalse))

;777 Tue 13-Aug-91 11:08:11 by Ellen Tauber
;7; # in lbs; gives weight distributed to one foundation bay
(:! FOUNDATION EVALUATION WEIGHT TO ONE BAY
v
(:? building weight)
(/
(:? building footprint)
(:? building bay size))))

;77 Tue 13-Aug-91 11:11:36 by Ellen Tauber
;; #'s for comparison in lbs/square feet
! FOUNDATION EVALUATION SPREAD FOOTING POSSIBLE
(if
(<
(/
(:? building weight)
(*
(:? building footprint)
0.5))
(:? top_soil bearing capacity))
'true
ffalse))

;::: Fri 23-Aug-91 by Ellen Tauber

foundation rules.lisp Wed Jun 10 00:59:39 1992 2

(:! FOUNDATION EVALUATION ALLOWABLE TYPES
(loop for £ in (:parts my)
when
(equal (:? £ allowable) ’yes)
collect £f))

;777 Mon 9-Sept-91 18:56:03 by Ellen Tauber
;77 list of pairs of allowable types and foundation costs ((type cost)
;7; (type cost)...)

(:! FOUNDATION EVALUATION ALLOWABLE TYPES AND_COST
(loop for type in (:? my allowable_ types)
collect
(list type (:? type foundation_total cost))))

..

AR A A A A

;7:; Mon 9-8Sep-91 17:52:25 by Ellen Tauber
;77 total cost of all material for foundation system
(:! FOUNDATION EVAL COMPONENTS FOUNDATION MATERIAL COST
{let* ((cost list (loop for p in (:parts my)
collect (:? p material cost)))
(result (apply '+ cost list)))

(/
(round result 0.01)
100.0)))

;777 Mon 9-Sep-91 18:40:27 by Ellen Tauber
;77 total cost of all labor for foundation system
(:! FOUNDATION EVAL COMPONENTS FOUNDATION_ LABOR COST
{(let* ((cost_list (loop for p in (:parts my)
collect (:? p labor cost)))
(result (apply '+ cost_list)))

{/
{round result 0.01)
100.0)))

;7 Wed 21-Aug-91 10:29:02 by Ellen Tauber
;77 total cost for foundation system
{:! FOUNDATION_ EVAL COMPONENTS FOUNDATION_ TOTAL COST
/
{(round
(+
(:? my foundation material cost)
(:? my foundation labor_cost))
0.0L)
100.0))

..

..

77+ Thu 15-Aug—-91 15:25:54 by Ellen Tauber
(:! PILE EVAL COMPONENTS PILES_ABLE TO_ SUPPORT_LOAD

foundation_ rules.lisp Wed Jun 10 00:59:3% 1992 3

{(if (or (<= (:? bottom soil location) 20)
(<= (* .5 (:? building bay size))
(:? pile cap eval area))
(> (:? pile eval num piles_at_each_bay) 20))
"false
"true))

...

RN N N NN

r
FPiiiiiiiiiiiiiiiiiiiis COST_EVAL COMPONENTS ;777 ii77377iii777iiiiiiiiiiii
PRIl il i il iR i il iiiiiiiiiiiiiiiiiiiiiiiiviiiii

’

(:!

;7 Mon 19-Aug-91 13:46:47 by Ellen Tauber

COST_EVAL_ COMPONENTS TOTAL COST
(+

(:? my material cost)

(:? my labor cost)))

;27; Mon 19~-Aug-91 13:47:56 by Ellen Tauber
;77 total cost for one unit
:! COST_EVAL COMPONENTS UNIT_ TOTAL COST
(+
(:? my unit _material cost)
(:? my unit labor cost)))
RN iii;
FRiiiiiiiiiiiiiiiiiiiiiiiiiii SLAB EVAL FRiiiiiiiiiiiiiiiiiiiiiiiiiiiii;
Il iiii i i iii;

~

s S

-~
.

Ne o~y

’

(:

7

—

; Mon 19~Aug-91 13:54:00 by Ellen Tauber
SLAB_EVAL QUANTITY 1)

; Mon 19-Aug-91 13:57:22 by Ellen Tauber

SLAB_EVAL COST_UNIT OF MEASURE

(if
{equal (:? (:parent my) type) ‘mat)
'CcY .
"SF))

;7 Mon 19-Aug-91 13:58:54 by Ellen Tauber

; # in ft2
SLAB EVAL AREA
{(:? building footprint))

; Mon 19-Aug-91 14:00:56 by Ellen Tauber

; returns #’'s in feet
SLAB_EVAL DEPTH
(if
(equal (:? (:parent my) type) ’'mat)
(if
(>

(/ (:? building bay length) 16)
(/ (:? building bay width) 16))
{/ (:? building bay_length) 16)
{/ {(:? building bay width) 16)) ;want greater of length or width

foundation rules.lisp Wed Jun 10 00:59:39 1992 4

(case (:? building building type)

(manufacturing (/ 8 12)) ; 8 inches
{(industrial 1) ; 12 inches
(t .5)))) ; 6 inches
;227 Mon 19-Aug-91 14:17:41 by Ellen Tauber
;s # in ft3
(:! SLAB EVAL VOLUME

(*
(:? my area)
(:? my depth)))

;777 Mon 19-Aug-91 14:19:58 by Ellen Tauber
;7:;; returns # in CY or SF
(:! SLAB_EVAL TOTAL MASS FOR COST

(if
(equal (:? (:parent my) type) ’'mat)
(/ (:?2 my volume) 27) ; returns # in CY

(:? my area))) ; returns # in SF

;; Wed 11-Sep-91 by Ellen Tauber
(:! SLAB_EVAL MATERIAL COST
(/
(round
('k
(:? my unit_material cost)
(:? my total mass_ for cost))
0.01)
100.0))

;::; Wed 11-Sep—91 by Ellen Tauber
(:! SLAB EVAL LABOR_COST

(/
{round
(*
(:? my unit_labor_cost)
(:? my total mass_for cost))
0.01)
100.0))

;i:7; Wed 11-Sep-91 by Ellen Tauber
(:! SLAB_EVAL UNIT MATERIAL COST

(if
(equal (:? (:parent my) type) ’'mat)
(car
(comr::flatten
(rdb-sqgl
(format nil
"SELECT M_COST FROM F_COSTS WHERE ELEMENT = ‘SLAB’ AND
TYPE = ‘MAT’ ;") 'ELLEN)))
(car
(comr::flatten

(rdb-s5gl

(format nil
"SELECT M _COST FROM F_COSTS WHERE ELEMENT = ’'SLAB’ AND
DEPTH = '~A’;"
(* 12 (:? my depth))) ‘ELLEN)))))

foundation rules.lisp Wed Jun 10 00:59:39 1992 5

;757; Wed 11-Sep-91 by Ellen Tauber
(:! SLAB EVAL UNIT LABOR COST
(i1f
(equal (:? (:parent my) type) 'mat)
(car
(comr::flatten
(rdb-sql
(format nil
"SELECT L _COST FROM F_COSTS WHERE ELEMENT
TYPE = 'MAT’ ;") 'ELLEN)))

fSLAB’ AND

(car
(comr::flatten
{rdb-sql
{(format nil
"SELECT I _COST FROM F_COSTS WHERE ELEMENT
DEPTH = ’'~A';"
(* 12 (:? my depth))) ‘ELLEN)))))

SLAB’ AND

AR AR AN AR AR AN AR AN AN A A A A A A A A A A A R A A N A A A N N]
...
rrrrrrrrrr st rrtrrrrrrr L LNy FOOTINGEVAL Frrrrrrrrrrrrrrrrr LN rrr L rrrrry

..

LA A AR A A A A A A N e N R N NN NN

;7:;; Mon 19-Aug-91 14:40:07 by Ellen Tauber
(:! FOOTING_EVAL QUANTITY
{greater
(round
('k
(+ (round
{/
(:? building length)
(:? building bay length))) 1)
(+ (round
(/
(:? building width)
(:? building bay width))) 1)))

1))
;7:; Mon 19-Aug-91 14:43:46 by Ellen Tauber
;i:: # in ft2
{:! FOOTING_EVAL AREA
(/
{/
(:? building weight)
(/

(:? building footprint)
(:? building bay_size)))
(*
.8
(:? top_soil bearing capacity))))

;7:7; Mon 19-Aug-91 14:44:13 by Ellen Tauber
;2:; #s in feet .
(:! FOOTING EVAL DEPTH
{case (:? top soil material)

(rock 3)

(hard clay 4)

(sand 2.5)

(silt 3)

(soft_clay 2.5)

foundation rules.lisp Wed Jun 10 00:59:39 1992 6

(mud 2)
(organic 2)))

;77; Mon 19-Aug-91 14:44:43 by Ellen Tauber
;70 # in ft3
(:! FOOTING EVAL VOLUME
(*
(:? my area)
{:? my depth)))

;7 Mon 19-Aug-91 14:45:16 by Ellen Tauber
;; takes #s in ft, returns CY
! FOOTING_EVAL TOTAL MASS_FOR _COST
(/
(*
(:? my quantity)
(:? my volume))
27))

77
7

(:

;757 Wed 11-Sep—91 by Ellen Tauber
{:! FOOTING EVAL MATERIAL COST
(/
(round
(*
(:? my unit material cost)
(:? my total mass_for cost))
0.01)
100.0))

;77; Wed 11-Sep-91 by Ellen Tauber
(:! FOOTING EVAL LABOR_COST
(/
{(round
(*
{(:? my unit_labor cost)
(:? my total mass for cost))
0.01)
100.0))

.............................

;7 Mon 19-Rug-91 14:56:38 by Ellen Tauber
;777 ONLY APPLIES TO: timber, steel, pre, cip, pipe
?i;; AND for sub_soil material of soft clay, mud, organic, or hard clay
(:! PILE EVAL TOTAL DEPTH
(if
(and
(or_equal (:? (:parent my) type) ’ (timber pre cip pipe))
(or_equal (:? sub soil material) ' (soft_clay mud organic hard clay)))
(if
(equal (:? sub_ soil material) ‘hard clay)
(* 0.00047 (:? foundation evaluation weight to_one_bay))
(* 0.00624 (:? foundation evaluation weight_to_one bay)))
(if
(and

foundation rules.lisp Wed Jun 10 00:59:39 1992 7

(equal (:? (:parent my) type) ’steel)

(or_equal (:? sub _soil material) ' (soft_clay mud organic hard clay)))
(if

(equal (:? sub_soil material) "hard clay)

(* 0.0000832 (:? foundation evaluation weight to one bay))

(* 0.000346 (:? foundation evaluation weight to one bay))))))

;777 Mon 19-Aug-91 14:57:59 by Ellen Tauber
777 divisor used in rule for num piles_at_each bay
(:! PILE_EVAL TD_DIV
(lesser
(:? bottom soil location)
(case (:? (:parent my) type)
(timber 45)
(steel 60)
(pre 40)
(cip 65)
(pipe 70))))

;777 Mon 19-Aug-91 14:58:20 by Ellen Tauber
7i; divisor used in rule for num piles_at_each bay
(:! PILE EVAL WT1B~DIV
(case (:? (:parent my) type)

(timber 135800)

{steel 264000)

(pre 186500)

{(cip 135800)

{pipe 565000)

(aug 112000)

{(eb_steel 264000)

(eb pipe 565000)))

;777 Mon 19-Aug—-91 14:58:53 by Ellen Tauber
(:! PILE_EVAL NUM PILES AT EACH BAY
{greater
(if
(equal (:? (:parent my) type) ’'bc)
(*
(/ (:? building length) (:? building bay length))
(/ (:? building width) (:? building bay width)))

.

(if
{or_equal (:? (:parent my) type) ' (aug eb_steel eb pipe))
(/ (:? foundation_evaluation weight_to one bay) (:? my WT1B _div))
(if
(or_equal (:? sub_soil material) ' (soft_clay mud organic hard clay))
(lesser

(/ (:? my total depth) (:? bottom soil location))

(/ (:? my total depth) (:? my td div)))

(/ (:? foundation evaluation weight to one bay) (:? my WI1B div)))))
1))

;777 Mon 19-Aug-91 14:55:30 by Ellen Tauber
(:! PILE_EVAL NUM_BAYS
(greater
(round
(*
{(+ (round
(/
(:? building length)
(:? building bay_length))) 1)

foundation_rules.lisp Wed Jun 10 00:59:39 1982 8

(+ (round
(/
(:? building width)
(:? building bay width))) 1)))

1))

;777 Mon 19-Aug-91 14:55:01 by Ellen Tauber
(:! PILE EVAL QUANTITY
{round
(*
(:? my num piles_at_each bay)
(:? my num bays))))

;7 Mon 19-Aug-91 14:56:14 by Ellen Tauber
PILE_EVAL DEPTH
(if
(or_equal (:? (:parent my) type) ' (bc aug eb_steel eb pipe))
(:? bottom soil location)
{(case (:? (:parent my) type)
(timber (lesser (:? bottom soil locationr) 45))
(pre (lesser (:? bottom soil location) 40))
(pipe (lesser (:? bottom soil location) 70))
(t
(if
(and
(equal (:? water_table depth) low)
(or_equal (:? sub_soil material) ’ (rock sand silt))
(or_equal (:? (:parent my) type) ' (steel cip)))

’

(:

e

(if

(equal (:? (:parent my) type) ’'steel)
55

50) ; value for cip only

(:? my td div))))))

4

;777 Mon 19-Aug-91 14:57:28 by Ellen Tauber
{:! PILE EVAL TOTAL MASS FOR _COST
(*
(:? my quantity)
(:? my depth)))

;77; Wed 11-Sep-91 by Ellen Tauber
(:! PILE EVAL UNIT LABOR COST

(car
(comr::flatten
(rdb-sqgl

(format nil
“"SELECT L_COST FROM F_COSTS WHERE ELEMENT = 'PILE’

AND TYPE = ‘~A’;"
(:? (:parent my) type)) ‘STD))))

;::; Wed 11-Sep-91 by Ellen Tauber
(:! PILE EVAL UNIT MATERIAL COST

(car
(comr::flatten
(rdb-sql

(format nil
"SELECT M COST FROM F_COSTS WHERE ELEMENT = ’PILE’

AND TYPE = '~A";"™
(:? (:parent my) type)) "STD))))

foundation_ rules.lisp

;7;; Wed 11-Sep-91 by Ellen Tauber
(:! PILE EVAL MATERIAL COST
(/
{round
(*
{(:? my unit_material cost)
(:? my total mass_for_ cost))
0.01)
100.0))

; Wed 11-Sep-91 by Ellen Tauber
PILE EVAL LABOR COST
(/
(round
(*
(:? my unit_labor cost)
(:? my total mass_ for cost))
0.01)
100.0))

r

(:

r—na

Wed Jun 10 00:59:39 19982 9

..

A A A A A A A A A A NN NN NN NN

PILE_CAP EVAL

..

A AR A AR A A A A R NN NN

;::; Mon 19-Aug-91 by Ellen Tauber
(:! PILE CAP_EVAL QUANTITY
{(greater
(round
(*
{(+ {(round
(/
(:? building length)

(:? building bay length))) 1)

(+ (round

(/
(:? building width)

(:? building bay width)))

1))

;77 Mon 19-Aug-91 by Ellen Tauber
;i gives # in ft2
:! PILE_CAP EVAL AREA

(*

— N

1))

(:? pile eval num piles_at each bay)

6.67))

;::; Mon 19-Aug-91 by Ellen Tauber
;::: gives # in ft
(:! PILE CAP_EVAL DEPTH

(/ 22 12))

;7::; Mon 19-Aug—-91 by Ellen Tauber
;77 gives # in ft3
(:! PILE CAP EVAL VOLUME

(*

foundation rules.lisp Wed Jun 10 00:59:39 1992 10

(:? my area)
(:? my depth)))

;;7; Mon 19-Aug-91 by Ellen Tauber
;;:; gives # in CY
! PILE_CAP_EVAL TOTAL_MASS_FOR_COST
(/
(*
(:? my quantity)
(:? my volume))
27))

;777 Wed 11-Sep-91 by Ellen Tauber
{(:! PILE CAP_EVAL MATERIAL COST
(/
{(round
(*
(:? my unit_material cost)
(:? my total mass_for cost))
0.01)
100.0))

;777 Wed 11-Sep-91 by Ellen Tauber
(:! PILE CAP_EVAL LABOR COST
/
{(round
(*
(:? my unit_labor_cost)
(:? my total mass_for cost))
0.01)
100.0))

e N NN NN

;::; Mon 19-Aug-91 by Ellen Tauber
(:! PILE_CUT OFF_EVAL QUANTITY
(greater
{round
(*
0.1
(:? pile eval num piles_at each bay)
(:? pile cap eval quantity)))
1))

;;:; Wed 11-Sep-91 by Ellen Tauber
(:! PILE_CUT_ OFF_EVAL MATERIAL COST
/
(round
(*
(:? my unit_material_cost)
(:? my quantity))
0.01)
100.0))

foundation_rules.lisp Wed Jun 10 00:59:39% 1992 11

;;:;; Wed 11-Sep-91 by Ellen Tauber
(:! PILE CUT OFF EVAL LABOR_COST
(/
(round
('k
(:? my unit_labor_cost)
(:? my quantity))
0.01)
100.0))

..

A A A A A NN NN NN
..
rrrrr s r L L rrr LN ELNLEIEOEY IPPROGRAM__EVAL rrrr LN rr s rrrrrrr L r It rrr L

..

A A A A A A A A A A N N N NN NN NN

;7;; Mon 19-Aug—-91 by Ellen Tauber
(:! I_P PROGRAM EVAL QUANTITY

(greater ;:;; function GREATER defined in ellen_ funs.lisp
2

(round

(/

(:? building footprint)

15000))))

;;:; Wed 11-Sep—-91 by Ellen Tauber
(:! I_P PROGRAM EVAL MATERIAL COST
«/
(round
(‘k
(:? my unit material cos)
(:? my quantity))
0.01)
100.0))

;::; Wed 11-Sep—-91 by Ellen Tauber
(:! I_P PROGRAM EVAL LABOR_ COST
(/
(round
(*
(:? my unit labor cost)
(:? my quantity))
0.01)
100.0))

..

AN NN N N e e

;:7; Tue 20-Aug-91 12:27:09 by Ellen Tauber
(:! WALL FOOTING_ EVAL QUANTITY
1

;i:: Tue 20-Aug-91 12:36:18 by Ellen Tauber
;i # in ft2
{:! WALL FOOTING_EVAL AREA

(*

(:? building perimeter)

foundation_rules.lisp

(:? wall eval width)
3))

;777 Tue 20-Aug-91 by Ellen Tauber
;i:: # in ft
(:! WALL FOOTING_EVAL DEPTH
{case (:? top_soil material)
{(rock (/ 16 12))
(hard_clay (/ 16 12))
{sand 2.5)
(silt 1.5)
(soft_clay 1.5)
(rmud 2)
(organic 2)))

;:: Tue 20-Aug-91 by Ellen Tauber
;7 # in £t3
:! WALL FOOTING EVAL VOLUME
(‘k
(:? my depth)
(:? my area)))

N~y e

PN

;:; Tue 20—~Aug-91 by Ellen Tauber

;::; gives # in CY
(:! WALL FOOTING_EVAL TOTAL MASS FOR COST
(/
(:? my volume)
27))
;7:; Wed 11-Sep-91 by Ellen Tauber
(:! WALL FOOTING EVAL MATERIAL_ COST
(/
{(round
('k

(:? my unit material cost)
(:? my total mass_for cost))
0.01)
100.0))

;777 Wed 11-Sep-91 by Ellen Tauber
(:! WALL_FOOTING_EVAL LABOR COST
/
{round
(*
{:? my unit_labor cost)
(:? my total mass_for cost))
0.01)
100.0))

...

..............................

;; Tue 20-Aug-91 by Ellen Tauber
(:! WALL EVAL QUANTITY
1)

Wed Jun 10 00:59:39 1992 12

.................................

foundation rules.lisp Wed Jun 10 00:59:39 1992 13

;707 Tue 20~Aug-91 by Ellen Tauber
;i:; # in feet
(:! WALL EVAL HEIGHT

(:? building basement depth))

;::: Tue 20-Aug~91 by Ellen Tauber
;i:: # in feet
{:! WALL EVAL WIDTH
(if
(<
(:? building basement depth)
12)
(/ 8 12)
(/
(:? building basement_depth)
18)))

777; Wed 11-Sep-91 by Ellen Tauber
(:! WALL EVAL MATERIAL COST

(/
(round
(‘k
{(:? my unit_material cost)
{:? building perimeter))
0.01)
100.0))

;::; Wed 11-Sep-91 by Ellen Tauber
(:! WALL EVAL LABOR COST
{/
(round
(*
(:? my unit_labor cost)
(:? building perimeter))
0.01)
100.0))

;77 Thur 12-Sep~91 by Ellen Tauber
(:! WALL EVAL UNIT MATERIAL_ COST
(let* ((ht (:? my height))
(val
(if
(<= ht 8.0)
8
(if
(<= ht 14.0)
14
20))))
{car
(comr::flatten
(rdb-sql
(format nil
"SELECT M COST FROM F_COSTS WHERE ELEMENT = ‘WALL'
AND HEIGHT = ~A;" val) '
"ELLEN)))))

;7:; Thur 12-Sep-91 by Ellen Tauber
(:! WALL EVAL UNIT LABOR COST

foundation rules.lisp Wed Jun 10 00:59:39 1992 14

(let* ((ht (:? my height))
(val
(if
(<= ht 8.0)
8
(1f
(<= ht 14.0)
14
20))))
(car
(comr::flatten
{rdb-sqgl
(format nil
"SELECT L_COST FROM F_COSTS WHERE ELEMENT = 'WALL'
AND HEIGHT = ’'~A’;" '
val)
"ELLEN)))))

N N e

;7::: Wed 21-Aug-91 by Ellen Tauber
(:! MAT EVAL ALLOWABLE

(if

(or

{(equal (:? engineering requirements bending resistance requirement)

(equal (:? water table depth) ‘very high))
‘no
Tyes))

;7:;:; Wed 21-Aug-91 by Ellen Tauber
(:! B CAISSON EVAL ALLOWABLE
(if
{or
{(equal (:? top soil material) ’rock)
{equal (:? sub_soil material) ’rock)
(> (:? foundation_evaluation weight to_one bay) 2000000)
(equal (:? bottom soil bearing support for piles) ’unacceptable))
‘no
‘yes))

;::; Wed 21-Aug-91 by Ellen Tauber
(:! S_FOOTING EVAL ALLOWABLE

“high)

high)

(1f
{ox
(equal (:? water_ table depth) ’very high)
(equal (:? water_ table depth) "high)
(equal (:? sub_soil bearing condition) ‘compressible)
(equal (:? engineering requirements bending resistance reguirement)
{(equal (:? engineering requirements differential settlement) /strict)
(equal (:? foundation_evaluation spread footing possible) ‘false))
no
"yes))

;::; Wed 21-Aug-91 by Ellen Tauber
(:! TIMBER P EVAL ALLOWABLE
(if

foundation rules.lisp Wed Jun 10 00:59:39 1992 15
{(or
(equal (:? water table depth) ‘medium)
(equal (:? water table depth) ’low)
{equal (:? foundation _evaluation pile_system acceptable) 'false)
(equal (:? my piles_able to_support_load) ’false))
‘no
"yes))
;777 Wed 21-Aug—-91 by Ellen Tauber
(:! STEEL P EVAL ALLOWABLE
(if
{or
(equal (:? water_table depth) ‘very high)
{(equal (:? water_table depth) ’"high)
{equal (:? water_table depth) ’‘medium)
(equal (:? foundation evaluation pile system acceptable) ’false)
{equal (:? my piles_able to_ support_load) ‘false))
"no
"yes))
;::7; Wed 21-Aug-91 by Ellen Tauber
(:! PRECAST P_EVAL ALLOWABLE
(1if
(or
(equal (:? foundation evaluation pile system acceptable) ’false)
(equal (:? my piles_able to_support load) ‘false))
"no
ryes))
;:;:; Wed 21-Aug-91 by Ellen Tauber
(:! CIP_P EVAL ALLOWABLE
(if
{or
{equal (:? water_table depth) ’very high)
(equal (:? water table depth) ’high)
{(equal (:? foundation evaluation pile system acceptable) ’false)
(equal (:? my piles_able to_support load) ‘false))
no
‘yes))
;:7; Wed 21-Aug-91 by Ellen Tauber
(:! PIPE_P_EVAL ALLOWABLE
. {if
{or
{equal (:? water_ table depth) ’‘very high)
(equal (:? foundation evaluation pile system acceptable) ’false)
(equal (:? my piles_able to support load) ‘false))
‘no
fyes))

rrr

Wed 21-Aug-91 by Ellen Tauber

(:! AUGURED_P EVAL ALLOWABLE

(if
(or
(equal
(equal
{equal
(equal
(equal

— o~

PO

[SS RO RNEN]

water_ table depth)
water table depth)
water table depth)
top_soil material)
sub_soil material)

"very high)
"high)
"medium)

' rock)

" rock)

foundation rules

(

’

(:

rro
1

rros

(equal
{equal
(equal
{equal
"no
"yes))

o~ e~

(1f

{ox
(equal
(equal
{equal
(equal
{equal
(equal

'no

’yes))

2o ve we e

(if

(or
(equal
(equal
(equal
(equal

"no

fyes))

WD 0 1D)

EB_STEEL P_

WD)) 1)

0

ar se e e

.lisp Wed Jun 10 00:59:39 1992

sub_soil cave_in) ’true)

sub_soil condition) ‘unacceptable)

my piles_able to_support_load) 'false)

bottom soil bearing support for piles) ’‘unacceptable))

Wed 21-Aug-91 by Ellen Tauber

EVAL ALLOWABLE

water table depth) ’very high)
water table depth) ‘high)
water table depth) ‘medium)

foundation evaluation pile system acceptable) ’‘false)

my piles_able to_support load) 'false)

bottom soil bearing support for piles) 'unacceptable))

Wed 21-Aug-91 by Ellen Tauber
! EB_PIPE P EVAL ALLOWABLE

water table depth) ’'very high)
foundation_evaluation pile system acceptable) ’false)
my piles_able to_support_ load) ’false)
bottom soil bearing support for piles)

(IS IDS AN]

"unacceptable))

..

N NN

FOUNDATION

rrrrrrrrrrrg

(:! FOUNDATION

(if
{equal
1
0))

rr

(:! FOUNDATION

(

(if

1
0))

:! FOUNDATION
(1f

1
0))

(:? my £ type)

s

(equal (:7

(equal (:?

R N NN e

;; Fri 23-Aug-91 by Ellen Tauber

NR_MAT

"mat)

;; Fri 23-Aug-91 by Ellen Tauber

NR_B_CAISSON

my f type) ‘bc)

Fri 23-Aug-91 by Ellen Tauber

NR_S_FOOTING

my £ type) ’sf)

foundation_ rules.lisp Wed Jun 10 00:58:39 1992

;:;; Fri 23-Aug-91 by Ellen Tauber
(:! FOUNDATION NR TIMBER P
(if
(equal (:? my f type) ’timber)
1
0))

;::; Fri 23-Aug-91 by Ellen Tauber
{(:! FOUNDATION NR_STEEL P

(if
(equal (:? my f _type) 'steel)
1
0))
;::; Fri 23-Aug-91 by Ellen Tauber
(:! FOUNDATION NR PRECAST P
(if
(equal (:? my £ type) 'pre)
1
on

;;:; Fri 23—-Aug-91 by Ellen Tauber
:! FOUNDATION NR CIP P
(i1f

(equal (:? my £ type) ‘cip)

1

0))

~
~

o~

;:;; Fri 23-Aug-91 by Ellen Tauber
(:! FOUNDATION NR PIPE P
(if
(equal (:? my f type) ’'pipe)
1
0))

;::: Fri 23-Aug-91 by Ellen Tauber
(:! FOUNDATION NR AUGURED_P
(if
(equal (:? my £ type) "aug)
1
0))

;::;; Fri 23-Aug-91 by Ellen Tauber
(:! FOUNDATION NR EB STEEL P
(if
(equal (:? my f type) ’eb_steel)
1 .
o))

;7; Fri 23-Aug-91 by Ellen Tauber
:! FOUNDATION NR_EB_PIPE_P
(1f
(equal (:? my f type) ’‘eb pipe)
1
0))

— N

17

foundation rules.lisp Wed Jun 10 00:59:39 1992 18

LA A A A A A e A NN NN
F A A A S I N A A A S B B O A B S NRRULES Frrr Tt L rrrrr L rE LI ILIIINILLT T

LA A A A A e e NN NN

;7:; Fri 23-Aug—-91 by Ellen Tauber
(:! S_FOOTING NUMBER OF FOOTINGS
{(greater
{round
(*
(+ (round
(/
(:? building length)
(:? building bay length))) 1)
(+ (round
(/
(:? building width)
(:? building bay width))) 1)))
1))

;:7; Fri 23-Aug-91 14:15:38 by Ellen Tauber
(:! TYPES_OF FOUNDATIONS NUMBER OF PILE CAPS

(if
(or_equal (:? my type) ’ (mat bc sf))
0
(greater
{round
(*
(+ (round
/
(:? building length)
(:? building bay_ length))) 1)
(+ (round
(/
(:? building width)
(:? building bay_width)))1)))
DD D]

;77 Fri 23-Aug-91 by Ellen Tauber
(:! TYPES_OF_FOUNDATIONS NUMBER OF PILES

~a

(if
(or equal (:? my type) ' (mat bc sf))
0 :
(case (:? my type)

(timber
(:2 (:?1 pile eval
(:?21 timber p eval
(:?1 foundation_evaluation foundation)))
quantity))
{steel
{:? (:?1 pile eval
(:?1 steel p eval
(:?1 foundation_evaluation foundation)))
quantity))
(pre
{(:2 (:?1 pile eval
(:?1 precast p eval
(:?1 foundation_ evaluation foundation)))
quantity))
(cip
(:2 (:?1 pile eval
(:?1 CIP_p_eval

foundation rules.lisp Wed Jun 10 00:59:39 1992 19

(:?1 foundation evaluation foundation)))
quantity))
(pipe
(:?2 (:?1 pile eval
(:?1 pipe_p eval
(:?1 foundation_ evaluation foundation)})
quantity))
{aug
(:? (:?1 pile eval
(:?1 augured p eval
(:?1 foundation_evaluation foundation)))
quantity))
(eb_steel
(:? (:?1 pile eval
(:?1 eb _steel p eval
(:?1 foundation evaluation foundation)))
quantity))
(eb pipe
(:? (:?1 pile eval
(:?1 eb pipe p eval
(:?1 foundation evaluation foundation)))
quantity)))))

...

...

AR NN RN e

;:7; Tue 19-May-92 22:37:19 by Gaye Oralkan
;7 distance of grid from building base point in x direction
(:! HOR GRIDLINE X LOC
...(+
(*
(—= (:?2 self "index) 1)
(/ (= (:? building width)
(/ (/ (:? (:ANY WALL FOOTING EVAL) area)
(:? BUILDING perimeter))
3)) ,
(- (:? (:PARENT (:ANY HOR _GRIDLINE)) NR_HOR GRIDLINE)1)))
{(+ (first (:? BUILDING BASE POINT))
(/ (/ (:? (:ANY WALL_FOOTING EVAL) area) (:? BUILDING perimeter)) 6))))

;::; Tue 19-May-92 22:47:25 by Gaye Oralkan
;;; distance of grid from building basepoint in y direction
(:! VERT GRIDLINE Y LOC
(+ (+ (second (:? BUILDING BASE_POINT))
(/ (/ (:? (:ANY WALL FOOTING EVAL) area) (:? BUILDING perimeter)) 6))

(‘k
(- (:? self ~index) 1)
(/ (- (:? building length) :

{(/ (/ (:? (:ANY WALL FOOTING_EVAL) area)
(:? BUILDING perimeter))
3))
(= (:? (:ANY HOR GRIDLINE) NR VERT GRIDLINE) 1)))))

;777 Sun 17-May-92 18:51:56 by Gaye Oralkan
;::; Box height (along Y-axis in basic orientation)
{:! FOOTING GEO_ HEIGHT

{sgrt (:? FOOTING_EVAL AREA)))

’
7

foundation rules.lisp Wed Jun 10 00:59:39 1992 20

;77 Sun 17-May-—-92 19:00:00 by Gaye Oralkan

;7 Box length (along Z-axis in basic orientation)
FOOTING GEO_LENGTH '

(:? FOOTING_EVAL DEPTH))

— e N
ae

;777 Sun 17-May-92 19:01:00 by GAYE
;;; Box width (along X-axis in basic orientation)
(:! FOOTING GEO_WIDTH

(sgrt (:? FOOTING EVAL AREA)))

;::; Tue 19-May-92 22:27:59 by Gaye Oralkan
:;: adjusted bay length after the no of grids is rounded
{(:! BUILDING ADJ BAY LENGTH
(/ (:? BUILDING LENGTH)
(round
(/ (:2 BUILDING LENGTH) (:? BUILDING BAY LENGTH)))))

;707 Tue 19-May-92 22:30:57 by Gaye Oralkan
;77 adjusted bay width after the no of grids are rounded
{:! BUILDING ADJ_BAY WIDTH
(/ (:? BUILDING WIDTH)
(round
(/ (:? BUILDING WIDTH) (:? BUILDING BAY_WIDTH)))))

;::: Tue 19-May-92 22:35:32 by Gaye Oralkan
;7; mno of vertical gridlines
(:! HOR _GRIDLINE NR VERT GRIDLINE
(+ (/ (:? BUILDING LENGTH) (:? BUILDING ADJ BAY LENGTH)) 1))

;::: Tue 19-May—-92 23:55:08 by Gaye Oralkan
;;; mnumber of piles at a grid point i.e., per pile cap
{(:! VERT GRIDLINE NR PILE
(ceiling (/
(:? (:parent (:parent self)) NUMBER OF PILES)
(:? (:parent (:parent self)) NUMBER OF PILE CAPS))))

;7:; Wed 20-May-92 00:51:36 by Gaye Oralkan
;2:; mno of horizontal gridlines
(:! TYPES_OF FOUNDATIONS NR_HOR GRIDLINE
{(+ (/ (:? BUILDING WIDTH) (:? BUILDING ADJ_BAY WIDTH)) 1))

;::; Wed 20-May-92 22:05:06 by Gaye Oralkan
;7; Object location in cartesian coordinate system
(:! FOOTING GEO_LOC
(list (= (:? (:PARENT (:PARENT self)) x loc)
(* .5 (:? self geo width)))
(= (:? (:PARENT self) y loc)
(* .5 (:? self geo_height)))
(third (:? BUILDING BASE POINT))))

;77 Thu 21-May-92 01:00:54 by Gaye Oralkan
;7 no of basement walls
:! FOUNDATION NR_WALL
(CASE (:? BUILDING BASEMENT DEPTH)
(0 0)

P

foundation rules.lisp Wed Jun 10 00:59:39 1992

(t 4)))

;; Thu 21-May-82 01:21:28 by Gaye Oralkan
;; Box width (along X-axis in basic orientation)
:! WALL GEO_WIDTH
(CASE (:? self ~index)
(1 (:2? BUILDING WIDTH))
(2 :? BUILDING WIDTH))
{3 (:? (:ANY WALL EVAL) WIDTH))
(4 (:? (:ANY WALL EVAL) WIDTH))))

~a

o~ N Ny

;7:; Thu 21-May-92 01:22:46 by ELLEN

; Box height (along Y-axis in basic orientation)
:! WALL GEC_HEIGHT

(CASE (:? self ~index)

~e

PR
.

‘

{3 —-(:? BUILDING LENGTH))

(4 —-(:? BUILDING LENGTH))

(1 (:? (:ANY WALL_EVAL) WIDTH))
(2 (:? (:ANY WALL EVAL) WIDTH))))

;7:; Thu 21-May-92 01:26:47 by ELLEN
;:: Box length (along Z—axis in basic orientation)
(:! WALL GEO_LENGTH

(:? BUILDING BASEMENT_DEPTH))

;::: Thu 21-May-92 01:27:52 by ELLEN
;;: Object location in cartesian coordinate system
(:! WALL GEO_LOC

{({CASE (:? self "~index)

21

(3 (:ABOVE BUILDING BASE POINT (:? FOOTING EVAL DEPTH)))

(4 (:RIGHT-OF BUILDING BASE_POINT
(- (:? BUILDING WIDTH)

(:? (:ANY WALL EVAL) WIDTH)))

{:ABOVE BUILDING BASE POINT (:? FOOTING_EVAL DEPTH)))

(2 (:BEHIND BUILDING BASE POINT
(- (:? BUILDING LENGTH)

(:? (:ANY WALL EVAL) WIDTH)))

(:ABOVE BUILDING BASE_ POINT (:2? FOOTING EVAL DEPTH)))

(1 (:ABOVE BUILDING BASE POINT (:? FOOTING_EVAL DEPTH)))))

;77; Thu 21-May-92 01:00:54 by Gaye Oralkan
;7:; no of basement walls
(:! TYPES OF FOUNDATIONS NR_ WALL

(CASE (:? BUILDING BASEMENT DEPTH)

(0 0) :

t 4))

;7 Thu 21-May-92 10:58:38 by ELLEN
;7 Box height (along Y—-axis in basic orientation)
:! SLAB GEO_HEIGHT
(— (:? BUILDING LENGTH)
(* (:? (:ANY WALL EVAL) WIDTH)
2)))

~

— N we
.

;77 Thu 21-May-92 11:02:26 by ELLEN

~a
~

foundation rules.lisp Wed Jun 10 00:59:39 1992

;;; Box width (along X-axis in basic orientation)
(:! SLAB GEO _WIDTH
(= (:? BUILDING WIDTH)
(* (:? (:ANY WALL EVAL) WIDTH)
2)))

;777 Thu 21-May-92 11:05:18 by ELLEN
;;; Box length (along Z-axis in basic orientation)
(:! SLAB GEO_LENGTH

(:? (:ANY SLAB_EVAL) DEPTH))

;7:7; Thu 21-May-92 11:06:22 by ELLEN
;:: Object location in cartesian coordinate system
{(:! SLAB GEO_LOC
(:RIGHT-OF BUILDING BASE POINT
(:? (:ANY WALL EVAL) WIDTH))
{:BEHIND BUILDING BASE_POINT
(:? (:ANY WALL EVAL) WIDTH))
(:ABOVE BUILDING BASE POINT (:? FOOTING_EVAL DEPTH)))

;::7 Thu 21-May-92 15:58:10 by ELLEN
;:: 'Box height (along Y—axis in basic orientation)
{:! WALL FOOTING GEO_HEIGHT
(CASE (:? self "index)
(3 = (:? BUILDING LENGTH))
{4 - (:? BUILDING LENGTH))
(1 (* 3(:? (:ANY WALL EVAL) WIDTH)))
(2 (* 3(:? (:ANY WALL EVAL) WIDTH)))))

;::; Thu 21-May-92 15:59:20 by ELLEN
;:: Box length (along Z—axis in basic orientation)
(:! WALL _FOOTING GEO_ LENGTH
(CASE (:? BUILDING BASEMENT DEPTH)

(0 1.25)

(t (:2 (:ANY WALL_ FOOTING EVAL) DEPTH))))

;77 Thu 21-May-92 16:01:25 by ELLEN
Box width (along X-axis in basic orientation)
WALL FOOTING GEO_WIDTH
(CASE (:? self "~index)
{1 (:? BUILDING WIDTH))
(2 (:? BUILDING WIDTH))
(3 (CASE (:? BUILDING BASEMENT DEPTH)
(0 2)
(t (* 3 (:? (:ANY WALL EVAL) WIDTH)))))
(4 (CASE (:? BUILDING BASEMENT DEPTH)
(0 2)
(t (* 3 (:? (:ANY WALL EVAL) WIDTH)))))))

»
7
’

(:

-~

;277 Thu 21-May-92 16:05:09 by ELLEN
;7; Object location in cartesian coordinate system
{:! WALL FOOTING GEO_LOC
(CASE (:? self "index)
(1 (:FRONT-OF BUILDING BASE POINT
(:? (:ANY WALL EVAL) WIDTH)))
(4 (:LEFT-OF BUILDING BASE_POINT
(:? (:ANY WALL EVAL) WIDTH)))
(3 (:RIGHT-OF BUILDING BASE POINT
(— (:? BUILDING WIDTH)

22

foundation rules.lisp Wed Jun 10 00:59:39 1992 23
(* 2(:? (:ANY WALL EVAL) WIDTH)))))
(2 (:BEHIND BUILDING BASE POINT
(- (:? BUILDING LENGTH)
(* (:? (:ANY WALL EVAL)

WIDTH) 2))))))

;77; Wed 3-Jun-92 10:52:58 by Gaye Oralkan
;:; Object location in cartesian coordinate system
{(:! PILE_CAP GEO_LOC :
(list (—= (:? (:PARENT (:PARENT self)) x_loc)
© (* .5 (:? self geo_width)))

(—= (:? (:PARENT self) y_ loc)
(* .5 (:? self geo_height)))
(third (:? BUILDING BASE POINT))))

;77; Wed 3-Jun-92 11:04:01 by Gaye Oralkan
;:; Cylinder length
(:! PILE GEO_LENGTH

(:? (:ANY pile eval) depth))

;i i: Wed 3-Jun-92 14:23:48 by Gaye Oralkan
;:; Box height (along Y-axis in basic orientation)
(:! PILE_CAP GEO_HEIGHT

(sgrt (:? (:ANY PILE CAP_EVAL) AREARA)))

;::; Wed 3-Jun-92 14:25:06 by Gaye Oralkan
;;; Box length (along Z-axis in basic orientation)
(:! PILE CAP GEO_LENGTH

(:? (:ANY PILE CAP EVAL) depth))

;:7; Wed 3-Jun-92 14:25:59 by Gaye Oralkan
;:: Box width (along X-axis in basic orientation)
(:! PILE _CAP GEO_WIDTH

(sqrt (:? (:ANY PILE CAP_EVAL) AREA)))

...

A A A A A A N NN

...............................

END OF FILE

I N NN NN N e

