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Abstract

The architecture-engineering-construction (AEC) industry is highly fragmented,
both vertically (between project phases, e.g., planning, design, and
construction) and horizontally (between specialists for the various disciplines at
a given project phase, e.g., design). We need software that detects, analyzes,
and manages changes efficiently during concurrent distributed design
processes. In the CEDB (Collaborative Environment for the Design of
Buildings) project, we have developed a model of a combination of versions,
configurations, and constraints. Versions are organized into hierarchies of
alternatives within a single discipline (e.g., architecture, structural engineering).
A configuration is a set of versions, one from each of a number of disciplines,
combined with a set of cross-disciplinary constraints to check for violations.
Our objective in this integrated model of versions, configurations, and
constraints is to assist designers by informing them of the changes by others
that affect them and their changes that affect others, in particular, the changes
that result in constraint violations. To accomplish this objective, we aim to find
those violations as efficiently as possible. We have substantially implemented
our model using multiple ORACLE databases.

1 This work is part of the CEDB project (Collaborative Environment for the Design of Buildings, or Civil -
Engineering DataBase), Jeffrey D. Ullman, Principal Investigator. This effort is funded in part by National
Science Foundation grant IRI-91-16646.
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Versions, Configurations, and Constraints in CEDB

1. Introduction

The U.S. architecture-engineering-construction (AEC) industry is highly fragmented compared
with many of its Asian and European competitors [Howard 89a]. This fragmentation exists both
within individual phases of the construction process (e.g., the design phase), and across project
phases, from planning through design and construction and into facility maintenance and
operation. The problems arising from fragmentation affect productivity and competitiveness
throughout the AEC industry. Our goal in this work is to address this fragmentation through
change management tools that facilitate and enhance collaboration among multiple designers and
contractors.

To provide change management in this environment, we propose a combination of versions,
configurations, and constraints. A version represents a design checkpoint in a single discipline
(e.g., architecture, structural engineering). Versions may be grouped hierarchically within a
discipline, with later versions represented as modifications to earlier versions and parallel
alternatives represented as branching versions. Constraints are used to manage interactions across
the discipline-specific versions by specifying inconsistent design states—combinations that aren’t
allowable. A configuration represents an “integrated” design, with one version from each of a
number of distinct disciplines combined with a set of constraints to be verified. A configuration
can be generated for major design review or in response to a “what-if”” test by a single designer
who wants to compare his/her latest version with existing versions from other disciplines. A
configuration results in a list of violations that trigger notifications to the designers involved in the
constraints. By providing operators to compare the versions within new configuration to the
versions in a previously checked configuration, we can perform incremental constraint checking,
thus limiting the volume of changes that need to be tested in each design iteration. Our objective in
this integrated model of versions, configurations, and constraints is to notify the appropriate
designers of constraint violations and to find those violations as efficiently as possible.

This paper describes the CEDB (Collaborative Environment for the Design of Buildings or Civil
Engineering DataBase) project at Stanford University, an interdisciplinary effort between the
departments of computer science and civil engineering, that addresses change management for
concurrent design. Section 2 discusses some of the related work in the areas of versions,
configurations, and constraints. Then Section 3 provides an overview of the AEC domain,
including a pair of sample databases and a sample constraint based on a real example. Sections 4
and 5 describe the model in detail and demonstrate the processing of changes using the example
defined in Section 3. Finally, we conclude by summarizing the salient points of the model.

2. Related Work

For versions and configurations, there is a useful survey in the area [Katz 90]. Katz considers
the following issues in version and configuration management: (i) organizing the version set, (i1)
static and dynamic binding mechanisms, (iii) hierarchical compositions, (iv) version grouping
mechanisms, (v) change notification and propagation, and (vi) object sharing mechanisms. The
following issues addressed by our work are surveyed in detail by Katz:

o Versions of an individual entity: Katz et al. have formalized the version derivation
history as a hierarchy [Katz 86]. More general structures as a rooted DAG have been
proposed in [Klahold 86, Ecklund 87]. The versions are connected by derived-from links.

o Versions of an assembly of entities: Previous research efforts have defined
configurations as the version of a composite entity in terms of the versions of its
components [Katz 87, Ketabchi 87, Landis 86, Lorie 83].
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e Inheritance among versions: Type-version inheritance [Batory 85], as well as
instance-instance inheritance schemes along descendant-of, equivalent-to, and component-of
relationships [Katz 89] have been proposed.

e Implementation Schemes: Implementation of versions in terms of deltas to support the
incremental addition of data to a version has primarily been studied for the software
engineering environment [Rochkind 75, Leblang 84]. There has been relatively little effort
on developing versioning systems that support the evolutionary nature of the design
process, i.c., the incremental addition of data to an individual version.

The subject of constraint management has been a very active area in engineering automation, and
we will concentrate here on a few of the civil engineering research projects that have directly
influenced our effort. Holtz [Holtz 82] described symbolic algebra and dependency driven
expressions to manipulate constraints for consistency management in design applications. Rasdorf
and Fenves [Rasdorf 86] emphasized the importance of automated representation and processing of
design constraints in relational databases. They proposed a mechanism of augmented relations,
where additional attributes were appended to the database relation schemes, Their work assumes a
centralized database. The DICE project [Sriram 92] addresses the issues of coordination and
communication through a centralized blackboard and a global project database. DICE includes
conflict handling in shared transactions, where the participants are notified of each update made
within the scope of a transaction. The DICE project studies transaction management and
concurrency control for collaborative engineering environments, while we focus on efficiency
aspects of real-time constraint management and collaboration.

Most of the work done in integrity constraint management concentrates on centralized databases.
However, the issues involved in checking constraints that span multiple databases have not
received much attention. Yet distributed constraints are essential in a design environment composed
of independent disciplines that need to coordinate.

The architecture proposed in this paper can use most of the existing approaches to constraint
management at the local sites. If an underlying system supports local constraint management, then
we incorporate that capability into the global validation process. Our constraint management system
can be built on top of the existing database systems. Ceri and Widom [Ceri 90] describe a
production rule system that allows declaration of rules that are triggered on events and their
corresponding actions executed if some conditions are met. Such a system can provide monitoring
at any of the underlying sites. In fact, part of our implementation uses their system as the backend.
[Qian 88] describes techniques for distributing global constraints among sites in a way that reduces
communication at run time. These techniques can be used to preprocess constraints in our
architecture. Similarly, efficient constraint checking techniques discussed in [Nicolas 82, Bry 92]
can be used by both local constraint managers and the global constraint manager. Distributed
constraint checking can also be made more efficient by using the demarcation protocol [Barbara 92]
or by generating queries that are sufficient to allow us to infer that a constraint has not been
violated [Blakeley 89, Gupta 93b, Levy 93].

3. The Problem Domain

To provide the reader with a more tangible sense of the data management issues, Figure 1
illustrates several of the key stages involved in a building project. The figure emphasizes the
differing views that the various project participants have about the data describing the process. The
following discussion elaborates on the management of data at each stage of the process:

o The architect may start with grand ideas for the structure, but must shape these into a more
practical design based upon the constraints (financial, schedule, technical, operational)
generated by the owner, engineers, users and others in the process. The architect is
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normally the overall coordinator and leader in this multidisciplinary process, and
increasingly is likely to use advanced CADD software. The architect also generates many, if
not most, of the constraints and criteria that govern others in the process, but currently
communicates with them mainly through traditional paper documents and meetings.

e The structural engineer takes the architect’s ideas and designs the skeleton that allows the
building to resist the loads that derive from its function (e.g., furniture and people) as well
as the loads caused by the environment (e.g., wind and earthquakes). As with the architect,
the operations of the structural engineer may be highly computerized, but the coordination of
changes is still currently a manual process.

e The contractor takes the contract plans and specifications that result from all of these prior
deliberations, and adds his or her knowledge of costs, schedules, methods and materials.
The result is an estimate and resource-based schedule for completing the project most
efficiently. The general contractor normally retains specialty subcontractors who, in turn,
may further subcontract specific tasks. There is little use of electronic data communication
across these boundaries, and coordination of changes is a time-consuming and error-prone
process—frequently involving the use of a jackhammer.

e The owner inherits the resulting performance of the structure (which hopefully stands up -
better than shown in the Figure 1). The owner’s facility management must start with an
accurate record of what was designed and built. That record must then be maintained over
the lifetime of the facility. Many facilities undergo one or more modifications during their
lifetime, particularly manufacturing or chemical process facilities such as computer chip
fabrication plants, refineries, and space launch facilities. Even more mundane facilities may
require renovation for new uses, retrofitting for seismic upgrade, etc.

The intent of this discussion is to highlight the differing views of each of the project
participants, to emphasize the current lack of electronic data communications among the
participants, and to underscore the potential for automated change management. The following
section summarizes the requirements for change management in the AEC industry. Section 3.2
then introduces an example from the AEC domain that will be used throughout the rest of the

paper.
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Figure 1: Differing Views of the Project Data

Requirements

To allow a project team consisting of the owner, architect, engineers, and contractors to work
together in an efficient and cost effective manner requires changes in both technology and business
relationships. In this paper we will concentrate on the technological requirements to support the
concurrent design efforts of a distributed design team, which include the following:

Identify when constraints have been violated by any of the team members and notify the
appropriate team members in a meaningful way (design solutions are the responsibility of
the team members);

Allow periodic checkpoints of the design so that it is possible to control the design as it
develops over time;

Provide a mechanism for efficiently identifying the changes that have occurred between any
checkpointed versions of the design;

Provide security of the design environment for each of the team members (i.e., designers
may change elements only within their own disciplines); and

Allow negotiation over design alternatives among the distributed team members.
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3.2. Introductory Example

To provide context for our approach to change management, we will use the following running
example based on Tiwari's [Tiwari 93a] exploration of automated constraint checking for space-
Taunch facility and power plant projects. Consider a space launch complex under construction.
There will be bridges connecting buildings of the complex. There will also be trucks (tankers,
vans, etc.) that will go underneath these bridges (see Figure 2). The architect maintains the
database of bridges, including their clearances above ground. As the design evolves, new bridges
are added, and bridges already in the design may be raised or lowered. The evolution of the
architect's design is represented by a series of versions describing successive refinements of the
design or design alternatives. The owner already has trucks to be used in this complex. New
trucks will be purchased and old ones will be sold. The owner maintains a database of trucks.
The truck database is also versioned, as it evolves along with the owner's planning process. A
sample set of data and changes to the architect’s and owner’s databases is shown in Table 1.

There are configurations that consist of one version of the architect's database and one version
of the owner's database, along with the constraints that this configuration must satisfy. In this
example, the constraint is “all trucks must fit under all bridges.” We assume that the architect's
database and the owner's database are stored on separate computers connected by a wide area
network.

We can make several observations. First, we can create a configuration incrementally. That is,
a configuration can be based on a prior configuration with certain changes made to the constituent
versions. Second, when configurations are made incrementally, we can check the constraints
incrementally. That is, when the change that resulted in the new configuration is to add a new
bridge, we need only check that this new bridge does not violate the constraints, perhaps by
checking its clearance against the heights of all the trucks. Third, we may be able to check a
constraint locally, i.e., in the database that was changed. For example, if the new bridge has a
higher clearance than some existing bridge, and the existing bridge did not violate a constraint (i.e.,
it had enough clearance for all of the trucks), then we can deduce that the new bridge has sufficient
clearance without checking the height of any truck. We can further complicate this example by
defining separate zones in which bridges may be placed and through which certain trucks must
traverse; in our sample data, we’ll stick with a single zone to simplify the presentation, but we will
discuss the constraint processing for the more complicated case. This example and these
observations will be explored in further detail in the subsequent sections of this paper.

Figure 2: Trucks and Bridges Example
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Architect’s Database Owner’s Database
Bridges relation Trucks relation
bridgelD | clearance zone truckID | height zone
(meters) {meters)

Bl 4.5 1 T2 4.0 1

B3 5.0 1
B4 5.0 1 change 1: insertion
BS 4.0 1 change 2: 1insertion
change 3: insertion 13 4.5 1
B5 4.5 1 change 4: modification

Table 1: Sample Data and Changes for Bridge and Truck

4. Combined Model for Versions, Configurations, and Constraints

Our model involves a distributed set of databases, usually one for each discipline. The
specialists in a discipline have read and write access in their own databases and some level of read
(but not write) access to other databases. Each discipline's database has its own version hierarchy.
There is also a version hierarchy of constraints, and a constraint can apply to one of more versions.
A configuration consists of one version from each design database version hierarchy, plus a
constraint version, as suggested by Figure 3. Each configuration can be based on a prior
configuration. Our approach is to check constraints incrementally, so that constraints already used
to validate the prior configuration need only be checked against the changes between new and old
versions for each discipline whose version changed in going from the old configuration to the new.
Furthermore, the changes can often be checked within one design database, even when the
constraint affects more than one design database. New constraints must of course be checked
against the entire new configuration. The remainder of this section will describe the model for
distributed versions, configurations, and constraint checking.
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Figure 3: Overview of Versions and Configurations for Sample Data

4.1. Versions

During the design process, application transactions incrementally modify a design database with
design changes (deltas) that represent operations (add, delete, or modify) on the database contents.
In our model, a version represents a specific design alternative in a particular discipline's database
[Krishnamurthy 93, 94a,b]. Versions may be created, suspended, activated, declared, derived,
and removed, as shown in Figure 4. The first step is to create an initial active version, which may
be modified by application transactions to form a starting design. That version may be suspended
so that some other version may be the focus of new design transactions, or it may be declared so it
can be accessed but not altered. The derive operator is used to define a new version that is an
extension of some previously declared version. Since the derive operator can be applied to any
previous version, we can easily define hierarchies of branching alternative versions. In Figure 4,
version state operators are represented by directed arcs, while the derive operator that links two
versions is represented by a dashed arc.

Figure 5 shows the sample version hierarchies using our example data. In the hierarchy for the
architect’s database, the original set of data constitutes version Brl.1 Once that version is declared,
a new version Br2 can be derived. Data operations add to Br2 the new tuples corresponding to
changes 1 and 2. In parallel, version 1A1 explored the addition of bridges B2 and B4, but was
suspended. Finally, version 3 incorporates the height modification for bridge B5 resulting from
change 4. Within the version hierarchy, a bridge entity is uniquely identified by bridgelD and
version number; for example, <B4, Br2> and <B4, Br1 Al> have different heights.

1 The numbering scheme for new versions is described in [Keller 94].
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create

declare

suspend activate

Figure 4: Model of Versions to Support Design Applications

Create Create
Version Version
Architect's| g1 45 1> Owner's
3 Tty <T2, 40, 1>
Database | <B3,5.0,1> Database
Declared BrD) Declared (Tr1)
Derive Version Derive Version
(+ data operations) (+ data operations)
<T2,4.0, 1> <T12,4.0, 1>
i <T1 35, 1> <T3. 4.5, 1> | change 3
<B4, 5.0, 1>| change 1 Suspended (Tr2) Declared (Tr1A1)
<B5,4.0, 1> change 2
Declared (Br2)
Derive Vers}on Zgé’ gg’ E
(+ data operations) <B22 6:0: 15
.5,

<B1, 45, 1> <B4 521>
<B3,5.0, 1> Suspended (Br1A1l)
<B4, 5.0, 1>
<BS5, 4.5, 1>| change 4

Declared (Br3)

Figure 5: Sample Version Hierarchies

briggelﬁ clearance zone operation description
B4 5.0 1 insert
B5 4.5 1 insert

Table 2: Deltas Computed Between Version Brl and Br3

Draft version:
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There are two main approaches to capturing the changes from the design process. One approach
is to capture changes as they are made to a design. This approach requires that version
management be integrated into the design process and be supported by the design software.
Unfortunately, this requirement severely limits the choice of design software. The approach we
choose is to use a check-out/check-in sequence for each design process. A designer will check-out
a design, make changes to it using the user's preferred software, and then check-in the modified
design. It is then the job of version management to compare the version checked out with the
version checked in subsequently to determine what changes have been made. Our version
management model actually supports both approaches, as the distinction is limited to the nature of
updates to an active version.

Additional operators are provided to query the contents of any existing version and to determine
the differences between any two hierarchically linked versions. In particular, the compute deltas
operator condenses the differences between two versions into a minimal set of data operations
(deltas) that, when executed on the ancestor version, produce the child version. As an example,
Table 2 shows the deltas (changes) computed when comparing Brl with Br3.

Another group of version operators is required to handle version status and version access
privileges. However, we must first explore the configurations in order to understand why those
status and access operators are needed.

4.2. Configurations

A configuration is a framework to integrate designs from the different disciplines to describe an
overall project design. Versions represent individual designs, and constraints specify the
restrictions among them. Thus, a configuration is formally specified as a set of versions (at most
one from each discipline) and a set of applicable constraints [Krishnamurthy 93, 94a,b]. A
configuration may be defined formally to check the integrated project data at major project
milestones or informally to test a specific designer’s alternatives against other disciplines. In either
case, the configuration definition will produce the set of constraint violations present in the
integrated data set.

The operations for configurations are summarized in Figure 6. The initial configuration is
created using the define operator. Later configurations may be incrementally generated from earlier
configurations or defined afresh. To generate a new incremental configuration, each database
version in the new configuration must be a descendant of the corresponding discipline-specific
version from the previous configuration. Generated configurations can streamline violation
detection by focusing constraint checking on the changes between the previously checked
configuration and the new configuration. Once a configuration has been generated, the result is no
different from a configuration created using the define operator. Figure 3 illustrated two sample
configurations defined using our sample databases—configuration 1 was initially defined and then
configuration 2 was generated from configuration 1.
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define Configuration
Model

generate Defined

eliminate

Figure 6: Model of Configurations

A configuration is a static structure and hence cannot be modified, but we do define operators to
access the contents of configurations. In particular, the characterize-config-deltas operator
enumerates the changes between two configuration definitions, where each version in one of the
configurations is an ancestor of the version from the same discipline in other configuration. The
changes are expressed in terms of the deltas between the corresponding component versions and
differences between the associated sets of constraints. The resulting change information is input
for the constraint manager presented later in this section and demonstrated in Section 5.1.

4.3. Version Model to Support Configurations

A version must be guaranteed to exist while it is included in a configuration definition.
Additionally, the designer must be able to access the contents of a version from another discipline
to include it in a configuration definition. To satisfy these conditions, two additional properties are
specified for versions: version status and version access privileges. The former refers to the
protection status of a version, and the latter to the accessibility of its contents to users in other
disciplines. To incorporate those properties, we add two states to the model shown in Figure 4 to
form the final version model shown in Figure 7. A declared version can be frozen to indicate that it
cannot be removed. A frozen version can be published to make it accessible to users in other
disciplines. When a designer defines or generates a configuration, any versions from other
disciplines must be published before they can be included in the configuration; versions from the
designer’s own version need only be frozen. Before a version can be suppressed or thawed, any
configurations in which it participated must be eliminated.
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| creaie

. declare

activate

Version suppress
Access Privileges .
Published Published

Figure 7: Model of Versions to support Configurations
4.4. Constraints

The project participants must check the consistency of their design periodically with respect to a
set of configuration constraints. These constraints can arise from high-level functional
requirements, such as those specified by the client, or from the interface requirements of different
engineering systems and components. For example, in AEC projects, constraints deal with objects
across different disciplines such as architectural, structural engineering, mechanical, electrical and
plumbing [Tiwari 93]. Similar to the design data, project constraints also evolve as the design
progresses from the conceptual phase to detailed design, and they can change from one project to
another. Therefore, the configuration model must include versions of the constraint set, as noted
in Section 4.2.

We use constraints as a means to model the design dependencies among objects. Often
constraints cross disciplines, although "local" constraints involving a single discipline are also
important. The approach of making dependencies orthogonal to the representation of design data
has two advantages:

*  Uniform Representation: Interdisciplinary design constraints are uniformly expressed
on design (database) states and specify “what” (declarative specification) to enforce rather
than “how” (procedural specification). A high level representation of constraints alleviates
the problems of obscure semantics for ad-hoc user-programmed constraints.

e Optimization: A declarative representation of constraints affords many opportunities for
performance improvements and optimizations [Ullman 89]. A constraint language can assist
in real-time management of design constraints by enabling the mapping from “what” a
constraint means to “how’ to enforce it at the execution level.

Constraints on databases have an associated state. At any given stage of the design process, a
constraint can be either in a satisfied or a violated state. The state associated with a constraint may
change due to design changes (insert, delete, and update) made to an object or set of objects. In
our model, a constraint specification identifies inconsistent design states, i.e., the condition that
becomes true upon a constraint violation. In a collaborative design scenario, specifying
inconsistent states is more natural and efficient than enumerating all possible consistent states. We
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extend the language in [Ceri 90] to specify the participant who creates the constraint, the participant
responsible for violations, the content of the notifications, and the participants to be notified. The
use of a high-level constraint language allows many compile-time optimizations that make use if the
information about the distribution of design data between different databases, as we will see in
Section 5.

Consider our earlier constraint on a configuration where information about the bridges is stored
in the architect's database and information about the trucks is stored in a owner's database.
Constraint 1 requires that every truck should be able to pass under all the bridges in its service
zone. The constraint is violated if the height of some truck is greater than the clearance of some
bridge in the service zone of that truck. We use an extension of SQL to express the constraint as
follows (the “::”” symbol is used to associate the database name, e.g., the database of the "Owner,”
with the relation name) [Ceri 90, Gupta 93a, Tiwari 94}:

Owner: :Trucks .Height > any
( select Bridges.Clearance

from Architect: :Bridges
where Bridges.Zone = Trucks.Zone)
actions:
Notify (Architect, Owner); (1)

4.5. Architecture of Constraint Management System

Many commercial databases incorporate attribute-level constraints on database relations, for
example, that the bridge clearance should be at least 3 meters. At times, this facility may suffice
within a design domain, since domain-specific constraints are normally checked within the
application. However, managing constraints across different databases introduces many other
variables into the picture. To elaborate on the general requirements presented in Section 3.2, we
identified four objectives for constraint management in a collaborative AEC design framework:

(1) the system should handle constraints involving different databases, which may

be logically and physically distributed;

(2) the system should be able to store and check most of the complex constraints

expressed in a language with at least the power of relational algebra;

(3) the system should compile these constraints in order to maintain them efficiently

during the run-time of applications; and

(4) the system should support local autonomy and emphasize distributed processing

for enhanced performance.

Figure 8 shows such a framework with autonomous architect, structural and owner
databases [Tiwari 94]. A global constraint manager (GCM) is responsible for maintaining a set of
inter-domain constraints, and it uses the facilities provided by the local constraint managers
(LCMs) and monitors. A description of the components of the constraint management system
follows:

* Constraint: A constraint expresses an invalid design state over a set of autonomous
design databases. The inter-domain constraints can involve multiple design attributes of
objects residing in different databases. In our approach, a high-level constraint language is
used to specify constraints to the global constraint manager. The constraints are declarative
in that a user specifies “what” is required to be enforced rather than how to enforce a
constraint. Frequently, the constraints are not known a priori, i.e., at the time of database
design. The constraint language provides data independence in this sense, constraints need
not be put into the system with the data.
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°

Application: An application program needs input data for domain-specific reasoning and
analysis. The output of an application (e.g., a structural analysis or a material cost estimate)
usually involves refinement or addition of design attributes to the database objects.
Applications interact with the DBMS through transactions managed by the Version Manager
as described in Section 4.1.

Global Constraint Manager: A global constraint manager is entrusted with the task of
decomposing and distributing constraints. The global constraint manager (GCM) is
distinguished from local constraint managers by having a catalogue of all the design
information at various sites (a global data dictionary). The GCM also has a repository of all
the design constraints and provides facilities for updates or queries on constraints
themselves. Thus, constraints are first class database objects. The constraint compiler
resides within the GCM. It extracts the relationships between constraints and database
objects, generating local constraint fragments for each database that contains objects
referenced in the constraints, monitors to watch for potentially invalidating operations (see
below), and a global constraint fragment to check the constraint with data obtained from the
distributed database. (The constraint compilation process is described in Section 5.1.)

Legend

GCM: Global Constraint Manager
LCM: Local Constraint Manager
MO:  Monitor

LCM

Architect £
Database §

i
Constraint! Constraint
Parser 3 Repository

1
1

Application

Local
Constraint ;

Reposito
\L’V Applicajij/f’
W»‘M

Figure 8:  Architecture of a Distributed Constraint Management System
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Local Constraint Manager: Local constraint managers (LCM) are stripped-down
versions of their global counterpart and manage portions of constraint specifications relevant
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to their site. LCMs communicate directly with the local database and query the data in order
to check constraint violations. They can also send the relevant data to the GCM if the need
arises. The primary function of an LCM is to maximize local constraint validation,
communicating the minimal required data to the GCM if local validation is not sufficient.
LCMs also make use of integrity checking facilities provided by local DBMS .

¢  Monitors: As the name suggests, monitors provide a monitoring facility for individual
design objects in a database. There is one monitor per design object. Monitors interact
closely with the local DBMS and are constantly on the lookout for updates to the design
objects within a transaction that may lead to a constraint violation. The relevant update
information is communicated to the LCM if it is a potentially invalid update.

4.6. Notifications

In general there can be a large number of constraints and associated violations in a project. The
participants may not be aware of all the constraints defined on their databases, since they may be
specified by other participants or disciplines. Therefore, we need a constraint classification scheme
by which participants can be efficiently notified of constraint violations. For the purpose of
classifying constraints in distributed configurations, we assign additional attributes to the database
objects, constraints and violations that are the components of a configuration. Objects are assigned
an owner attribute to identify who can make changes to the object; constraints are assigned a source
attribute to identify who created a constraint, and violations are assigned a responsibility attribute to
identify who is responsible for correcting that violation. Different possible combinations of these
attributes for configuration components are used to classify constraints as shown in Table 3.

We make the local-global distinction since global constraints (involving multiple remote
databases) are usually more time consuming to check than the local ones that involve no remote
data access. In addition, participants are usually more familiar with the constraints internal to the
discipline than the external constraints imposed by participants belonging to different disciplines.
Designers may prefer to focus on the constraints that originate from within their own discipline.

Violation
Constraint Example Constraint | Respon- Object Constraint
Source sibility Owner(s) Type
Check that all door frames for the X X X Local-
personnel rooms in the architectural Internal
database are made of fiberglass Architect Architect Architect
material.
Check that all the equipment in the X X X&Y Global-
mechanical database is connected to Internal
the electrical grounds in the electrical | Mechanical | Mechanical | Mechanical
database. & Electrical
Check that there are no conduits X Y Y Local-
below 7°2” in the mechanical External
database. Safety Mechanical | Mechanical
Check that the capacity of each crane X Y X&Y Global-
in the contractor’s database is greater External
than the weight of the columns in the Project Structural | Structural &
structural database that it has to lift. Manager Contractor
Table 3: Constraint Classification to Handle Notifications
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5. Efficient Constraint Management

When a new configuration is generated from a previous configuration, the constraints need to be
reevaluated and a new set of violations needs to be computed. Consequently, constraint checking
can be very expensive when the configurations are very large; i.e., the individual databases could
be large and there could be many constraints. The expense of checking constraints can be reduced
if we consider only the changes made to the configuration and do not evaluate all the constraints on
the entire databases belonging to a new configuration.

To provide efficient constraint checking, various optimization strategies can be used at the time
that constraints are specified (compile-time) and the time that constraints are checked (run-time).
The underlying databases are used to store the optimization information derived at constraint
compile time, in constraint repositories. At run-time, the constraint managers access the derived
information in repositories using the local database management system. The following sections
describe the compilation and run-time processing as well as the status of our implementation.

5.1. Constraint Compilation and Fragmentation

Even though constraint checking is performed when the configuration changes, the constraints
are preprocessed (or compiled) in order to make the checking process efficient. The compilation
phase extracts information needed for constraint checking. Constraint compilation produces
procedural specifications and run-time optimizations from a high-level constraint specification.
The compilation process fragments a global constraint to produce database-specific local
components. Fragmentation reduces the amount of information that the local databases need to
send over the network for global constraint checking. The information produced by the compilation
phase is shared between the GCM and the site-specific LCMs. The GCM and LCMs store this
derived information in repositories that can be queried and used efficiently at run-time when
constraint checking takes place.

In the next section, we illustrate the information derived at compile-time and describe how this
information is used to check constraints. In [Tiwari 94], we describe the compilation process in
detail.

5.2. Run-time Constraint Processing

Run-time optimizations can be used to avoid unnecessary checks and data transfer. Figure 9
graphically shows our objective to reduce the volume of data that the human designers need to
process in change management. Rather than having to sift through the complete mass of data
defined in a new configuration, the human designers can concentrate on those changes that violate
constraints. The figure also summarizes the steps involved in the runtime constraint management
that are described in the following sections.
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Action Size of Data
Configuration Manager
— Declare a new configuration

all data

Configuration Manager
— Identifies changes (deltas)

Change Monitors
— Identify potentially violating changes

potential violating
changes

Local Constraint Managers
— Eliminate locally verifiable changes

nonlocally verifiable
changes

Global Constraint Manager
— Identify global constraint violations and violations (notifications)
generate notifications

Figure 9: Run-Time Processing
5.2.1. Changes

Design changes originate with the design transactions applied to specific versions. However,
interdisciplinary constraints are not checked until a configuration is defined or generated. When an
incremental configuration is generated, the configuration manager is responsible for determining
the changes (deltas) between the previous configuration and the new configurations. For our run-
time example, consider configurations 1 and 2 as originally defined in Figure 3 and summarized in
Table 4. Configuration 1 satisfies the current constraint (constraint 1) and, therefore, has no
violations. When configuration 2 is defined as a descendant of configuration 1, the first step in the
constraint checking is to determine the changes from configuration 1 to configuration 2 by
comparing each version with its ancestor using the compute deltas operator for versions as
described in Section 4.1. The result 1s shown in Table 5. By looking at only changes, we’ve cut
the volume of data to check in half in our tiny example; in practice, the number of changes between
configurations would typically be much smaller than the overall quantity of data.
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conﬁgumtion parent Architect’s Owner’s | constraint | violations
) configuration| DB version | DB version set

configuration 1 Brl Trl constraint 1 none

configuration 2 | configuration 1 Br2 Trl1Al constraint 1 ?

configuration 3 | configuration 2 Br3 TriAl constraint 1 ?

Table 4: Sample Configuration Definitions

version operator bridgeﬁ) clearance zone data operation
compute-deltas (Brl, Br2) B4 5.0 1 insert
B5 4.0 1 nsert

version operator truckID height zone data operation
compute-deltas (Trl, Trl1Al) T2 4.5 1 sert

Table 5: Changes (Deltas) Computed for Configurations 1 and 2

5.2.2. Potentially Violating Changes

Not all database changes have the potential to violate constraints. For instance, constraint 1 may
be violated if the owner introduces a new truck, or if the architect updates the clearance of a bridge
in any zone. Conversely, the deletion of a bridge or truck cannot possibly violate the constraint. In
general, for any constraint expressed in our language, it is possible to identify the database
operations that could potentially violate that constraint. These potentially violating operations are
derived at compile time. For constraint 1, the potentially violating operations are given in Table 6.
Each potentially violating operation is specific to either the architect's or the owner's database. The
architect need not be aware of the owner's potentially violating operations and vice-versa.
Therefore, the set of potentially violating operations can be fragmented and distributed between the
two databases to be handled by the monitors within the local constraint managers. In our
comparison of configurations 1 and 2, all of the changes presented in Table 5 correspond to
potentially violating changes. The first two are local to the architect's database; the third is local to
the owner's.

Architect’s Database |updated Architect::Bridges.Clearance

inserted Architect::Bridges

Owner’s Database updated Owner::Trucks.Height
updated Owner::Trucks.Zone

inserted Owner::Trucks

Table 6 : Potentially Violating Operations
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5.2.3. Locally Verifiable Changes

Even though a constraint refers to multiple databases, the constraint can often be checked using
the data from only one of the participating databases. For instance, let a new bridge B be placed in
zone Z. If constraint 1 was previously satisfied and if there is another bridge that is lower than
bridge B in zone Z, then we can conclude that bridge B must be higher than every truck that enters
zone Z, and therefore, the constraint is still satisfied. Thus, constraint 1 could be checked without
accessing the owner’s database. We refer to these conditions as local tests. Different local tests are
derived, at compile time, for different potentially violating updates. For the case of insertions into
relation Architect::Bridge, the local test is:

Select *
From Architect: :Bridges
Where Bridges.Zone = new_bridges.Zone
and Bridges.Clearance <= new_bridges.Clearance (2)

In our example, the local test on the Architect’s database tells us that we don’t have to check the
Owner’s database for new bridge B4 because its clearance of 5 meters equals or exceeds the
previously designed bridges. However, BS must be checked globally because its clearance of 4
meters is lower than the previous bridges. Similarly in the Owner’s database, truck T3 must be
checked globally because its height is greater than that of truck T2.

5.2.4. Globally Verifiable Changes

Constraints cannot always be checked locally in response to potentially violating updates. We
derive global queries, at compile time, that refer to all the relevant databases in order to verify the
constraints in a configuration. For instance, for the case of insertions into relation Owner:: Truck,
the global test to detect constraint violations is:

Select new_trucks.Truck_ID, new_trucks.Height, Bridges.Bridge_ID

From Architect: :Bridges, Owner::new_trucks
Where Bridges.Zone = new_trucks.Zone
and Bridges.Clearance < new_trucks.Height {(3)

When we run the global test against our set of nonlocally verifiable changes, we discover that
the pair of bridge BS and truck T3 violate the constraint because the former has a clearance of 4
meters and the later has a height of 4.5 meters.

5.2.5. Violations and Notifications

Violations result from the constraint checking process, and they identify important design
inconsistencies in the configuration. Often, participants may be notified of violations for
constraints that were specified by other participants. Therefore, the notifications should have the
relevant content for the participants to infer the cause of a constraint violation and the means to
correct a violation. For instance, in our running example the owner should be notified of the trucks
that are too high in order to pass under all the bridges in their service zone.

The contents of the violations are specified as a part of the constraint itself, and the attributes
relevant to a violation are generated during the constraint checking process. That is, the contents of
the violations are retrieved during constraint checking. The attributes are extracted by a query that
is obtained by rewriting the global constraint checking query (refer Section 5.2.4). The query for
computing the set of violations can be derived automatically for a subset of the class of general
SQL queries using techniques described in [Ceri 85]. The violations received by each participant
are stored in their violations database and can be accessed by interested participants when needed.
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6. Conclusions

The problem of supporting civil construction has led us to a number of interesting questions that
have not been emphasized in other engineering or scientific disciplines. The nature of the
construction industry is such that a database for construction support must consist of a large
number of independent databases. This situation contrasts with, say, a software development
project or the design of an integrated circuit, where ownership is usually within a single company.
Further, the construction industry is characterized by an unusual amount of interaction with the
owner, many trial designs, and sequential modification of design components, especially as the
structure 1s being built.

Fortunately, we can characterize many of the important requirements of a building using
constraints. In particular, we have concentrated on constraints that affect data in two or more
disciplines. Our model for change management includes the following features:

1. We support large trees of versions, each version coming from one of the many disciplines
that constitute the design and construction team. Versions are stored by deltas, the changes
from their parent configuration.

2. We support constraints as first-class components of the system. Since it is impossible for a
change in one discipline's database to cause a change in some other database, the only way
to coordinate design and construction is for constraints, and their violations, to become part
of configurations. Violations are reported to appropriate participants, according to policies
that are laid down when the constraint is asserted.

3. We compile constraints into local and global portions, attempting to check locally for new
constraint violations where possible. We have developed a notion of local constraint
checking to test that a change cannot create a new constraint violation by looking only at
local data.

4. We support configurations comprising a version from each discipline, the constraints that
pertain to the configuration, and the violations of those constraints. Violations are computed
incrementally, and locally where possible, from the changes that led to the versions that
participate in the configuration.

The combination of versions, configurations, and constraints provides a formal basis for the
efficient management of changes in the AEC domain and other domains as well. There are many
aspects of this combination that still need to be explored. For instance, we are continuing to
investigate algorithms for discovering and using local constraint checks and to use incremental
change information (deltas). We believe that this area will be a fruitful one for research in the years
to come.

6.1. Implementation Status

The model of versions has been implemented on top of an ORACLE database management
system using the Pro*C compiler to specify dynamic SQL links. The version manager stores the
changes (deltas) that are made when going from a parent version to a new child version. Operators
have been written to incorporate changes into active versions, to instantiate versions from deltas,
and to compare hierarchically linked versions. The configuration manager is the next
implementation step.

We initially implemented part of the constraint manager on the Starburst database system at IBM
Almaden Research Center, because it provides good change monitoring facilities [Widom 89, 90].
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In that environment, a set of interdisciplinary constraints was tested with a sample set of
architectural, structural and mechanical databases for a commercial office building. We are
finishing the constraint manager using ORACLE in order to integrate it with our version and
configuration management software.
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