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A CUSTOMIZABLE REPRESENTATION FOR CONSTRUCTION
METHOD MODELS

FLORIAN B. AALAMI, RAYMOND E. LEVITT, AND MARTIN A. FISCHER
Construction Engineering and Management,
Department of Civil and Environmental Engineering,
Stanford University, Stanford, CA 94305-4020

Abstract

This paper presents our formalization of planning knowledge in the form of a computer-interpretable
construction method model template (CMMT). We present a case for representing planning knowledge as
abstracted skeletal plans. An abstracted skeletal plan is defined as a set of general activity types and their
associated activity elaboration and sequencing knowledge. Explicitly modeled activity elaboration and
sequencing knowledge is needed to customize the application of abstractly represented planning knowledge
to the specific context of a project. The main challenge we address is how to represent abstracted
construction planning knowledge so that it is easy to model and use by planning professionals and
encapsulates activity elaboration and sequencing knowledge. We enable a template-like representation of
planning knowledge by formalizing two distinct sets of construction vocabulary, one that describes the
fundamental construction entities <Component, Action, and Resource> and another that describes activity
elaboration <E> and sequencing <S> knowledge applicable to a broad range of components and activities.
This segmentation of planning knowledge and the formalization of reasoning blocks extends the
representation of planning knowledge found in existing systems. The template-like structure of a CMMT
facilitates the modeling of computer-interpretable planning knowledge. The main elements of a CMMT are
its activity-based application domain that is represented as a <CA> tuple and its constituting activities that
are represented as a <CARSE> tuple. We have implemented CMMTs in the Construction Method Modeler
(CMM) planning software. This paper explains the CMMT and illustrates its application to a portion of an
industrial construction project.

1. Introduction

Construction planning is an important task on all construction projects; it establishes a link
between the facility design (or product) and the process with which it will be created.
Construction plans are generated for a variety of reasons, e.g., to study the feasibility of a project
from a temporal perspective, to evaluate the constructibility of a design alternative, to coordinate
the work of specialty subcontractors, or to develop a detailed, tactical plan for the day-to-day
operations of a site. In either case, rapid and economical generation of realistic plans at the
appropriate level of detail is desirable. Furthermore, the ability to generate multiple alternatives,
to maintain plans and to replan easily is crucial. Today’s construction planning process, however,
is largely a manual and time-consuming process that does not support the rapid generation of
alternatives. The translation of design (product) information to a construction plan (process

model) requires manual interpretation of data and knowledge in the planner’s mind. Construction
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plans generated with this “informal” construction planning knowledge are difficult to maintain

and replan because the plan does not represent the reason behind the existence of activities and
their sequencing explicitly.

We envision a construction planning process that, unlike the current time-consuming and manual
process, supports the rapid generation of plan alternatives. Computer-interpretable and project-

independent method models capture planning knowledge. The goal of the planning process is no

longer to generate simply a plan, but instead, to generate multiple 4D production models of a

project rapidly and to select the most constructible of the alternatives. 4D production models are

intelligently linked product, process, and resource models of a project that support
constructibility analysis (Collier and Fischer 1995) (McKinney et al. 1996) (Akinci et al. 1997) (Aalami
et al. 1998a). The planning process involves the synthesis of computer-interpretable project
information to 4D production models by applying user-defined construction method models.
Construction method models elaborate activities into more detail in a hierarchical planning
process. CMM customizes the abstractly represented planning knowledge in a method model to
the specific context of a project by using explicitly modeled reason that “knows” how to generate
and sequence activities. Essentially, construction method models intelligently link product,
process, and resources to reflect the application of a particular construction method. Replanning
of an alternative is easier because the reason why objects in a 4D production model exist and are
linked is explicitly modeled. In this paper we present our formalization of computer-interpretable

construction method models that.are one means of fulfilling this vision.

We have built on and extended previous formalizations of general constfuction planning
knowledge as construction method models (Jigbeck 1994) (Dzeng and Tommelein 1997) by
developing computer-interpretable, customizable construction method model templates (CMMT).
A challenge in the formalization of method models is how to support an abstracted (project-
independent) representation of planning knowledge while still supporting its specialized
application on specific projects. A second challenge is how to represent a method model so that a
user can easily create or customize its content without having to write software code. To help
address these challenges, we extend the representation of general planning knowledge by the
formal separation of planning knowledge into (1) abstracted activity types represented as a
<Component, Action, and Resource> tuples, (2) the reason for how each activity type is
elaborated <E>, and (3) the reason for how each activity is sequenced <S>. This formalization of
the elements that make up planning knowledge enables the representation of planning knowledge

as abstracted skeletal plans. An abstracted skeletal plan represents method-specific planning



knowledge as a set of abstracted activity types <CAR> where each activity type is associated
with its own elaboration <E> and sequencing <S> knowledge. Planning knowledge represented
as abstracted skeletal plans is project-independent. The explicitly modeled elaboration and
sequencing knowledge supports the customized application of the planning knowledge modeled
in an abstracted skeletal plan to the specific context of a project. The template-like representation
of a CMMT supports the easy modeling of computer-interpretable planning knowledge. The main
elements of a CMMT are its activity-based application domain that is represented as a <CA>

tuple and its constituting activities that are represented as a <CARSE> tuple.

We have implemented the CMMT in the Construction Method Modeler (CMM) (Fischer and
Aalami 1996) planning system. In CMM, planners use these method templates to define and store
construction method knowledge. Planners rapidly generate 4D production models by applying
these method models to activities in a plan and thereby adding more detail to the plan. Using the
planning knowledge from the CMMT and the information in an Industry Foundation Classes
(IFC)-compliant product model (IAI 1998), CMM generates the appropriate number of activities,
links the activities with their related components in the product model, and embeds the activities
in a critical path project network. Planners can now rapidly generate realistic 4D production
models for one or multiple designs using a range of different construction methods and can replan
quickly to explore the impact of a different CMMT, resource availability, or design change. The
next section introduces a case example that sets the context for this paper and motivates the case
for the method-centric representation of planning knowledge. The following sections discuss the

various forms of construction method knowledge representation and their evolution to a CMMT.

2. Motivating Case Example

“The most time-consuming and difficult aspect of the job-management system, planning, is
also the most important. It requires an intimate knowledge of construction methods combined

with the ability to visualize discrete work elements and to establish their mutual

interdependencies.”
—(Clough and Sears 1991)

As Clough and Sears state, construction methods play a central role in the planning process. In
this paper we demonstrate that construction method models can be used to represent abstracted
planning knowledge and that planning knowledge represented as method models can formalize
the link between product (design) and process (plan) information during the planning process. We

use the detailed planning for the Deethanizer Unit (Figure 1) of a recently completed refinery
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project to illustrate this point. Three full-time planning engineers and two technicians planned and
monitored the refinery project using an activity network with over 4,500 activities that was
modeled using a commercial project management software. The planners utilized a full 3D-CAD

model of the refinery, to which they had access on the project site, as a decision support tool. This

setup is typical for projects of this type and size.

Symbolic Product Model

3D Graphic Model Deet?:i?izer

Decomposes-into
Relationship

o

Foundations System A

PR_Columni

Supports

e
e .

Footing3 PR_Bay1 Line

PR_Bay1
-> |s_Of_Component_Class: PR_Bay
-> Decomposes_Into: PR_Beamf, ...
-> Supports: Linet, ...

-> |s_Supported_By: Footings, ...

-> Has_Geometry: (Height, Width, ...)
-> Has_L.ocation: (x, y, z, 8)
> .

Supports

PR_ PR_
Beam1 Column1

Figure 1. Product model of Deethanizer Unit. The Deethanizer Unit shown as a 3D graphical model on
the left and as a hierarchical symbolic product model on the right. The product model represents a
design-centric view, i.e., the product is decomposed according to physical systems. Topological
relationships, e.g., support between components, are also modeled.

One of the responsibilities of the planning department on this project was to add appropriate
detail to the project plan. As is the case on most construction projects, work on the refinery began
with a project plan that had not been fleshed out in great detail. Throughout the life of the project
more detail was needed in certain sections of the plan for tactical planning and for the assessment
of the impact these detailed planning decisions would have on the overall flow of the project.
Figure 2.a is a partial view of the activity network used to manage the construction of the
— — Deethanizer Unit. It shows the activity Build Pipe Rack (PR)_Bay1 and -its direct
predecessors and successors. The component PR_Bay1 is a part of the Deethanizer Unit and
needs to be planned in more detail. The project specifications call for the fireproofing of the bays

in the Deethanizer Unit because the tanks located on the steel structure will store flammable

fluids.
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a) Partial view of the activity network used to manage the Deethanizer Unit.
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b) The activity Build PR_Bay1 is elaborated to reflect its construction with the Spray-on Fireproofing
for Bays method. »
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¢) Elaborating the activity Build PR_Bay1 with a skeletal plan does not generate the appropriate activity
sequencing links with the rest of the project plan.

Figure 2. (part 1) Elaboration and sequencing of Build PR_Bay1 activity. The elaboration of an
activity using two alternate construction methods.
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d) The activity Build PR_Bay1 is elaborated to reflect its construction with the Concrete Encasement
Fireproofing for Bays method.

Figure 2. (part 2) Elaboration and sequencing of Build PR_Bay1 activity. The elaboration of an
activity using two alternate construction methods.

To plan the Build PR_Bay1 activity in more detail (i.e., elaborate it into more detailed
activities), the project planner first inquired about the method with which the bay should be
constructed and fireproofed. Steel members in a bay can be fireproofed in a number of ways, each
resulting in a different set of activities and construction sequence. To the project planner, a
construction method represents a generic set of activities, each acting on some component in the
project and requiring resources. The sequencing of each of the activities in the method is either
governed by the physical configuration of the project (e.g., a component must be supported by
another component in the project) or by a special requirement of the method (e.g., inspection
occurs after some work has been carried out). His directive was to plan the building of PR_Bay1
using the Spray-on Fireproofing for Bays method. To inform himself of the specific
requirements of this construction method, the planner referred to a paper-based method statement.
On many construction projects, especially those that are International Standards Organization
(ISO) 9000 compliant, paper-based method statements are developed and approved by the owner

prior to construction.

Abstracted planning knowledge, whether it is in the form of paper-based method statements or
simply retained in the mind of a planner must be customized to the specifics of a project. In the
case of the Deethanizer Unit, the project planner used the 3D CAD model to ascertain the exact
configuration of PR_Bay1 (e.g., how many beams make up PR_Bay1). This specialization of
abstracted planning knowledge described in the method statement to the context of the project

results in the generation of six detailed activities (Figure 2.b).




Each of the new activities generated acts on a component that is part of the Deethanizer Unit. To
sequence the activities, the planner first considers the general preconditions governing the
sequencing of each activity and then uses the specific context of the project to determine how the
general constraints translate into actual sequencing links (sequencing links labeled A through F in
Figure 2.b). The interlinking of the newly created activities to the rest of the project network
(links B, C, and E in Figure 2.b) and the different configurations of the bays in the project make
the use of predefined activity networks impractical (Figure 2.c). Some commercial project
management systems, e.g., Primavera Project Planner (Primavera Systems 1991), let users save
existing plans as fragnets that can be reused on similar projects. The use of a fragnet would have
still required customization. The sequencing would have had to be adjusted with the deletion of
the two initial sequencing links and the creation of links A, B, and E. If the number of activities
defined in the fragnet did not corresponded to the configuration of the project, e.g., the number of
beams in the design, then the number of activities created in the plan would have also needed

manual modification.

After completing the planning assignment described above, the planning department reported its
results to the project management. The management could not accept that the quality control
(QC) release of the beams had been pushed beyond the completion of the process systems (a
requirement of that particular method because spray-on fireproofing is susceptible to damage
from the installation of the process systems). They recommended an alternate fireproofing
method, one that utilizes cast-in-place concrete encasement. Because cast-in-place concrete is
more durable than spray-on fireproofing, the QC release of the beams is not constrained to
succeed the installation of the prbcess systems. Figure 2.d shows the Build PR_Bay1 activity
elaborated with the Concrete Encasement Fireproofing for Bays method. The management

accepted the plan based on this method alternative.

Replanning for the new method was a time-consuming effort. Each of the activities generated for
the Spray-on method had to be identified manually and then either deleted or modified to reflect
the Cast-in-place method. The commercial project management system used to model the
project plan could not assist in this process because it can not model the reason for the existence
of an activity or its sequencing nor does it have an explicit model of a construction method and its

associated activities.

This example illustrates several characteristics of the construction planning process:



e Construction methods drive the planning process. In the planning example, there was a clear
correlation between the application of a specific construction method and the types of

activities generated and their sequencing.

e The planning process can be modeled as a hierarchical process. Construction planning, as
was observed in the case example, is a process of adding detail to a plan. Detail is added by
refining an activity into more specific activities and tying the new activities into the rest of

the project plan.

e Abstracted planning knowledge has to be customized to the specific context of a project.
Planning knowledge, whether retained in the mind of a planner or written on paper in the
form of a method statement is represented as abstracted activity and sequencing constraint
types. For example, an abstracted activity type is generically represented as QC release
beams and not as a specific activity instance QC Release PR_Beam2. When applied, this
abstracted knowledge must be interpreted and “instantiated,” i.e., customized to the specific
configuration of a project. The customization process adjusts the number of activities

generated and the activities to which sequencing links are formed.

e Construction methods can be represented as abstracted activity types and reasoning blocks.
Planning knowledge represented by a construction method can be broken down into the
abstracted activity types that need to be generated (e.g., QC Release of PR_Beams) and
the reasoning with which they should be customized to the context of the project (e.g., one
activity of type QC Release PR_Beams for each PR_Beam in the bay) and sequenced
(e.g., QC Release of PR_Beams must succeed the Building of Process Systems). Each
activity type can be ’represented as an action (QC Release) that is carried out on a
component (PR_Beams) by a resource (Inspector of type C). Components <C>, actions
<A>, and resources <R> represent the fundamental construction entities encountered on a
construction project (Froese and Rankin 1998). Activity elaboration <E> (generation)
knowledge supports the reasoning for how an activity type is customized to the specific
context of a project. Activity sequencing <S> knowledge represents the reasoning for how an
activity should be sequenced. In this paper we formalize abstracted activity elaboration and
sequencing knowledge as reasoning blocks that enable the definition of a customizable

representation for construction method knowledge models.

In summary, even with state-of-the-art CAD and project management software, construction
planning today is a manual process requiring the human interpretation of all planning knowledge.

Only after all the reasoning for activity generation and sequencing has been carried out in the
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planner’s mind can the resulting activity network be modeled in a computer. Little of the
reasoning governing the generation or sequencing of activities can be formally modeled in
commercial project management systems, rendering replanning a time-consuming task. To
augment today’s planning process planning knowledge needs to be modeled in the form of
computer-interpretable method models. Construction method models can represent planning
knowledge as a set of general activity types and the formal reasoning with which each activity
type is customized to the configuration of a project. As the example illustrates, multiple
construction methods can be used to plan the same activity in more detail. Therefore, to support
the generatibn of multiple alternatives for one activity, construction method models should be
activity-based. Moreover, to be practical and economical, construction method models should be
customizable easily by a planner without the need to modify software code. Throughout the
remainder of this paper we introduce and discuss our representation of computer-interpretable

construction method models that responds to these requirements.

3. Review of Existing Construction Method Representations

The representation of general planning knowledge, as found in practice and in the research
literature, takes on various forms. In this paper and assuming a construction context, we
synonymously use the terms planning knowledge and construction method knowledge to
represent the knowledge used by a planner to link product and process information during
construction planning. Whether or not the representation of a method is computer-interpretable is
a principal distinction among the various forms found in the literature. We begin our review of
method representations by analyzing paper-based method statements found in practice. We

continue our review with computer-interpretable representations of method models.

We use the criteria of whether or not a method model explicitly represents activity elaboration
<E> and sequencing <S> knowledge to distinguish among computer-based method models. We
analyze the benefits and limitations of skeletal plans as one representation of planning knowledge
that does not explicitly represent reasoning knowledge. A prerequisite for the formalization of
activity elaboration and sequencing knowledge is the formalized representation of the
fundamental construction entities components <C>, actions <A>, and resources <R>. We review
the formalization of construction entities to set the context for our discussion of method

representations that explicitly model reasoning knowledge.

We use the type of mechanism with which a user can define, modify, or customize the

representation of the planning knowledge in the model to distinguish between method models that
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explicitly model reasoning knowledge. The two customization mechanisms we review are the
writing of software code (Darwiche et al. 1989) and the composition of value statements (Dzeng and
Tommelein 1995). Construction method models that represent a set of detailed activities must be
applied to either a component in a design or an activity in a plan to support the planning process.
We discuss the benefits and limitations of defining method knowledge as either activity or
component-based. The review of existing construction method representations sets the context for
the discussion of our construction method model template that uses reasoning blocks and the

<CARSE> vocabulary to represent abstracted planning knowledge.

3.1 Paper-Based Method Statements

In practice, today’s construction-method knowledge is either retained in the minds of experienced
construction personnel or as paper-based method statements. Paper-based method statements are
common place on many construction projects, especially those that are ISO 9000 certified. Much
effort is expended to develop, document, and enforce paper-based method statements. Paper-
based methods document procedures that need to be followed on a project. The information in
these types of method models is not easily accessible and requires human interpretation before it
can be used to support the planning process. It is also unlikely that project planners who work
under constant time pressure will retrieve and apply method statements when they are filed away
in thick binders and not a mouse-click away. Further, construction plans generated with this
“informal” construction-method knowledge are difficult to maintain and replan because the
reason behind the existence of activities and their sequencing is not explicit in the final computer-
based activity network. As a result, the development of paper-based method statements is often in
vain and the plans generated are inconsistent with the procedures set out in the method
statements. Following are excerpts from a method statement developed for the refinery case

example:
“‘Application of Spray-on Fireproofing to Structural Steel Members MS-598-515 Rev. B
8.1 General Preparation

To prevent the cracking of fireproofing at the joints, all steel members to which fireproofing

is applied shall be fully erected and torqued.

All steel members to which fireproofing is applied shall be cleaned and free of oils or grease.
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8.2 Application

A uniform coating with a minimum of 2” cover shall be applied to all structural steel
members that are specified with fireproofing in the project specifications. The fireproofing

shall be applied by certified (certification class F-3) crews.

8.4 Protection

Care shall be taken to prevent any damage to fireproofing caused by the weight and
movement of piping or machinery installed near or on the fireproofed members. Permanent
or suitable temporary pipe supports shall be installed prior to installation of such piping.

Prior agreement for any temporary supports shall be obtained from Client.

8.5 Inspection

A final quality control inspection of all the fireproofed structural steel members shall occur
after all the piping or machinery located near or on the fireproofed members is fully installed

and secured from further movement.”

Paper-based method statements describe a set of abstracted activities and their sequencing
constraints. These specifications are used to add detail to a plan. The application domain of a
method statement, e.g., application of spray-on fireproofing to structural steel members, defines
the applicability of the method. The method above is used to refine the Build PR_Bay1 activity
because the activity’s scope (PR_Bay1 is composed of structural steel members) and the

planner’s intent (PR_Bay1 needs fireproofing) matches the application domain of the method.

The method statement uses construction entities, e.g., crew with F-3 classification (Resource)
applies (Action) fireproofing (Component) to describe abstracted activity definitions. An
abstracted activity definition is stated in generic or project-independent terms. In the example
above, the modifier all and the component designation structural steel members in “all the
fireproofed structural steel members” (section 8.5 of the method statement) signals the planner to
replicate an instance of the general activity type quality control inspection for each appropriate
steel member that needs inspection. Because the method is used to refine the activity Build
PR_Bay1 the planner interprets the statement “all structural steel members” to refer to all the
detailed structural steel members that are a part of PR_Bay1. This directive resulted in the
generation of the QC Release PR_Beam1, QC Release PR_Beam2, and QC Release
PR_Beam3 activities. Inspection activities are not generated for the columns in the bay because
piping or machinery is not located close enough to them to warrant an inspection for possible

damage. This type of directive represents activity elaboration <E> knowledge. In today’s
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practice, the planner would reference a graphical model and possibly the project specification

documents to determine this information.

Sequencing constraints <S> (preconditions that must be met before an activity can proceed) are
defined with respect to other activities stated in the method statement. For example, the QC
release of steel members is constrained by the installation of piping and machinery (collectively
referred to as process systems). The installation of piping and machinery is not in the scope of
this method statement, but a sequencing constraint can be defined with respect to its abstracted
répresentation. It is the planner’s responsibility to interpret these types of sequencing constraints,
identify the appropriate activities in the plan, and generate a sequencing link to satisfy the
constraint (e.g., link E in Figure 2.b). Sequencing constraints can also be specified between two

activities defined in the same method statement.

In summary, paper-based method statements can be composed to include comprehensive planning
knowledge for a construction method, but their usefulness is limited by their inaccessibility and
need for human interpretation and implementation. The key elements of a paper-based method
statement are a description of its application domain, the specifications for abstracted activity
types as <CAR> tuples, explanations of how the activity definitions should be applied to the
context of a project <E>, and sequencing constraints <S>. The next section introduces computer-
interpretable representations of construction method knowledge that can be used to augment the

planning process.

3.2 Planning Knowledge Represented as Skeletal Plans

One of the most commonly found representations of construction method knowledge uses the
notion of skeletal plans (Cohen and Feigenbaum 1982), in which a method is represented as a
predefined set of sub-tasks prearranged in an activity sub-network. Fragnets, as found in some
commercial project management systems, are skeletal plans. Skeletal plans augment the planning
process by automating the generation of detailed activities. A skeletal plan can be used to
generate detailed construction activities automatically for a component represented in a CAD
model (Cherneff et al. 1991) (the component can also be represented symbolically in a project
management system) or can be used to add detail to an activity in an already existing plan (Figure
2.c). The pure form of a skeletal plan is a predefined activity network that is only represented as
construction activities and does not represent any formalized activity elaboration or sequencing
knowledge. Figure 3 contains the two skeletal plans that could have been used to automate the

detailed planning of the Build PR_Bay1 activity in the case example.
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b) Skeletal plan representing the Concrete Encasement Fireproofing for Bays construction method.

Figure 3. Examples of skeletal plans. Two skeletal plans that could have been used to partially automate
the planning process in the case example.

The lack of explicitly represented activity elaboration or sequencing knowledge in skeletal plans
limits their applicability. Their applicability is limited because (1) it is impractical to maintain—a
priori—a comprehensive library of all activity sub-network configurations possible and (2) the
interlinking of activities defined within a skeletal plan to the rest of the activity network must still
be done manually. For example, the skeletal plans shown in Figure 3 are specialized for the case
when a bay is composed of three columns and three beams (the two girders on each side of the
central column are grouped into one beam). Other bays on a project with a different configuration
would require the definition of additional skeletal plans. Further, Figure 4 illustrates the
additional sequencing links that would have had to be added to the plan manually to interlink the

skeletal plan’s activities with those of the already existing project plan.

Skeletal plans require less manual customization to plan projects in less detail. Typically the more
detailed a plan, the more the activities in the plan have to be fine-tuned to the specific
configuration of a project and sub-networks have to be interlinked. Because planning in coarser
detail requires less customization, skeletal plans are frequently used to start or initialize a plan for

a project. Planners like to use skeletal plans because they are easy to define. For example, a
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common mechanism used to initialize plans is to open a similar project and then to cut-and-paste
relevant activities and their sequencing links into a new project’s activity network. The
information that is temporarily stored in a computer’s clipboard and represents activities and their

sequencing links is essentially a skeletal plan.

A project plan initialized with a skeletal plan is then manually refined to the appropriate level of
detail needed to support project management functions. This approach to planning often results in
a disconnect between the less detailed levels of a plan that were generated with skeletal plans and
the more detailed levels of a plan that are customized to the specifics of a project and are needed
for tactical planning. The disconnect results because planners fail to maintain 'appropriate
relationships between the more detailed activities that are in constant flux and the static, less

detailed activities.

The selection of an appropriate fragnet is further hampered by the lack of a formalized
classification scheme. It is difficult to classify activities or fragnets in today’s commercial project
management systems since activities in a plan are not represented using fundamental construction

entities or any other semantically rich representation—they are just named files or file blocks.

Apply
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Figure 4. Interlinking of a skeletal plan to a project plan. Activities within a skeletal plan must be
manually linked to other activities in the project plan.

Skeletal plans are easy to define and are frequently used to initialize construction plans or to add
detail to existing plans where the activities defined in the skeletal plan do not have to be
interlinked or customized to the configuration of a project. Next, we examine the formal
representation of an activity as' a <CAR> tuple and the subsequent formalization of activity

elaboration and sequencing knowledge in Al-type construction planners.
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3.3 The Formal Representation of Construction Entities <CAR>

Russell (Russell 1997) argues for the need of a vocabulary to describe construction methods. Such
a vocabulary is needed to support the acquisition, representation, and computer-interpretable
reuse of method-related planning knowledge. The essence of a vocabulary that captures planning
knowledge is a definition of component, action, and resource classes, each of which represent
fundamental construction entities. Industry-wide efforts are underway that are researching and
formalizing a standard vocabulary for the Architecture, Engineering, Construction (AEC)
industry (IAI 1998). Examples of vocabularies that describe construction entities can be found in
Russell (Russell 1997), CasePlan (Dzeng and Tommelein 1997), and CACP (Froese et al. 1997). The

granularity and scope of each implementation varies, however.

Building on the definition of the basic construction entities, researchers have formalized the
representation of an activity as a <Component, Action, Resource> tuple (Marshall et al. 1987)
(Darwiche et al. 1989). The formalization of an activity’s representation as a <CAR> tuple led to
the formalization of activity elaboration and sequencing knowledge because the reasoning to
create and maintain plans could now be abstracted and represented using an activity’s <CAR>
entity classes. Al-planning systems that also incorporate activity elaboration and sequencing
knowledge into their method models can customize the application of their planning knowledge

to the specific context of a project.

3.4 Planning Knowledge Represented as Code-Based Method Models

A skeletal plan represents planning knowledge by representing the activities that needs to be
generated for a particular project configuration. Al-planners that reason about activity
elaboration, however, represent planning knowledge as a set of abstracted activity types and the
reasoning to instantiate each activity type in the context of a given project. One representation for
this type of construction planning knowledge is a code-based representation. The planning
knowledge represented in code-based method models is more generally applicable than planning
knowledge represented as skeletal plans because its application can be customized to the specific
configuration of multiple projects. Examples of Al-planners that employ code-based method
models are GHOST (Navinchandra et al. 19%8), PLANEX (Zozaya-Gorositza et al. 1989), OARPLAN
(Darwiche et al. 1989), SIPEC (Kartam and Levitt 1990), BUILDER (Cherneff et al. 1991), and Know-
Plan (Morad and Beliveau 1994). We adopt and extend the notion of explicitly representing acti\_/ity
elaboration knowledge in method models. Even though the knowledge represented in a code-

based method can be applied generally, its content is not easily definable or customizable by an
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end-user. Essentially, a project planner would have to rewrite the software code of the Al-planner

to change the knowledge stored in the system.

We use the elaboration of the Build PR_Bay1 activity into the activities QC Release
PR_Beaml, QC Release PR_Beam?2, and QC Release PR_Beamg3, which is a subset of the
spray-on-fireproofing method, to illustrate how code-based planning knowledge supports the
planning process. In OARPLAN, knowledge sources represent general planning knowledge. The
following knowledge source (KS) could be used to elaborate the “Build PR_Bay1” activity
(stated in pseudo code) (Darwiche et al. 1989):

It (the activity includes:

action: of class BUILD and
component: of class PR_BAY)

then (elaborate into activities including:

action: of class QC RELEASE and

component: part-of the ASSEMBLY

component: of class PR_BEAM).
The premise of the software code above identifies “Build PR_Bay1” as an appropriate activity to
which the KS applies because the action and component classes match. In other words, the action
and component classification of an activity define the application domain of a KS. Our definition
of a CMMT builds on the representation of an application domain with an activity’s <CAR>
entities. This type of classification cannot occur if activities in a plan are not defined as a <CAR>
tuple, which is why commercial project planning systems that support fragnets, but do not support

the explicit <CAR> representation of an activity, cannot rely on such a model-based

classification scheme.

The reason how the QC Release PR_Beam activity type should be instantiated is interpreted
by the planning system as follows: Generate a new activity of action class QC RELEASE for each
component of class PR_BEAM that is a part-of the PR_BAY assembly. This is an example of
elaboration knowledge because each instance of the more detailed activity type is an elaboration
of the domain activity. Following these instructions, OARPLAN generates the appropriate
number of detailed activities. A symbolic product model represents the information about how
many components of class PR_Beam are a part-of the PR_Bay assembly (Figure 1.). The
product model is the input into the planning system and provides a computer-interpretable

representation of the project configuration as context to instantiate a set of skeletal plans.

The benefit of explicitly representing activity elaboration knowledge in a method model is its

applicability to a wider range of project configurations. For example, the KS for the Build

16



PR_Bay1 activity can be applied to any PR_Bay regardless of the bay’s actual configuration.
The customization of the planning knowledge is handled by the planning system based on product
information represented in a product model. Not unlike paper-based method statements, code-
based representations of planning knowledge can be composed to contain comprehensive
planning knowledge. Code-based method models, however, are limited by their code-based
representation that makes their content difficult to define and customize without having to rewrite
software code. This becomes an issue in construction planning where the nuances of how a
construction method (e.g., the fireproofing of a bay) is applied are constantly changing. In the
next section we discuss the benefits and limitations of current method models that support user-

definable representations of content.

3.5 User-Definable Representations of Method Model Content

Unlike code-based Al-planners, in which system designers define the content of planning
knowledge, some systems were developed with the intent of providing a mechanism for easy end-
user acquisition and reuse of planning knowledge. The challenge faced by the planning systems
we classify as wuser-definable is how to formalize a user-definable representation of activity
elaboration and sequencing knowledge. Our discussion of systems that support user-definable
content focuses on how they represent activity elaboration and sequencing knowledge. CasePlan
(Dzeng and Tommelein 1997), an Al-planner built on case-based reasoning principles and CMM
(Fischer and Aalami 1996) are such systems. The notion of user-defined and reusable schedule
cases that capture planning knowledge in CasePlan is analogous to construction method model

templates in CMM.

In CasePlan, general planning knowledge for a particular type of component is represented as
component networks (skeletal plan-like activity networks). CasePlan constructs a project plan by
determining a component network for each component in the product model and then combining
the component networks into a single large network. CasePlan reasons about value specifications
(VS) and other weighted numeric values (e.g., strictness numbers associated with sequencing
links) to select component networks for the construction of a component, interlink networks and
activities, and select resources for activities (Dzeng 1995). Value specifications are stored as
values of an attribute and express how that value is to be computed and on what project-specific
data it depends. The project-specific data refers to low-level objects and relationships, e.g.,
instances of other attributes, activities, links, components, methods, or products. Essentially,
value specifications represent the reason why an activity exists and where it is positioned in the

activity network.
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To prepare a schedule as a reusable case, an end-user annotates a schedule using value
specifications. In this manner, value specifications capture the content of a specific project’s
planning knowledge. CasePlan contributes strongly to the knowledge about automated
construction planning by providing a framework for the representation and use of planning
knowledge. In particular, CasePlan demonstrates the possibility of abstracting activity elaboration
and sequencing knowledge and representing it as construction entities (e.g., actions and
components) and relationships. Our representation of general activity elaboration and sequencing

knowledge builds on this paradigm.

Dzeng and Tommelein (Dzengvand Tommelein 1997) state the following about the use of value
statements: “Clearly, annotating cases and describing the relationships between projects and
schedules requires a considerable amount of work. VSs are not unique and documenting the
rationale that was used to derive a certain schedule may be hard to come by.” To annotate a
schedule successfully, a user must first abstract the real reason for a relationship, i.e., describe
why an activity exists or how it should be sequenced, and then construct a statement that
CasePlan can interpret. In part, the difficulty they describe is a result of defining planning
knowledge with a low-level language. On one hand using a low-level language provides great
flexibility, but on the other hand, it is difficult for planners in the field to learn and use such a
language in an effective and consistent manner. Not only is the abstraction of the rationale behind
the activities in a plan and their sequencing a challenge, but it is also difficult to formulate the

abstraction using a low-level language (selecting the appropriate objects and relationships).

To simplify the modeling of planning knowledge, we have generalized the basic types of activity
elaboration and sequencing rationale. We have developed reasoning blocks that represent these
abstracted types of activity elaboration and sequencing knowledge in a declarative manner. We
extend the concept of user-definable method models, as implemented in CasePlan, by developing
customizable construction method model templates that represent activity elaboration and
sequencing knowledge as reasoning blocks. To model a method model’s reasoning, users
customize the behavior of reasoning blocks instead of defining the underlying knowledge
represented by them. With this mechanism, the content of a CMMT is more easily definable and
customizable by a planner than is a case in CasePlan where the reasoning must be defined using a

low-level language.
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3.6 Application Domain of Construction Method Models

As shown above, a practical and easily accessible implementation of computer-interpretable
construction planning knowledge must have an explicitly modeled application domain. Planning
systems use the specifications set forth in an application domain to pre-select applicable method
models during the planning process. A construction method model represents a set of detailed
activities and their sequencing requirements. During the planning process, detailed construction
activities are generated either for (1) a component defined in a project description, or for (2) an
activity already existing in a project plan. We refer to these two approaches to detailed planning
as component and activity-based approaches, respectively. In either case, the application domain
of a method model must reflect the planning approach that is implemented in a particular

planning system.

In some Al-planners for construction, general planning knowledge is directly associated with
general component classes. An explicit representation of an application domain is not needed in
these systems—they implicitly assume the action build for each component. For example, a
component of class column “knows” that it is built by the activities Erect Formwork, Place
Reinforcement, Pour Concrete, and Strip Formwork. During the planning process, these
activities and their associated activity sequencing, e.g., Erect Formwork precedes Place
Reinforcement, are generated for each component of class column that is represented in the
project description. A total project plan then is an aggregation of each of the elemental
component-based method models (skeletal plan-like activity networks). Examples of such
planners include Construction Planex (Hendrickson et al. 1987), BUILDER (Cherneff et al. 1991),
and Know-Plan (Morad and Beliveau 1994). Builder, e.g., automatically generates an activity
network for each component that is defined in a CAD system during the design phase. Through
their component-based method knowledge, BUILDER and Know-Plan provide a direct linkage
between product and process models and thus make it easy for a designer to get rapid process

feedback for their designs.

Hard-wiring planning knowledge directly to components provides an explicit link between
product and process models, but limits the number of alternatives that can be generated. The
component-based planning approach, however, does not have to preclude the generation of plan
alternatives. CasePlan (Dzeng and Tommelein 1995) is a component-based planning system that
supports the generation of alternatives by letting users select from a variety of applicable
component networks for each component type. Because CasePlan does not hard-wire its method

models to component classes, its method models have an explicitly represented application
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domain that is used by CasePlan to pre-select applicable methods. These application domains are

user-defined and are represented as an appropriate value statement.

The component-based planning approach works well when initializing a plan from a project
description and the types of methods that apply to a component class are limited. Typically, this is
the case when initializing a plan with less detail, e.g., a master plan, bécause the types of methods
that apply at this level are general, e.g., of type build or construct. It is unlikely that a master-
level schedule would contain activities that are specialized and would require the application of a
specific construction method. When planning at more detail, however, several factors make the
component-based approach to planning impractical: (1) detailed components can be constructed
using different methods and (2) the same component is involved in a number of different
construction activities. For example, the component PR_Bay1 in the Deethanizer Unit is built at
one level of detail and preassembled and erected at another. A component-based application

domain can not distinguish between these three activities that are all acting on the same PR_Bay1

component.

In an activity-based planning approach, general planning knowledge is defined with respect to
activities or processes instead of components. Examples of activity-based application domains are
found in paper-based method statements, OARPLAN’s (Darwiche et al. 1989) knowledge sources,
CACP (Froese et al. 1997), and CIPROS (Tommelein et al. 1994). The application domain of the
paper-based method statement is stated as “applicatioh of spray-on fireproofing to structural steel
members”, which refers to an action/component pair. Likewise, the premisé of OARPLAN’s
knowledge source is represented as an activity’s action <A> and component <C> entities. CACP
adopts an activity-based method selection approach by organizing different methods or process
types in a specialization hierarchy (sub-type decomposition). Each sub-type of a higher-level
process represents an alternate method of accomplishing the same result. A user can select
alternate methods for planning by selecting a different sub-type of a process. In CACP, therefore,
the application domain is not represented as an explicit, but rather an implicit <CA> pair.
CIPROS implements an activity-based method selection process by allowing a user to select a

construction method for each activity in the plan.

In summary, an activity-based representation of planning knowledge requires the definition of an
application domain that defines a set of appropriate activity types for each method model. CMM

uses a <CA> pair to specify the applicable scope of method models.

20



4. Construction Method Model Templates (CMMT)

We have developed a user-definable and customizable construction method model template, the
CMMT. The basic elements of the CMMT are its activity-based application domain, a set of
general activity types that constitute a method, and activity elaboration and sequencing
knowledge for each modeled activity type. The set of general activity types and their elaboration
and sequencing knowledge represent an abstracted skeletal plan. An abstracted skeletal plan, as
represented in a CMMT, represents the bare planning knowledge associated with a given
construction method. This representation of planning knowledge is project-independent, but

CMM can customize it to the specific configuration of a project.

A CMMT uses a template-like representation. The template-like representation is enabled by our
separation of planning knowledge into a vocabulary used to describe fundamental construction
entities and reasoning blocks that represent general activity elaboration and sequencing
knowledge. CMM interprets the elaboration and sequencing knowledge modeled in a CMMT to
carry out the customization process. The next sections provide examples of how abstracted
skeletal plans can represent planning knowledge, define reasoning blocks for activity elaboration

and sequencing knowledge, and discuss the attributes of the CMMT.

4.1 Representation of Planning Knowledge as Abstracted Skeletal Plans

As discussed, planning knowledge can be represented as abstracted skeletal plans (Figures 5 and
6). To define an abstracted skeletal plan, a planner must identify the basic types of activities that
constitute a method. For example, the spray-on-fireproofing for bays construction method can
be abstracted as four general activity types, Preassemble PR_Bay, Erect PR_Bay, Apply
Spray_On_Fireproofing, and QC Release PR_Beams. For each activity type, the planner
must then determine how that activity will be generated (customized to the context of a project),
e.g., one QC Release PR_Beams type activity will be generated for each appropriate component
of type PR_Beams in the project. Lastly, the planner must identify and define the sequencing
constraints that govern the sequencing of each activity in the abstracted skeletal plan. For
example, the activity of type Erect PR_Bay is constrained by two sequencing constraints, one
that states the activity must succeed activities of type Preassemble PR_Bay (Process
Constraint [PC] 1) and another that states that the PR_Bay must have support (supportisa
component-based sequencing constraint). How a planner defines activity elaboration and

sequencing knowledge in a CMMT is covered in sections 4.2 and 4.3, respectively.
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a) Above, skeletal plan representing the Spray-on-fireproofing for Bays construction method that is
customized for the Deethanizer Unit (PR_Bay1 decomposes into three PR_Beams). Below,
abstracted skeletal plan representing the same construction method. The abstracted skeletal plan is
represented as four generically represented activity types. Each activity type is associated with the
reason for how it is generated (activity elaboration knowledge E1 through E3, see Figure 7) and the
reason for how it is sequenced (sequencing constraints PC1 through PC3, see Figure 9). CMM
interprets the reasoning knowledge represented in a CMMT to customize the application of the planning
knowledge represented in an abstracted skeletal plan to a specific project context (e.g., how many
activities of type QC Release PR_Beams to generate).

Figure 5. Abstracted skeletal plan for the Spray-on-fireproofing construction method. This figure
juxtaposes an abstracted skeletal plan with a specialized skeletal plan for the same construction method.
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a) Above, skeletal plan representing the Concrete Encasement Fireproofing for Bays construction
method that is customized for the Deethanizer Unit. Below, abstracted skeletal plan representing the
same construction method.

Figure 6. Abstracted skeletal plan for the Concrete Encasement construction method.

4.2 Activity Elaboration <E> Knowledge

We have developed core reasoning blocks that represent fundamental activity elaboration and
sequencing knowledge. These reasoning blocks in conjunction with the <CAR> vocabulary that
describes construction entities are used to define planning knowledge in our construction method
model templates. We developed reasoning blocks so that a planner can more easily define activity
elaboration and sequencing knowledge in a CMMT without having to revise software code or use
constructs such as value statements (Dzeng and Tommelein 1995). Our development of core
reasoning blocks for activity elaboration knowledge extends Darwiche et al.’s (Darwiche et al.
1989) development of elaboration knowledge sources as described in Section 3.4. In this section

we define reasoning blocks that represent basic types of activity elaboration knowledge.

Activity elaboration <E> knowledge represents the reason for how a detailed activity is added to

a plan. In an activity-based planning approach, planning knowledge represented in a method
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model adds detailed activities to an activity in an existing plan. The application domain of a
method model determines which type of activities a method model can elaborate. The activity
elaboration mechanisms we have defined, therefore, represent the reason for how a domain
activity is refined into the detailed activities modeled in a method. We have formalized two
principal activity elaboration mechanisms, component and action-based. The two principal
elaboration mechanisms can also be combined to form a hybrid elaboration type. We have
extended activity refinement mechanisms developed by Stefik (Stefik 1981) and Kunz et al.
(1996), in which activity elaboration is formalized as the refinement of one or more of an
activity’s <CAR> entities (Figure 7), by formalizing parameter-driven and modular reasoning

blocks. The reasoning blocks are based on the <CAR> activity representation.

4.2.1 Component-based elaboration

The component-based elaboration mechanism refines a domain activity’s component entity to
generate more detailed sub-activities. The level to which the component entity is refined, e.g., to
column or beam from bay, is defined by a component attribute that is passed on to the reasoning
block as a parameter by the CMMT. Section 4.4 describes how a user defines these types of
parameters in a CMMT. The product model contains information on how many components of a
specific class, e.g., column or beam, are a part of the domain component, e.g., bay (e.g., the exact
number and configuration of PR_Columns that are a part-of PR_Bay1). In CMM, we
assume that an IFC 1.5 compliant product model (IAI 1998) is available to start construction
planning. The abstracted skeletal plans shown in Figures 5 and 6 do not use the pure form of
component-based elaboration; they use action and hybrid elaboration types to define how a
detailed activity is generated. In summary, component-based activity elaboration is used to

generate more detailed activities by refining an activity’s component <C> entity.

4.2.2 Action-based elaboration

The action-based elaboration mechanism refines a domain activity’s action entity to generate
more detailed sub-activities (Figure 6). The reasoning block for action-based elaboration is
implemented to receive two parameters, the domain activity and an action classification. The
domain activity establishes the initial <CAR> objects. To elaborate the domain activity, CMM
generates a new activity with the new <A> classification and the same <C> entity. The two
activities defined as Preassemble PR_Bay and Erect PR_Bay in the abstracted skeletal plan
for the spray-on fireproofing method (Figure 5.) are elaborated using an action-based elaboration

mechanism. Their <A> classification is Preassemble and Erect, respectively. When applied to
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the elaboration of Build PR_Bay1, the action-based elaboration mechanism generates the
activities Preassemble PR_Bay1 and Erect PR_Bay1, which both act on the same PR_Bay1
component as Build PR_Bay1. The action-based elaboration mechanism we have formalized is
general because it can be used to elaborate any activity that is represented as a <CAR> tuple.
Note that in CMM’s current implementation, <R> refinement is decoupled from action and
component-based elaboration mechanisms. During activity elaboration, CMM links the new

activity to the <R> specified in the CMMT independent of the elaboration mechanism used.

4.2.3 Hybrid elaboration

In many cases, activity elaboration requires the refinement of a domain activity’s component and
action entities. The elaboration type needed for the definition of the activities of type QcC
Release PR_Beams in the two abstracted skeletal plans is hybrid because the action Build is
refined to QC Release and the component PR_Bay1 is refined to components of class

PR_Beams.

We have extend existing representations of elaboration knowledge by separating the abstracted
reasoning from the specific content used to specialize the application of the reasoning. The main
benefit of this separation is the declarative nature of the elaboration knowledge. The declarative
nature of the knowledge makes it easy for users to define and customize the knowledge and its
specific behavior by simply selecting <CA> classifications. Component-based or hybrid
elaboration mechanisms are tightly coupled to the configuration of component networks in
product models. In particular, they rely on the decomposition hierarchy of components to select
the appropriate detailed components. Our implementation of elaboration mechanisms is limited to
cases where components are refined along one decomposition hierarchy. Additional reasoning
blocks could be formalized to handle cases in which different approaches to component-based
elaboration are needed. In industrial process plants, e.g., a particular component (e.g., Pipe) can
be part-of several decomposition hierarchies including process systems, test packs, erection
spools, and work zones. Additional elaboration mechanisms are needed that can reason about

components in such more complex product models.
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Figure 7. Activity elaboration mechanisms. CMM uses three activity elaboration mechanisms,
component-based, action-based, and hybrid. In each case, one or more of an activity’s entities are
refined.

4.3 Activity Sequencing <S> Knowledge

The execution of a construction activity is often constrained by preconditions. We refer to the
underlying abstracted reason for a precondition as a sequencing constraint. The satisfaction of
these preconditions determines the appropriate position of an activity in an activity network.
Therefore, to complete the representation of planning knowledge, preconditions of activities
should be modeled in addition to the fundamental activity entities <CAR> and their associated
elaboration knowledge <E>. Skeletal plans represent activity preconditions as predefined
sequencing links (Figure 3). Preconditions can be predefined as sequencing links in a method
model as long as the activity to which the sequencing link needs to be made is also defined in the
same method. Situations arise, however, where the precondition of an activity requires the
creation of a sequencing link to activities defined outside the scope of a method (Figure 4 and
links A, B, and E in Figure 2.b). Furthermore, predefining preconditions as sequencing links
assumes the configuration of a specific project is known in advance. This applies particularly to
sequencing links that are a function of the physical configuration of a project (component-based).
The challenge is to formalize abstracted preconditions as sequencing constraints <S> that can be
used to automate the generation of specific sequencing links during planning. The representation
of activity preconditions as sequencing constraints enables the representation of planning
knowledge as an abstracted skeletal plan (Figures 5 and 6). We have formalized two fundamental
types of sequencing constraints that describe many of the preconditions found in practice,

component and process-based constraints. The two classes of sequencing constraints are part of
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the reasoning blocks used in a CMMT to define general activity sequencing <S> knowledge. We

define sequencing constraints as relationships represented between one or more <CAR> entities

of an activity (Figure 8).

4.3.1 Component-based sequencing constraints

Physical, assembly-type requirements govern the sequencing of many construction activities
(Echeverry et al. 1991). For example, the activity Erect PR_Bayl must succeed Build
Foundations because the component Foundations provides PR_Bayl1 with physical
support. Similarly, the sequencing links in the skeletal plan shown in Figure 6 between the
activities Erect PR_Column1 and Erect PR_Beam1, etc. are based on the support
constraint between the column and beam components. Researchers have abstracted and
formalized this type of component-based constraint as a relationship between two activities” <C>
entity (Figure 8) (Navinchandra et al. 1988) (Darwiche et al. 1989) (Dzeng and Tommelein 1995). The
relationships between components can represent functional requirements (e.g., support and
protection) or topological relationships (e.g., embedded-in, enclosed-in) (Echeverry et al. 1991)
(Kdhkonen 1993). The links labeled A, B, and D in the case example (Figure 2.b) satisfy the
support constraint. With the formalization of component-based sequencing constraints,
researchers have generalized the reason for many component-based sequencing links found in a
plan as a few generically represented sequencing constraints. Actual relationships in a product
model’s component network are used to specialize the application of generically represented

sequencing constraints to the specific context of a project (Darwiche et al. 1989).

Without a formalized support constraint, a planner must foresee all possible support-related
sequencing links and predefine them in a skeletal plan, which is practically an impossible task.
The many links between activities of type “Erect PR_ColumnX” and “Erect PR_BeamX” in the
skeletal plan shown in Figure 6 demonstrate this point. Not only is the definition of these links a
tedious process, but the application of the skeletal plan, as defined in the figure, is limited to the
case when a bay is composed of exactly three beams and columns. Furthermore, the application
of such a skeletal plan is limited to cases where the support relationships between the components
are exactly those present in the Deethanizer Unit. With a formalized support constraint, however,
a planner can define the rational for the same sequencing relationship between the two activities

by simply relying on one generically represented support constraint.

Typically, existing planning systems apply component-based sequencing constraints at the project
level. That is, they indiscriminately apply and enforce a constraint, e.g., support, to all activities

in a project’s plan that meet a certain criteria. This approach to activity sequencing can limit the
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number of alternative plans an Al-planner can generate for the same project description (Aalami et
al. 1998b). We have developed.a mechanism that makes it easy for professionals to specify
component-based sequencing constraints in construction method models. We have enabled this by
formalizing reasoning blocks that represent general types of component-based sequencing
constraints. This mechanism lets planners specify component-based sequencing constraints for
each generically represented activity type in a CMMT (e.g., Erect PR_Bay in Figure 8), as
needed, by simply creating a pointer to the appropriate reasoning block in CMM. This pointer is
passed on to each instance of the activity type (e.g., Erect PR_Bay1) that is automatically
generated by CMM during planning. To sequence activities, CMM first queries each activity in
the plan to check whether or not it is associated with any reasoning blocks for activity
sequencing. CMM then invokes each reasoning block to which it detects a reference. If invoked,
the support-based reasoning block generates sequencing links to the appropriate predecessor
activities in the plan that satisfy the support constraint (e.g., Build Foundations becomes the
predecessor of Erect PR_Bay1). The formalization of reasoning blocks for component-based
sequencing constraints makes it easy to associate sequencing knowledge <S> with abstracted
activity types in a CMMT. Furthermore, the ability to reason about component-based
relationships in a product model and use them for activity sequencing has eliminated the need to

predefine specific component-based sequencing links in a method model.

4.3.2 Process-based sequencing constraints

Some sequencing links found in construction plans, e.g., links C, E, and F in Figure 2.b do not
exist because of component-based sequencing constraints. Instead, they represent general
planning, technology, method, or safety-based constraints. Researchers have formalized the
reason for the existence of these types of links as the component and action <CA> classification
of the predecessor activity (Navinchandra et al. 1988). For example, the reason for sequencing link
E between the activities QC Release Beam1 and Build System A can be abstracted as the
following statement: QC Release of Beam activities should succeed activities that act on
components <C> of type Process System and have action <A> classification Build. A method-
specific constraint for the spray-on fireproofing method is the reason behind the sequencing of
QC Release PR_Beam1 after Build Process System A. This constraint can be abstracted and
formalized as a <CA> activity classification. In similar fashion, a <CA> activity classification
also models the general planning knowledge used to sequence the Preassembly of a component

before its Erection (link C in Figure 2.b).
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We build on and extend this formalization of non component-based sequencing constraints by
linking product model-based reasoning to the <CA> classification of activities (Figure 8) and by
formalizing process-based sequencing constraints. The addition of product model-based
reasoning allows a planning system such as CMM to distinguish between different occurrences of
activities with the same <CA> classification in a plan. This technique is needed to support the
resolution of process-based constraints on larger projects where many instances of a particular
type of component (e.g., Process System or Bay) exist (Aalami et al. 1998b) and the generation
of a sequencing link to each occurrence would generate an incorrect sequencing of activities.
Further, we have developed a reasoning block that encapsulates the general sequencing algorithm

for process-based sequencing constraints.

User-defined <CA> parameters in a CMMT and component relationships modeled in a product
model drive the algorithm of our process-based reasoning block. Section 4.4 describes how these
parameters are defined in a CMMT. By separating the general sequencing algorithm from the
specific parameters that drive it, we have developed a mechanism with which users can easily
model process-based sequencing constraints. CMM handles reasoning blocks for process
constraints in the same manner in which it reasons about and invokes component-based

constraints, namely, at the level of each individual activity.

As with component-based sequencing constraints, different construction methods require the
enforcement of particular process-based constraints on activities in a plan. For example, the
Spray-on Fireproofing method requires that beams are QC released after the building of process
systems, while the Concrete Encasement method does not (Figure 2). We model this type of
observed sequencing behavior by explicitly associating sequencing constraints to activity

defiitions in a CMMT.

A process-based reasoning block can be used in a CMMT to represent the reason for a
sequencing constraint as long as the component <C> and action <A> of the predecessor activity
can be generalized and classified. This covers a wide range of sequencing constraints related to

specific methods, general planning knowledge, and safety regulations.

We do not provide an explicit reasoning block for resource-based sequencing constraints because
planning systems can infer a resource-based sequence constraint without an explicit link to such a
constraint. For example, CMM invokes a resource-based constraint whenever two activities in a
schedule utilize the same resource <R> and the user has chosen to limit the supply of available
resources. Below, we briefly describe how CMM sequences activities using the planner-defined

constraints.
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To generate a plan, CMM sequences all activities associated with a project using component and
process-based sequencing constraints. CMM then uses the activity relationships in the plan to
generate a schedule. To schedule the plan, CMM first calculates activity durations and then
applies resource leveling mechanisms. In its current implementation, CMM does not distinguish
between two contending activities that require the same resource at the same time. CMM

randomly assigns the scarce resource to one of the contenders.

<C> PR_Bay1 <C> PR_Beam1
A> Erect <A> QC Release

PRODUCT
MODEL

Foundations <CA> Classification

Supports
PR_Bay1

<C> Foundations <C> System
<A> Build <A> Build

Legend
Part-of
Relationship
Component | . . Generic Activity
Network Support Relationship <CAR>

Figure 8. Activity sequencing constraints. Activity sequencing constraints can be defined with respect to
relationships (shown as arrows) between activities’ <CAR> entities. Component-based sequence
constraints (left) infer activity sequencing based on the support relationship modeled between
components in a product model (the reason behind sequence link A in Figure 2.b). Process-based
sequence constraints (right) infer activity sequencing from an activity’s <CA> classification and
product model information (the reason behind sequence link E in Figure 2.b).

4.4 Attributes of a CMMT

Thus far we have described how abstracted skeletal plans represent construction planning
knowledge and defined the elements with which an abstracted skeletal plan can be represented,
i.e., a vocabulary used to describe fundamental construction entities (<KCAR>) and reasoning
blocks used to represent activity elaboration (<E>) and sequencing (<S>) knowledge. These
elements are arranged in a template to model the method-specific planning knowledge. Planning
knowledge in a CMMT is easily definable, customizable and computer-interpretable. The

attributes of a CMMT can be grouped into two categories, those that define the application
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domain and those that define the constituting activities of the model. Figure 9 shows the filled out

CMMTs for the Spray-on and Concrete Encasement Fireproofing methods.

Domain-> Action type: Build Component type: PR_Bay

|PR_Bay PR._Bay Spray On FP PR Beams
A Preassemble |Erect Apply |QC Release
R [L-2Crew  |I-1Crew C:2 Crew lins-1 Crew
S |-none- . |support + PC1 [Support  |[PC2+PC3
E |E2 Act-based |E2 Act.-based [E3Hybrid  |[E3Hybrid

a) A filled out CMMT representing the Spray-on Fireproofing for Bays construction method.

Domain-> Action type: Build Component type: PR_Bay

C |Encasement |PR Columns PR _Beams \Bay Joints.: PR Beams

A Precast |Erect i |Erect Encase .1QC Release.
R [L-3Crew: -1 Crew L-3Crew ~ |ins-1Crew
S |none- . [Support+PC4 s [PCE

E |E3Hybrid = [E3 Hybrid E3 Hybrid  |E3 Hybrid

b) CMMT representing the concrete encasement fireproofing for bays construction method.

Process-Based Sequencing Constraints
Action Component

PCt +4Preassemble PR_Bay

PC2 |Apply Spray_On_FP

PC3 - |Build Process Systems

PC4 Precast Encasement

PC5 Erect PR_Beams

PC6.  |[Encase Bay Joints

S

¢) Component and action definitions for each of the process-based sequencing constraints used to define
the CMMTs.

Figure 9. Construction method model template. A planner can easily define construction planning
knowledge in a computer-interpretable manner by filling in the attributes of a CMMT.

4.4.1 Application domain attributes

A user specifies the activity-based application domain of a CMMT by selecting an appropriate
action <A> and component <C> classification from a vocabulary describing fundamental
construction entities. Activities in most model-based Al-planners for construction (Darwiche et al.
1989) are represented as a <Component, Action, Resource> tuple. To define a method model that
can elaborate the Build PR_Bay1 activity in a plan, a planner selects action class Build and
component class PR_Bay (Figure 8). CMM uses this information to pre-select applicable

CMMTs for a particular activity during the planning process.
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Because the application domain is activity-based, it supports the definition of method models at
multiple levels of detail and the generation of hierarchical plans. CMMTs that represent planning
knowledge at different levels of detail can be defined with respect to a domain activity at the
appropriate grain size. Different levels of abstraction can be achieved by changing the level of the
application domain’s action and component attributes. Activity-based CMMTs support a
hierarchical planning process because planning knowledge in one CMMT can be defined to refine

an activity generated by another CMMT (Aalami et al. 1998a).

In its current implementation, the application domain does not take resources or other parameters
into consideration when mapping CMMTs to activities. The extension of the application domain
to include other types of parameters is an interesting area of future research. These extensions can
build on research carried out by Fischer (Fischer 1991) and Russell (Russell 1997) that identify
constructibility factors for different types of components (e.g., reinforced concrete columns and

slabs) and construction methods.

4.4.2 Attributes of Constituting activities

The main content of a CMMT‘ is represented by the attributes that define each constituting
activity in a method model. A constituting activity represents each activity type defined in an
abstracted skeletal plan and its associated activity elaboration and sequencing knowledge.
Collectively, this information describes what detailed activities need to be generated, how these
activities should be customized to the context of a project (e.g., generate one activity for each
PR_Beam in the project), and how the detailed activities should be sequenced. The planning
knowledge for the Spray-on Fireproofing for Bays method, e.g., can be represented as four
constituting activities (Figure 5), namely, Preassemble PR_Bay, Erect PR_Bay, Apply
Spray_On_Fireproofing, and QC Release PR_Beams. These four constituting activities are
instantiated as a total of six activities, as is the case in Figure 2.b (three PR_Beams exist in

PR_Bay1), or any other number that reflects the specific configuration of a project.

For each constituting activity, a planner defines a general activity type as a <CAR> tuple. In
CMM, a user selects from IFC 1.5 compliant <C>omponent, <A>ction, and <R>esource objects
(IAI 1998). The <C> attribute specifies what type of component the activity type acts on, e.g.,
PR_Beam. The specific component that each detailed activity acts on (e.g., PR_Beam1) is a
function of the domain activity’s component (e.g., PR_Bay1) and the decomposition hierarchy
(PR_Bay1 decomposes into PR_Beam1) modeled in the product model (Figure 1). The <A>
attribute specifies what type of action the detailed activity will have, e.g., QC Release. The <R>

attribute is used to assign resources to the detailed activities, e.g., Ins-1 Crew.
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After defining an abstracted activity type for each constituting activity, a planner must specify
how that activity should be customized to the context of a project. A planner specifies how an
activity should be elaborated by creating a pointer to one of the three reasoning blocks for activity
elaboration (E1, E2, and E3 in Figure 7) in the <E> attribute. The three reasoning blocks
instantiate more detailed activities (i.e., elaborate the domain activity) by refining one or more of
the domain activity’s <CAR> entities. The new activities are linked to the refined <CAR>
entities. For example, the reasoning block E3 (hybrid) is used in both the Spray-on and
Encasement CMMTs to model the reasoning of how the activities of type QC Release
PR_Beams should be elaborated. The hybrid mechanism lets CMM know that both the <A> and
<C> entities of the domain activity need to be refined. The hybrid reasoning block employs the

user-defined <C> and <A> attributes of the constituting activity to drive its elaboration algorithm.

The rules for how an activity is sequenced are represented as sequencing constraints. A user
defines the sequencing constraints for each constituting activity by creating a pointer to the
appropriate reasoning blocks for activity sequencing (Figure 8) in the <S> attribute and
customizing them, as required. To model a component-based sequencing constraint that reasons
about the suppoxrt relationship, a user must place a pointer to the Support reasoning block in
the <S> attribute. For example, the constituting activities that represent the activities of type
Erect PR_Bay and Apply Spray_On_FP in the Spray-on Fireproofing CMMT each have a
pointer to the Support reasoning block. Many component-based sequencing constraints, e.g.,
support, depend on construction methods, not just components, e.g., precast methods eliminate
the need for falsework and jack-up construction methods for slabs reverse “support” constraints.
Planners use the <S> attribute of the CMMT to appropriately model the sequencing constraints

for each activity in a construction method.

To define a process-based sequencing constraint for a constituting activity, a user selects and
customizes a reasoning block that represents process-based constraints (e.g., PC1 through PC6 in
Figure 9). To customize the <CA> classification of a process-based sequencing constraint, a
planner needs to define its component and action attributes. Instantiated process constraints for
the two CMMTs in Figure 9 are listed in Figure 9.c. Process-based sequencing constraints
represent sequencing links to other constituting activities defined in a CMMT (e.g., PC1, 2, 4, 5,
and 6) or to activities that are outside the scope of a CMMT (e.g., PC3).

In summary, planning knowledge for a construction method can be represented as an abstracted
skeletal plan. Abstracted skeletal plans represent planning knowledge as a set of generically

represented activity types <CAR> with associated elaboration <E> and sequencing <S>
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knowledge. We have formalized general activity elaboration mechanisms and sequencing
constraints as reasoning blocks. We have formalized a CMMT that lets planners easily model
construction planning knowledge represented as abstracted skeletal plans in a declarative manner.
The formalization of general reasoning blocks enables the declarative representation of planning

knowledge in a CMMT.

Because the application domain of a CMMT does not explicitly reason about resources, CMM
cannot automate the pre-selection of CMMTs based on a planner’s resource preferences. On some
construction projects, however, planners may wish to select construction methods based largely
on their particular resource usage. In these situations, a planner must manually query each of the
applicable CMMTs that CMM pre-selects using the <CA> classification. The addition of

resource-based reasoning to a CMMT’s application domain is a needed extension of our research.

5. Implementation

The CMMT has been implemented in the Construction Method Modeler (CMM) planning system
(Fischer dnd Aalami 1996) (Aalami et al. 1997) (Aalami et al. 1998a) using Intellicorp's PowerModel
(IntelliCorp 1997) object environment on SUN computers. The purpose of the CMM system is to
support the rapid generation of 4D production models (Aalami et al. 1998a) from computer-
interpretable project information (a product model). User-defined and applied CMMTs drive
CMM’s hierarchical planning process. After receiving a product model as input, CMM initiates
the planning process by generating a seed activity. The seed activity represents the overall intent
of a project, e.g., Build Deethanizer Unit. To add detail to the plan, a user applies CMMTs to
activities in the plan. Each CMMT represents the planning knowledge needed to elaborate and
sequence an activity in more detail. A user can repeatedly apply CMMTs to a plan until the
activities in the plan are elaborated to the appropriate level of detail. CMM can sequence the
activities at any stage of the planning process using the sequencing constraints associated with
each activity. The result of CMM’s planning process is the generation of a linked product,
process, and resource model, a 4D production model (Figure 10). 4D production models
generated by CMM are visualized and manipulated using Jacobus Technology's Schedule
Simulator software (Jacobus Technology 1994) or as interactive VRML (virtual reality modeling
language) models on the web. We have successfully modeled over 50 construction methods using
the CMMT and applied them for the planning of various reinforced concrete and steel structures.

The construction methods modeled have between one and eleven constituting activities and
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represent planning knowledge at various levels of detail. The various levels of detail cover

Halpin’s project to work task levels (Halpin and Riggs 1992).

Time 4D Visualization
Product @ Resource
<C>R._
N @  Activity <R>
§ N, ~Tsequencing
AC/tIOn H Constraint
4 % <CARS> <S>
<A>¢ ¢
CMMT

Symbolic 4D Production Model

I

o <S>

CPM Activity Network

Figure 10. 4D production model. The kernel of a 4D production model is the activity. An activity links
product (component), action, and resource objects and is explicitly associated with its sequencing
constraints. Consequently, the <CARS> tuple represents activities. Graphical activity networks or 4D
visualizations communicate the content of a 4D production model. Abstractly represented sequencing
constraints <S> provide the reason behind the existence of the sequencing links in an activity network
view of the 4D production model. A 4D production model describes who (resource) is doing what
(action) when (time) and where (project context and location) on a construction project. Construction
method model templates (CMMT) capture the reasons for how and why activities exist and are linked in
a 4D production model.

6. Discussion

The template-like representation of a CMMT was developed under the assumption that
construction planning knowledge can be represented in a modular fashion. The challenge in
modularizing the representation of planning knowledge lies in the definition of activity
elaboration <E> and sequencing <S> knowledge and not in the definition of abstracted activity
types <CAR>. Skeletal plans provide a means for representing planning knowledge in a

declarative manner without any explicit reasoning capability making it easy to model planning
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knowledge in a modular manner. The reasoning capabilities of CMMT are encapsulated in

elaboration and sequencing reasoning methods we call “blocks.”

We have formalized three mechanisms for activity elaboration and two for activity sequencing.
We modularized the reasoning that is represented by each of these mechanisms and developed
stand-alone reasoning blocks. The behavior of these reasoning blocks is driven by parameters that
are passed on to them from user-defined attributes in a CMMT and component-based
relationships modeled in a product model. Our formalization of stand-alone reasoning blocks for
activity elaboration and sequencing knowledge enables the template-like structure of a CMMT.
On one hand a template-like representation of a method model lets planners easily model the
content of a method model, but on the other hand, it constrains them to using only those
reasoning blocks that are predefined and available. Researchers are currently investigating

additional types of sequencing constraints (Akinci et al. 1997).

The <CARSE> attributes of an abstracted activity type in a CMMT are used to represent
construction planning knowledge. These basic attributes of an activity in a CMMT can be
extended to include other production-related information such as cost, productivity, or safety. In
CMM, we have extended the definition to include resource productivity data (Kuhne et al. 1998).
CMM uses this information in conjunction with quantity data from the product model to automate

the calculation of an activity’s duration (Fischer and Aalami 1996).

Where possible, we have based the definition of the CMMT and CMM’s internal class libraries
on the IFC version 1.5 specification (IAI 1998). In particular, we have adopted the IFC class
definitions for <C> and <R> entities. We envision that CMM’s IFC compatibility will support
interoperability with CAD and other project management software. The widespread adoption of
planning system like CMM hinges on its ability to leverage the content of design models. We
speculate that IFC compliant CAD systems will provide a first step towards the realization of this

goal.

The formalization of a CMMT rests on the assumption that planning knowledge can be
represented as an abstracted skeletal plan. This assumption holds when referring to planning
knowledge that represents a particular construction method that is used to plan an activity in
detail (tactical planning). Such planning knowledge that is represented as an abstracted skeletal
plan and modeled in a CMMT generates realistic plans for small projects, e.g., the Deethanizer
Unit. We have validated our formalization of a CMMT by executing four test cases using the
CMM system. The Deethanizer Unit discussed in the case example of this paper is one of our

test cases. The research question asked in each test case was whether or not a CMMT could be
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used to generate a realistic construction plan. Experienced planning and construction
professionals evaluated the plans generated by CMM for each test case and accepted them as
being realistic representations of the construction process. The professionals evaluated the plans

based on the following criteria:
e Do the plans reflect the applied construction method?
e  Are the right type and number of activities created?

e Are the activities sequenced correctly?

Working with industry on the case studies and during a hands-on tutorial, we found that industry
practitioners were able to model their tactical-level construction planning knowledge as
abstracted skeletal plans and use the CMMT to model their knowledge in a declarative manner.
Over 40 construction professionals used the CMM system and CMMTs to model planning
knowledge and rapidly generate alternate 4D production models for the Deethanizer Unit during
the 1997 CIFE Summer Program'. We believe the representation of tactical-level planning
knowledge as a CMMT will allow the capturing of the construction industry’s “best practice” in a

computer-interpretable form that can be used to augment the planning process.

Our testing and scale-up of CMM has revealed, though, that an additional layer of planning
knowledge is needed that defines work flow on larger projects (strategic-level planning). Though
generating a theoretically correct plan, CMM does not generate a realistic work flow on larger
projects where the same CMMT is applied to hundreds or even thousands of activities in a plan
(Katz 1998). Planning knowledge at a work flow level would prescribe how a project should be
broken down into zones and how work flows between zones. Our current work around to this
limitation of CMM is the manual breakup of a project into appropriate zones in the product
model. In addition to the addition of zones we currently need to add component-based
relationships (e.g., support) between zones to emulate a work flow constraint. The addition of
the support relationship between zones forces CMM to sequence all activities carried out in a
zone to begin after those in its “supporting” zone. We have been able to generate realistic plans
for a full-scale hospital project using a combination of hard-wired work flow constraints and

tactical-level planning knowledge modeled with CMMTs. Building on our experience with the

! The Center for Integrated Facility (CIFE) hosts a one week hands-on technology seminar for about 40

AEC industry practitioners each summer at Stanford University.
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work around solution, we have begun to develop strategy-level method models that would capture

this type of strategic planning knowledge.

7. Practical Significance

What impact would the CMM system have on the work of the planners on the Deethanizer Unit
project? Computer-interpretable CMMTs replace paper-based method statements. To plan the
Build PR_Bay1 activity in detail the planners click on the activity and instantly get two
applicable method models appearing on their computer screen, the Spray-on and Concrete
Encasement Fireproofing methods. They apply each method to the Build PR_Bay1 activity
and instantly get a detailed plan for each scenario. CMM uses quantities from the product model
and available resource limits to generate a schedule. They analyze the impact each method
selection has on the schedule by visually inspecting the 4D model for possible time/space
conflicts and by reviewing the project’s total duration. They decide to proceed with the Concrete
Encasement method. Maintenance of the plan is not a tedious and manual process anymore
because CMM manages changes due to redesign (e.g., addition or removal of a beam), or
unavailability of resources, by propagating changes to the appropriate objects in the 4D

production model.

The CMMTs create an intelligent link between the product description and the process (4D
production model) needed to construct it. The reason behind why activities exist, what their
<CAR> entities are, and how they are arranged in the activity logic is explicit. Furthermore, the
potential exists for the planner to maintain construction planning knowledge (lessons learned) in a
project-independent and computer-interpretable knowledge base. The activity elaboration and
sequencing knowledge embedded in a CMMT would then handle the customization of the

abstractly represented knowledge to the specific context of projects.
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