
1

 CIFECENTER FOR INTEGRATED FACILITY ENGINEERING

A Model for Software Interoperation
in

Engineering Enterprise Integration

By

Cameron T. Howie, Kincho H. Law and John C. Kunz

CIFE Working Paper #61
August, 2000

STANFORD UNIVERSITY

2

COPYRIGHT © 2000 BY
Center for Integrated Facility Engineering

If you would like to contact the authors, please write to:

c/o CIFE, Civil and Environmental Engineering Dept.,
Stanford University

Terman Engineering Center
Mail Code: 4020

Stanford, CA 94305-4020

A MODEL FOR SOFTWARE INTEROPERATION IN

ENGINEERING ENTERPRISE INTEGRATION

Cameron T. Howie, Kincho H. Law and John C. Kunz

Department of Civil and Environmental Engineering

Center for Integrated Facility Engineering

Stanford University

Stanford, California 94305-4020

Abstract

Engineering companies are seeking ways to achieve software interoperability between

their internal applications and those of external vendors and customers. The emergence

of open data exchange standards such as STEP, as well as the wide variety of possible

implementation technologies, has led to our development of a model capable of supporting

such software interoperation. Our model is independent of any speci�c implementation

approach and protects proprietary knowledge of the software tools and data standards used

within the participating organizations. It provides great exibility in the con�guration

of software services and data exchange standards used. We have completed a formal

description of the model and are now preparing to test it both locally at Stanford and with

support from industrial corporations.

1 INTRODUCTION

1.1 Motivation

Leading engineering companies are seeking ways to integrate their internal computing systems

(`intranets') with those of potential vendors and customers. The major problems confronting

such integration stem from the challenges of exchanging and then possibly sharing data across

the company boundaries. Present data exchange standards are inadequate for the industrial

needs identi�ed by leading companies, which has led to the emergence of the ISO standard

10303 [ISO 10303], commonly referred to as STEP { the STandard for the Exchange of Product

data. This standard is being used in preliminary industrial projects aimed at building data

exchange facilities between interested companies. Once such basic exchange facilities have been

established, the participants will attempt to develop data sharing environments to allow greater

1

COMPANY BCOMPANY A

Project
Management

Analysis,
Design

Procurement,
Materials

Operations,
Maintenance

Database

Analysis,
Design Procurement,

Materials

Operations,
Maintenance Project

Management

STEP

?

Engineering companies are seeking ways to interconnect their proprietary information systems

based on a neutral �le exchange standard so that data sharing across company boundaries becomes

possible.

Figure 1: Data Sharing between Companies

automation of information ow between them, an outcome that they have identi�ed as being key

to their business strategies in the years ahead. Figure 1 shows how such integration technology

must link signi�cantly di�erent proprietary systems within the various companies.

As such companies are beginning to deal with the short-term problem of data exchange,

there does not exist an interoperability model for interoperation of software applications among

engineering organizations. The technological heterogeneity and business characteristics of these

companies create the demand for an integration model that will both preserve proprietary infor-

mation and yet achieve acceptable software integration. This paper describes the development

of an interoperability model that provides the basis for such integrated environments and hence

guides the engineering industries towards software interoperation via the exporting of software

services across company boundaries. Our interoperability model will address more than data

sharing in that software interoperability can be achieved without the need for the participants

involved to actually share a data warehouse and data storage protocols.

Our initial focus of application will be the plant industries as this is one of the areas in

which the development of an engineering exchange standard (introduced below) is more mature.

While concentrating on this domain for development and testing purposes, we hope and expect

that the model could eventually be applied broadly across a range of engineering disciplines.

1.2 The STEP Standard

As STEP is being developed for data exchange/archiving and sharing through a database ap-

proach, it does not, in the parlance of OMT (the Object Modeling Technique [Rumbaugh, 1991]),

provide `dynamic' and `functional' models necessary for software interoperability in a computer

network environment. STEP therefore provides an `object' model only. An object model pro-

vides a framework for dynamic and functional models, but it only identi�es the objects in its

2

Piping Design
Application

Instrumentation
System Design

Application

STEP
Shared Model

Size,Weight,
Connectivity,
Functional

Characteristics,
Performance
requirements,

. . .

Centrifugal
Pump

The open `STEP' standard for engineering data exchange supports the sharing of `form' and

`functional' data among software applications. Such a standard allows for complex data exchange

content among interoperable software services across engineering company boundaries. However,

as STEP is a data exchange standard, it lacks the dynamic and functional models necessary for

such software interoperability.

Figure 2: STEP Shared Model

domain and their inter-relationships, attributes and operations (also known as `methods'). By

contrast, a dynamic model describes time and sequencing information and so de�nes control

behavior. A functional model speci�es how data ows through a system and how it may be

transformed. However, OMT dynamic and functional models are de�ned with respect to an

object model, so STEP's object model cannot be used for interoperability { it is simply good

as a data exchange standard.

Without an interoperability model, STEP-based exchange cannot penetrate the proprietary

information systems within inter-connected engineering companies. Our interoperability model

therefore assumes that the object models of open standards like STEP provide the content of

information exchanged between companies over networks, but it will provide a complete object,

dynamic, and functional model to enable software interoperability using such standards. Figure

2 shows how STEP supports sharing of `form and functional' data among engineering applica-

tions, so providing extensive capabilities for exchanging engineering content among interoperable

software services.

1.3 Related Research

We have reviewed a broad range of developments in the emerging �eld of software interoper-

ability [Howie, 1996]. All the models, methodologies and technologies investigated are not well

suited to inter-company software interoperation as they assume open availability of software

components, data standards and databases without regard for the key proprietary investments

3

companies make in their software reources. Popular and emerging `middleware' tools such as

Remote Procedure Call (RPC), Object Linking and Embedding (OLE) and Common Object

Request Broker Architecture (CORBA) aid developers in integrating remote object-oriented re-

sources into applications, which presumes the owners of such resources are willing to allow them

to be incorporated in new applications, an unlikely scenario for companies wishing to protect pro-

prietary codes. Khedro et al [Khedro, 1993] developed an interoperability architecture based on

the Knowledge Interchange Format [Neches, 1991] that demonstrated engineering applications

sharing and subscribing to data exchanges de�ned in KIF partly because emerging standards

like STEP were not readily available. Moreover, their open architecture was not based on in-

terconnection of software agents across company boundaries and so lacked features for exible

network con�guration and authentication, the provision of remote services, and project-speci�c

software interoperation, features also lacking in the approaches described in [Fischer 1993],

[Kunz, 1995], [Karagiannis, 1995], [Wileden, 1991], [Unisys, 1993], [Purtilo, 1994], [Pan, 1991],

[Cutkosky, 1993], [Hardwick, 1996].

2 THE SOFTWARE INTEROPERABILITY MODEL

This section describes the principles and architecture of our interoperability model that make

it suitable for connecting software services across engineering company boundaries.

2.1 Underlying Principles

In contrast with other research e�orts aimed at (or limited to) intra-company software inter-

operability, we are developing a new model for interoperation of computer programs among

multiple companies, especially where the users and applications have distinct behaviors such as

those in engineering industries. We assume that applications do not exchange behavioral models

as these are considered to have no relevance beyond the applications themselves. Instead, only

`form and functional' data is exchanged, which is in keeping with traditional knowledge sharing

in engineering industries (e.g., a piping system designer is not required to share his technical

knowledge with an instrumentation vendor). Figure 3 shows a simple example of how these

speci�c applications apply their behavioral knowledge to data exchanged among them.

The principle of this approach to software interoperability is shown in IDEF notation in

Figure 4. The example data shows the adoption of the STEP standard as the interoperability

framework and how a `piping' design application has added form information (here it has de-

termined a type of pump and piping diameter) to an input functional requirement (the need to

pump material at 20 gallons per minute).

2.2 Major Obstacles to Software Interoperation

We have identi�ed several major issues facing software interoperability in the engineering in-

dustries that may be unique to the problem at hand or may have received little attention in

4

Piping Design
Instrumentation Design

Safety Compliance

TP

TP

Piping
information

Piping
information with

added
instrumentation

Safety-approved
piping and

instrumentation
information

We assume that applications with speci�c behaviors, such as those in engineering industries, do

not exchange behavioral knowledge with each other. Instead, they apply such behavior to data

exchanged based on `form' and `functional' models.

Figure 3: Information Exchange Model

`interoperability' research. All of these issues arise from the proprietary and customized na-

ture of engineering information systems. We have considered these in the development of our

interoperability model.

2.2.1 Di�erent `middleware' technologies

Middleware is the term given to a range of products and services that shield applications and

their developers from a multitude of network communication protocols and database program-

ming interfaces. There are already many di�erent middleware products emerging (more notable

examples are Microsoft's COM, the OMG's CORBA, and the OSF's DCE). As engineering

enterprises adopt these middleware solutions, the heterogeneity of the resulting intranets will

complicate attempts to achieve substantial and broad-ranging interoperability. Our model there-

fore is implementation independent in order to greatly simplify its acceptance in the industry

by supporting existing software technologies without forcing any company to adopt a speci�c

approach.

2.2.2 Customized software tools

It is standard practice within engineering companies, especially large organizations that can

provide the necessary internal development resources, to optimize and customize o�-the-shelf

software products in order to achieve competitive advantages. Features particular to a company's

line of business will be encoded into the applications and the way in which they communicate, if

5

Design Piping
Subsystem

STEP-Interoperability
Framework

Piping Design
Behavior

Sub-system
Function

Sub-system Form
and Function

Pump 20 GPM 20 GPM

6"

CP
type XYZ

Our approach to software interoperability is shown here in `IDEF' notation. It illustrates an

example where a piping application has added `form' information to an input `functional' re-

quirement, based on the STEP data exchange framework.

Figure 4: Infomration Exchange with Form and Functional Descriptions

any (since interoperability is only now starting to be addressed { in even the largest engineering

companies). Software interoperability is certainly more diÆcult if companies display a penchant

for modifying commercial products to their own tastes and requirements. For this reason we have

proposed a `gateway' approach to interoperability that considers the interconnected enterprises

as signi�cantly di�erent (proprietary) computing environments, and so protects the intellectual

property within their applications.

2.2.3 Customized inter-application data communication

In addition to the complication of having to support enterprise customization of software prod-

ucts and tools, inter- enterprise communication protocols must reect the fact that many links

between certain applications in an intranet (e.g., between a CAD system for plant design and

a P&ID application) are customized solely for the two applications concerned. This arises from

the simplicity for the developers working to link such programs, and because, until recently, most

applications were not designed for wide-scale sharing of data. Furthermore, engineering applica-

tions typically share substantially less than 100% of their internal data structures. What data is

actually published is often decided between the developers of the relevant applications. This sort

of behavior complicates the sharing of information with external applications unaware of these

proprietary arrangements. Therefore we have provided for both proprietary and open exchange

standards when agents interoperate through the enterprise gateways. Existing arrangements

can be maintained without forcing companies to adopt a single approach to interoperability.

2.2.4 Dynamic objects

Some companies are developing data exchange models based on object-oriented technology that

supports dynamic de�nition of object attributes and relationships. As work on a project pro-

6

gresses, so an application creates new objects that are thus dynamic relative to the other appli-

cations sharing its data. While some middleware technologies (e.g., CORBA) support dynamic

object de�nition, others do not. We have catered for this by providing a means for agents to

share information by prior arrangement, thus allowing them to send each other dynamic objects

that they themselves can interpret.

2.2.5 Project management and job control

Engineering companies manage their design and analysis data exchanges within a particular

job control and project environment. Coordination and sharing of engineering data among

separate companies will have to map data exchanges to potentially di�erent project management

models. The issue of who owns and manages data in a shared environment is thus a legitimate

issue for engineering organizations and one that has managers concerned about the complexities

surrounding software interoperability among organizations.

2.3 Basic Model Architecture

To date we have completed a prototype of the interoperability model and are currently preparing

for testing. While testing may well lead to some architectural modi�cations, Figure 5 shows a

network schematic of the current model whereafter the various components of the architecture

are described in more detail.

2.3.1 Agents

We de�ne an agent to be a program that provides services for other agents, or a program that

uses the services of other agents. The model uniquely identi�es every agent by the instance

triple: <agent name, user name, project> (abbreviated to <A,U,P>). This allows the same

application and/or user to play di�erent roles in the system on di�erent projects. Agents

connect to gateway computers through `proxies' which are low-level stubs of code that handle

the application programming interface for the network communication, thus greatly easing the

process of implementing a gateway and agents within an organization. All proxies are con�gured

to use the enterprise gateway i.e., they know its network address and the corresponding network

communications protocol.

2.3.2 Gateways

A gateway is a server that communicates with agent proxies within an organization and with

gateways established at other participating companies, each company implementing and main-

taining a single gateway. Gateways thus enable the interconnection of agents across company

boundaries. A gateway can manage multiple projects (each con�gured di�erently) through the

use of various system tables discussed below. Figure 6 illustrates a formal description (using the

OMT) of the `gateway' component.

7

Engineering Enterprise

External
Gateway

Agent

Agent

Agent

Service
Directory

Location
Directory

Subscription
Directory

Data
Translator

Message
Log

Supervisor

Gateway

Agents (i.e., software applications) connect with other agents through gateways. Gateways are

used to manage intercommunication and to protect proprietary information about the agents

when they export services outside the company to agents in other companies.

Figure 5: Architectural Diagram of Software Interoperability Model

2.3.3 Communication Messages

Communication channels are set up between agents and their company gateway and between

the gateways of the integrated organizations. Messages between agents and their local gateway

are called `internal' messages and are supported distinctly from external ones (that are used in

gateway-gateway communication). Internal messaging enables the use of an internal/proprietary

network packet structure for legacy or strategic purposes. By comparison, external messages

must use a packet structure comprising a basic data model (e.g., a STEP Part 21 �le) and an

`appendix'. The data model will comply with the standard associated with the input/output

parameters of the invoked services (see Section 2.3.6), while the `appendix' is provided for

customized usage between agents interconnected across the enterprise boundary. Messages are

further divided into `control' and `data' messages depending on the nature of the communication.

2.3.4 The Location Directory

The location directory for an organization maintains one or more location tables, each location

table corresponding to a single project. A location table holds network location information for

all agents and gateways. It declares nodes on the network to be agents or gateways, and what

8

Supervisor
Gateway

talks
to

talks
 to

local

local/
remote

gateway
name

talks to

maintains & references

calls

data translator

log

message

agent proxy

incoming/
outgoing

location directory

references

references

service directory

referencessubscription directory

Figure 6: The Gateway-Based Model in The OMT Format

communications protocols and network addresses are used to reach them. This allows agents

to connect to the system using any supported network protocol from anywhere i.e., network

addresses are resolved dynamically when agents are launched and register with their company

gateway. Agents are identi�ed by global names allocated by the company, a name being assigned

to each <A,U,P> triple. This allows a one-to-many workload mapping, e.g., the name `Manager'

can be bound to the triple <agent = manage.exe, user = Bob, project = accounts> and also to

<agent = fin.exe, user = John, project = finance>, so whenever either of these agents is up

and running, the enterprise gateway will deem there to be an instance of the `Manager' agent

present. To protect proprietary information, external gateways are simply given a name, network

address, and network protocol. e.g., name = ABC_CORPORATION_GATE, address = 12.34.56.78,

protocol = TCP/IP. Any agents running behind external gateways are reached through their

global names { no outsider can determine what network technology the remote company is

using, what the user names are, or what applications they are using.

2.3.5 Data Translator

A data translator is a company-implemented service that translates actual objects between

internal and (optionally) open standard formats by referring to a data translation directory.

For ease of implementation, the translator would normally be coded into the gateway service as

opposed to running as a separate system process. Translation directories manage one or more

data translation tables that map input data types to those of the output standard. A di�erent

table is used for each project, thus enabling project-speci�c data types. A translation map

speci�es the name and data types of the objects required for data translation. For example, if it

takes an object of type A de�ned by standard S to produce the equivalent two objects B and C

9

in standard T, then a map S/A ! T/B,C would be speci�ed for translating instances of object

A into instances of B and C. The translator, when given an instance of A can then output the

equivalent B and C instances. Input data types may belong to a proprietary standard while the

output data would normally be de�ned using an open standard. As the map speci�es the names

of the standards used, it allows multiple standards to be used on a single project. Companies

implement their own translators as this protects any proprietary data standards they wish to

use. Using an open standard for output data is optional as companies may prefer for strategic or

legacy reasons to use prior data exchange standards in establishing interoperation with certain

client companies.

2.3.6 Service Directory

The service directory describes the list of software services that agents make available to one

another on projects. A service is a function performed by an identi�ed agent. The agent is

identi�ed using its global name de�ned in the location directory. Each service is listed with

a brief description and the input and output parameters, if any, it requires. All parameters

speci�ed must be listed in the data translation table for the project so that gateways can ensure

correct data translation when managing service invocations among agents.

A service table is constructed for each project and de�nes services o�ered by internal and/or

external agents. De�ning one table per project allows agents to respond di�erently depending on

the project name. For example, within an organization an agent can provide a `full capability'

service based on an internal project name, but for external uses a company could o�er a `limited

capability' service through that same agent under a di�erent project name, thus keeping a

competitive advantage with its internal software but at the same time being able to o�er services

to external clients.

2.3.7 Subscription Directory

A subscription directory comprises one or more tables that de�ne subscription interests for agents

and supervisors on a per-project basis. Each entry in a table identi�es a list of internal and/or

external agents that are subscribing to a given project service. Each subscriber is identi�ed by

its <A,U,P> triple.

2.3.8 Administration Features

A gateway logs all communication messages for administration purposes, e.g., an accounting

facility or work ow analysis. Logging might also be used to implement stable transaction

management in the network environment. In addition, a `supervisor' service is o�ered to which

the enterprise gateway can connect if additional management of intercommunicating agents

is required. For example, a company might want to `hook in' a connection to a document

tracking system so that certain data transmitted among agents can be copied into that system's

environment for additional processing. A supervisor is optional for any intranet con�guration

and, while only one supervisor ought to be suÆcient, several could be supported. A gateway will

10

only update its supervisor based on the output of invoked services. If the supervisor requires

additional information e.g., a list of agents currently registered, then it must query the gateway

explicitly. As companies will typically implement their own gateways, such arrangements can

be tailored to the needs of an organization.

3 INTEROPERABILITY SCENARIOS

We have identi�ed six scenarios for interoperation among software agents that this proposed

model will support:

� Scenario 1: create a new data instance. Here inter-application communication results

in the generation of a new data within an organization. An example of this scenario is

`procurement': an engineer sitting at a CAD station downloads a design component from

an external vendor providing a component selection service.

� Scenario 2: load a data instance. This interoperability scenario occurs when an agent

loads in a data model from a database. This database might be managed by another

company. For example, an engineer might load an HVAC model into a CAD application.

� Scenario 3: change a data instance. This interoperability scenario results in an alteration

to a possible remote database. For example, an agent saves a design �le to a project

database.

� Scenario 4: transfer a data instance. This occurs when one agent exports a data model

to another. The communication between the safety and piping agents in Figure 3 is an

example of this.

� Scenario 5: make concurrent changes to data instances. This scenario is de�ned by two or

more agents concurrently writing exported data into a shared database. An example is a

concurrent design environment where an HVAC agent is executing alongside a structural

steel agent in the concurrent design of a process facility and both are writing data into a

shared database.

� Scenario 6: make concurrent changes and load data. This scenario arises when agents

are concurrently importing data from and changing a shared data model. This can arise,

for example, when one or more agents are accessing a model, say for quantity take-o�s

and construction planning, as it is being altered by another agent (perhaps the designer

is making some changes).

The prototype is being developed using the TCP/IP networking protocol on Unix and Win-

dows platforms. To test the model, we shall initially focus on the �rst four interoperability

scenarios. We are in the process of testing the behavior of the di�erent scenarios for real world

engineering applications such as those used by industrial companies and those available to us at

Stanford. Due to implementation complexities, any data exchanged among the applications will

11

not involve actual translation into and out of standards such as STEP. Instead all data models

used for testing will be kept simple as the focus of the research is interoperability and not the

development of a neutral data exchange speci�cation.

To illustrate the software interoperation made possible by the model, Figure 7 shows an

example of a test scenario where an engineer has used an external network service to select

a valve component for insertion into a plant design model (i.e. interoperability scenario 1).

The component request between the engineer's application and the remote component server is

handled by the intermediate gateways in communication with the application and server agent

proxies. The information for the component is passed back to the engineering application by

using the STEP data standard in the open network environment. Other applications sharing

valve component information can also be updated once the component transfer arrives at the

initiating gateway. This example shows how software interoperability can be achieved without

the need to export any proprietary information, and without regard to the internal protocols

and topologies of the participating companies.

4 SUMMARY

We are developing an implementation independent software interoperability model that enables

software interoperation across engineering companies through the provision of inter-company

software services. It supports proprietary and open standards for data exchange in enterprise

integration and is based on the principles of a software interoperability in which behavioral

knowledge is contained within the interconnected applications. It protects the network con�g-

uration and identi�cation of software tools and users within participating organizations, and

allows for additional supervision through links to other company systems. Presently, we have

permission from an industry company to link software between Stanford and their organization.

This experiment will allow us to evaluate the strengths and weaknesses of the proposed model

for practical application in engineering enterprise integration. The model will be assessed on its

ability to support several interoperability scenarios.

5 ACKNOWLEDGEMENTS

This research is sponsored by the Center for Integrated Facility Engineering at Stanford Uni-

versity. Discussions with engineers at Bechtel Corporation and other industrial aÆliates have

greatly facilitated the development of the software interoperability model described herein and

the practical requirements related to the implementation of such a model.

References

[Cutkosky, 1993] Cutkosky, M.R., et al (1993), PACT: An Experiment in Integrating Concurrent

Engineering Systems, Computer Vol 26(1) pp 28-37.

12

[Fischer 1993] Fischer, M., Kunz, J.C. (1993), Circle Integration, CIFE Working Paper #20,

April, CIFE, Stanford University.

[Hardwick, 1996] Hardwick, M., Spooner, D.L., Rando, T., Morris, K.C. (1996), Sharing Manu-

facturing Information in Virtual Enterprises, Communications of the ACM, 39(2), pp 46-54.

[Howie, 1996] Howie, C., Kunz, J., Law, K. (1996), Software Interoperability, Kaman Sciences

Corporation.

[ISO 10303] International Organization for Standardization, ISO 10303 Industrial Automation

Systems and Integration { Product data representation and exchange { Part 1 Overview and

fundamental principles, ISO TC184/SC4/PMAG.

[Karagiannis, 1995] Karagiannis, D., Marinos, L. (1995), Integrating Engineering Applications

via Loosely Coupled Techniques: A Knowledge-Based Approach, Expert Systems With Appli-

cations, Vol 8, No 2, pp 303-319.

[Khedro, 1993] Khedro, T., Genesereth, M.R., Teicholz, P.M. (1993), Agent-Based Framework

for Integrated Facility Engineering, Engineering With Computers, Vol 9 pp 94-107.

[Kunz, 1995] Kunz, J.C., Jin, Y., Levitt, R.E., Lin, S-D, Teicholz, P.M. (1995), The Intelligent

Real-Time Maintenance Management (IRTMM) System: Support for Integrated Value-Based

Maintenance Planning, CIFE Technical Report #100, January, CIFE, Stanford University.

[Neches, 1991] Neches, R., Fikes, R., et al. (1991), Enabling Technology for Knowledge Sharing,

AI Magazine 12(3), pp 36-56.

[Pan, 1991] Pan, J.Y., Tenenbaum, J.M. (1991), An Intelligent Agent Framework for Enterprise

Information, IEEE Transactions on Systems, Man, and Cybernetics, Vol 21 No 6, pp 1391-

1408.

[Purtilo, 1994] Purtilo, J.M. (1994), The POLYLITH Software Bus, ACM Transactions of Pro-

gramming Languages and Systems, Vol 16 No 1 pp 151-174, January.

[Rumbaugh, 1991] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorenson, W. (1991),

Object-oriented Modeling and Design, Prentice-Hall, Inc..

[Unisys, 1993] Software Technology for Adaptable, Reliable Systems (STARS), STARS Con-

ceptual Framework for Reuse Processes (CFRP) Volumes I,II (1993), Unisys STARS Techni-

cal Report STARS-VC-A018/001/00, Advanced Research Projects Agency (ARPA) STARS

Technology Center, 801 N. Randolph St. Suite 400, Arlington VA 22203, October.

[Wileden, 1991] Wileden, J.C., Wolf, A.L., Rosenblatt, W.R., Tarr, P.L. (1991), Speci�cation-

Level Interoperability, Communications of the ACM, Vol 34 No 5 pp 72-87.

13

Vendor

Gateway

Gateway

3 4

5

6

7

8

Gateway

Company X

Application A

Application B

1

2

Company Y

Internal
Database

Terminal Application C

Internal
Database

Vendor
Server

(1) An engineer at company `X' using application `A' locates a valve supplier, perhaps using

internet technology. (2) A request for a valve component is made. (3) The gateway acts as the

proxy for the request and connects with the gateway at the vendor's site. (4) The second gateway

translates the request into one compatible with the vendor's internal system. (5) The vendor's

server locates the necessary component data and returns it to the gateway which in turn (6)

maps it into STEP format and returns it to the �rst gateway. (7) The �rst gateway sends the

incoming valve data to application `A'. However, since application `B' is sharing valve data with

`A', it is also updated. the gateway also contacts its peer at company `Y' to perform a similar

update (8) as application `C' is also sharing valve data with applications `A' and `B'.

Figure 7: Example of Software Interoperability Scenario 1

14

	CIFECENTER FOR INTEGRATED FACILITY ENGINEERING
	COPYRIGHT © 2000 BY

