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Interaction Value Analysis: When Structured Communication

Benefits Organizations

Walid F. Nasrallah, Raymond E. Levitt and Peter Glynn
Stanford University, Stanford, CA, 94305

Abstract. We present a mathematical model that explains and predicts the value
that a management-defined communication structure can add to an organization
composed of individuals with universal access to each other. We reduce the problem
of optimizing organizational structure to a multiple-player non-cooperative game
where players allocate the scarce resource of their attention among potential inter-
action partners. We investigate the conditions under which the game has a core –
i.e., a confluence of individual optima (Nash equilibrium) that is also optimal for any
cooperating coalition. Our interpretation is that business environments where these
conditions exist do not benefit from strong management control of communication
structure. We note that other combinations of conditions in this model fail to yield a
core, even though a single stable Nash equilibrium does exist. The difference between
aggregate effectiveness at the Nash equilibrium and the maximal feasible aggregate
effectiveness is the value that management can provide through enforcing the glob-
ally optimum communication regime. The predictions of this simple model about
the conditions that favor more or less structured communications agree surprisingly
well with accepted organizational contingency theory.

1. Introduction

Some organizations, such as the military, have always been most ef-
fective when highly structured. In spite of profound advances in tech-
nology, modern armies still follow some rules and patterns well known
to Caesar and most visibly articulated by Clauzewits. Even cell-based
urban guerrillas need to obey very stringent rules dictating with whom
they may communicate. Though decentralized, those units follow highly
structured communication patterns. This contrasts with organizations
that tend to thrive better when individuals are free to choose with
whom they will communicate. The medical establishment, for example,
has displayed dogged resistance by both practitioners and patients to
one-size-fits-all rules about when to follow certain procedures. Simi-
larly, highly innovative hi-tech firms have often benefited from spin-offs,
start-ups and skunk works (Mintzberg, 1989). Freedom from an old
established structure is seen as essential for success in these fields.
Internet companies similarly tend to follow, or at least pay lip service to,
the unstructured (also known as “ad-hoc”) communication paradigm.
The ideal presented in the press is one of an organization whose com-
munication and interaction channels are in constant flux in response to
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individual decisions. “Open Source” software development, where hun-
dreds of programmers execute projects by collaborating with each other
based solely on their individual initiative and interest (Dibona et al.,
1999), displays an extreme form of this “ad-hoc” mode of organization.
More organizations than ever before can now benefit from less rigid

control structures, thanks in part to the advent of cheap means of stor-
ing, communicating and cataloging information (Davidow, 1992). We
can expect these trends to continue as communication technologies get
cheaper, interdependencies become less predictable, and work becomes
more fast-paced. In particular, Burton and Obel (1998) and others have
observed that some environmental and internal contexts favor loosely
structured organizations.
Interaction Value Analysis (IVA) is an idealized model which rep-

resents the different contexts catalogued in (Burton and Obel, 1998)
using precisely defined idealizations. We use IVA in this paper to sug-
gest a parsimonious rational explanation for why some contexts lend
a comparative advantage to organizations with more structured com-
munications, while other contexts do not allow these organizations to
derive any benefit from structured communications. We will show that
the idealizations employed in IVA allow us to avoid both the problem of
a continually increasing number of variables and the problem of multi-
ple interpretations of the same variables. (Mintzberg, 1983; Mintzberg,
1989). The distinction between structured and unstructured organiza-
tions is based on knowledge exchange efficiency under different condi-
tions. The conditions are represented using five different dimensions of
organizational structure and environment. These dimensions are

− Diversity: the number of independent skill types needed in the
organization;

− Differentiation: the contrast in skill levels between the most
skilled and least skilled individuals;

− Interdependence: the number of different types of work that
need to be carried out in a closely coordinated way in order to
have value;

− Load: the amount of work relative to resources; and

− Urgency: the rate at which work becomes useless if left undone.

The remainder of this paper is organized into five sections. We first
lay out the research question and our approach to answering it. We
then list some of the areas of past research upon which this model
builds. These include Organization Theory, Game Theory, Economics,
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Queuing theory, and two prior papers in which the concepts underlying
Interaction Value Analysis were first introduced. This leads us into
section 3, where we elaborate on the mechanics of the model we used
to derive the current results. Those results are the subject of section
4, along with examples that illustrate how we interpret the results of
the model. We conclude with a summary of findings and suggestions
for further research.

1.1. Research Question

Why would organizations want to respond to these different contexts by
choosing more or less conformance to structured communication? By
focusing exclusively on the value that accrues to an organization from
the interactions between its members, we can express the distinctions
between different contexts using a simple mathematical representation.
Analyzing the aggregate “Interaction Value” under different structures
allows us to mathematically reconstruct the rules of thumb observed
by (Burton and Obel, 1998). Correspondence between the results of
the “Interaction Value Analysis” model and the heuristics of Burton
and Obel (1998) serves two goals. First, it validates to some extent the
assumptions in the model. More importantly, it demonstrates that a
preference for or against structured communication does not have to
depend on anything more involved, more intangible, or more human,
than the confluence of actions generated by simply defined, utility-
seeking agents.
In short, this research presents a deductive model that provides a

plausible underlying basis for the empirical findings that some situa-
tions favor more structure and others favor less structure.

2. Points of Departure

2.1. Organization Science

Many researchers in the Organizational “Contingency Theory” liter-
ature have observed how different types of competitive and techno-
logical conditions give one form of organization an advantage over
another (Galbraith, 1977; Mintzberg, 1983; Scott, 1992). Burton and
Obel (1998) surveyed and compiled this literature and derived general
heuristics for diagnosing and designing organizations to fit their con-
texts. The following factors were proposed as favoring organizations
with relatively unstructured communication:

1. Complex Environment: The benefits of structure depend on
the ability of globally informed planners to make optimizing deci-
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sions about who should do what. Complex environments, defined as
situations where a large number of variables affects these decisions,
confound central planning by making a globally optimized solution
process less tractable. In those circumstances, individual solutions
to subsets of the problem may be preferable to “non-solutions”
to the global problem. (Mintzberg, 1983, p.138, Hypothesis 10);
(Burton and Obel, 1998, pp. 180-184, 190-194).

2. Rapidly Changing Technology: Information about changes in
technology takes time to reach higher levels of management. Hence,
when technology is changing frequently, competition will favor or-
ganizations that can respond more quickly by having smaller groups
that adjust independently, and thus rapidly, to these changes. (Mintzberg,
1983, p.137, Hypothesis 9); (Burton and Obel, 1998, pp. 230-234).

3. Low threat to organization: When the continuing existence of
an organization is at stake, senior managers refuse to take risks by
relinquishing control to the periphery. Lack of structure may lead to
fatal errors, and is thus intolerable. Conversely, organizations whose
immediate survival is not at stake can take more risks. Specifically,
they can allow members to communicate more freely and with less
structure. (Mintzberg, 1983, p.141, Hypothesis 12); (Burton and
Obel, 1998, p. 184, Prop 6.9).

4. Uniformly high competence: When everyone can reach the
right decision by virtue of experience, training or ability, then it
becomes less important to look to a management structure to im-
pose the right decision. (Mintzberg, 1983, p.254); (Burton and Obel,
1998, p.158, Prop. 5.14).

5. Well-defined skill sets: A small number of non-overlapping skill
sets makes it easier to rely on lower managers and employees to
reach decisions about communication paths that will be as good
as, but less costly to define and use than, decisions made by top
management. (Burton and Obel, 1998, pp.158-159, Propositions
5.10 & 5.15)

Although the variables listed above certainly contribute to the suc-
cess of organizations with a low degree of structure, quantifying their
measures and impacts for a specific organization remains subjective.
The causal relationship thus remains associative and heuristic. Interac-
tion Value Analysis(IVA) contributes to this field by proposing a fun-
damental mechanism that leads from those observed general conditions
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to the outcome. The variables that we use in IVA also have the advan-
tage of being relatively objective measures, upon which independent
observers can more easily agree.

2.2. Concepts from Game Theory

In the mathematical and economic sense, a game is defined as a situa-
tion where

1. Several participants make choices

2. All participants achieve some outcome

3. Each participant attaches preferences to different possible outcomes

4. The outcomes for each participant depend on the choices made by
that participant and/or other participants.

5. The effects of choices on outcomes may be deterministic or stochas-
tic, and may be known or unknown to the participants.

A set of choices is “in the core of the game” or “a core allocation” if
it displays the property of being immune to modification through the
actions of any self-serving coalition. When a core allocation is reached,
no individual participant can improve his lot by making a change in his
decisions. In addition, no coalition of participants, including the coali-
tion of all participants, can make any improvements to its members’
outcomes through a group decision without someone in the coalition
ending up worse off. Some games have exactly one allocation in the
core; others have more than one.

2.2.1. Exchange Economies
A classic example of a game that has a core is the simplified model of a
market called an exchange economy. The basic principles can be illus-
trated with as few as two people in the economy. Consider, for example,
a well-stocked spaceship where Jack makes bread and Jill makes wine.
Neither commodity is as valuable alone as it is in combination with the
other. Both parties can benefit from making exchanges up to a certain
point. Fundamental microeconomic theories (Scarf, 1967; Debreu, 1959)
state that a core exists and is always reachable as long as

1. Every party’s utility for any good always increases with the amount
of the good, albeit at a decreasing rate.

2. Every party’s utility for a bundle of two goods is higher than the
same player’s utility for either good alone.
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These conditions ensure not only the existence and attainability of
a core, but also its uniqueness, provided that the goods are infinitely
divisible and the market is large enough. Economists use the phrase
“competitive equilibrium” to describe this unique core.

2.2.2. Prisoners’ Dilemma (No Core)
The most widely cited example of a game with no core is the well-
known prisoners’ dilemma. Two prisoners are accused of a crime and
given the choice of implicating one another or denying the charges. If
both choose to “confess”, then both get long prison sentences. If both
choose to “deny” then they can only be charged with contempt of court
and spend a few weeks in jail. But if one donfesses and the other denies ,
then the collaborator gets to go free and the hold-out gets the maximum
punishment. To see that a core fails to exist, we note that both players
can form a coalition and help one another by sticking to the “deny”
strategy. But then each member of the coalition is tempted to confess
and break the coalition, improving his lot even further because he would
go free instead of serving time for contempt. But that would not be a
stable position because the other player would improve his lot by also
confessing and implicating the first. Finally, if both players wind up
confessing, they would share a long prison sentence. Although neither
would be able to improve his lot alone, a coalition composed of both
would be able to retract their plea on appeal and win a short sentence
for the two. But of course now we are back where we started, and
temptation rears its head. Clearly, every possible outcome is capable
of being improved upon by some set of players.

2.2.3. The case of the vanishing core
Interaction Value Analysis uses utilities that do not fully conform to
the assumptions of economic exchange models. There are therefore
some instances of the model where the resulting game comes closer
to resembling the Prisoners’ Dilemma – in other words, where a core
does not exist. Since there are multiple parties in Interaction Value
Analysis, there are several ways to partition the set of players, and
shifting from one set of alliances to a different set will lead to different
equilibrium outcomes.
In this paper, we investigate only two extremes. In what we call

the structured organization, all participants belong to one coalition.
Players who can improve on their outcome (at the expense of others) by
leaving that coalition are prevented from doing so by the management
structure. We contrast this to what we call the “unstructured” case,
where each player acts alone even if colluding with another player might
benefit both. Unless there is a core, coalitions of the full population will
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eventually collapse in the absence of a regulating structure. We do not
consider cases of “partial structure”, as the aggregate outcome of such
partitions will fall somewhere between the two extremes that we do
consider.

3. Methodology

The basic model of Interaction Value Analysis was presented in (Nas-
rallah and Levitt, 2000), and is based on a social network model ini-
tially developed in (Huberman and Hogg, 1995). In this model, people
make decisions about how to allocate their time among different inter-
action partners. The patterns generated by these decisions represent
the organization structure. Different structures allow different levels of
interaction effectiveness, as will be explained below. Ideally, all inter-
action attempts succeed in securing an interaction, and all interactions
succeed in adding value to the organization. This ideal is impossible to
achieve, but some time allocation structures come closer to that ideal
than others.
In this investigation, we use a particular Interaction Value matrix

based on the ordered preferences of six independent parties, as shown
in figure 1

HR Sales Manf. Mktg. Eng. Mgmt.

HR
Sales
Manf.
Mktg.
Eng.
Mgmt.



















2 3 5 4 6 1

5 2 6 4 3 1

6 4 2 5 1 3

3 2 6 1 5 4

4 5 1 3 2 6

5 1 6 2 4 3



















Figure 1. A Ranking matrix for a 6-Party Organization

The basic step in modeling a specific organization (or in setting
up an idealized model of all organizations) is to have every member
of the organization rank every other member in order of how useful
they expect an average interaction with the other member to be. The
model loses no generality when we include interactions with self (i.e.,
working alone) in the rankings. The rankings in figure 1 are linearly
independent. Two of the parties performing the rankings (represented
by the rows of the matrix) have selected the same party being ranked
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(represented by the columns of the matrix) as the highest ranked -
namely the column labeled as “Management”.
Let us now suppose that the rows of the matrix represent ranking

systems or criteria, each of which is followed by several individuals. The
ranking matrix in figure 1 under this new interpretation becomes an
abstraction of any organization where each of a large number of mem-
bers uses a linear combination of six of independent, equally weighted
ranking criteria. The equivalence of the two interpretations follows form
basic linear algebra, as explained in (Nasrallah et al., 1998). The “equal
weight” idealization allows us to represent diversity as a single number
instead of a continuous distribution across the N × N ranking space.
The rankings in the matrix are the first step in representing the orga-
nizations we study. Each additional nuance of the model is controlled
by a parameter that represents a dimension for specifying context.

3.1. Definitions of Context Parameters

3.1.1. Diversity
Ranking criteria are not equally weighted in real situations. The rank-
ing matrix in figure 1, which shows six equally weighted criteria, is
also an idealization of any organization whose members rank one an-
other such that one party obtains one third of the top rankings. In
this investigation, figure 1 is the core matrix for the high diversity
examples. The organization is diverse because no one is preferred by
more than one third of the members. In contrast, a matrix of three
rows and three columns where one column two ones (top rankings)
represent low diversity. Two thirds of the population share the same
top preference. This is much closer to zero diversity, which is defined
as the acse where all of the population has the same preference. The
actual numbers selected (one third and two thirds) are clearly arbitrary,
but they are sufficient to illustrate the trend created by the diversity
parameter. We repeat below a finding from (Nasrallah et al., 1998) that
the incidence of two top rankings for the same member being ranked is
combinatorically the most likely outcome for groups of three to eight.

− with 3-8 statistically independent criteria, having a maximum score
in just 2 criteria suffices to make a person the most popular inter-
action partner;

− with 9-90 statistically independent criteria, one needs a maximal
score in 3 of the criteria to become most popular; and

− with 5 billion statistically independent criteria, the most popular
person needs only to have a maximal score on 7 criteria.
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HR Sales Manf. Mktg. Eng. Mgmt.

HR
Sales
Manf.
Mktg.
Eng.
Mgmt.

















6.3 4.0 1.6 2.5 1.0 10
1.6 6.3 1.0 2.5 4.0 10
1.0 2.5 6.3 1.6 10 4.0
4.0 6.3 1.0 10 1.6 2.5
2.5 1.6 10 4.0 6.3 1.0
1.6 10 1.0 6.3 2.5 4.0

















Figure 2. Interaction Value Matrix for 6-party Organization with Differentiation=10

We subjectively judged that 2/3 and 2/6 were sufficiently repre-
sentative of the whole range. We leave the complete mapping of the
diversity dimension to others with more powerful numeric solvers.
What effect does diversity have on knowledge transfer effective-

ness? People who receive a larger number of interaction requests will
have a harder time responding to those requests under assumptions
of “bounded rationality” (March and Simon, 1958). Someone whose
favorite interaction partner is one of these “popular” individuals would
find it more effective to amend his behavior to account for this type of
possible failure. It is precisely this competition for popular individuals
that makes the time allocation exercise into a non-cooperative game.
This justifies our election to focus on cases where there are three to six
criteria. Additional independent criteria reduce the popularity of the
most popular individual, thus their scarcity, and hence the need for a
controlling structure to ensure optimal distribution.

3.1.2. Differentiation
Once people have established their rankings, we need to determine
the differences in interaction values between higher-ranked and lower-
ranked interaction partners. Differentiation is defined as the ratio of
the value of interacting with the favorite versus the value of interacting
with the least favorite. This particular definition makes it possible to
ignore the effect of organization size on the results of the model. Because
we are dealing with an idealization and not with a real organization,
we take the liberty of assuming homogeneity along two dimensions.
First, we assume that each step down the list of rankings reduces
value by the same ratio. This means that the sorted list of values is
a geometric progression. Second, we assume that differentiation is a
homogeneous property of the organization, so all people have the same
differentiation ratio. This means that all the rows in the value matrix
are permutations of the same list of values. The ranking matrix in
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Figure 1 thus becomes at a matrix of interaction values, as shown in
Figure 2, for a differentiation level of 10.

3.1.3. Interdependence
Huberman and Hogg (1995) introduced “hint production rate” as the
average amount of time that must elapse between successive interac-
tions with the same partner in order for that partner to have gathered
enough insight to be of help again. In the context of an organization,
additional factors influence the ideal time between successive interac-
tions with the same organization member. Different work tasks need
to be completed by different members of the team in order to pre-
pare the way for a specific information exchange to be of value to
the organization. In Interaction Value Analysis (IVA), we aggregate
the effects of those different factors and idealize the requirement into
a simple average rate of interaction. The same mathematics used by
Huberman and Hogg (1995) to describe a “Community of Practice”
can thus be applied to describe the number of interactions one must
have with other individuals before a repeated interaction with the same
person can be useful. We interpret this rate in IVA as the degree of task
interdependence. When there are many interdependencies in the work,
then more attention must be paid to related tasks before any specific
interaction can once again yield value. Conversely, when most tasks
are not dependent on many others, it becomes possible to focus on the
same task, and therefore interact with the same partner, at a higher
rate.
The nature of organized work is such that a single interaction partner

alone does not add value. This is contrasted to an economic exchange
model where goods have intrinsic value and free exchange unfettered by
a command structure is the only road to the highest aggregate utility.
To normalize interdependence for organization size, we express it as

the fraction of the population that must be interacted with between
successive interactions with a specific person (Nasrallah and Levitt,
2000).

3.1.4. Load and Urgency
Even when people seek interactions with a collection of partners to
achieve their goals, popular individuals still become targets of more
requests for interaction than they can handle. In other words, the most
useful people in the organization will have a queue for their attention,
which reduces their overall usefulness as a source. How does this trans-
late to reduced effectiveness? We use a simple representation originally
operationalized in an organizational context by Levitt et al. (1999),
and inspired by (Galbraith, 1977) and (Mintzberg, 1973). A person
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who attempts to communicate with a busy potential partner, is simply
assumed to give up the attempt after a certain threshold wait period.
Failure is defined as a request timing out, or being superseded before a
response is generated. We used ideas from (Barrer, 1957) to construct
a mathematical model of this concept. A request arrives in a person’s
in-tray, and depending on how busy the person is, the request may get
processed while the requester still needs it, or it may stay in the in-
tray until it is no longer required. Since we assume many independent
factors may lead to a request being generated, being superseded, or be-
ing successfully responded to, we can assume exponentially distributed
inter-event times for each of these three types of events, which leads
us to a memory-less system. We also assume the busy person will act
in a fair manner and respond to requests on a first-come, first-served
basis. With these assumptions, the only variables that affect success
rate are the ratios between the rates of asking for vs. giving help. The
new dimensionless parameters thus introduced are:

− Load = Expected number of requests per person per average re-
sponse time.

− Urgency = Expected number of time-outs per person per average
response time.

We use the term “Load” to represent the ratio of service rate over
time-equivalent arrival rate. This represents how much work an or-
ganization has relative to its resources. The concept is familiar from
standard queuing theory, where the service ratio ρ is used. Since we
have several queues in the model, the ρ for each interaction partner is
obtained by multiplying the sum of that player’s column in the time
allocation matrix by the organization’s load parameter (defined as a
fixed quantity per requester). When someone has 2 as the column sum,
for example, then that person is getting the equivalent of two full-time
people’s requests.
Urgency represents how quickly people demand responses to their

requests. It is not the same as load, although growth in a company’s
transaction volume will tend to affect both. For example, a recently
funded Internet start-up might have low load and high urgency, because
the funding attracts a large number of employees and other resources,
but the rush to ship product and grab market share makes it necessary
to speed up all decisions. If the money comes close to running out, load
becomes high, too, because management is reluctant to hire more peo-
ple to keep up with workload. After the company starts trading publicly
and things are more stable, urgency will be lower but load will remain
high because scrutiny of public investors may cause management to
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delay hiring more people until they can be sure it is cost-effective to
do so.
The mathematical aspects of urgency and load are described in

Appendix A.

3.2. Optimum vs. sub-optimum

It is relatively straightforward to find one’s optimum allocation of time
among interaction partners when the only constraint on how often one
can go to one’s favorite is derived from interdependence. This is the
“inessential” game model, where the success of one player only depends
on the frequency of that player’s interactions. The formula is:

success rate for interactions from a to b =

1

1 + (size× interdependence× (time allocated by a for b))

(1)

Deviating from the optimal allocation, either up or down, leads to
a reduction in individual effectiveness, but has no effect on others’
effectiveness. Global effectiveness is reduced by exactly the sum of
individuals’ reductions.
No management oversight of communication choices is necessary

for this inessential case. In real life, low-intensity contacts whose fre-
quency never increases beyond a trivial level (e.g., diffuse communities
of practice) do not need a management structure at all.
We illustrate the concept of different optima using figure 3, which

depicts the model output for an arbitrarily chosen context. We deter-
mine how each participant would best allocate his or her time among
interaction partners in a hypothetical six-party organization. (Note:
the (Nasrallah and Levitt, 2000) paper showed how the effect of or-
ganization size can be eliminated by re-normalizing parameters.) The
bars show how a typical member of that organization might optimally
allocates his or her time among the six choices.

3.3. Comparison of Optima

When we consider the effect of resource constraints arbitrated by impa-
tient queuing within the Interaction Value framework, the expression
for organizational effectiveness becomes complicated (see Appendix C,
equation (14)). After we do all the calculations, we discern a most inter-
esting property. Varying the values of the model parameters described
above can now make a unique core appear or disappear. In other words,
sometimes the Nash Equilibrium of individual optimal time allocations
is identical to the global optimal time allocation, and sometimes it is
not.
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The vertical axis shows the percent of time spent by the participant whose

interaction histogram is being plotted. The numbers on the horizontal axis

represent the ranking of others in the organization as potential interaction

partners; The favorite interaction partner is labeled as 1 and the least-favored

is labeled as 6. The darker bars show an optimum allocation of time for all

players in an inessential game which corresponds to infinite capacity. In other

words, if everyone has enough free time to render assistance to all requesters,

then the best behavior in this particular organization would be to for each

player to allocate about 41% of his or her time to his or her favorite interaction

partner, and about 2% to the least favorite. When time becomes more of a

constraint, then the most popular people in the organization will be tend to

become back-logged with multiple incoming requests. Now everyone is better

off if all equally reduce the amount of time spent seeking interactions with their

respective favorites to 33%. The time saved is then allocated among some of the

lower ranked interaction partners. This time allocation is shown by the lighter

gray bars.

Figure 3. Sample Time Allocations Among Interaction Partners

We now take a closer look at the difference between these two classes
of optimal time allocations. Recall from Figure 3 that the Nash equi-
librium time allocation distribution was found to be identical for all
participants when plotted against their ranking of interaction partners.
Although each participant may have a different favorite, the amount
of time spent attempting to interact with one’s favorite is identical
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The vertical axis shows the percent of time spent by the participant whose inter-

action histogram is being plotted. The numbers on the horizontal axis represent

the ranking of other participants, with one being the favorite interaction partner

and 6 being the least-favored. The pale wide bars show an optimum allocation

of time for all players in a game where members optimize their own output

individually (i.e., locally) in light of all other members’ allocations (i.e., in a

Nash Equilibrium state). The thinner bars show the (different) time allocations

necessary to achieve the greatest global output, which in this example is higher

than the output reached under Nash Equilibrium.

Figure 4. Sample Time Allocation demanded for Formal Structure

for all participants under the Nash equilibrium. Figure 3 showed how
much of each member’s time would be optimally allocated to each of
that member’s possible interaction partners sorted by rank. The two
distributions contrasted in Figure 3 represent two different contexts,
e.g., with differing values for the “load” parameter.
Either of the two distributions in Figure 3 may be for a context

whose global optimum is identical to the Nash equilibrium of local
optima. The same distribution may well be the Nash equilibrium but
not the global optimum in a different context. Figure 4 depicts one such
context. The wide, pale bars in Figure 4 represent a Nash equilibrium
distribution identical to the “high load” distribution in Figure 3.
To achieve the highest possible sum of interaction values, it is neces-

sary to make some non-obvious deviations from the Nash equilibrium
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behavior. The thin bars of Figure 4. provide a details of one hypothet-
ical set of deviations for three of the participants whose interaction
partner rankings and values appear in Figures 1 and 2 respectively.
The illustration’s numbers were calculated using medium settings for
load, slack, and interdependence, and high specialization. The global
optimum follows from having the “HR” participant (represented by
the first of the three bars in each series) allocate 50% of his time to his
second favorite and 27% to his favorite (etc. as shown), and the second
person allocates about 28% of her time to each of her favorite and her
fifth favorite, and so on. The need to enforce this cooperation require-
ment is synonymous in IVA with the need for some sort of management
structure that channels communication frequencies towards the global
optimum.
A review of Figure 1 will reveal the one distinction between the

different members of the organization that is allowed for in this globally
homogeneous model. The homogeneity assumptions we made mean
that all model parameters apply equally to all participants, but dif-
ferent participants are still making choices of favorites independently
of one another. What distinguishes the first two members from the
third is that the first two both vie for the same favorite (see Figure
2). Hence both have to make greater reductions in their use of that
favorite when moving from the Nash equilibrium to the global optimum.
Other participants have to make less of an adjustment when making
the same transition. Note also that “HR” has a second-favorite who
is not anybody’s favorite. “HR” can thus do no harm to the organiza-
tion if he only interacts with that second favorite interaction partner
(incidentally himself ) 50% of the time as shown in the previous slide.
By contrast, “Sales” has to go all the way down to her fifth favorite
before finding someone who is not anyone’s favorite. That fifth favorite,
“HR”, is the partner with whom “Sales” can spend all the time left over
because “Management” is a popular interaction partner and cannot
fulfill all “Sales’s” requests for face-time. The third player, personifying
“Manufacturing”, has a favorite, “Engineering”, who is not the favorite
of anyone else. “Manufacturing” thus gets to allocate its time in a pretty
regular diminishing curve until it gets to “HR” again, with whom he
must spend more time than with the preferred “Sales”, “Marketing”
and “Management” partners, because they are relatively more popular
and thus less often available.
As a result of all this micro-behavior, a series of trends emerges

in the variance between the two optima as plotted against the five
parameters. We interpret these trends in the following section.
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4. Results

The idealized IVA model we have described so far is elaborated in
Appendices A, B and C. It turns out that the optima we need to find can
be obtained by ordinary numerical optimization techniques. We per-
formed several numerical optimization runs using the Newton Method
with quadratic fitting, as implemented by version 7.0a of Microsoft
Excel, c©1985-1996, Microsoft Corporation. We hard-coded two sets
of constraints: that proportions of one’s time cannot be negative, and
that the sum of all those proportions must add up to 1. We used these
worksheets to generate charts linking the values of the parameters to
the percent difference between the global optimum and the one-by-one
(Nash) equilibrium. The percentage difference between the globally op-
timum aggregate interaction value and the aggregate interaction value
at the locally sub- optimal Nash equilibrium represents the maximum
value that a management structure can contribute to an organization
where knowledge is universal and access is not limited by geography
– a “Virtual Corporation” from Davidow (1992), or an “Ad-Hocracy”
from Mintzberg (1983). This is our dependent (output) variable, and
we denote it by the term “Value of Structure.”
We chose four example scenarios to illustrate how one might inter-

pret the model results. These are compared to organization contingency
theory predictions for each case and across all cases. Since we have four
input parameters against one output variable, we use three-dimensional
plots with different pairs of the five input parameters on the x and
y axes, and the output on the z axis. For each such plot, the three
input parameters that are not shown on the axes are controlled for; i.e.,
they are set at a fixed value that represents a specific organizational
situation. These values are displayed in the top right corner of the
graphs.

4.1. Illustration 1: Military under different Loads

The background for this military example was obtained from inter-
viewing a former US Navy officer from the Construction Battalion (the
“Seabees”). She explained that the degree of bureaucratic structure
inherent in all operations was often much higher than what would have
been indicated by common sense. The cost of the bureaucracy was
deemed higher than its benefit during normal peacetime construction
projects. The rationale for the “Seabees” nevertheless having a high
level of structure is that Seabee construction projects will occasionally
have to be carried out under battle conditions, which do not obtain
most of the time.
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Figure 5. Value of Structure for “Military” Example

To illustrate how the Interaction Value model accounts for this dis-
tinction, we plot the value of structure against differentiation and load.
High differentiation is what characterizes military organizations, since
they mobilize large numbers of individuals who will necessarily have a
high variation in skill levels. Time of battle equals high load, as that
is where combatants are called upon to respond rapidly to interaction
requests, to the limit of their capacity. The upper bold, dashed line in
Figure 5 shows how a military organization goes back and forth on the
load scale while maintaining the same differentiated mix of individuals.
The high end of the curve justifies the need for high communication
structure at all times, since it is not possible to fine-tune a response to
battle conditions by adding and removing the habits and regulations
that constitute communication structure in the military.
Contrast this to “Airco”, a commercial airline with mostly college-

educated professionals, thus having a lower level of differentiation. The
lower bold, dashed line in Figure 5 shows that, since the sensitivity to
load is not as high, it is possible to get by with a level of structure that
is not too far from the ideal under average load conditions. This is why
one is less likely to hear complaints about stifling bureaucracy in an
organization such as a commercial airline where differentiation is lower
and load is never as high, even in the worst Christmas snowstorm, as
in a raging battle to secure a beachhead.
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Figure 6. “Ancient Military” Example

Figure 6 shows how the effect of reducing diversity to a value of
3 (independent, equally weighted selection criteria) has no effect on
the overall shapes of the curves. The only change is that the value of
structure at maximal differentiation and load goes up from 8% to 11%
of the organization’s productivity. We can relate this to the real-world
example of a military organization in historical times. Although the
armies of Julius Caesar, for example, were arguably as differentiated
in terms of skill level as today’s military, there were fewer distinct
skill sets available at those times. This meant that a rigid command
structure was even more important then than it is now in keeping the
organization functioning during the high-load times of war. An orga-
nization, like an academy, with less differentiation in the same society
(interpreted as the same diversity level), had less need of structure
than its military counterpart when faced with taxing work loads. Across
societies, we see that the value of structure at high load in the Academy
(6 %) is higher than in Airco (3%) because the diversity in ancient
times was lower. This is despite the observation that during low load
periods, the value of structure may have seemed as low in all instances:
the military organization with its high differentiation, the civilian one
with its low differentiation, ancient society with its low diversity, and
modern society with its high diversity. Structure can add value and
thus be cost-effective in all but the modern, civilian organization when
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the ability to respond to high-load needs is significant to the success of
the organization.

4.2. Illustration 2: Open Source Development under
different Urgency requirements
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Since we are looking at modern-day software development, we set the diversity

to medium to reflect the limited but significant number of different types of

expertise needed. We use a high interdependence because large software systems

will only work if its sub-units are properly coordinated. Finally, we use a fairly

high load because we are assuming active projects instead of a possibly more

idle average state. The latter case would produce a similar contrast between

Open Source and Corporate development, but the value of structure would be

lower across the board..

Figure 7. Value of Structure for “Open Source” Example

This example was provided by an interview with developer Sam
Ockman (Dibona et al., 1999). His experience with developing operat-
ing system software under the Open Source paradigm indicated that he
sometimes had to develop certain modules under tight time constraints.
These conditions did reduce the effectiveness of the unstructured sup-
port network that characterizes the Open Source community.
The explanation for this phenomenon is the uniformly high level

of competence necessary for participation in Open Source develop-
ment. This (informal) requirement is so stringent that individuals in
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the Open Source community will go to great lengths to protect their
reputations for competence. The lower bold, dashed line in Figure 7
shows that an impatient individual can still receive good support in less
differentiated organizations performing highly interdependent tasks. As
long as the average load is not at a maximum, no communication
structure is needed to oblige people to share information with specific
interaction partners. The value of structure remains almost as low for
that impatient individual as it is for people who can afford to wait
longer for responses. In contrast, a commercial development environ-
ment has less experienced programmers interspersed with experts, so its
differentiation level is higher. In that environment, structure becomes
valuable when deadlines loom and people cannot wait for answers. This
is illustrated by the upper bold, dashed line in Figure 7.

4.3. Illustration 3: Large Software Company for Varying
Interdependence

In contrast to Open Source development, the first author’s experience
in a corporate software development environment led to the following
example. We observed that the workload increases close to the code-
freeze dates. At those times, management exercised tighter control at
the level of the product as a whole, but small teams working on the
autonomous modules continued to operate under looser control by their
team leaders. The difference between the formality of communication
structure at the two scales is explained by variations in interdepen-
dence. Figure 8 shows that when interdependence is low, load does
not predispose the organization towards tighter structure (lower bold,
dashed line). In real life, a programmer working on a small module with
tightly defined interfaces is not dependant on other programmers on a
day-to-day interactions, and hence can work harder to meet a deadline
is without much interference from his manager. When interdependence
is higher, e.g. for interactions between user interface and functional
design, the graphic designers and product managers in charge of those
features need to spend more and more time in meetings with higher
management as deadlines approach. This is because structure becomes
more valuable as deadlines push the load higher (upper bold, dashed
line).

4.4. Illustration 4: Health Care Organization at Varying
Diversity

The final illustration in this series comes from accounts in the popular
press about the failings of, and resistance by physicians and patients to,
health maintenance organizations (HMO’s). Attempt to impose a tight
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This example examines software development in a corporate environment, so we

set differentiation to a medium level to reflect the larger variation in levels of

experience in such environments. Diversity is also medium (as in all the other

modern-day examples) because the work is in one field but the field contains

many sub-disciplines. Urgency is low because large software developers are noto-

rious for letting deadlines slip in order to ship a product that does not seriously

malfunction.

Figure 8. Value of Structure for “Corporate Software” Example

rein on medical practice leads to many problems. For instance, the San
Francisco Chronicle reported in December 1999 that health insurance
purchasers derived lower costs from looser cooperatives of individual
medical practitioners than from traditional HMO’s. We explain this
from an Interaction Value perspective by noting that most of the work
of doctors treating different patients is not very interdependent. Every
patient is different, and differences are primarily addressed locally. The
lower bold, dashed line in Figure 9 shows that the value of structure is
minimal and usually not worth the cost. This is regardless of whether
differentiation is high, as in a hospital with many levels of doctors,
interns,nurses and orderlies, or low, as in a clinic with several doctors
sharing support staff. Only when interdependence is high and differ-
entiation is medium to high does it begin to pay to manage people’s
interactions. One example of such a case would be teams of volunteers
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High load and medium urgency characterize the medical profession. There is

usually a high ratio of patients to doctors (or nurses or paramedics). Response

times are dictated by the patients’ bodies, which have many different types

of conditions requiring different response times. These response times average

to medium in the model. Diversity is medium again because there are many

sub-disciplines in medicine. Differentiation can vary based on the incidence of

less skill-intensive disciplines. Interdependence varies according to the patient’s

medical symptoms and the assorted treatment strategies. Treatment of a skin

rash may have low interdependence for the dermatologist while treatment of

severe diabetes would have medium interdependence among the patient’s spe-

cialist doctors, lab technicians, and other care givers. High interdependence is

rarely observed in a medical context, with the possible exception the outbreak

of a contagious and unknown disease where the symptoms and past behavior of

several patients are compared by all their doctors to find the source or treatment

of the epidemic.

Figure 9. Value of Structure for “Health Care” Example

assisting in controlling an epidemic, as shown by the upper bold, dashed
line in Figure 9.

4.5. General Observations

We can generalize from the examples above and the requirements in
2.1, to say that structure adds value to organizations when:
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− Load is high and

− Diversity is low to medium, and

− Interdependence is medium to high, and

− Differentiation is medium to high, and

− Urgency is medium to high

Diversity is the parameter that represents the complexity of envi-
ronments. More complexity means more criteria for ranking interaction
partners, hence less of a chance of bottlenecks and less value from
regulating interactions. Differentiation correlates inversely to the perva-
siveness of uniformly trained individuals. A high degree of professional-
ization makes the differentiation parameter low (because the distinction
between the highest and the lowest is less). Low differentiation lowers
the value of structured communication vis-à-vis ad-hoc organization.
High load combined with high urgency corresponds loosely to a hostile
environment; more both favor management structure. Urgency influ-
ences overall effectiveness in the same direction as high load (March
and Simon, 1958). but it does not favor structure as much as load does.
This explains why fast-moving companies in the high-tech area tend to
place no value on restrictive management structures. Information in
the high-tech world becomes outdated much more quickly than in the
traditional company. High-tech companies are thus inherently unable
to use communication structure to improve information exchange effi-
ciency, unlike more traditional companies that suffer more from load
than from urgency.

5. Conclusions

Our results compare well with published qualitative research in organi-
zation contingency theory (see page 3 for exact citations), as illustrated
in the table I above. Interaction Value Analysis (IVA) thus emerges as
a sound theoretical framework, with greater explanatory power than
previously published rules of thumb for organizations. IVA allows us
to model and analyze the interplay among a set of variables that af-
fect the value of structured communication in organizations. We have
demonstrated the model’s potential by obtaining general predictions
about specific industry situations. Those situations were described us-
ing specific, objectively measurable parameters which were treated as
homogeneous across the population of an idealized organization. This
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Table I. Comparison of Contingency Theory Recommendations and IVA Pre-
dictions

Mintzberg, Burton & Obel Interaction Value Analysis (IVA)

Technically complex projects Higher load & interdependence

require more coordination. imputes a higher value to structure.

Groups of experts require less Low differentiation (skill variance)

management intervention. imputes a lower value to structure.

Threatening conditions demand High load & urgency

more structure. imputes a higher value to structure.

Complex environments are best Large number of skill sets (diversity)

handled by an ad-hoc organization imputes a lower value to structure.

is only the beginning. With additional calibration and validation, In-
teraction Value Analysis may help to further investigate, articulate and
elaborate current knowledge about the theory of organizations.
On the practical level, the simple and abstract approach taken in

this paper will, after suitable calibration, allow future practitioners
to begin to give advice about organization structure to companies,
or whole industries. For example, an Interaction Value analysis study
can determine the degree of diversification and differentiation most
appropriate for a company expanding into a new market, or, depending
on the levels of task interdependence, differentiation, diversity, load
and urgency , a firm can determine how much guidance to provide for
coordinating work in a specific type of project. And so on.
The results of the homogeneous models encourage us to seek more

knowledge about specific organizations that we can observe and repre-
sent more precisely by relaxing the homogeneity assumption. Since the
model can be solved/optimized numerically, it should also be possible
to make the values of the five parameters heterogeneous between dif-
ferent parts of the same organization. For example, firms can give more
resources to important departments. They may value the effectiveness
of some parts of the organization more highly than others. Interde-
pendence may also differ between different parts of the organization.
As long as the number of variables does not become too large, the
partitioned or tiered versions should still be tractable and therefore
amenable to numeric solution.

6. Next Steps

We propose two paths of future research. One seeks out observations
of real situations where observed interaction patterns seem to approxi-
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mate those that the model recommends for a given context. The other
seeks further optimizations of the pure mathematical model under less
restrictive assumptions about participant attributes and behavior.

6.1. Field Research

The Interaction Value Analysis paradigm can serve to guide field re-
search. For example, a researcher might look for the values of param-
eters like differentiation, interdependence, diversity, load and urgency
in real companies. It is essential for the success of future research to
find out, for example, the degree to which assuming total homogene-
ity of these values throughout the organization skews model results.
Parameters are clearly often different for each project or department
in a company. We need to know how to aggregate, or average, diverse
observed values of the same parameter in the same organization. The
results of an idealized, homogeneous model would not be meaningful
or relevant without this. Such data collection and aggregation methods
are the key to calibrating the Interaction Value model.
More generally, by imposing bounded-attention constraints on the

Huberman and Hogg (1995) model, the modeling framework presented
here can be used to pose several interesting questions. For example, we
might seek to:

− find the best mix of generalists and specialists in the organization;

− gauge the cost of nagging “bad apples” who use up the time of expert
sources who might be of more use to other advice seekers;

− investigate the ramifications of alternative criteria (e.g., random, tit-
for-tat, expectation of future reciprocity) for selecting which seeker
to help first when a source has a queue of requests in his or her
in-box;

− impute underlying preferences or competence distributions from the
observation of interaction frequencies within a social network of re-
searchers;

− predict and attempt to control the extent of clique formation in
different situations;

− place upper and lower bounds on the value of trust between members
of an organization; or

− investigate the effects of skill level and/or cultural differences among
employeed of a company proposing to perform similar work in dif-
ferent parts of the world.
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6.2. Mathematical Research

The second type of research involves refining the mathematical repre-
sentation. The current assumptions are simple enough that it would
be feasible, though tedious, to obtain closed-form expressions for the
shapes of the curves. We could also investigate the effects of more
fundamental changes in the assumptions. For example, the way in
which people choose whom to help might not be based on first-in,
first-out. The pattern of request generation and fulfillment might not
be completely random as we assumed.
It would be interesting to do further game-theoretic analysis of dif-

ferent combinations of favorites in order to determine how a player’s
power varies with his pattern of favorites. Power would be defined as
value a player can add to any coalition according to Shapley (1953).
We also observed some empirical properties in the investigation

that other researchers might prove mathematically. For example, we
observed that the attention distribution curves plotted against the
ranking of the interaction partner at Nash equilibrium were identical
for all participants.(See figure 3). This observation begs for a simple
mathematical explanation. The corresponding curve at the global opti-
mum was not as simple. It would be valuable to know what assumptions
about utility curves for business interactions would give a similar di-
vergence between the Nash equilibrium and the global optimum for
attention allocation. This divergence came about because we diverged
from the requirements for a competitive equilibrium as defined by De-
breu (1959). Will this divergence increase in magnitude as we construct
different models with slightly different assumptions? For example, what
would happen to the two optima under reciprocal selection, i.e., when
people respond more readily to requests from those with whom they
may wish to interact themselves, or with whom they have successfully
interacted in the past? Answers to such questions will be of interest
not only to students of organization theory, but also to economists and
mathematicians.

Appendix

A. Probability of communication request failing (due to
waiting too long in queue)

For the purposes of this model, we assume that communication requests
are generated as a Poisson process with single rate λ that applies to all
individuals generating requests. Requests directed at a single individual
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are processed on a first-come-first-served basis, by a single server that
operates as a Poisson process with rate µ. Following (Barrer, 1957), we
also allow items in the queue to “time out” before being served. This is
variously known as the impatience, defection, or survival phenomenon.
In Interaction Value Analysis, it represents a communication that is no
longer necessary for the work at hand. The time each request spends in
the queue before defecting is also treated as exponentially distributed
with rate ζ. This is in contrast to Barrer and subsequent studies, where
time spent before defection is a constant. In the treatment below, we
make the additional assumption that defection can occur during service.
Organizationally, this represents, for example, a memo being answered
after the sender has already received the desired information elsewhere:
the communication is still treated as a failure, and the respondent is
allowed to move on to the next request. Mathematically, this means
that an item in service is just as likely to be lost to defection as any
other item in the queue.
Definitions: 3 independent rates describing 3 exponential distri-

butions for time between events:
µ = rate at which a communication is processed (service)

λ = rate at which communications arrive

ζ = rate at which a communication becomes useless and

leaves the queue (defection)

These rates describe a continuous-time Markov chain (specifically
a birth-death process) with states N = 0, 1, 2, 3 . . .. The state of the
system at any time t is completely described by the number of requests
n(t) in the system (queued or in service.) The birth rate is

Λ(n) = λ for n ≥ 0

The death (departure) rate is

M(n) = µ+ nζ for n ≥ 1

The expression we wish to obtain is the probability of success, defined
as the probability that a request receives a response before it times
out. If the queue is empty, then the first arrival’s success probability is
derived from a race between two Poisson processes:

P [service before defection|empty queue] =
service rate

total departure rate

=
µ

µ+ ζ

(2)

When there are several requests in the queue, then the chances of
staying in the queue until acquired for service are determined by a
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series of similar races. A simple way to arrive at a reasonably accurate
probability is to use the steady state assumption, i.e., to set birth and
death rates as equal.

P [service before defection] =
service rate

departure rate

=
service rate

arrival rate

=

µ
∞
∑

n=1
Pn

λ

(3)

where Pn is the steady state probability of there being n requests in
the system. By definition, the sum of all possible Pn is 1. Equation (3)
becomes

µ

λ
(1− P0) (4)

Now in the steady state, we can derive P0 by observing that:

P1 = P0
λ

µ+ ζ

P2 = P1
λ

µ+ 2ζ
= P0

λ

µ+ ζ

λ

µ+ 2ζ

= P0
λ2

(µ+ ζ) (µ+ 2ζ)

We simplify the expressions above by introducing the ratios:

ρ =
λ

µ
(5)

k =
µ

ζ
(6)

So

P2 = P0
ρ2

(1 + 1
k
)(1 + 2

k
)
= P0

ρ2 k2 k!

(k + 2)!

and

Pn = P0
ρn kn k!

(k + n)!
(7)

The above treatment assumes that k is an integer. Since we are
dealing with idealized states, we do not lose any information when we
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only treat cases where the rate of defection is an integer multiple of
the rate of service. We call this number the organization’s slack, and
its inverse is the urgency.
Next, we determine the steady-state value of P0 in the usual way,

by summing all the Pn values to infinity and setting the sum equal to
1.

∞
∑

n=0

Pn = 1

∞
∑

n=0

P0
ρn kn k!

(k + n)!
= 1

1

P0
=
∞
∑

n=0

ρn kn k!

(k + n)!

=
(k!) e(ρ k)G(ρ k, k)

(ρ k)k

P0 =
(ρ k)k

(k!) e(ρ k)G(ρ k, k)
(8)

where G is the cumulative gamma distribution, defined as

G(χ, α) =

∫ χ

0

x(α−1) e−x

Γ(α)
dx (9)

Note that this is an alternative way of expressing the incomplete gamma
function Γ(x, a). We selected this particular algebraic representation
because it was easier to work with during the numeric optimization
phase. See (Fogiel et al., 1980) or (Pearson, 1983, p.636)for details.
Substituting (8)back into equation (3):

P [success] =
G(ρ k, k + 1)

ρG(ρ k, k)
(10)

In the context of a group of people vying for the time of a sin-
gle server, we need to adjust the generic ρ by the percentage of time
each person devotes to issuing requests to a particular server j. The
organization-wide parameter Load is the value of ρ when exactly one
full-time equivalent issues communication requests. So for any partic-
ular pair i, j

P [i succeeds in communicating with j](Load, k) =

Sij(Load, k) =

G(Load× k ×
n
∑

i=1
pij, k + 1)

Load× k ×

(

n
∑

i=1
pij, G(Load×

n
∑

i=1
pij, k)

)

(11)
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We note that, because of people leaving queue due to time-outs, the
queuing system remains stable even if arrival rate exceeds service rate.
The more relevant rate for stability is the rate at which people leave the
system either through being served or through timing out. Of course,
although the queue is stable, the failure rate becomes very high when
the time-out rate approaches the service rate. This is reflected in the
results section above.

B. Probability of communication failing to add value (due
to workflow)

When we introduce queuing failure to the model, we find that the
percentage of time spent trying to interact with someone is no longer
uniquely determined by the percentage of time spent actually inter-
acting. This makes it more difficult to accurately represent the effects
of interdependence. We choose to work with the same expression from
(Nasrallah et al., 1998), namely

P [Communication adds value] = Zij =
1

1 + pij × Interdep
(12)

Recall that Interdep is the ratio of two rates, one for communica-
tions with a particular partner and one for communications in general.
Higher interdependence means that more work had to be transacted via
communications with others before a successive communication with a
particular partner can have any value; low interdependence means that
repeated communications with any particular partner can yield value
(i.e., be successful) with fewer outside communications being necessary.
In the context of communication attempts failing due to queuing too
long, using the ratio of communication attempt rates (i.e. the general
rate to the specific rate) models time elapsed between attempts, not
useful work performed between successful communications. This is be-
cause success rates vary widely between interaction partners, so more
communication attempts no longer necessarily imply more communi-
cation successes. It becomes very complicated to gauge the relative
productivity of both parties of the communication, since each may
have a very different set of interaction partners and thus very different
success rates.
We did experiment with an alternative formulation, where

Zij =
1

1 + Interdep×
pij×Sij
n∑

i=1

pij×Sij

(13)
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This formulation takes into account the communication seeker’s
rate of failure due to queuing in determining whether the workflow
failure occurred. In other words, instead of optimizing individual I’s
total wait time between communications with individual j, it considers
time spent successfully communicating with others vs. time spent suc-
cessfully communicating with individual j. The practical offshoot was
that the distinction between structured organizations and unstructured
organizations became much smaller. Of course, real-life dynamics are
more complex than either formulation above. The time taken for condi-
tions conducive to a certain knowledge transfer to be of value depends
on the success rates of both sides of each communication, and also
on the success rates of those persons’ other communication partners.
We therefore decided to stick with the simplest expression because it
would have had the highest weight in any linear combination of such
expressions.

C. Aggregate Probability of Communication Success

The final expression for the aggregate knowledge transfer effectiveness
being maximized under both types of constraints is thus the simple
multiplication:

Effectiveness =
n
∑

i=1,j=1

pij hij SijZij

=

n
∑

i=1,j=1

pij
n− ranking of jby I

n− 1

×

G(Load× k ×
n
∑

i=1
pij, k + 1)

Load× k ×
n
∑

i=1
pij, G(Load×

n
∑

i=1
pij, k)

×
1

1 + pij × Interdep

(14)

This expression was what we numerically maximized by varying pij
for various combinations of the parameter values (Load, k, Interdep,
Diff).
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