
 1

CENTER FOR INTEGRATED FACILITY ENGINEERING 

 
 
 
 
 

Dynamic Models  
of  

Knowledge-Flow Dynamics 
 
 
 

By 
 
 
 
 
 

Mark Nissen and Raymond Levitt 
 
 
 

CIFE Working Paper #76 
November 2002 

 
 

STANFORD UNIVERSITY 
 



 2

 
 
 
 
 
 
 
 
 
 

Copyright © 2002 by 
Center for Integrated Facility Engineering 

 
 
 
 
 

If you would like to contact the authors, please write to: 
 
 

c/o CIFE, Civil and Environmental Engineering Dept., 
Stanford University 

Terman Engineering Center 
Mail Code: 4020 

Stanford, CA 94305-4020 

 



 3

Dynamic Models of Knowledge-Flow Dynamics 
 

Mark E. Nissen, Naval Postgraduate School 
Raymond E. Levitt, Stanford University 

 
14 November 2002 

Abstract 
Knowledge is unevenly distributed through most enterprises, so knowledge flow (e.g., across 
time, location, organization) is critical to organizational efficacy and performance under a 
knowledge-based view of the firm. Although knowledge flow is an inherently dynamic concept, 
however, the corresponding phenomenon remains poorly understood, and extant approaches to 
its modeling and description (e.g., natural language texts and figures) are fundamentally static 
and largely ambiguous. In this research, we build upon emerging theory for multidimensional 
conceptualization of the knowledge-flow phenomenon to develop dynamic models of knowledge-
flow dynamics. Drawing from recent advances in computational organization theory, we describe 
a research approach and modeling environment that enables the dynamics of enterprise 
knowledge flows to be formalized through computational models. Particularly when compared to 
extant descriptive theory articulated through natural language, such formal models are 
considerably less ambiguous, more reliable and quite explicit. We illustrate this research 
approach and modeling environment through formal representation and simulation of several 
knowledge-flow processes from the domain of software development. When used in conjunction 
with current theory, the new insight into and understanding of knowledge-flow dynamics revealed 
through this research is compelling and represents a contribution to the information systems 
literature. The article closes with key new directions for the kind of research elucidated by this 
work. 
 
Keywords: artificial intelligence, computational organization theory, knowledge flow, knowledge 
management, knowledge representation, organizational learning, simulation, software. 
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INTRODUCTION 
Knowledge represents a critical resource in the modern enterprise—so critical that it is now being 

conceptualized as central to competitive advantage in a knowledge-based view of the firm (Cole 

1998, Grant 1996, Spender 1996). But knowledge is not evenly distributed through the enterprise. 

Capitalizing on this resource for enterprise performance depends upon its rapid and efficient 

transfer from one organization, location or time of application to another. From a technological 

perspective, such dynamic dependence points immediately to the design of information systems 

(IS)—along with corresponding organization and process characteristics (Leavitt 1965, Davenport 

1993)—to enhance knowledge flow. But knowledge is distinct from information and data (e.g., it 
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enables direct, appropriate action; see Davenport et al. 1998, Teece 1998), and few extant IS 

even address knowledge as the focus or object of flow (Nissen 1999). Indeed in this light, the IS 

field does not have the benefit of strong theory on knowledge flow, as Alavi and Leidner (2001, p. 

126) note, there exist "large gaps in the body of knowledge in this area.” 

 So how does knowledge flow through the modern enterprise, and what kinds of 

managerial interventions (e.g., IS development, training, organizational change, workflow 

reconfiguration) can be made to enhance the flow of knowledge? A number of theoretical models 

have been developed to describe various aspects of the knowledge-flow phenomenon (e.g., 

Augier et al. 2001, Dixon 2000, King and Ko 2001, Markus 2001, O’Leary 2001, Schultze and 

Boland 2000, Swap et al. 2001), but few provide insight into the phenomenon itself; that is, a 

paucity of models have been developed to describe how knowledge flows through the enterprise. 

Until we can understand the phenomenon of knowledge flow, we are unlikely to design effective 

flow-enhancing interventions. By analogy, imagine trying to design flow-enhancing electronic 

devices (e.g., amplifiers, integrated circuits) without understanding the phenomenon of electrical 

flow, or trying to develop flight-worthy aircraft (e.g., designing jet engines, wings) without 

understanding how air flows at various velocities, angles, densities and temperatures. This is not 

limited to designing physical systems: consider the futility of designing an assembly line without 

understanding how manufacturing work (e.g., purchased materials, fabricated parts, 

subassemblies) flows through sequential and concurrent operations, or a logistical network 

without understanding how cargo flows through various topological configurations (e.g., hub and 

spoke, ring, point to point). 

Von Hippel (1994) takes a notable step in the direction of understanding how knowledge 

flows, as he examines causal factors for the relative marginal costs—characterized by the term 

stickiness—associated with transferring tacit and explicit knowledge for technical-innovation 

problem solving. Szulanski (1996, 2000) goes further by tying his “stickiness” notion to four 

different stages of the knowledge-transfer process (i.e., initiation, implementation, ramp-up, 

integration). Numerous life cycle models (see Nissen et al. 2000) adopt a similar staged view of 

knowledge flow. Nonaka (1994) goes further still, as he introduces a model describing a “spiral” of 
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dynamic interaction between tacit and explicit knowledge along an epistemological dimension (p. 

18), and he characterizes four processes (i.e., socialization, externalization, combination, 

integration) that enable individual knowledge to be “amplified” (p. 21) and effect organizational 

knowledge “crystallization” (p. 25) along the ontological dimension. A later and related work 

(Nonaka et al. 1996) identifies enabling “triggers” for and provides additional workplace examples 

of each knowledge-flow process (e.g., the “trigger” for socialization is building a “field” of 

interaction; p. 842).  

 Building upon these theoretical steps, Nissen (2002) integrates and extends the research 

above to develop a phenomenological model of enterprise knowledge flow. This model makes 

flow time explicit and supports a multidimensional representational framework that enables a new 

approach to analysis and visualization of diverse knowledge-flow patterns in the enterprise. 

However, even this rich characterization of knowledge-flow dynamics remains static in terms of its 

representational model; that is, like the other extant models of knowledge flow, it does not use a 

dynamic representation of knowledge-flow dynamics. This is much like trying to visualize three-

dimensional motion through a static picture (e.g., camera snapshot). Moreover, throughout this 

line of research, important dynamic interactions between model elements remain obscured 

through descriptive models based upon natural language texts and figures. 

 The research described in this article continues the work above by addressing the 

knowledge-flow phenomenon, but it takes a qualitative leap by introducing dynamic 

representation of knowledge-flow dynamics. Drawing upon current research advances in 

computational organization theory, the resulting model provides much greater fidelity and insight 

into knowledge-flow dynamics than the extant literature does, and it enables the execution and 

performance of diverse knowledge-work processes to be simulated for analysis and comparison. 

Further, through commitment to a formal model of the knowledge-flow phenomenon, the resulting 

representation is considerably clearer and more precise than even the richest of those above, 

and the approach is broadly generalizable. This represents a substantial new contribution to the 

IS literature. And through a program of systematic research (e.g., controlled experimentation 

through repeated simulation of enterprise processes under varying conditions), dynamic models 
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of knowledge-flow dynamics can help us understand how to enhance the flow of knowledge 

through the modern enterprise. 

 To describe this approach, we begin by drawing from the literature to develop a rich but 

static, multidimensional representation of enterprise knowledge flow. Building upon this 

representation, a dynamic knowledge-flow model is specified and instantiated, and its use and 

utility are in turn demonstrated through simulation of important knowledge-work processes from 

the IS literature. The article concludes by summarizing key implications of this work and outlining 

an agenda for continued research along the lines of this investigation. 

STATIC MODEL INTEGRATION 
The Spiral Model described by Nonaka (1994) serves as the cornerstone of model integration in 

this section. Unlike the technical-transfer work of von Hippel and Szulanski above, this model 

describes the kinds of continuous and routine flows that comprise the bulk of organizational 

knowledge work. Figure 1 delineates the interaction between epistemological and ontological 

dimensions used by Nonaka as the principal means for describing knowledge as it flows through 

the enterprise. As noted above, this flow is characterized by four enterprise processes (and 

epistemological conversions): socialization (tacit to tacit), externalization (tacit to explicit), 

combination (explicit to explicit), and internalization (explicit to tacit). The related trigger concept 

(i.e., from Nonaka et al. 1996) is also integrated into the figure to show where each knowledge-

conversion process is “induced” (p. 842) by one of four triggers: field building, dialog, linking 

explicit knowledge, and learning by doing.  

Briefly, socialization denotes members of a team sharing experiences and perspectives, 

much as one anticipates through tightly knit workgroups and communities of practice; in terms of 

the trigger, a “field” of interaction is seen as facilitating this sharing. Externalization denotes the 

use of metaphors through dialog that leads to articulation of tacit knowledge and its subsequent 

formalization to make it concrete and explicit; such dialog or what Nonaka et al. refer to as 

“collective reflection” (p. 842) is described as inducing externalization. Combination denotes 

coordination between different groups in the organization—along with documentation of existing 

knowledge—to link and combine new intra-team concepts with other explicit knowledge in the 
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enterprise. Internalization denotes diverse members in the organization applying the combined 

knowledge from above—often through trial and error—and in turn translating such knowledge into 

tacit form at the organization level (e.g., through work practices and routines); the term learning 

by doing is used to describe the trigger for knowledge internalization. As suggested by the 

repeating pattern delineated in the figure, such interaction between “triggers” and conversions 

enables a continuous “spiral” of knowledge. 

Epistemological

Ontological

Explicit

Tacit

Individual        Group        Organization        Inter-organization

Socialization
(Field building)

Externalization
(Dialog)

Combination
(Explicit linking)

Internalization
(Learning by doing)

 

Figure 1 Spiral Model (adapted from Nonaka 1994, Nonaka et al. 1996) 

 

We extend this Spiral Model by drawing from Nissen et al. (2000), who develop their Life 

Cycle Model by amalgamating several individual works (e.g., Despres and Chauvel 1999, Gartner 

Group 1999, Davenport and Prusak 1998, Nissen 1999). This amalgamated model describes a 

continuous cycle with six phases of knowledge flowing through the enterprise: 1) creation, 2) 

organization, 3) formalization, 4) distribution, 5) application, and 6) evolution. Briefly, the creation 

phase begins the life cycle, as new knowledge is generated within an enterprise; similar terms 

from other models include capture and acquire. The second phase pertains to the organization, 

mapping or bundling of knowledge, often employing systems such as taxonomies, ontologies and 
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repositories. Phase 3 addresses mechanisms for making knowledge formal or explicit; similar 

terms from other models include store and codify. The fourth phase concerns the ability to share 

or distribute knowledge in the enterprise; this also includes terms such as transfer and access. 

Knowledge use and application for problem solving or decision making in the organization 

constitutes Phase 5, and a sixth phase is included to cover knowledge refinement and evolution, 

which reflects organizational learning—and thus a return to knowledge creation—through time. It 

is important to note, as in the familiar life cycle models used in IS design (e.g., System 

Development Life Cycle or SDLC), progression through the various phases of this Life Cycle 

Model is generally iterative and involves feedback loops between stages; that is, all steps need 

not be taken in order, and the flow through this life cycle is not necessarily unidirectional. 

Integrating the concepts above, the resulting model can be represented using three 

dimensions: epistemological, ontological and life cycle. Clearly, many additional dimensions could 

also be integrated into this model (e.g., declarative and procedural, see Nolan Norton 1998; 

practical and theoretical, see Spender 1996; know-what and know-how, see Ryle 1958; causal, 

conditional and relational, see Zack 1998; embodied, encoded, embrained, embedded and 

procedural, see Venzin et al. 1998). But using three dimensions strikes a balance between 

descriptiveness and parsimony, and the three dimensions selected for this model all derive from 

research focused specifically on knowledge flow. We use this three-dimensional representation to 

characterize in new ways the complex interactions between knowledge in alternative states as it 

flows through the enterprise. Yet we also preserve the descriptive and explanatory abilities of the 

individual models that underlie (and are subsumed by) this integrative work.  

The three-dimensional representation also enables us to visualize a diversity of 

enterprise knowledge flows, as it defines a vector space and enables us to plot dynamic 

trajectories for each flow. Drawing from Nissen (2002), three notional knowledge-flow trajectories 

are plotted in Figure 2 for illustration. For instance, the simple linear flow labeled “P&P” depicts 

the manner in which most large enterprises inform and attempt to acculturate employees through 

the use of policies and procedures: explicit documents and guidelines that individuals in the 

organization are expected to memorize, refer to and observe. As another instance, the cyclical 
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flow of knowledge through a life cycle (labeled “KMLC”) reflects a more-complex dynamic than its 

simple linear counterpart. The “spiral” dynamic from above can also be delineated in this space 

by the curvilinear vector sequence S-E-C-I (i.e., corresponding to the processes of socialization, 

externalization, combination, and internalization, respectively). Further, drawing from the Life 

Cycle Model, we can append processes to represent knowledge creation and evolution (labeled 

as vectors K and V, respectively), which we in turn link together to depict a serpentine flow that 

spans the ranges of all three dimensions. Notice in this representation that we can explicitly 

depict flow times of various magnitudes by proportionately adjusting the thickness of arrows used 

to represent each knowledge-flow vector; this enables us to differentiate graphically between 

specific flow processes and states associated with “sticky” and “fluid” knowledge, for example. 

Notice also that different knowledge flows delineate discernable patterns in this vector-space 

representation (e.g., lines, cycles, spirals). Clearly, a great many flows and patterns can be 

depicted in this manner.  
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Figure 2 Notional Knowledge-Flow Trajectories (adapted from Nissen 2002) 
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DYNAMIC MODEL REPRESENTATION 
Despite the richness of our multidimensional representation above, the representation itself 

remains static; that is, although we use it to describe the dynamics of knowledge-flow processes, 

the representation is limited to a static combination of natural language texts and diagrams. In 

this section, we draw upon current research advances in computational organization theory to 

describe a dynamic representational environment used for formal organizational modeling, and 

we employ this environment to describe a computational model of enterprise knowledge-flow 

processes. 

Virtual Design Team Research 
The Virtual Design Team (VDT) Research Program (VDT 2002) reflects the planned 

accumulation of collaborative research over two decades to develop rich theory-based models of 

organizational processes. Using an agent-based representation (Cohen 1992, Kunz et al. 1998), 

micro-level organizational behaviors have been researched and formalized to reflect well-

accepted organization theory (Levitt et al. 1999), and extensive empirical validation projects (e.g., 

Christiansen 1993, Thomsen 1998) have demonstrated the representational fidelity and shown 

how the qualitative behaviors of VDT computational models correspond closely with a diversity of 

enterprise processes in practice.  

The VDT research program continues with the goal of developing new micro-organization 

theory and embedding it in software tools that can be used to design organizations in the same 

way that engineers design bridges, semiconductors or airplanes—by modeling, analyzing and 

evaluating multiple virtual prototypes of the system to be designed in a computer. Clearly this 

represents a significant challenge. Micro-theory and analysis tools for designing bridges and 

airplanes rest on well-understood principles of physics (e.g., involving continuous numerical 

variables, describing materials whose properties are relatively easy to measure and calibrate), 

and analysis of such physical systems yields easily to differential equations and precise 

numerical computing.  

In contrast, theories describing the behavior of organizations are characterized by 

nominal and ordinal variables, with poor measurement reproducibility, and verbal descriptions 
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reflecting significant ambiguity. Unlike the mathematically representable and analyzable micro-

behaviors of physical systems, the dynamics of organizations are influenced by a variety of 

social, technical and cultural factors, are difficult to verify experimentally, and are not amenable to 

numerical representation, mathematical analysis or precise measurement. Moreover, quite 

distinct from physical systems, people and social interactions (i.e., not molecules and physical 

forces) drive the behavior of organizations; hence such behaviors are fundamentally non-

deterministic and difficult to predict at the individual level. Thus, people, organizations and 

business processes are qualitatively different than bridges, semiconductors and airplanes, and it 

is irrational to expect the former to ever be as understandable, analyzable or predictable as the 

latter. This represents a fundamental limitation of the approach. 

Within the constraints of this limitation, however, we can still take great strides beyond 

relying upon informal and ambiguous theoretical description of organizational behavior. For 

instance, the domain of organization theory is imbued with a rich, time-tested collection of micro-

theories that lend themselves to qualitative representation and analysis. Examples include 

Galbraith's (1977) information processing abstraction, March and Simon’s (1958) bounded 

rationality assumption and Thompson’s (1967) task interdependence contingencies. Drawing 

from this theory base, we employ symbolic (i.e., non-numeric) representation and reasoning 

techniques from established research on artificial intelligence (AI) to develop computational 

models of theoretical phenomena. Once formalized through a computational model, the symbolic 

representation is “executable,” meaning it can be developed to emulate the dynamics of 

organizational behaviors. 

Even though the representation is qualitative (e.g., lacking the precision offered by 

numerical models), through commitment to computational modeling, it becomes formal (e.g., 

people viewing the model can agree on exactly what it describes), reliable (e.g., the same sets of 

organizational conditions and environmental factors generate the same sets of behaviors) and 

explicit (e.g., much ambiguity inherent in natural language is obviated). Particularly when used in 

conjunction with the descriptive natural language theory of our extant literature, this represents a 

substantial advance. Further, once a model has been validated to accurately emulate the 
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qualitative behaviors of the field organization it represents, it can be used to examine a multitude 

of cases (e.g., many more and diverse than observable in practice) under controlled conditions 

(e.g., repeating the same events multiple times, manipulating only one or a few variables at a 

time through repeated trials, stopping the action for interpretation). This alone offers great 

promise in terms of theory development. 

Additionally, although organizations are inherently less understandable, analyzable and 

predictable than physical systems, and the behavior of people is non-deterministic and difficult to 

model at the individual level, it is well known that individual differences tend to average out when 

aggregated cross-sectionally and/or longitudinally. Thus, when modeling aggregations of people 

in the organizational context (e.g., work groups, departments, firms), one can augment the kind of 

symbolic model from above with certain aspects of numerical representation. For instance, the 

distribution of skill levels in an organization can be approximated—in aggregate—by a Bell Curve; 

the probability of a given task incurring exceptions and requiring rework can be specified—

organization wide—by a distribution; and the unpredictable attention of a worker to any particular 

activity or event (e.g., new work task, communication, request for assistance) can be modeled—

stochastically—to approximate collective behavior. As another instance, specific organizational 

behaviors can be simulated hundreds of times—such as through Monte Carlo techniques—to 

gain insight into which results are common and expected versus those that are rare and 

exceptional. 

Of course, applying numerical simulation techniques to organizations is nothing new 

(e.g., see Law and Kelton 1991). But this approach enables us to integrate the kinds of dynamic, 

qualitative behaviors emulated by symbolic models with quantitative aggregate dynamics 

generated through discrete-event simulation. It is through such integration of qualitative and 

quantitative models—bolstered by strong reliance upon well-established theory and commitment 

to empirical validation—that our approach diverges most from extant research methods and 

offers new insight into the dynamics of organizational behavior. This summarizes the approach 

we take to modeling knowledge-flow dynamics. 
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VDT Modeling Environment 
The VDT modeling environment has been developed directly from Galbraith’s information 

processing view of organizations. This information processing view of organizations has two key 

implications (Jin and Levitt 1996). The first is ontological: we model knowledge work through 

interactions of tasks to be performed, actors communicating with one another and performing 

tasks, and an organization structure that defines actors’ roles and constrains their behaviors. 

Figure 3 illustrates this view of tasks, actors and organization structure. As suggested by the 

figure, we model the organization structure as a network of reporting relations, which can capture 

micro-behaviors such as managerial attention, span of control and empowerment, and we 

represent the task structure as a separate network of activities, which can capture organizational 

attributes such as expected duration, complexity and required skills. Within the organization 

structure, we further model various roles (e.g., marketing analyst, design engineer, manager), 

which can capture organizational attributes such as skills possessed, level of experience and task 

familiarity. Within the task structure, we further model various sequencing constraints, 

interdependencies and quality/rework loops, which can capture considerable variety in terms of 

how knowledge work is organized and performed.  

As also suggested by the figure, each actor within the intertwined organization and task 

structures has a queue of information tasks to be performed (e.g., assigned work activities, 

messages from other actors, meetings to attend) and a queue of information outputs (e.g., 

completed work products, communications to other actors, requests for assistance). Each actor 

also processes such tasks according to how well the actor’s skill set matches those required for a 

given activity, the relative priority of the task, the actor’s work backlog (i.e., queue length), and 

how many interruptions divert the actor’s attention from the task at hand. Actors’ collective task 

performance is further constrained by the number of individual actors assigned to each task, the 

magnitude of the task, and both scheduled (e.g., work breaks, ends of shifts, weekends and 

holidays) and unscheduled (e.g., awaiting managerial decisions, awaiting work or information 

inputs from others, performing rework) downtime. 
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Figure 3 VDT Information Processing View of Knowledge Work 
 

The second implication is computational: both primary work (e.g., planning, design, 

management) and coordination work (e.g., group tasks, meetings, joint problem solving) are 

modeled in terms of work volume. This construct is used to represent a unit of work (e.g., 

associated with a task, a meeting, a communication) within the task structure. In addition to 

symbolic execution of VDT models (e.g., qualitatively assessing skill mismatches, task-

concurrency difficulties, decentralization effects) through micro-behaviors derived from 

organization theory, the discrete-event simulation engine enables (virtual) process performance 

to be assessed (e.g., quantitatively projecting task duration, cost, rework, process quality).  

Clearly quantitative simulation places additional burden on the modeler in terms of 

validating the representation of a knowledge-work process, which generally requires fieldwork to 

study an organization in action. The VDT modeling environment benefits from extensive fieldwork 

in many diverse enterprise domains (e.g., power plant construction and offshore drilling, see 

Christiansen 1993; aerospace, see Thomsen 1998; software development, see Nogueira 2000; 

healthcare, see Cheng and Levitt 2001; others). And through the process of “backcasting”—

predicting known organizational outcomes using only information that was available at the 

beginning of a project—VDT models of operational enterprises in practice have demonstrated 
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dozens of times that simulated organizational behaviors and results correspond qualitatively to 

their actual counterparts in the field (Kunz et al. 1998).  

Viewing VDT as a validated model of project-oriented knowledge work, researchers have 

begun to use this dynamic modeling environment as a “virtual organizational testbench” to 

explore a variety of organizational questions, such as effects of distance on performance (Wong 

and Burton 2000) or to replicate classical empirical findings (Carroll and Burton 2000). Thus, the 

VDT modeling environment has been repeatedly and longitudinally validated as representative of 

both organization theory and enterprises in practice. This gives us considerable confidence in its 

results. However, because of its information processing view of the organization, the VDT 

modeling environment is not specifically designed to represent processes associated with the 

flow of knowledge through an enterprise. The computational knowledge-flow model developed 

below represents a new step in terms of VDT research. 

Computational Knowledge-Flow Model 
Here we employ the VDT modeling environment to represent knowledge-flow processes 

associated with software development. With its output the product of collaboration between 

people and computers, software development represents a relatively pure form of knowledge 

work, and the associated processes and tools have long been the focus of IS literature. This 

domain also helps elucidate our multidimensional knowledge-flow representation from above, and 

it highlights both differences and linkages between flows of work in the enterprise and the 

corresponding flows of knowledge. Building upon prior research in this domain (e.g., Nogueira 

2000), we use the VDT modeling environment’s behavior file for software development, which 

benefits from the kind of field research and validation discussed above. 

 Using a relatively simple work process for exposition, an overview of our VDT model for 

software development is illustrated through the screenshot presented in Figure 4. The 

organization structure is comprised of only three elements: 1) a knowledge worker (i.e., person 

icon at top of diagram labeled “S/W arch”) with skills in software-architecture development, 2) a 

team of (10) software engineers (i.e., person icon at top of diagram labeled “S/W eng team1”) 

with skills in software analysis, design and programming, and 3) a project lead (i.e., person icon 
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at top of diagram labeled “S/W PM”) with skills in project planning, supervision and software 

development. The task structure is comprised of only two work elements: 1) software architecture 

(i.e., rectangular icon at middle of diagram labeled “S/W arch”) and 2) software engineering (i.e., 

rectangular icon at middle of diagram labeled “S/W engr”); the four milestones shown (i.e., project 

start, architecture complete, application complete, project finish) serve as markers of progress 

against schedule but do not involve work.  

 

Figure 4 VDT Software Development Model – Baseline 
 

Five types of connections are delineated between organization and task elements in this 

representation: 1) precedence connections (e.g., between “S/W arch” and “S/W engr” tasks, “S/W 

arch” task and “S/W arch complete” milestone; shown in black) link tasks and milestones 

according to the order in which they must be accomplished; 2) communication connections (e.g., 

between “S/W arch” and “S/W engr” tasks; shown in green) link tasks associated with reciprocal 

interdependence, which require mutual adjustment by actors (Thompson 1967); 3) rework 
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connections (e.g., between “S/W arch” and “S/W engr” tasks; shown in red) link tasks in which 

exceptions or failures “downstream” (e.g., in software-engineering activities) feedback to cause 

rework “upstream” (e.g., in software-architecture activities); 4) assignment connections (e.g., 

between “S/W eng team1” actors and “S/W engr” task; shown in blue) indicate which 

organizational actors are assigned responsibility for each work task; and 5) supervision 

connections (e.g., between “S/W PM” and “S/W arch” actors) indicate the formal organizational 

hierarchy.  

The two windows at the left of this figure reveal a tree structure of the representation (top) 

and numerous model parameters (e.g., priority, centralization, team experience; bottom) used to 

instantiate a particular work process (e.g., a software development effort in the field). These 

parameters are all set to empirically determined “normal” values for a software development 

project such as our example, except for “team experience,” which we initially set to a relatively 

low level to represent a group of software engineers that do not have much experience working 

together. 

The diagram in Figure 4 is representative of the kinds of models developed in the VDT 

environment. The diagram itself is clearly static, but by linking to both symbolic emulation and 

discrete-event simulation, the extended representation is dynamic, in that time varying states, 

conditions and results are projected. And because all objects, relations and parameters in this 

representation are explicit, this formal model of organizational behavior has little ambiguity. The 

process illustrated in the figure represents a baseline case, in which only the flows of work (e.g., 

“S/W arch” and “S/W engr” tasks) and information (e.g., between actors performing the “S/W 

arch” and “S/W engr” tasks) are modeled. Each actor is instantiated with a specific set of skills 

(e.g., “software architecture,” “software engineering”) and level of experience (e.g., “medium”), 

which remains constant throughout the simulated period of process performance; that is, all 

knowledge flows are assumed to have completed before the simulated project begins. This 

represents the point of departure for our present research. 
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DYNAMIC KNOWLEDGE-FLOW BEHAVIOR 
In this section, the computational knowledge-flow model from above is used to simulate the 

behavior and performance of knowledge work associated with software development. We first 

simulate the baseline model instantiated above to establish a basis for comparison. We then 

develop some related models to illustrate our dynamic representation of knowledge flows, in 

addition to their workflow and information-flow counterparts. 

Baseline Model Dynamics 
Table 1 summarizes some of the key simulation performance projections after 100 simulated runs 

(i.e., using the Monte Carlo technique) for the baseline model (Column 2). This includes both the 

software-architecure and –engineering tasks. Detailed derivation and description of the various 

attributes (Column 1) can be found in Jin and Levitt (1996). As shown in this table, the baseline 

software development work is projected to require just over 11 months to complete and cost 

$1187K. The Schedule Growth Risk attribute compares the projected duration of the project with 

the duration that would be achievable through Critical Path Analysis; that is, if the task were to 

take only the amount of time scheduled (i.e., 260 days), this attribute would be zero. In the 

baseline case, coordination, rework and delay cause the simulated schedule for this task to grow 

by 80 days. Attributes such as these are quite common among contemporary simulation models. 

Alternatively, Functional Quality Risk summarizes the amount of work that would be 

required to correct all functional defects associated with the software work; if all such defects 

were reworked and fully corrected, this functional quality risk attribute would be zero. In the 

baseline case, empirically determined factors such as the likelihood of errors (e.g., design errors, 

coding bugs) and probability of correction by organizational actors suggest the project effort 

would have to grow by 41% to accomplish all functional rework. This represents an implicit 

measure of quality, for so many latent errors are likely to adversely affect the performance of the 

software product released without such errors having been corrected. With insight into quality 

such as through this attribute, our dynamic VDT representation goes beyond most simulation 

models. 
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Table 1 Simulated Performance Comparison 

 
Attribute 

 
Baseline 

Sequent 
Train NL 

Sequent 
Train L 

Concur 
Train L 

Team 
Building 

Duration (mo) 
 

11.1 13.6 12.4 14.6 11.4 

Cost ($K) 
 

$1187 $1212 $1041 $1125 $908 

Schedule Growth 
Risk (days) 

80 89 54 102 0 

Functional Quality 
Risk (%) 

41% 41% 41% 41% 41% 

Project Quality 
Risk (%) 

41% 42% 41% 41% 42% 

Rework Fraction 
(%) 

35% 33% 18% 24% 13% 

Max Backlog 
Arch (days) 

13 13 6 84 5 

Max Backlog 
Engr (days) 

13 13 9 9 31 

 

The Project Quality Risk factor is similar, except it measures risk at the project level (i.e., 

rework associated with coordination between tasks; e.g., software architecture and engineering) 

as opposed to the functional (i.e., task) level. In the baseline case, empirically determined factors 

such as the likelihood of inter-task errors (e.g., poor software specification, incorrect design 

document) and probability of correction by the organization as a whole (i.e., team of software 

engineers, project lead) suggest the project effort would have to grow by (coincidentally also) 

41% to accomplish all project rework. As with functional quality above, this attribute also 

measures an aspect of quality. Although such levels (i.e., 41% for functional quality, 41% for 

project quality) would be cause for concern in domains such as manufacturing, chemical 

processing or construction, quality risk levels are generally higher for service industries than their 

tangible-product counterparts, and these levels for software development are normal (i.e., 

empirically determined). As indicated by the Rework Fraction, 35% of the cost associated with the 

software project is comprised of rework (e.g., correcting design errors, fixing programming bugs); 

again, this level is expected in the domain of software development. 

The Maximum Backlog attributes indicate the architecture actor has nearly 13 days' work 

in its input queue, and coincidentally, the software-engineering team has roughly the same 

backlog. This dynamic measure is useful to reveal bottlenecks in a process. Such bottlenecks 
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often present project managers with tough choices between cost and schedule; that is, to 

ameliorate the effects of a bottleneck, additional resources (e.g., more software engineers, 

authorization of overtime work) can be added to speed the processing of work, but doing so often 

increases project cost. This level of backlog would normally be considered occasion for some 

concern but not alarm. Many other attributes are projected through simulation, but those 

summarized in the table represent the key ones for comparison with the knowledge-flow models 

below. 

Knowledge-Flow Models 
As noted above, the baseline VDT ontology includes constructs to represent flows of work and 

information, but the corresponding flow of knowledge represents a new thrust, and the VDT 

modeling environment does not have an express approach or the appropriate primitive objects to 

represent knowledge flows. Indeed, we are only beginning to develop concepts and techniques 

for representing the flow of knowledge through static models (e.g., Nissen 2002). However, a key 

concept from such static models provides sufficient conceptual linkage for us to proceed: the flow 

of knowledge is (nearly always) prerequisite to the performance of work. Hence the same kinds of 

precedence relations modeled through VDT using connections between work tasks offers an 

approach to extending this modeling environment to incorporate knowledge flows. 

 For instance, consider the software-engineering work task from the model above. This 

task is shown in Figure 4 as being sequentially dependent upon its software-architecture 

predecessor. This indicates the architecture must be substantially underway before the software-

engineering task can fruitfully begin; indeed, modeling contemporary practice in our model, we 

specify the software-engineering task as beginning when the architecture is 50% complete. This 

represents the flow work from one task enabling the performance of the next task. We can 

represent some flows of knowledge in analogous fashion; that is, drawing from Nissen (2002), 

just as the flow of work is driven by a set of (workflow) processes in the enterprise, so too is the 

flow of knowledge driven by a different set of (knowledge-flow) processes. We illustrate this 

approach through four scenarios or cases. 
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Case 1 – Knowledge Flow through Formal Training. This approach is illustrated in Figure 5, 

which extends our model from above to incorporate a knowledge-flow task associated with formal 

training. From our theoretical framework above, formal training represents the flow of relatively 

explicit knowledge along the epistemological dimension), from an organization (e.g., a firm 

contracted to perform the training) to an individual (e.g., student) or group (e.g., class) along the 

ontological dimension, at the distribution phase of the life cycle. Notice in this figure the new task 

(i.e., labeled “arch train”)—say the software-architecture actor requires three months’ training to 

learn a new tool being adopted by the enterprise for specifying architectures—is represented in 

comparable fashion to the other tasks (e.g., predecessor, successor and assignment links), 

except we use a different fill color and texture in the figure to show some distinction. We assume 

the training starts at project inception and must be complete before the software-architecture task 

can begin, and predictably, the entire schedule for the software development project is extended 

by a period close to this three-month time span. Simulated performance results for this case are 

presented in Column 3 of the table (i.e., labeled “Sequent Train NL”) above for comparison with 

the baseline model.  

As would be expected for addition of a new sequential task, both the project duration (i.e., 

now 13.6 months) and cost (i.e., now $1212K) reflect appreciable change; these are highlighted 

in bold print for contrast. Some of the other values are slightly different due principally to random 

variations in the simulation runs and the addition of the training (knowledge-flow) task. Despite 

dynamically modeling the additional time and cost associated with this knowledge-flow process, 

however, the case does not reflect any benefit in terms of new knowledge acquired by the 

software-architecture actor; that is, this scenario does not show improvement in the actor’s skill 

level. If this situation were to become manifest, then there would be little reason to invest in the 

training course. 
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Figure 5 VDT Software Development Model – with Sequential Architecture Training 

 

Case 2 – Knowledge Flow through Formal Training with Learning Effect. The fourth column 

in Table 1 (i.e., labeled “Sequent Train L”) includes the knowledge-flow benefit: after completing 

the training course, the software-architect actor has an increase in skill level (i.e., from “medium” 

to “high”) and performs better on the architecture task. Notice the knowledge-flow (i.e., learning) 

effect brings the schedule growth down to 54 days, and both project duration (i.e., 12.4 months) 

and cost (i.e., $1041K) also reflect this learning. Notice also the level of rework is down 

considerably (i.e., to 18%), as is the architecture actor’s backlog (i.e., to 6 days). These effects 

derive from the improved knowledge and corresponding work performance of the architect. 

Alternatively, this training course has no effect on the software-engineering team and its 

performance of the other project task; that is, the knowledge flow is restricted to an individual. 

Hence the overall simulation results do not show dramatic improvement. Indeed, even with the 

knowledge-flow effect, the project costs more and takes longer to complete with the training 
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course than in the baseline case summarized above. This represents another good point of 

comparison. 

Case 3 – Knowledge Flow through Formal Training with Concurrent Knowledge and Work. 

Continuing with the architecture-training example from above to illustrate the incorporation of a 

knowledge-flow process, Figure 6 shows the same situation (i.e., actor takes the training course, 

actor’s skills improve), except to “save time,” the software-architect actor is expected to 

accomplish the training concurrently (e.g., via an online course accomplished in the office) with 

his assigned work task. The project leader figures this will reduce the project time by the three 

additional months represented by the architecture course. And given the knowledge flow 

associated with the course, this leader expects the project to even beat its original schedule. 

From the static representation presented in the figure, this scenario reveals almost no 

difference with that in Figure 5. For instance, the reader can discern the architecture-training 

(knowledge-flow) task is no longer connected to the software-architecture (workflow) task; that is, 

the architecture work task no longer has to wait for the architecture training to be completed. 

Instead, architecture training (i.e., knowledge flow) and architecture development (i.e., workflow) 

are now performed concurrently, and both are now prerequisite to the software-engineering task. 

Other than this, the models are equivalent.  

The simulated performance is summarized in Column 5 of the table (i.e., labeled “Concur 

Train L”) above. Notice the project duration increases to 14.6 months, and project cost increases 

to $1125K. Contrary to the project leader’s plan, requiring the software-architect actor to learn the 

new architecture-specification system while performing the architecture-development task itself 

requires more time and money than sending the person to the course for three months. This kind 

of result is not apparent from the static representation, and although the result is intuitive for 

many managers and organization scholars, the logic may not be immediately apparent. Notice 

the backlog for the software-architect actor has increased to 84 days. Consistent with practical 

experience, when a knowledge worker is required to accomplish two tasks in concurrence—as 

opposed to serially—a boundedly rational individual (e.g., limited cognitive capability) with 

constrained resources (e.g., a 40-hour workweek) may experience more difficulties with both 
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tasks and expend more time and effort overall. Such insights are nearly impossible to derive from 

static representations and verbal descriptions. 

 

Figure 6 VDT Software Development Model – with Concurrent Architecture Training 
 

Case 4 – Knowledge Flows through Formal Training and Team Building. Figure 7 displays 

our final scenario, in which the equivalent of one month’s time is allocated for members of the 

software-engineering team to meet, share experiences and engage in the kinds of non-project 

activities often associated with a community of practice; this instantiates the socialization process 

from our theory above. As with the architecture-training course discussed above, this team-

building activity pertains to the flow of knowledge as opposed to the flow of work—indeed, many 

managers consider such time to be wasted. Yet, as with the architecture training, some benefits 

in terms of team learning are expected. This represents a difficult scenario to model using the 

VDT environment, for we have no way to represent actors’ skill levels changing during the course 
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of a task (e.g., software engineering). A current research goal includes extending the VDT 

modeling environment to address such situations. 

To “trick” the current modeling environment, we separate the software-engineering task 

into two phases—one can think of these as separate software releases, a common practice in 

software development—and we represent two software-engineering teams: the first one (i.e., 

labeled “S/W eng team1”) is as before, with medium-level software-engineering skills and low 

team experience; the second team (i.e., labeled “S/W eng team Lrn”) is used to reflect the 

benefits this same group may enjoy from its investment in team building (e.g., high-level skills, 

higher team experience). The other elements delineated in Figure 7 remain the same as in the 

sequential-training case above (i.e., Case 2); that is, we discard the concurrent-training scenario 

(i.e., Case 3) as a bad idea. 

 

Figure 7 VDT Software Development Model – with Engineer Team Building 
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Notice the simulated results in Column 6 of Table 1 (i.e., labeled “Team Building”). 

Despite introducing some slack into the software engineers’ work schedule, the overall project 

duration contracts to 11.4 months; this is roughly equivalent to the original schedule that included 

no knowledge-flow processes (e.g., no architecture training, no team building). And because the 

knowledge and performance levels of both the software-architect actor and software-engineering 

team have increased, the project cost is less than the baseline (i.e., $908K). One key is the 

rework statistic, which has dropped to 13%. And notice the schedule growth of zero; this indicates 

the project has now converged onto the critical path: another improved result over the original 

project baseline. Alternatively, one can see the effect of the engineers’ investment in team 

building through its increased backlog (i.e., 31 days); this quantifies the intuitive notion of 

mounting project work that accumulates as team members are engaged in non-project (i.e., team-

building) knowledge-flow activities. 

CONCLUSION 
Knowledge is unevenly distributed through most enterprises, so knowledge flow (e.g., across 

time, location, organization) is critical to organizational efficacy and performance under a 

knowledge-based view of the firm. Although knowledge flow is an inherently dynamic concept, 

however, the corresponding phenomenon remains poorly understood, and extant approaches to 

its modeling and description (e.g., natural language texts and figures) are fundamentally static 

and largely ambiguous. In this research, we build upon emerging theory for multidimensional 

conceptualization of the knowledge-flow phenomenon to develop dynamic models of knowledge-

flow dynamics.  

Drawing from recent advances in computational organization theory, we describe a 

research approach and modeling environment that enables the dynamics of enterprise knowledge 

flows to be formalized through computational models. Particularly when compared to extant 

descriptive theory articulated through natural language, such formal models are considerably less 

ambiguous, more reliable and quite explicit. We illustrate this research approach and modeling 

environment through formal representation and simulation of several knowledge-flow processes 

from the domain of software development. When used in conjunction with current theory, the new 
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insight into and understanding of knowledge-flow dynamics revealed through this research is 

compelling and represents a contribution to the information systems literature. 

Moreover, many new directions for the kind of research elucidated by this work are now 

explicit. For instance, we note above how work on the VDT modeling environment is needed to 

improve its capability for representing dynamic knowledge-flow processes (e.g., team learning, 

on-the-job experience), and comparison of VDT with other approaches and tools from the 

computational organization theory field can help us identify the most promising techniques. As 

another instance, the dynamics of knowledge flow imply some change in knowledge is taking 

place, but it is unclear how such change relates to the literature on learning, either at an individual 

or organizational level.  

Further, new research to map various rates of knowledge flow (e.g., through 

improvement theory) to alternative knowledge-flow processes (e.g., using our multidimensional 

model) may shed considerable light on a poorly understood dynamic phenomenon, and the kinds 

of tools discussed in this article provide the means for developing new micro-theory to identify 

and (virtually) test which kinds of managerial interventions (e.g., IS, training, organization 

changes, workflow reconfigurations) are most effective in specific enterprises, organizations and 

processes. Through the kind of intellectual exchange facilitated by this conference, we hope to 

help stimulate and guide a fruitful and focused program of continued collaborative research along 

these lines. 
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