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Abstract 

This paper presents industry test cases that illustrate the multi-disciplinary, constructive, iterative, and unique 
character of AEC projects. These test cases show that, to perform their tasks on these projects, AEC 
engineers construct task-specific engineering views from information in other engineering views.  These 
engineers have difficulty constructing and integrating task-specific views on these projects today. Based on 
these observations, this paper proposes that engineers could benefit from an approach that provides them 
with simple, formal methods to iteratively construct a task-specific view from other views as needed, and 
control the integration of these views as the project progresses. In this way, an integrated project model 
emerges as a directed acyclic graph of task-specific views and dependencies. This paper defines 
requirements for such an approach, and discusses current project modeling approaches in terms of these 
requirements. While points of departure, existing approaches do not explicitly enable engineers to easily 
construct and integrate task-specific views and control a project model in a way that maps closely to the way 
AEC projects work today. To address these requirements, this paper introduces the conceptually simple 
Perspective Approach that enables engineers from multiple disciplines to formalize the dependency of a view 
on other views, and to control an evolving project model of these views and their dependencies.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



1 Introduction 

Engineers need integrated task-specific project views to help them perform their design, planning, fabrication and 
assembly tasks. They could benefit from project model approaches that provide them with integrated task-specific 
project views more quickly and accurately than current practice and theory allows.  Traditionally, engineers have 
constructed and integrated views manually. For example, an engineer often overlays transparent drawings to assist in 
constructing and integrating a project’s geometry in two dimensions, or an engineer may refer to a contractor’s 
schedule when making a cost estimate. Over the past thirty years, computer-aided three-dimensional drafting (CAD) 
and project-modeling approaches have been developed to significantly improve the speed and accuracy with which 
engineers can construct and integrate task-specific geometric views. Among other things, CAD allows engineers to 
overlay geometric views and manually (or semi-manually, by using “design by feature” construction tools) construct 
dependent geometric views in response to the information in source geometric views. However, manually constructing 
and integrating task-specific views, with pencil or CAD, is often difficult, error-prone, and time-consuming. 
 
Project model approaches have extended CAD approaches to address the need for automatic, integrated views of an 
evolving project. As discussed in this paper, some construct and integrate views through a predefined central model; 
others construct and integrate a federation of predefined task-specific views. To date, these approaches have been 
slow to be adopted on Architecture, Engineering, and Construction (AEC) projects.  
 
Understanding the characteristics of AEC projects is essential to any effort to model these projects. This paper uses 
industry test cases to observe that AEC projects today are: 

• Multi-disciplinary: Engineers from different organizations, representing different engineering criteria, 
form project-specific teams to design, plan, and build one-of-a-kind projects in site-specific conditions. 
These engineers are under time-pressure to finish their jobs quickly; they cannot be expected to 
anticipate or understand all other engineers’ information needs when designing, planning and executing 
their work. They therefore construct and use task-specific views to perform their design, planning and 
erection tasks. 

• Constructive: Engineers construct their task-specific views from information in other engineers’ views 
(Figure 1A). A dependent view often serves as a source view for other dependent views. An implicit 
directed acyclic graph of dependencies between task-specific views forms as the design process 
progresses (Figure 1B).  

• Iterative: Engineers routinely modify source views throughout an AEC project, but without being able to 
integrate their work with work of the other engineers on a daily basis. Therefore, engineers responsible 
for dependent views must become aware of modifications to source views through coordination 
meetings and amended documents1. These engineers must manually represent any implications of the 
modifications by re-integrating the dependent views.  

• Unique: No two projects are alike because they are built to address a project-specific site and program 
with the aforementioned multi-disciplinary organization in an industry with changing and competing 
building technologies. Design concepts and approaches emerge within and across projects, and 
therefore engineers often need to construct new kinds of dependent views from changing source views.  

• Finally, AEC projects, as designed and built today, are error-prone, time-consuming, and difficult: 
Manually constructing and integrating dependent views from source views causes many problems on 
AEC projects today. 

                                                                 
1On various projects, these design versions are referred to as addenda, supplemental instructions, etc.  



A   B  
A. An engineer often uses discipline-specific reasoning to transform one or more source views produced by other 
disciplines into a task-specific dependent view that is suited to his tasks. The lines representing the dependencies 
between views are dashed, because they are currently not explicitly formalized. On AEC projects today, therefore, 
engineers often must manually construct and integrate dependent views. B. Dependent views become source views 
for other dependent views. A directed acyclic graph of dependencies between views emerges. 

Figure 1: The dependency between views.  
 
The test cases suggest that to address the difficulties engineers have on these multi-disciplinary, constructive, iterative, 
and unique AEC projects, engineers may benefit from simple, formal methods to: 

• Construct a task-specific view from other views, and  
• Control the integration of that view as other engineers iteratively modify their views.  

 
An integrated multidisciplinary project model would emerge as a directed acyclic graph of views and dependencies 
between views.  This is a fairly simple, but potentially powerful idea that integrates product (views), as well as 
organization and process (the dependency between views) as the project model evolves through time.  
 
This paper defines requirements for a project modeling approach that provides engineers with the tools needed to 
construct and control a project model of views and dependencies on views. This paper discusses existing AEC project 
modeling approaches in terms of these requirements, and concludes that, while points of departure, existing 
approaches are not explicitly designed to enable engineers to represent views and their dependencies in this way.  
 
To satisfy these requirements this paper introduces the Perspective Approach, in which engineers formalize the 
dependency of an engineering view, called a Perspective, on other Perspectives using a composable, reusable 
reasoning module called a Perspector. The Perspective Approach embodies simple Management Processes that 
enable engineers to control the integration of their Perspectives with respect to the Perspectives on which they 
depend. A Project Model emerges from the iterative application of Perspectives and Perspectors. For a detailed 
formalization of the Perspective Approach, and how engineers can iteratively construct and control a project model 
consisting of geometric Perspectives and their dependencies, see Haymaker et al (2003a). For a detailed formalization 
of Perspectors, and how they can be modified, composed, and subsumed by engineers to construct a task-specific 
Perspective from other Perspectives, see Haymaker et al (2003b).  



2 Test Cases Illustrating the Multi-disciplinary, Constructive, Iterative, and Unique 
Characteristics of AEC Projects 

This section presents three engineering test cases to illustrate the multi-disciplinary, constructive, iterative and unique 
character of AEC projects today. The test cases also illustrate that to perform their design, planning and building tasks 
on these projects, engineers construct and integrate task-specific views from other engineers’ views, and that as 
practiced today this is a time-consuming, error-prone, and difficult process. These test cases also suggest that if 
engineers could easily yet formally construct an engineering view from other engineering views, and control the 
integration of their view with respect to these other views, an integrated project model would emerge. This section 
concludes with representation, reasoning, and management requirements for testing the adequacy of alternative 
approaches to support engineers in constructing integrated task-specific information. 

2.1 The Walt Disney Concert Hall: deck attachment test case 
After several years on the drawing boards of architecture firm Gehry Partners, an aborted start by another general 
contractor, and a two-year pre-construction phase, general contracting and construction management firm Mortenson 
was awarded a lump-sum, at-risk contract with an aggressive required completion date enforced by liquidated 
damages (Post 2002). Mortenson’s job was to manage the detailed design, planning, and execution of the Walt Disney 
Concert Hall (WDCH). As the project progressed, Mortenson subcontracted work to various engineering firms and 
subcontractors that specialize in specific AEC tasks. This involved an iterative design and coordination process, 
whereby engineers constructed task-specific project views and submitted them to Gehry Partners, Mortenson, and 
other engineers. From these task-specific views, other engineers constructed, and integrated task-specific views to 
reflect the current state of the project. 
 
Gehry Partners’ projects are known throughout the AEC industry for their advanced use of geometric models in their 
design and construction processes. While the form of the building is unusual (see Figure 2A), the materials and 
methods used to build it are conventional: structural steel, concrete, stainless steel, glass, etc. This test case involves 
the design, fabrication, and installation of deck attachments, which are steel angles that attach steel beams to the 
metal deck on which the concrete slab is poured (see Figure 2B). For clarity these illustrations present just a main 
stairwell and public space that the project team calls Element 2. Figure 2C shows a portion of the erected frame for 
Element 2. The test case describes the process that the project team used to develop and execute the design, starting 
from the construction of views like the visible surface model shown in Figure 2D, to views such as those describing 
concrete slabs and steel framing (Figure 2E), to views detailing deck attachments that connect the steel beams to the 
concrete slabs (Figure 2F and 2G). These views finally lead to the erection of the steel framing, deck attachments, 
metal deck, and concrete slab. Figure 3 describes the approximate workflow the project team executed. 



A   B C  

D      E      F       G   
A. Physical model of the WDCH (image courtesy of Gehry Partners). B. Deck Attachment detail view. C. Element 2 
erected steel frame view. D. Element 2 exterior and interior Visible Surface view. E. Element 2 Roof Steel Framing and 
Concrete Slabs views. F. An engineer represents a deck attachment in a CAD layer, as a line on the edge of a beam. 
G. As-built Element 2 Roof Deck Attachments view (deck attachments are the dark lines, Concrete and Steel behind). 

Figure 2: Images of the WDCH for the deck attachment test case. 

  
A. The architect constructed a Concrete Slabs view, containing features that use surfaces to describe the boundaries of the 

project’s floors. He constructed this view from information in several other views, such as the architect’s visible surface 
view (see Figure 2D), and other views (not pictured). 

B. The structural engineer constructed a Framing Center Lines view containing geometric lines that describe the centerline 
of each column and beam. He constructed this view using information in the Concrete Slabs view and other sources of 
information (not pictured).  

C. The structural engineer constructed 2D Structural Framing views, one for each floor, from the Concrete Slabs and 
Framing Center Lines views. The Framing Plan identifies the size of each beam and contains some detail symbols that 
identify where certain construction methods are to be employed. One detail symbol refers to a Deck Attachment detail. 

D. The structural engineer constructed the Deck Attachment detail view containing lines and text describing how to attach a 
slab and beam if they are close, but the top face of the beam is not flush with the bottom face of the slab (see Figure 2B). 

E. The steel fabricator constructed the Steel Framing view, containing features that use surfaces to describe the boundaries 
of each structural steel framing member. He constructed this view from the structural engineer’s views. 

F. The decking detailer constructed a Deck Attachments view (see Figure 2G), consisting of a geometric line along the top 
edge of any beam where a Deck Attachment is required (see Figure 2F). He constructed this view from the geometric 
Steel Framing, 2D framing plans, and the geometric Concrete Slabs. Constructing this view was error-prone, time-
consuming, and difficult. It took the deck detailer over 140 hours to construct and maintain the Deck Attachments view. 

G. The concrete detailer constructed 2D Slab views of each slab, to prepare for installation of each slab. He constructed this 
view from the Concrete Slabs view and other project views not shown. 

H. The steel fabricator fabricated the steel beams required on the job, and welded the deck attachments onto the steel 
beams as required. Using information from the Steel Framing and Deck Attachments views, he determined which beam 
should be welded to which beam, and performed this welding in the controlled environment of the shop. 

I. The steel erector received the beams at the project site with the deck attachments already welded in place, and erected 
the steel beams using the geometric Steel Framing and other erection views (not shown). 

J. The metal deck erector installed metal deck on top of the steel beams and deck attachments, using the 2D Slab views. 

Figure 3: The workflow for the design and construction team of the WDCH concrete and steel frame.   
 



During the design development and coordination, these engineers needed to iteratively modify their views. For 
example, Figure 4A shows tracks for window-washing equipment that were added later in the design process. The 
addition of the tracks needed to propagate through the dependencies shown in Figure 3, thus requiring new and 
resized beams (Figure 4B) and new and revised deck attachment conditions (Figure 4C). 

 A            B        C      
A. Window washing tracks are added to the roof of Element 2.  B. The tracks (and the crane) result in additional load 
that requires additional steel framing. C. The additional steel framing requires new deck attachments. 

Figure 4: A design modification in the deck attachment test case. 
 
Figure 5 illustrates the difficulties the project team encountered while constructing and integrating the Deck 
Attachments view. Manually finding and accurately annotating these conditions in large and complex source views, and 
keeping track of design changes and updating the Deck Attachments view in a timely manner was error-prone, time-
consuming, and difficult. In these cases, the deck attachments could often not be welded to the beam in the fabrication 
shop. As a result the deck attachments required more expensive, time-consuming, and less controlled field welding.  

 
A. The architect added tracks for a window-washing crane to the design (see Figure 5A). 
B. The addition of the window-washing crane resulted in additional loading requirements on the roof, causing the structural 

engineer to modify his framing views. 
C. The steel detailer learned of these modifications, and added beams to the geometric model where required. 
D. If the decking detailer did not learn of the changes or missed a specific condition, the deck attachment view did not get 

accurately updated.  
E. If the deck attachments are not accurately reflected in the Deck Attachments view, the steel fabricator did not weld the 

deck attachment onto the beam in the shop.  
F. More expensive, time-consuming, and dangerous field welding of the deck attachments was required. Over $160,000 of 

field welding expenses was incurred on the project due to missed conditions and difficulties controlling the propagation of 
design changes. 

G. Field welding often delayed the metal deck and subsequent trades. 

Figure 5: The difficulties engineers had constructing and integrating the Deck Attachments view resulted in field 
welding of deck attachments. This diagram describes the propagation of the addition of window-washing tracks through 

the dependencies. 
 
 



 
This test case provides an overview of the workflow involved in the detailed design, planning, and execution of the 
structural framing system of the WDCH, focusing on the deck attachments specifically. The test case illustrates that 
AEC processes are: 

• Multi-disciplinary: The architect, structural engineer, steel detailer, deck detailer, steel fabricator, etc. 
specializes in different engineering tasks and also work for different organizations. They must form a 
project-specific team to design, plan, and build the project. Each engineer uses task-specific views to 
perform these tasks. The engineers are contractually responsible for the information in their view(s). 

• Constructive: To perform his task, the decking detailer constructs a task-specific Deck Attachments 
view. He constructs this view from the Steel Framing and Concrete Slabs views. In turn, the Deck 
Attachments view becomes a source view for the fabricator and other engineers. 

• Iterative: The architect, structural engineer, steel detailer, and deck detailer iteratively need to 
reconstruct their task-specific views as the design progresses. The engineers responsible for dependent 
views need to be notified; and they subsequently reconstruct the dependent view. 

• Unique: Deck attachments are an issue on some, but not all, AEC projects. The AEC industry, software 
providers, or any of the engineers on the project had not previously formalized how to automatically 
construct a Deck Attachments view from Steel Framing and Concrete Slab views. Engineers need to 
construct and integrate new views not previously anticipated and formalized by computer programmers. 

• Time-consuming, error-prone and difficult: constructing and integrating the Deck Attachments view took 
the decking detailer over 140 hours, and required over $160,000 worth of field welding. 

 
The next two test cases illustrate the generality of these observations. 

2.2 The Walt Disney Concert Hall: cantilevered ceiling panels test case 
During the design of the daring and elegant ceiling (Figure 6A) of the main WDCH hall (Post 2003), architects, 
engineers, contractors, and subcontractors collaboratively designed and planned the various interrelated systems. 
Roof trusses, ducts, catwalks, fire sprinklers, theater lighting, and several other systems (Figure 6B) vied for a tight 
space above the ceiling, which is wood-faced, steel-framed, and concrete-filled for acoustic density. To aid in 
fabrication, the ceiling was broken into approximately 200 3m x 4m ceiling panels. Each panel, weighing in excess of 
1,000 kg for acoustic density, was hung on four steel tube hangers, and each hanger was attached as close to each 
panel corner as possible (Figure 6C) in order to avoid cantilever conditions, which occur when the edge of a panel 
extends significantly beyond the vertical steel tube hanger designed to support it (Figure 6D). The location, number, 
and severity of these conditions were a factor in deciding how to frame the panels. Generally, keeping these cantilever 
conditions to a minimum was a design goal, but tradeoffs had to be made in order to allow all of the systems to fit into 
the tight space available.   
 
 
 
 
 
 



A    B C  D  
A. Interior view of the main hall ceiling (taken from a physical model built by Gehry Partners). B. The ceiling system 
from above--roof trusses and ductwork are overlaid above the ceiling panels and hangers. C. Two ceiling panels and 
six hangers with no cantilever conditions. D. The same two ceiling panels after a design change creates four cantilever 
conditions (the center hanger creates a cantilever condition on each panel). 

Figure 6: Images of the WDCH for the cantilevered ceiling panel test case. 
 
The engineers on this project did not construct and maintain a view of these cantilever conditions. Rather, the 
engineers addressed these conditions in an implicit and ad hoc fashion, based on the considerable engineering 
experience of the design team. This test case is therefore more speculative in nature, claiming that these engineers did 
not construct a view because they did not have tools to enable them to construct a new view by specifying its 
dependencies on other views. If such a view could be constructed quickly and accurately, it could provide useful 
information for multicriteria design processes. Figure 7 diagrams a simple scenario where this information could be 
used as a design aid for an engineering team working with three systems: ducts, hangers, and ceiling panels. As the 
team moves hangers to make room for certain ducts, the panels that currently have cantilever conditions are 
highlighted. Wishing to minimize the number of panels with cantilever conditions, the team then uses this information to 
decide which hangers to move when routing ducts. 

 
Figure 7: A panel detailer constructs a Cantilever Conditions view from a view describing the locations of Ceiling 
Panels and Panel Hangers: It highlights panels that have cantilever conditions to assist in the routing of ducts. 

 
The cantilevered ceiling panel test case reinforces the generality of the previous observations. AEC projects are:  

• Multi-disciplinary: the architect and panel detailer work for different organizations, and address task-
specific engineering problems that require task-specific geometric views.   

• Constructive: the panel detailer constructs (currently implicitly in his head) his Cantilever Conditions 
view from information in the architect’s Panels and Hangers view.  

• Iterative: the Panels and Hangers view is often modified, and the Cantilever Conditions view must be 
integrated accordingly.  

• Unique: The need to construct a Cantilever Condition view from Ceiling Panels and Hangers emerges 
from the specific requirements of this AEC situation. 

• Difficult: The engineers on this job did not even attempt to construct and integrate a formal Cantilever 
Conditions view. Perhaps this is because they did not have tools that enabled them to easily construct 
and control the integration of this view. Engineers need to construct and integrate new views not 
previously anticipated and formalized by computer programmers.  



2.3 The HUT-600 Auditorium: thermal analysis test case 
Frank Gehry buildings are not the only projects on which engineers construct task-specific views from other 
engineering views and have difficulty doing so. For example, the Helsinki University of Technology HUT-600 
Auditorium is a more common structure: a US$5 million, 600-seat auditorium that was completed in February 2002. 
The project employed an array of design, visualization, simulation, and analysis tools as part of an international 
research partnership to investigate the performance of a suite of computer tools that were built to use the Industry 
Foundation Classes (IAI 2003). Cultural, technological, and business benefits and barriers on the project are discussed 
in (Kam and Fischer 2002). An example from that report discusses integration between the architect’s views, consisting 
of floors, walls, and other building components, and a thermal engineer’s view, which required a watertight 
representation of the space in order to perform a thermal analysis (Figure 8A). Because of the configuration of the 
walls and floors in the auditorium (Figure 8B), the thermal analysis tool’s usual extraction process could not construct 
the required Thermal Analysis view automatically from the architect’s 3D CATIA model. Extensive manual 
reconfiguration of the architect’s views became necessary. Once such an intervention took place, the architect’s views 
had gone through an irreversible domain-specific reconfiguration, making subsequent information sharing difficult or 
impossible. The thermal engineer needs to be able to describe to the computer how to construct the watertight space 
for this configuration of floors and walls, and control the integration of this dependent view with the architect’s source 
views (walls and floors). 

A            B  
A. The thermal engineer needs a watertight space in order to construct a Thermal Analysis view consisting of cross-
sectional profiles of temperature stratification and velocity values from the architect’s view containing walls, floors, and 
other building components. B. The configuration of walls and the floor of the auditorium that frustrated the automatic 
extraction process for the thermal analysis.  

Figure 8:  Images of the thermal analysis test case. 
 
The thermal analysis test case further reinforces the generality of the observation that AEC projects are multi-
disciplinary, constructive, iterative, and unique: Different engineering tasks require quite different views of information 
modeled in other engineers’ views.  Manually constructing and integrating these views is time-consuming, error-prone 
and difficult. Predetermining these views with computer programs is equally difficult.  

2.4 Intuitions from the test cases: the opportunity to formalize the dependencies between views 
Engineers use task-specific views to perform their design, planning and execution tasks. These views contain the 
information they need, structured in a way that is suited to their task. These engineers construct and integrate these 
views based on information in views produced by other engineers and each engineer is contractually responsible for 



the information in their views. Ideally engineers could automatically construct and integrate their views. One option is to 
have software application programmers attempt to foresee all potential views and dependencies that engineers will 
want, and find ways to formalize these into central or federated project modeling systems. The engineers on the HUT-
600 project tried to do this, but they were not able to formalize the necessary dependencies a priori. Foreseeing all the 
potential views that engineers will use has not occurred with any great rate of success to date because AEC processes 
are multi-disciplinary and unique: task-specific views emerge as the design is developed by multiple disciplines. We 
investigate whether project modeling approaches could at least be augmented by, if not founded on, the ability for 
engineers to construct and control their own task-specific views by specifying their own dependencies on other 
engineers’ views, when, and where the engineering need for these views emerges. 
 
While acknowledging that the dependencies between views can often be cyclical--for example, the architect may revise 
the location of slabs or beams based on the number and size of deck attachments--this research investigates the 
conceptual simplicity of formalizing a project model as a directed acyclic graph (d.a.g.) of geometric views and their 
dependencies. From observations on the test case, the majority of the information dependencies are directed, and 
managed in the context of views; therefore this research investigates this simplicity as desirable to help manage the 
complexity of multi-disciplinary, constructive, iterative and unique AEC processes. 
 
To formalize a project model as a directed acyclic graph of views and dependencies, engineers could use a simple, yet 
adequately expressive and formal, generic view with which they can construct their task-specific views. In the test 
cases each view contained a collection of geometric features. The interactions of these features in space cause 
engineering conditions to emerge between some but not all components. For example, only some of the slabs and 
some of the beams require deck attachments, and in some cases, a beam can require more than one deck attachment 
when it supports more than one slab. The geometric data types in these features consist of surfaces, lines, and points. 
Other types of views, such as schedules and cost estimates, are also constructed and integrated in the same way on 
AEC Projects. However this research focuses on geometric views consisting of geometric features and their spatial 
relationships. 
 
Engineers could also use a method to formalize the existence, status and nature of the dependency between views. 
Specifically, to formalize the dependency between a view and its source views, engineers could formalize the: 

• Existence: The source views on which a dependent view depends. For example, the Deck Attachments 
view depends on the Steel Framing and Concrete Slabs views. 

• Status: Integration status of the view with respect to its source views. For example, when a slab or 
beam is modified, the Deck Attachments view’s status should be Not_Integrated. 

• Nature: The reasoning (automated or manual) that constructs the dependent view from source views. 
Engineers are generally not computer programmers; they need formal but simple methods to specify the 
nature of the dependencies. For example, the reasoning that the decking detailer uses to construct the 
Deck Attachments view from the Steel Framing and Concrete Slabs views.  

 
 
 



A  

B  

 

C  

A. Formalizing the existence, nature, and status of the dependency between views. B. Applying this formalism 
to the deck attachment test case. C. A project model can emerge from the iterative application of the formalism 
described in A.  

 
Figure 9A diagrams this formalization of the dependency of a dependent view on source view(s). Figure 9B shows this 
formalization applied to the deck attachment test case. The reasoning, called Find Deck Attachments, analyzes beam 
features in the Steel Framing view and slab features in the Concrete Slabs view to construct deck attachment Features 
in the Deck Attachments view. Figure 9C shows that the formalization of the dependency between views can be 
applied iteratively to define a Project Model. The reasoning can be manual (denoted by a human icon) or automated 
(denoted by a gears icon).  

Figure 9: Formalizing the dependency between views.   
 
Engineers could also use formal but simple methods to control the integration of their views, so that they can iteratively 
modify their views and receive notification when the views on which they depend have been reconstructed.   
Specifically they should be able to easily and iteratively:  

1. Construct new views, information in these views, and dependencies between views (using either automated 
or manual reasoning). 

2. Control the integration of their views with respect to the views on which they depend.   
 
For example, the engineer responsible for the Deck Attachment view should be able to easily construct the 
dependencies on the Steel Framing and Concrete Slabs views, be notified when these source views are modified, and 
be able to (re) construct the deck Attachments view. Other engineers should be able to construct and control 
dependent views of the Deck Attachments view.  
 
The following summarizes our intuitions into requirements for a project modeling approach that addresses the 
characteristics of AEC projects observed in the test cases and overcomes the difficulties encountered by the engineers 
on these test cases by enabling engineers to formalize a project model as a directed acyclic graph of views and 



dependencies. These requirements are also useful to determine whether alternative project modeling approaches 
enable engineers to easily construct and control views and their dependencies.  A project model approach should 
formalize: 

• Representation:  
1. A generic engineering view containing the formalisms to represent an engineer’s task-specific views. It 

should be simple enough to be understood, yet also contain adequate expressiveness to describe a 
wide range of task-specific needs; for example, a generic view that an engineer can use to construct, 
among other views, the Steel Framing, Concrete Slabs, Deck Attachments, Ceiling Panels, Panel 
Hangers, and Cantilever Conditions views. 

2. The generic existence, status, and nature of the dependency of a dependent view on its source views. 
For example, an engineer should be able to represent the dependency of the Deck Attachments view on 
the Concrete Slabs and Steel Framing views. 

• Reasoning:   
3. Generic reasoning that constructs a dependent geometric view from source geometric views to enable 

engineers to integrate their task-specific views with the existing project information that is relevant to 
them. The approach should contain methods for engineers (as opposed to computer programmers) to 
define this reasoning, and thus extend the project model in ways that cannot be anticipated; for 
example, reasoning that engineers can use to formalize the nature of the dependency by specifying how 
to construct a Deck Attachments view from the Concrete Slabs and Steel Framing views.  

• Management:  
4. Generic methods for engineers to iteratively construct (add, modify, and delete) instances of 1, 2 and 3; 

for example, tools to enable an engineer to construct the Deck Attachments view by specifying its 
dependence on the Concrete Slabs and Steel Framing views. Other engineers should then be able to 
construct new views that depend on the Deck Attachments view.  

5. Generic methods for engineers to control the iterative construction and integration of this graph of views 
and their dependencies as it is iteratively modified in a multi-disciplinary way; for example, tools to 
enable an engineer to construct the Deck Attachments view with respect to the Concrete Slabs and 
Steel Framing views and to control the integration of these views.  

 
The next section discusses other AEC project modeling approaches with respect to these requirements.  

3 Related Research: Project Modeling Approaches  

An increasing number of researchers (Van Nederveen and Tolman 1992, Howard et al 1992, Eastman and Jeng 1999, 
Clayton et al, 1999, Turk 2001) and industry professionals (Zamanian and Pittman 1999, Newton 2002, Bentley 2003) 
are recognizing the need for model evolution to allow engineers to construct new information, and to define the 
existence, status and nature of the dependencies between information. Given the project model requirements 
described in Section 2.4, this section discusses related computer-based project modeling approaches aimed at 
providing integrated views of an evolving project. The approaches can be grouped into two categories:  

• Representational Approaches that develop generic and specific schemas, which engineers can use to 
construct and relate AEC information. After an overview of approaches in this category, the Industry 
Foundation Classes (IFCs) are discussed as an example of how representational approaches relate to 
the requirements.  

• Reasoning and Management Approaches that formalize ways to represent AEC information, but also 
formalize the nature of the dependency within this information. After an overview of approaches in this 
category, EDM-2 is discussed as it relates to the requirements. 

 



While current representation and reasoning and management approaches are points of departure that satisfy many of 
the requirements, they are not designed to enable engineers to easily construct a new view from other views, or to 
iteratively control the integration of an evolving project model of these views and their dependencies. Conceptually, 
most prior approaches provide methods to construct views from a central pre-defined model. The approach based on 
the requirements and formalized in this research lets a project model emerge from the iterative construction and 
integration of task-specific views. 

3.1 Representation approaches to integrated AEC project models 
Some researchers approach integrated project modeling by formalizing pre-defined project- or industry-wide schemas 
(i.e., Björk 1987, Gielingh 1988, Step 2002, IAI 2002). These approaches formalize ways for engineers to construct 
representations of typical AEC components (i.e., beam, slab), attributes (i.e., beam type, geometric description), and 
relationships (i.e., connected-to, contained-in-structure). Engineers construct a central model using this schema, and 
using knowledge of this schema construct task-specific integrated views of this model. Other representational 
approaches investigate generic schemas containing generic concepts (Howard et al 1992, Stouffs and Krishnamurti 
1997, Hakim and Garrett 1997, Clayton et al 1999, Van Leeuwen 2002) that engineers use to construct task-specific 
information and views. Representational approaches satisfy the representation requirements for a generic view, and 
can be used to formalize the existence and status of the dependency between views, however they do not formalize 
the nature of the dependency between views, and they do not address the reasoning and management requirements. 
The Industry Foundation Classes (IFCs) are an emerging industry standard for a project model schema that builds on 
many of the earlier representational approaches. The next section reviews the IFCs to illustrate the extent to which 
representational schemas satisfy the requirements. 

3.1.1 The Industry Foundation Classes 
The IFCs are developed by the International Alliance for Interoperability, according to the IFCs 2X technical guide:  

“To support information about AEC/FM generally so as to enable the sharing of information between disciplines. It 
is a key objective of the model that it is interdisciplinary and consequently the focus of the model is on this level of 
information exchange and sharing. It is not intended to support a particular discipline or the application 
requirements of such a view. Neither is it intended to provide the basis for a database that supports the 
application requirements of a particular discipline, although it could fulfill such a purpose in certain 
circumstances.” (IAI 2002) 

 
Table 1 summarizes how the IFCs relate to the requirements. Figure 10 shows a part of the schema defined in IFCs 2X 
that an engineer could use to relate an Ifcbeam feature to an Ifcslab feature through a Ifcrelconnectselements 
relationship. Using an Ifcconnectionconstraint, an engineer can construct a dependency on this relationship and assign 
the type of joint to the constraint (the engineer would need to extend the ifcjointenumeration to include a deck 

attachment type). The engineer can construct the beam’s physical boundaries using ifcsurfaces and can define the 
surfaces of the beam and the slab that are to be connected by the deck attachment.  Engineers can construct views of 
these slabs and beams through predefined views such as ifcbuildingstorey (not shown), and ifcbuilding. 



 

Figure 10: Using the IFCs to represent the connection relationship between a slab and beam. 
 
The IFCs do not contain a concept of deck attachments or a Deck Attachments view. However, they contain generic 
concepts, such as Ifcgroup, Ifcbuildingelement, and Ifcsurface that can be used to describe geometric views, which 
contain geometric features, and thus satisfy requirement 1. The IFCs do not formalize a depencency relationship 
between views, however they contain the generic Ifcconstraint relationship that could be specialized for this purpose. 
This would enable an engineer to formalize the existence and status of the dependency of a Deck Attachment view on 
a Concrete Slabs and Steel Framing view. However, the IFCs do not contain a formalization of the nature of the 
dependency, therefore requirement 2 is only partially satisfied.  
 
The IFCs make no commitment about reasoning or management processes, therefore the IFCs alone do not satisfy 
any of the subsequent requirements.  The purpose of adopting a standard schema, however, is that software 
companies develop software that engineers can use to construct and control a model defined using this schema.  
Therefore this review continues by taking into account various software that can be used on an IFCs model. 
 
Structure Query Language (SQL): Engineers can construct dependent views of an IFCs model using generic reasoning 
such as SQL (Date and Darwen 1993). SQL contains numerical and textual reasoning that engineers can use to 
construct dependent views that are not explicitly defined in the model schema. However, SQL does not explicitly 
formalize the existence and status of dependencies in the project model, nor does SQL manage these dependencies. 
That is, even if an SQL query could be formalized to construct a Deck Attachments view from Concrete Slabs or Steel 
Framing views (SQL currently lacks the geometric operators to do so), the need to integrate the Deck Attachments 



view when the slabs and beams views are modified cannot be explicitly formalized, or managed.  The deck attachment 
view does not become an integrated part of the model from which other views can be constructed and integrated. 
 
Solibri Model Checker: Engineers can use Solibri Model Checker (Solibri 2003) to construct a dependent view based 
on various preprogrammed, but user-modified constraints (e.g., to detect whether beams and slabs overlap in space) 
to construct a dependent view highlighting where the violations occur. Solibri Model Checker does not yet enable an 
engineer to construct a dependent view not previously formalized by the system programmers, and again, the 
existence and status of the dependency between views is not explicitly formalized or managed. 
 
IFCs compatible CAD tools: Tools such as Archicad (Graphisoft, 2003) for architects and MagicCAD (Progman 2003) 
for heating, ventilation and air conditioning (HVAC) engineers enable these engineers to manually construct task-
specific IFCs views. These CAD programs provide feature construction tools that help engineers, for example, 
construct a beam, slab, or duct with a few mouse clicks. Again, these tools do not  explicitly formalize or manage the 
existence and status of the dependency between views.  
 
BSPro: BsPro (Granlund 2003) is a model server that stores the IFCs model, and provides some tools for 
programmers to  construct views of and write information to this model. Again, the existence and status of the 
dependency between views is not explicitly formalized or managed.  
 
These external applications partially satisfy requirement 3 because they enable engineers to construct many useful 
dependent views from information in the source view (the IFCs model). However none of these tools enables 
engineers to construct new views easily by constructing new dependencies on other views and control the integration 
of the views as they are iteratively modified; therefore requirements 4 and 5 are not satisfied. 
Representation: IFC 
1.  A generic engineering view IfcGroup,Object,Surface
2.  Existence, nature, and status of the dependencies between views IfcConstraint
Reasoning:  
3.  Construct a dependent view from source views External Applications
Management: 
4.  Construct views and dependencies on other views
5.  Control the integration of new and modified views      

Legend
Does not satisfy
Partially satsifies
Satisfies  

Table 1: Comparing the Industry Foundation Classes and related applications to our requirements. 
 
Using representation approaches (with some extensions), engineers can manually construct many task-specific views, 
and manually specify the existence and status of the dependency of information in these views on information in the 
IFCs model.  Current representation approaches do not explicitly formalize the nature of the dependencies between 
views, and, even with the help of external applications, they do not formalize reasoning and management processes to 
enable an engineer to easily construct and control a project model consisting of task-specific views and dependencies. 



3.2 Reasoning and management approaches to project-modeling for AEC projects 
To address the limitations of relying solely on representational schemas to support integration, other researchers 
investigate reasoning and management approaches. Many in this reasoning and management category, such as 
Cutkoski et al (1993), Eastman and Jeng (1999), Haymaker et al (2000), Sacks (2002), and Autodesk (2003) construct 
and control dependencies between information in a central model.  Others, such as Khedro and Genesereth (1994), 
Rosenman and Gero (1996), Mackellar and Peckham (1998), Sriram (2002), and Bentley (2003) construct and control 
dependencies between a federation of task-specific views.  
 
While some report success constructing and controlling dependencies within the context of single domains (i.e., Sacks 
et al 2003, Tow and Harrison 2003, Reina 2003) reasoning and management approaches are not being widely used in 
the AEC industry to integrate the work of multiple disciplines. As currently formalized, they do not readily support the 
multi-disciplinary, constructive, iterative, and unique nature of AEC projects. 
 
As an example of the reasoning and management approaches, the next section compares EDM-2 to our requirements, 
illustrating that EDM-2 partially satisfies all of the requirements in that it enables computer programmers to construct 
and control dependencies between information in a central model and task-specific views, or directly between 
information in task-specific views. However, it does not provide the representation, reasoning and management 
concepts to provide engineers with the guidance they need to construct and control a project model consisting of views 
and dependencies between views, and thus meet our requirements.  

3.2.1 The Entity Data Model-2 
EDM-2 is a product modeling and database language intended to support the “evolution of a product model based on 
multiple application views and mapping between them and the central building model,” and includes “explicit 
specification and automatic management of integrity between a building model and various views” (Eastman and Jeng 
1999). Figure 11 shows how Eastman and Jeng diagram this approach. 

 
Figure 11: EDM-2: a product model based on multiple application views and a central model consisting of Design 

Entities (gray rectangles). Image is redrawn from Eastman and Jeng (1999).  
 
The test cases illustrate that engineers could benefit from a generic engineering view in which they can formally 
describe task-specific views: EDM-2’s primary concept is called a Design Entity (DE). A DE can contain data types and 
other DEs. Therefore a DE can be used to represent a view, features in these views, and information in these features 
or any other concepts. EDM-2 formalizes a Composition, which can also be used to contain DEs. EDM-2 provides the 
tools with which to construct a view, and therefore satisfy requirement 1. The test cases also illustrate the need to 
formalize the existence, status, and nature of the dependency between views. EDM-2 formalizes Constraints, which 



are used to formalize the existence and status of the dependencies between DEs in the model.  EDM-2 formalizes the 
nature of the dependencies using Maps (Eastman and Jeng 1999) or Operations (Eastman et al 1997) that construct 
DEs in the model based on other DEs in the model. EDM-2 does not explicitly guide engineers to formalize the 
existence, status and nature of the dependencies of a DE on other DEs, therefore EDM-2 only partially satisfies 
requirement 2. Figure 12 shows a diagram that describes the relationship between DEs and Operators (Maps, 
described in Eastman and Jeng 1999, are similar). An Operator can construct several DEs, and several Operators can 
construct one DE. EDM-2 does not explicitly formalize reasoning that constructs a DE from other Des. However, the 
existing mechanisms (DEs, Constraints, Maps / Operators) could be specialized to do so; therefore, requirement 3 is 
partially satisfied.  

 
Figure 12: EDM-2 formalizes dependencies using a graph of Operations that iteratively access and construct a central 

model of Design Entities. The Operators can be controlled by Constraints. (Adapted from Eastman et al (1997)). 
 
The test cases illustrate that engineers require methods to construct new task-specific views by formalizing the 
dependency on other task-specific views. Currently system programmers are required to construct the dependencies 
and the views in EDM-2; therefore requirement 4 is only partially satisfied. The integration system implemented in 
EDM-2 is designed to use a central model to integrate task-specific views: an Operation / Map constructs information 
(DEs) in a task-specific view -- the integration system propagates this construction to the central model -- the central 
model contains Constraints that monitor these DEs and use Maps to construct any dependent DEs -- these 
constructions are then propagated to other task-specific views using other Constraints and Maps. While EDM-2 
controls a project model of views organized around a central model, EDM-2 does not currently provide engineers with 
the guidance needed to control a project model that consists of a graph of views and their dependencies on other 
views. Therefore requirement 5 is only partially satisfied. 
Representation: EDM-2
1.  A generic engineering view DEs, Compositions
2.  Existence, nature, and status of the dependencies between views Constraints, Operations / Maps
Reasoning:  
3.  Construct a dependent view from source views Operations / Maps
Management: 
4.  Construct views and dependencies on other views System Programmers
5.  Control the integration of new and modified views Operations      

Legend
Does not satisfy
Partially satsifies
Satisfies  

 
EDM-2 partially satisfies the requirements needed to formalize and control the dependencies between views. However, EDM-2 does 
not contain enough representation, reasoning and management commitment to adequately guide engineers in formalizing a project 
model consisting of task-specific views and their dependencies. 

Table 2: Comparing EDM-2 to our requirements.  



EDM-2 is a database language that contains mapping techniques to integrate information in views that are organized 
around a central building model. Who constructs and maintains the central model in EDM-2, and what its contents are, 
remains an open issue. In addition, EDM-2 makes the assumption that all modifications to the central model are 
permitted; however, our test cases show that each engineer is responsible for certain project information. Resolving 
access rights in a central model for a multi-disciplinary project is also an open issue. While it seems possible that the 
mechanisms in EDM-2 could be used to construct information in views from other views, this has not been the focus of 
EDM-2, and has therefore not been formalized or tested. EDM-2 does not provide guidance for how engineers from 
multiple disciplines can construct and control a project model in this way.  

3.2.2 Other Reasoning and Management Approaches 
Parametric approaches are reasoning and management approaches in which engineers can define numeric or 
symbolic equations that depend on other numeric or symbolic equations (Shah and Mäntyla 1995). When solved, these 
equations realize feasible designs. These approaches commonly use a graph, often called a history tree, to structure 
the dependencies between concepts (Serrano and Gossard 1987). Shape Grammars (Stiny 1980) provide a 
computational approach to the generation of designs, although they have not been developed to enable engineers to 
construct and control the integration of task-specific views from other engineers’ views. Commercially available 
parametric modelers for the mechanical engineering industry such as CATIA (Dassault 2003) currently provide tools to 
assist engineers to construct 2D sketches from which the system can parametrically construct 3D Features, and other 
tools to parametrically specify how to position physical components in relation to other components. For example, an 
engineer can parametrically relate the bottom face of a slab’s geometry to the top face of a beam’s geometry, such that 
moving the beam will also move the slab. Some systems employing these parametric techniques are being 
commercially introduced specifically for the AEC industry, such as Tekla’s Xsteel, Autodesk’s Revit, and Microstation’s 
TriForma. Some parametric approaches in the mechanical engineering domain formalize tools that are geared towards 
enabling fast development time for reasoning that constructs and controls dependencies between information. For 
example A-Teams (Talukdar et al 1996) is a problem solving architecture in which agents are autonomous and modify 
each other’s trial solutions. Exemplars (Bettig et al 2000) are used to describe complex situational patterns and extract 
information of interest.  Both use reasoning to transform information from one view into information in other views.  
DOME (Abrahamson et al 2000) provides a publish, subscribe, and synthesis framework to develop a service 
marketplace for the mechanical engineering industry. This approach enables a system integrator (who does not need 
to be a computer programmer) to build the dependencies between information in various engineering views.  These 
approaches match the spirit of the requirements for AEC project modeling derived from the test cases; they do not 
contain explicit formalisms to guide AEC engineers in constructing and controlling the integration of a view from 
information in other views. 

 
 
 



3.3 Summary: comparison of project modeling approaches to requirements 
The test cases above illustrate that, in many cases, formalizing a project model as views and dependencies is an 
appropriate approach for representing and integrating multidisciplinary design information. Such an approach appears 
to map closely to the way AEC engineers work today.  Figure 13 schematically illustrates that representational 
approaches for AEC project modeling generally formalize more representation concepts than the requirements 
demand, but do not contain sufficient reasoning and management formalization. For example, the IFCs formalize many 
representational concepts, although they do not explicitly formalize the existence, status and nature of the dependency 
of a view on other views, and they formalize virtually no reasoning or management concepts. Current reasoning and 
management approaches for AEC project modeling provide techniques to construct and control the integration of 
information in a model, however they do not formalize sufficient representation, reasoning, and management to guide 
engineers in the construction and control of an evolving, multi-disciplinary project model consisting of views and 
dependencies. For example, EDM-2 formalizes very general Representation (Design Entity, Constraint), Reasoning 
(Operator), and Management (Integrity Management Subsystem). The requirements demand more specific 
representation (views, existence, status, nature of dependency between views), reasoning (construct one view from 
other views) and management (control views and dependencies). 

 

Figure 13: Qualitatively relating EDM-2, the Industry Foundation Classes, and the requirements, in terms of amount of 
representational, reasoning, and management formalization specified by the requirements. 

 
The next section introduces the Perspective Approach, which is founded on these requirements. 
 
 
 

 

 



4 The Perspective Approach 

The Perspective Approach formalizes a project model as a directed acyclic graph of views and the dependencies 
between views. In the Perspective Approach (see Figure 14A) a task-specific view is called a Perspective. A 
Perspective can contain the information needed to describe the project for a specific task, satisfying requirement 1. A 
Perspective also contains a formalization of the existence, status, and nature of its dependency on other Perspectives, 
satisfying requirement 2. Engineers use composable, reusable reasoning modules, called Perspectors, to formalize the 
nature of the dependency of a Perspective on other Perspectives. A Perspector analyzes the information in source 
Perspectives to construct information in the dependent Perspective, satisfying requirement 3. A Perspector can be 
automated, or it can provide tools to an engineer to construct this information manually.  Because a Perspector’s input 
and output are both Perspectives the approach can be applied modularly.  Engineers can use this modularity to 
compose Perspectors to achieve complex transformations of source Perspectives into a dependent Perspective. 
Perspectors can be subsumed into a higher-level Perspector that represents the entire transformation performed by 
lower level Perspectors. A Project Model develops over time as a directed acyclic graph of dependencies between 
Perspectives, where the nature of these dependencies is represented by Perspectors. The composable, modifiable, 
and subsumable formalization of Perspectives and Perspectors enables engineers to formalize their own 
dependencies of a view on other views, satisfying requirement 4. Before a Perspector constructs a dependent 
Perspective, it checks that the Integration Status of all source Perspectives is marked as Integrated. When a 
Perspector completes, it assures that the Integration Status of all dependent Perspectives, iteratively down the graph, 
is marked as Not_Integrated. These simple management processes enable engineers to control the integration of 
these Perspectives, satisfying requirement 5. By design, the Perspective Approach satisfies the representation, 
reasoning, and management aspects of the requirements. 
 
For example, Figure 14B applies the Perspective Approach for the deck attachment test case described in this paper. 
This test case involved constructing and integrating geometric views containing Features. The figure therefore 
describes Perspectives containing geometric Features that contain relationships to Features in other Perspectives.  An 
engineer (in this case the first author of the paper) uses a Find Deck Attachments Perspector to analyze geometric 
Features in Steel Framing and Concrete Slabs Perspectives to construct geometric Features in a Deck Attachments 
Perspective. The Deck Attachments Perspective can become a source perspective for other dependent Perspectives 
(not shown).  An engineer can use the Perspective Approach and reusable geometric Perspectors to formalize the Find 
Deck Attachments Perspector. The Perspectors composed in Figure 14C can then be subsumed by the Find Deck 
Attachment Perspector.   



Figure 14: The Perspective Approach. 
 
 
 

     A     B  

 C  
A. A geometric Perspective is a task-specific view containing Features that use geometry (not shown) and relationships 
to other Features to describe task-specific engineering concepts. A Perspector is a reasoning mechanism that analyzes 
the Features in source Perspectives (through the source Perspective relationship) to construct Features in the dependent 
Perspective. B. Applying the Perspective Approach to the Deck Attachment test case: The Find Deck Attachments 
Perspector analyzes the slab Features in the Slabs Perspective and the steel framing Features in the Steel Framing 
Perspective to automatically construct deck attachment Features in the Deck Attachments Perspective. The Find Deck 
Attachments Perspector also relates slab and steel-framing Features to associated deck attachment Features. C. 
Composing a directed acyclic graph of low-level Perspectors and Perspectives to analyze slab Features in a Concrete 
Slabs Perspective and steel framing Features in a Steel Framing Perspective to construct deck attachment Features in a 
Deck Attachment Perspective. An engineer can then subsume This Perspector Graph into the Find Deck Attachments 
Perspector shown in B. These Perspectors are described in detail in Haymaker et al (2003b).  



Representation: Perspective Approach
1.  A generic engineering view Perspective, Feature
2.  Existence, nature, and status of the dependencies between views Perspective, Perspector, Status
Reasoning:  
3.  Construct a dependent view from source views Perspector
Management: 
4.  Construct views and dependencies on other views Management Processes
5.  Control the integration of new and modified views Management Processes     

Legend
Does not satisfy
Partially satsifies
Satisfies  

Table 3: Comparing the Perspective Approach to our requirements 
Haymaker et al (2003A) detail the formalization of the Perspective Approach for the WDCH test cases, describing how 
to iteratively assemble geometric engineering views, called Perspectives, into a network of dependencies, and how to 
construct and control the integration of this evolving model as the project progresses. The paper shows how the 
approach can help overcome the difficulties engineers face in constructing and integrating views today. Haymaker et al 
(2003b) formalize the reusable, composable, subsumable reasoning modules, called Perspectors, which engineers use 
to automatically, or manually, construct task-specific 3D views, called Perspectives, from other engineering 
Perspectives. The paper shows that engineers can select from a reasonably small number of predefined, reusable 
geometric Perspectors and compose and customize them into a directed acyclic graph that specifies automatic or 
manual transformations of many source geometric Perspectives into better, faster, and cheaper dependent geometric 
Perspectives than current practice allows. Evidence for the power and generality of the Perspective Approach is 
provided by implementing a software prototype on two of the engineering test cases presented in this paper from the 
design and construction of the Walt Disney Concert Hall. 

5 Discussion 

The test cases presented in this paper show that engineers today have a difficult time constructing and integrating 
geometric views even on projects using state-of-the-art tools like CATIA. This is due partly to the multi-disciplinary, 
constructive, iterative, and unique qualities of AEC projects. Our intuition is that, to address these difficulties, engineers 
could benefit from formal, simple methods to construct and control the dependencies between views. This paper: (1) 
proposes to formalize a project model as a directed acyclic graph of views and their dependencies, (2) shows that 
representation approaches for AEC project modeling such as the Industry Foundation Classes define many useful 
ways to represent task-specific concepts, but do not currently formalize or manage the nature of the dependencies 
between geometric views in any appropriate systematic way, and (3) shows that reasoning and management 
approaches for AEC project modeling, such as EDM-2, formalize the dependencies between concepts, but do not 
formalize simple methods for engineers to explicitly construct and control the dependencies between views.  
 
We investigate whether project modeling approaches could at least be augmented, if not founded on, the ability for 
engineers to construct new task-specific views by specifying dependencies on other engineers’ views, and to control 
the integration of these views as the project progresses.  Many of the requirements to enable the formalization of these 
project models discussed in this paper are in place today. As shown on the test cases, engineers already construct 
task-specific views to perform their design, planning and fabrication tasks. For example, the focus of this research has 
been on the construction and integration of geometric views consisting of geometric features. Many CAD programs 



formalize such generic geometric views, such as layers, today. There is also a wealth of generic and task-specific 
geometric and other algorithms that transform source information into dependent information. What has been missing 
is a simple framework in which engineers can interactively relate these views and these algorithms into graphs of 
dependencies.  
 
Providing engineers with tools to formally construct views from other views would provide a flexible, need-driven 
migration path from existing manual construction and integration of task-specific views to integrated and automated 
project models. Views and dependencies formalized on one project can be reused in subsequent projects. Additionally, 
these tools may support creative design processes, like those described in design theories such as Schon’s (1984) 
“Conversation with a Medium”, Gero’s (1998)  “Situatedness and Constructive Memory”, and Smither’s (1998) 
“Knowledge-Level Theory of Design.” These theories frame design as a constructive process whereby engineers 
engage in new design acts based on current states of the design. Using the approach proposed in this paper, 
engineers may be able to iteratively and collaboratively construct and integrate graphs of views that help them 
understand and progress with the project from multiple perspectives, and engage in as-needed automated and 
integrated design and analysis. 
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