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Abstract 

As they design, plan, and execute AEC projects, engineers today construct task-specific geometric views 
based on information contained in other engineers’ geometric views. Traditionally, engineers have 
constructed these views manually, using pencils and more recently CAD. Manually constructing views is 
often difficult, time-consuming, and error-prone. Newer approaches develop central project models that 
predetermine all potential views for a project or for an entire industry; but these approaches are proving 
difficult to implement due to the multi-disciplinary, constructive, iterative, and unique nature of AEC projects. 
Current project modeling approaches lack simple formal methods that engineers can use to specify the 
automatic construction of a new dependent geometric view from information in one or many source 
geometric views. This research formalizes reusable reasoning modules, called geometric Perspectors, which 
engineers can use to automatically construct a task-specific geometric engineering view, called a geometric 
Perspective, from other Perspectives. This paper presents engineering test cases from the design and 
construction of the Walt Disney Concert Hall to motivate and retrospectively validate this approach. Through 
implementation of a prototype, the paper gives empirical evidence that engineers can select from a 
potentially small number of predefined, reusable Perspectors and easily compose them into a directed 
acyclic graph to construct useful dependent geometric views more quickly and accurately than current 
practice and theory allows.  Perspectors may enable engineers from multiple disciplines to engage in novel 
automated yet integrated design and analysis by easily yet formally constructing and integrating Perspectives 
from other Perspectives.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 



1 Introduction 

Engineers construct geometric engineering representations, or views, as they perform specific design, planning, and 
project execution tasks. They often construct these views from information in other engineering views created in earlier 
design, planning, and project execution stages (See Figure 1A). This research formalizes modular, reusable reasoning 
that enables engineers to specify to the computer how to formally construct (automatically or manually) a dependent 
geometric engineering view from source engineering views: This involves formalizing the existence, nature, and status 
of the dependency between views (see Figure 1B). 

Figure 1: The dependency between views. 
 
Traditionally, engineers construct and integrate views manually; for example, overlaying transparent drawings to assist 
in integrating the project geometry in two dimensions. Over the past thirty years, computer-aided three-dimensional 
drafting (CAD) and project modeling approaches have emerged, significantly improving the speed and accuracy with 
which engineers construct and integrate task-specific geometric views. CAD allows engineers to overlay geometric 
views and manually (or semi-manually, by using “design by feature” creation tools) select, reformulate, and generate 
geometric and semantic information into a dependent view in response to information in geometric source views. The 
problem with relying solely on this level of computational support is that manually constructing new views is often 
difficult, error-prone, and time-consuming. Additionally, in a manual process, the existence, status, and nature of the 
dependencies between views are not explicit or formal. As a result, changes in one view cause inconsistencies in other 
project views; finding and integrating these inconsistencies is time-consuming, error-prone, and difficult; manual 
processes do not guarantee repeatable results. 
 
Project modeling representation approaches have extended these CAD approaches by formalizing a schema of 
objects, attributes, and relationships that engineers can instantiate to define project-specific information. Engineers 
construct task-specific views by selecting from a subset of these models. These relational models can include 
constraints to monitor the integrity of information in a model. However, constraints in these representation approaches 
only formalize the existence and status of a dependency; they rarely construct new geometric information.  
 

A   B  

A. Engineers construct task-specific geometric views from other geometric views. The lines are dashed because 
the dependency between views on AEC projects is currently implicit. B. This paper discuses how to formalize the 
existence, nature, and status of the dependency between geometric views to enable the automatic construction of 

a dependent view from one or more source views. 



Therefore researchers and software programmers continue to develop reasoning and management techniques to 
construct and control the evolution of an iteratively modified model. Research over the last ten years has investigated 
domain-specific transformations that select, reformulate, and generate from information in source views based on a 
predetermined schema, to construct useful task-specific dependent views.    
 
Predefining a priori all representations and reasoning required for a project or for an industry is exceedingly difficult as 
the coverage increases. In addition, design and planning are creative processes in a dynamic world; the need for new 
task-specific views emerges during the lifecycle of a project, and from one project to the next. Therefore other research 
has developed generic reasoning; for example, query languages construct dependent views by selecting, 
reformulating, or generating from information in a model. Yet these query languages do not contain many of the 
generic geometric operators that engineers need to specify domain-specific transformations, and they are not intuitive 
for engineers to use. Parametric modeling approaches continue to be developed to enable engineers to formalize the 
nature of the dependence between concepts in a project model. These approaches are being broadly adopted in many 
mechanical engineering fields, and some parametric technologies have been commercially introduced for the 
Architecture, Engineering and Construction (AEC) industry, but as yet they have been slow to have a significant impact 
on integrating the work of multiple disciplines. As currently formalized, such techniques have not mapped well to the 
multi-disciplinary, constructive, iterative, and unique nature of AEC projects. These tools do not explicitly enable 
engineers to formally construct new geometric views from other geometric views, and achieve integration amongst 
these views as the project progresses. 
 
This paper reviews test cases from the Walt Disney Concert Hall (WDCH) that were detailed in Haymaker et al 
(2003a). The test cases illustrate: (1) the multi-disciplinary, constructive, iterative, and unique nature of AEC projects; 
(2) that engineers on these projects need to construct and integrate task-specific geometric engineering views, and (3) 
that as practiced today, even with state-of-the-art tools, this process is time-consuming, error-prone, and difficult. From 
these observations we set the goal to create a simple way for engineers to quickly yet formally construct new task-
specific geometric views from information in other geometric engineering views. After a discussion of related work in 
model-based reasoning and parametric design, we introduce the concept of Perspectors, which enable engineers to 
specify how to construct task-specific geometric views, called geometric Perspectives, from other geometric 
Perspectives. The paper shows how engineers can select from a relatively small number of Perspectors and compose 
them into acyclic graph structures, called Perspector graphs, to specify automatic (or manual) construction of 
dependent geometric views from source geometric views. This research is an initial step toward defining a language of 
mechanisms to improve the construction and sharing of project information among multidisciplinary engineering project 
teams, and enable engineers to engage in novel automated design and analysis. 

2 Test Cases: Illustrating the Dependencies between Geometric Views 

After several years on the drawing boards of architecture firm Gehry Partners, an aborted start by a first general 
contractor, and a two-year pre-construction phase, general contracting and construction management firm Mortenson 



received a lump-sum, at-risk contract with an aggressive required completion date enforced by liquidated damages 
(Post 2002). Mortenson’s job was to manage the detailed design, planning, and execution of the WDCH; as the project 
progressed, they subcontracted work to various engineering firms and subcontractors that specialize in specific tasks 
of the building lifecycle. In this section we describe two test cases from the design and construction of the Walt Disney 
Concert Hall (WDCH) in order to make the following observations about AEC practice. AEC practice is: 

• Multi-disciplinary: Engineers from different organizations, representing different engineering criteria, form 
project-specific teams to design, plan, and construct one-of-a-kind projects in site-specific conditions.   

• Constructive: Engineers construct and use task-specific geometric views containing features that contain 
geometric data types to describe their specific-tasks. Engineers construct these “dependent” views from 
information in other engineers’ “source” views. A dependent view often serves as a source view for other 
dependent views. An implicit graph of dependencies between task-specific views forms as the design 
process progresses.  

• Iterative: Engineers responsible for dependent views must become aware of modifications to source views 
through coordination meetings and amended documents1, and must manually represent any implications of 
these modifications by integrating the dependent views with their source views.  

• Unique: While the WDCH is an extreme example in terms of its shape, no two projects are alike because 
they are built with the aforementioned multi-disciplinary and distributed organization in an industry with 
changing building technologies, on a unique site, with a project-specific program. Design concepts and 
approaches emerge within and across projects. New kinds of dependent views of changing source views are 
often required. 

• Error-prone, Time-consuming, and Difficult: Today engineers often manually construct and integrate these 
views. Manually constructing and integrating dependent views from source views causes many problems on 
AEC projects today. Formalizing and automating the dependencies between views would address these 
difficulties. 

 
On these multi-disciplinary, constructive, iterative and unique projects, engineers do not have the time, budget, 
motivation, predictive foresight, or interdisciplinary knowledge to define project model schemas and dependencies a 
priori. The test cases suggest that engineers need to be able to easily yet formally define new concepts and 
dependencies between concepts at the beginning of a project, and as the project progresses. To enable engineers to 
define these dependencies, we propose that they could benefit from a simple, formal approach to specify to the 
computer how to construct and integrate dependent views from evolving source views. Specifically, these test cases 
illustrate that engineers could benefit from tools that enable them to easily construct geometric views from other 
geometric views.  

2.1 Deck attachment test case 
Gehry Partners, who was under contract directly to the owner of the WDCH, constructed and maintained a Concrete 
Slabs view containing features that used a surface to describe the boundary of each concrete slab of the project (see 
Figure 2A). Gehry Partners constructed this view using information in several other project views (not shown). The 
steel detailer, who was under contract to Mortenson, constructed and maintained a Steel Framing view containing 
features that used a surface to describe the boundary of each steel member and other features to describe 
connections amongst steel members (see Figure 2B). The steel detailer constructed this view using information in 
several other project views (not shown). The metal decking detailer constructed a Deck Attachments view (see Figure 
2C) containing features describing where to install metal angle attachments that connect the metal decking for 
                                                                 
1On various projects, these design versions are referred to as addenda, supplemental instructions, etc.  



concrete floor slabs to the structural beams (see Figure 2D). The metal decking detailer constructed this view using 
information in the Concrete Slabs and Structural Members views, by using CAD tools to manually measure the 
distances between each beam and slab and drawing a line along the edge of each beam where an attachment was 
required (see Figure 2E). This was difficult, time consuming, and error-prone work, costing the engineer over 120 
hours to complete. When the metal decking detailer was finished, cost estimators, fabricators, and field installers used 
this Deck Attachments view to produce other views. These other views included cost estimates, numeric information 
that a CNC machine used to fabricate the attachments, and information detailing which beam should be welded to 
which attachment in the shop before the beam was delivered to the field.   
 
As the project engineers performed their individual design and planning tasks, they iteratively modified the slab and 
beam views, generating some new metal decking attachment conditions, while modifying and eliminating others. The 
metal decking contractor needed to notice and annotate these new conditions in the Deck Attachments view. Views 
that were dependent on the Deck Attachments view, such as those generated by the cost estimators and fabricators, 
also needed to be updated. Missed or erroneously detailed deck attachment conditions and slow propagation of 
modifications to the steel framing or concrete slab views resulted in a deck attachment view that was not fully 
integrated with the steel framing and concrete slabs. This lack of integration resulted in field welding of about five 
percent of all the deck attachments on the job, wasting time and money. These difficulties resulted in over $160,000 
worth of field welding for deck attachments.   

Figure 2: Images for the Deck Attachment test case.   

2.2 Cantilevered ceiling panel test case 
Gehry Partners, Mortenson, subcontractors, owner representatives, and vendors all collaboratively designed the ceiling 
system (Post 2003) of the WDCH (See Figure 3A). Ducts, catwalks, fire sprinklers, theater lighting, and several other 
systems vied for a tight space above 200 3m x 4m ceiling panels (see Figure 3B) that weigh in excess of 1 ton each 
and hang from roof trusses. “Cantilever” conditions occur where the edge of a panel extends significantly beyond a 
vertical steel tube hanger support (see Figure 3C). The engineer responsible for framing the panels needed to identify 
and keep track of the location, number, and severity of these conditions, as he designed the framing of the panels. 
Keeping the number and severity of these cantilever conditions to a minimum was desirable.  

   D  E     

A. The architect constructed a concrete slabs view. B. The steel detailer constructed a Steel Framing View. C. From 
these views, the Deck Detailer constructed the Deck Attachments view. D. Deck Attachments are metal angles that 
are welded to the Metal Deck and the Steel Beam. E. On the WDCH, the deck detailer modeled deck attachments 

using a single line along the edge of a beam, wherever an attachment was required.   



 
The WDCH engineers never constructed and maintained an explicit view of these cantilever conditions. Rather, these 
conditions were managed in an ad hoc fashion, based on the considerable engineering experience of the design team. 
This test case is therefore more speculative than the deck attachment test case described above. Perhaps the 
engineers did not construct and integrate this view because they lacked tools to enable them to easily construct a new 
view by specifying its dependencies on other views. If such a view could have been constructed quickly and accurately, 
it could have provided useful information for many tasks. Figure 3D mocks up a simple scenario where a formal view of 
cantilever conditions could be used as a design aid for an engineering team working with three systems: ducts, 
hangers, and ceiling panels. As the team moves hangers to make room for certain ducts, the panels that currently have 
cantilever conditions could be highlighted. Wishing to minimize the number of panels with cantilever conditions, the 
team could then use this information to choose which hanger to move when routing ducts. 

Figure 3: Images of the WDCH for the Cantilevered Ceiling Panel test case. 

2.3 Conclusions from test cases: Engineers could benefit from a simple, formal method to construct 
a dependent geometric view from source geometric views 
AEC projects today involve the design, planning, and construction of unique projects, in site-specific locations, 
involving multiple engineers, each of whom specializes in particular tasks of the building lifecycle. In such an 
environment, engineers construct geometric views that assist them in performing their tasks, and they construct these 
views based on information in other engineers’ views. That is, using their domain knowledge, they perform complex 
transformations of the information in the source views to construct the information in the dependent view. They often 
have difficulty doing so today. While it may be possible to predetermine all possible views a priori, and to develop 
central or federated models using a predefined schema and dependencies, this has not occurred with any great rate of 
success in the AEC industry. The test cases suggest that this is due partly to the unique, multi-disciplinary, constructive 
and iterative nature of these AEC projects. Engineers could benefit from a simple formal method to construct a 
dependent geometric view from source geometric views. This research investigates such an approach that gives 
engineers a simple set of geometric representation and reasoning tools, or a language, to specify the transformation of 
geometric source views into useful task-specific geometric dependent views. Such tools could be used to augment 
existing project model approaches, or they could be used to generate a project model dynamically, as discussed in 

A B C D  
A. The concert hall ceiling from above with ductwork and with steel roof trusses overlaid.  B. Two ceiling panels 

with no cantilever conditions. C. The same two panels after moving three supports causes four cantilever 
conditions (the middle hanger creates two cantilever conditions). D. A formal representation of the cantilever 

conditions would enable a visualization that highlights panels with cantilever conditions to assist in routing ducts. 



Haymaker et al (2003b). In the next section, we review related research relevant to the automatic construction of task-
specific project views.  

3 Related Work in Model Based Reasoning 

Enabling task-specific views of evolving multidisciplinary project information remains an active area of research. We 
categorize the relevant literature into representation approaches and reasoning and management approaches. 
 
Representation approaches define model schemas that contain concepts required by engineers to formally describe 
project information in a particular domain. The Industry Foundation Classes (IFCs) are emerging as a standard 
representation schema for the AEC industry (IAI 2003). Using the IFCs, Engineers construct building models by 
constructing instances of the concepts defined in these schemas. Using knowledge of the schema, other engineers 
enter and retrieve information from the IFCs model that is relevant to their particular tasks. Some of the difficulties 
associated with relying solely on pre-defined representational approaches are:  

• Pre-defined schemas grow large and difficult to manage as the coverage increases. For example, the 
IFCs version 2X currently defines over nine hundred concepts. However, it does not yet contain any 
formalization of deck attachments, or cantilever conditions. 

• No one schema satisfies all engineers’ tasks, as engineers conceptualize AEC projects in different ways 
(Turk 2001). For example, the deck detailer needs the concept of “top edge of beam” which the steel 
detailer does not explicitly need or provide. 

• Dependencies in the project information must be noticed and manually addressed (Eastman and Jeng 
1999). For example, changes to a beam or slab result in changes to deck attachment conditions. 

• New concepts emerge as the project progresses that must be integrated with the existing project 
information.  Deck attachments and cantilever conditions became an important concern on this project 
only as the design progressed. 

 
To address these difficulties, some researchers investigate reasoning and management approaches to formalize 
dependencies between project information. 
 
Considerable research involving reasoning about project information has been performed in the context of single AEC 
tasks. This body of work formalizes representation, reasoning, and management approaches that construct task-
specific dependent views from information in source views. For example, some projects at the Stanford Center for 
Integrated Facility Engineering (CIFE) include: Darwiche et al (1988) perform model-based reasoning to produce a 
construction schedule; Akinci et al (2000) analyze a 4D model to infer time-space conflicts for workspaces; Akbas at al 
(2001) analyze project geometry with productivity constraints to determine daily work zones; Fischer (1993) analyzes 
product models for constructability; Han et al (2000) analyze an IFCs-based project model for handicapped 
accessibility; Korman and Tatum (2001) perform MEP coordination; and Staub-French et al (2002) formalize the 
automation of cost analysis. Outside CIFE many others have created similar model-based reasoning systems: For 
example, Dym (1988) performs automated architectural code checking; and Shea and Cagan (1999) design novel roof 
trusses using shape-annealing techniques. Others (Flemming and Woodbury 1995, Aouad et al 1997, Haymaker et al 



2000) perform a series of design tasks around a central model. Generally, in all these systems, a computer 
programmer with engineering knowledge programs task-specific reasoning that transforms information in a source view 
into task-specific dependent views that are limited to the concepts formalized by the programmers. 
 
Other approaches to constructing task-specific views of project information are more generic. Query languages and 
approaches (Date and Darwen 1993, Hakim and Garrett 1997) enable the automatic transformation of source 
information into dependent information. However, existing query languages are not used broadly in AEC practice today 
to construct dependent geometric views from source geometric views. This is in part because these languages rarely 
define geometric transformations engineers find useful, and in part because there is not a framework that enables 
engineers to define and manage these dependencies.  
 
Other research formalizes generic geometric reasoning that constructs geometric views of, or adds geometry directly 
to, a model. Shape Grammars (Stiny 1980) define rules that match a design to the left-hand side of a rule and add 
geometry to the design according to the right-hand side of the rule. Others (Argarwal and Cagan 1998, Duarte 1999) 
have used these rules to automate the construction of various complex products. Feature Recognition (Dixon and Poli 
1995) identifies and formally represents instances of feature classes in a geometry model. Parametric techniques 
(Shah and Mäntyla 1995) define sets of related numeric or symbolic equations that can be solved to realize feasible 
designs. Commercially available parametric modelers, such as CATIA, provide tools to assist engineers to generate 2D 
sketches from which 3D shapes are parametrically generated and to specify the assembly of physical components 
parametrically with respect to the positions of other components. Some systems employing parametric techniques are 
being commercially introduced specifically for the AEC industry, such as Xsteel (Tekla 2003), Revit  (Autodesk 2003), 
and  TriForma (Bentley 2003). While some successes are being reported within the context of single domains, 
parametric techniques are not being widely used in the AEC industry to integrate the work of multiple disciplines. This 
is because, as currently formalized, these techniques have not mapped well to the multi-disciplinary, constructive, 
iterative, and unique nature of AEC projects, i.e., they do not enable engineers to easily and formally construct new 
views from information in other engineers’ views. 
 
Some recent parametric approaches in the mechanical engineering domain develop tools to enable the rapid 
development of new dependencies between information. For example, A-Teams (Talukdar et al 1996) is a problem 
solving architecture in which agents are autonomous and modify each other’s trial solutions. Exemplars (Bettig et al 
2000) describe complex situational patterns and extract information of interest.  These approaches use reasoning to 
construct information in one view of a model from information in other views of the model. The research presented in 
this paper shares a similar goal, but specifically develops tools to assist engineers in constructing a geometric view by 
formalizing the existence and nature of its dependency on other geometric views; it formalizes how to apply this 
method iteratively and at multiple levels of detail to compose formal transformations of source views in order to 
construct dependent views. 



4 Perspectors: Formal, Reusable Reasoning to Automate the Construction of a Dependent 
Perspective from Source Perspectives 

A geometric Perspector is a reusable geometric reasoning mechanism that engineers can modify, compose, and 
subsume into higher level geometric Perspectors in order to construct a view, called a geometric Perspective, from 
other geometric Perspectives. Haymaker et al (2003b) formalize the concept of geometric Perspective. After a brief 
review of this formalization, this paper focuses on the formalization of geometric Perspectors. 
 

A geometric Perspective is a task-specific geometric engineering view that formalizes its dependency on 

other Perspectives.   

 
We diagram the formalization of a geometric Perspective in Figure 4A. A Perspective is like many CAD layers today: It 
has a name, and contains any number of named geometric Features that use Surfaces, Lines, Points, and 
relationships to Features in other geometric Perspectives to describe engineering concepts. The definition of Feature 
used in this research is consistent with that of Dixon and Poli (1995). The representation is simple and adequately 
expressive for the test cases; however, there is a trade-off between conceptual simplicity and the coverage of the 
representation. More complex data types, such as NURBS or Solid Models, or deeper or more complex hierarchies or 
relationships of Features could be formalized as part of a geometric Perspective. This would enable an engineer to 
describe concepts such as curvilinear beams, or the fact that these beams are solid. Instead we chose to develop 
reasoning around the simple, feature-based geometric representation we describe to scope the research, to lessen the 
learning curve for engineers who are neither computer programmers nor geometry experts, and because the test 
cases require only these data types.    
 
A Perspective is different from CAD layers because it formalizes its dependency on other Perspectives. We formalize 
this dependency into three parts: 

• Existence: An ordered list of references to the source Perspectives on which this Perspective depends.  
For example, in the test case a Deck Attachments Perspective depends on the Concrete Slabs and Steel 
Framing Perspectives. A Perspective also maintains relationships to dependent Perspectives, which a 
Perspector uses when modifying a Perspective to notify its dependent Perspectives (iteratively down the 
graph) that they are “Not_Integrated”. 

• Status: A single integer to represent the integration status of the Perspective with respect to its source 
Perspectives as the design evolves (0 = Integrated, 1 = Not_Integrated, 2 = Being_Integrated).  For 
example, after a steel beam in the Steel Framing Perspective is modified, the Deck Attachments 
Perspective is “Not_Integrated.” 

• Nature: A relationship to the Perspector that formalizes the reasoning to construct Features in this 
Perspective from Features in the source Perspective(s).  For example, reasoning that constructs deck 
attachments in the Deck Attachments Perspective from slabs and beams in the Concrete Slabs and 
Steel Framing Perspectives. 

 



Figure 4: Perspectives: Formalizing the dependency between views. 
 

A geometric Perspector is a reasoning mechanism that analyzes the geometric Features in source 

Perspective(s), to construct geometric Features in a dependent Perspective, and relates these Features to 

Features in the source Perspective(s).  
 

Because every Perspective has one associated Perspector, together they can be composed into Perspector Graphs to 
specify complex transformations of source Perspectives into a dependent Perspective (Figure 4B). Each Perspector 
can formalize an automated transformation, or the Perspector algorithm can simply provide CAD tools to an engineer 
to perform the needed transformation. The focus of this research is on automated Perspectors, but manual 
Perspectors can also be easily incorporated into a Perspector Graph. Because a Perspector’s input and output are 
both Perspectives, a graph of Perspectors (and their associated Perspectives) can be subsumed into one Perspector 
to represent higher-level transformations.  To enable greater reuse of Perspectors, a Perspective can also specify 
Perspector Parameters that its Perspector uses when constructing its Features. For example, an Extrude Perspector 
(shown and described in Figure 6C) uses a Parameter to specify the distance to extrude the line along the normal 
vector that is contained in each source Feature. Therefore the Extrude Perspector can be reused in other contexts, 
such as in Figure 6G, using a different extrusion distance. Once composed, an engineer can iteratively modify a 
Perspector Graph by adjusting parameters, or by reconstructing portions of the graph. 
 

A      B     

A. The formalization of a geometric Perspective: a generic geometric view that formalizes the existence (source 
Perspectives), status and nature (Perspector) of its dependency on other Perspectives. B. Perspectives (and 
therefore Perspectors) are composable. A Perspector can be either automated or manual; the focus of this 

paper is on automated Perspectors.  Because a Perspector’s input and output are both Perspectives, a graph 
of Perspectors can be subsumed into one Perspector.  



Figure 5: Applying Perspectors to the test cases.   
 
In Section 4.1, we compose reusable geometric Perspectors to construct a Deck Attachments Perspective from Steel 
Beams and Concrete Slabs Perspectives. Figure 5A shows these reusable Perspectors subsumed into the “Find Deck 
Attachment Perspector”. In Section 4.2, we compose reusable Perspectors to construct the Cantilever Conditions 
Perspective from the Ceiling Panels and Hangers Perspective. Figure 5B shows these reusable Perspectors 
subsumed into the “Find Cantilever Conditions Perspector”. These graphs become a formal specification that produces 
repeatable results.  
 
This research developed the Perspectors needed to solve the two test cases described, and investigated whether 
Perspectors can be reused for different engineering tasks: For example, automating the design of deck attachments 
between slabs and beams, and automating the analysis of an architectural ceiling system for cantilever conditions 
between architectural ceiling panels and their hangers. Each of the reusable Perspectors we have formalized to date 
has involved selecting, reformulating, or generating from the Features in the source Perspectives to construct Features 
in the dependent Perspective. We composed these Perspectors into Perspector Graphs and then subsumed these 
graphs into higher-level Perspectors that involve a combination of these selection, reformulation, and generation 
Perspectors.  
 

 

A. The Deck Attachments Perspector contains reasoning, composed of lower-level generic Perspectors that 
construct a Deck Attachments Perspective from Steel Beams and Concrete Slabs Perspectives. B. The Cantilever 
Conditions Perspector contains reasoning, composed of lower-level generic Perspectors that together construct a 

Cantilever Conditions Perspective from a Ceiling Panels and Hangers Perspective.  



4.1 Deck Attachment Perspector 
In this section, we compose a collection of reusable Perspectors in a graph that constructs a Deck Attachments 
Perspective from Concrete Slabs and Steel Beam Perspectives. The Graph compares the locations and orientations of 
the bottom faces of the slabs to the top faces of the beams and constructs a deck attachment where these faces are 
near to each other, but not flush. In Figure 6, we show the graph and describe in the caption how these Perspectors 
incrementally construct the Deck Attachments Perspective. This graph is subsumed into the Find Deck Attachments 
Perspector in Figure 5A above. In Section 4.3, we describe each individual generic Perspector.  

 

 
A. Reformulate each Slab Feature into individual faces, and select the Bottom Face of each slab. 
B. Reformulate each Beam Feature into faces, select the Top Face of each beam, reformulate this Top Face into the 

Two Longest Edges, and Reformulate (explode) these into individual Beam Edge Features.  



Figure 6: A composition of generic Perspectors constructs the Deck Attachments Perspective from Steel Beams and 
Concrete Slabs Perspectives. 

 
To summarize, the engineers on the WDCH needed to construct a new task-specific view (Deck Attachments) that was 
not predefined in the schema of the architect or steel detailer. Lacking simple, formal methods to specify to the 
computer how to construct a dependent engineering view from source engineering views, these engineers constructed 
the Deck Attachments view manually: an error-prone, time-consuming and difficult process. To address this difficulty, 
we show how engineers composed and modified reusable geometric Perspectors, and subsumed this graph into a 
higher-level Find Deck Attachments Perspector that automatically constructs a Deck Attachments Perspective on the 
current and then on subsequent projects 

4.2 Cantilevered Ceiling Panel Perspector 
In this section, we compose a Perspector Graph (Figure 7) that constructs the Cantilever Conditions Perspective from 
the Ceiling Panels and Hangers Perspective. We reused several Perspectors from the Deck Attachment Perspector 
Graph. Because of a technical difficulty in transferring data, the formal knowledge about which features described a 
ceiling panel or a hanger was lost. Rather than address the technical difficulty, we chose to demonstrate the power of 
Perspectors by re-constructing the lost knowledge using simple feature recognition.  The Perspectors in the Graph first 
determines which of the Features are Ceiling Panels, and which are Hangers. The Perspector Graph then reformulates 
each Hanger into a center point, and each Ceiling Panel into a polygon describing the Panel’s boundary. Finally the 
Perspector Graph determines which Hanger points are inside (or very close to inside) which Panel’s polygon, 
establishing a support relationship, and then measures the distance of the point to the edges of the Panel, determining 
which of these support conditions are cantilevered. We subsumed this Perspector Graph into the Cantilever Conditions 
Perspector in Figure 5B. In Section 4.3 below, we describe each individual Perspector.  
 
 
 
 

C. Select each Beam Edge and the Top Face Normal of the respective Beam Top Face, and generate each 
Potential Angle Back Face by extruding this Beam Edge along this Normal by six inches. 

D. Select each Potential Angle Back Face and each Slab Bottom Face. Wherever an intersection occurs between 
pairs, generate a Slab Attach Line Feature representing where the Deck Attachment should connect to the Slab. 

E. Reformulate each Slab Attach Line so that it is aligned with its associated Beam Edge. This is necessary 
because the Beam Edges (due the way the Convex Hull Perspector constructs its Features) have an implicit 
orientation in their vertices that is counterclockwise around the Beam Face (looking from above). Assuring the 
Slab Attach Edge also contains this orientation (the lines may be pointing in opposite directions, because the 
Intersection Perspector is working on surfaces, which have no direction) enables a Perspector to take a cross 
product of this direction (in Step F) and the Bottom Face of the Slab to find the appropriate direction to extrude 
the Slab Attach Line, so that it extrudes away from the interior of the Beam Face. 

F. Select each Slab Attach Direction Vector and the corresponding Slab Bottom Face and reformulate these into 
the Extrusion Vector for Each top leg, by taking the cross product.   

G. Select this Extrusion Vector and the corresponding Slab Attach Line and extrude this Line along the Vector by 3 
inches to generate the Angle Top.  

H. Select each Slab Attach Line and the corresponding Beam Edge and project the former onto the latter, to 
generate each Beam Attach Line. 

I. Select each Slab Attach Line and the corresponding Beam Attach Line and rule a surface between these lines to 
generate each Angle Back. 

J. Select each Angle Back and the corresponding Angle Top to generate each Deck Attachment.  



 

Figure 7: The Perspector Graph to construct a Cantilever Conditions Perspective from a Ceiling Panels and Hangers 
Perspective. 

 
A. The original Perspective contains both Ceiling Panels and Hangers (although nothing else), with no semantic 

information distinguishing between the two.  
B. Generate a Bounding Box around each Feature. 
C. Reformulate these Bounding Boxes into Faces, generate the area of the Top Face of the Bounding Box, and select the 

original associated Feature (at A), copy the geometry, and label this Feature a Hanger if this area is less than 2 square 
feet. 

D. Reformulate each Hanger into the Center Point of the Hanger. 
E. Similar to C. Select the original related Feature (at A), copy the geometry, and call this Feature a Panel, if the area of 

the Top Face of the Bounding Box is greater than 2 square feet. 
F. Reformulate this Panel into an approximate representation of the edges of each Panel using a convex hull algorithm 

that generates a polygon (formalized as a closed Line) around these Surfaces. 
G. Reformulate the Edge Polygon of each Panel by scaling it around its respective Center Point. This will provide a 

margin of error for subsequent calculations. 
H. Select each Panel Edge, and every Hanger Center Point.  
I. Select the Points with an XY projection that is contained within the XY projection of the Panel Edges. This represents 

which Hangers support a Panel. An individual Hanger can support more than one Panel. 
J. Reformulate the Panel Polygon into distinct edges, and select each Panel Edge and Hanger Center Point. 
K. Generate the projection of the Hanger Center Point onto the Panel Edge, and generate a Line from the Center Point to 

this Projection Point. This Line represents the perpendicular distance from the Center Point to each respective edge. 
L. Select the four perpendicular distance Lines corresponding with each Hanger Center Point and select the two shortest 

of these; select the Lines that are longer than the cantilever distance limit (provided as a Perspector Parameter by the 
engineer). Generate a square (formalized as a closed Line) around the corresponding Point in the Feature. These are 
the Cantilever Conditions.  



 
To summarize, the panel detailer on the WDCH needed a task-specific view (Cantilever Conditions) that was not 
predefined in the schema of the architect or other engineers designing the ceiling system. Because the engineer had 
no tools to specify to the computer how to construct a dependent geometric engineering view from source engineering 
views, the engineers did not construct and maintain an explicit view of these cantilever conditions. To address this 
difficulty, we show how engineers could modify and compose reusable geometric Perspectors, and subsume this graph 
into a higher-level Perspector, in order to construct a Cantilever Conditions Perspective automatically. 

4.3 Description of reusable Perspectors implemented in the research 
In this section we describe the reusable Perspectors that we composed in the previous sections to construct the Deck 
Attachment and Cantilevered Conditions Perspectives. We first describe the generic characteristics and behavior 
common to all Perspectors. 
 
Generic Perspector: Every Perspector analyzes the Features in source Perspectives to construct Features in the 
dependent Perspective. To do this, every Perspector does the following steps every time it runs: 

1. Check that each source Perspective’s Integration Status is INTEGRATED. Request that 
Perspective to run its Perspector if it is not. (This check back-propagates upstream through the 
Perspector Graph.) 

2. Set the dependent Perspective’s Status to BEING_INTEGRATED.  
3. Construct dependent Features in the dependent Perspective from source Features in the source 

Perspective(s) and relate the dependent Features and the source Features. Use the dependent 
Perspective’s Perspector Parameter (if provided by the engineer). 

4. Set the dependent Perspective’s Status to INTEGRATED. 
5. Set the Status of all subsequent dependent Perspective’s to NOT_INTEGRATED. (This step 

forward-propagates downstream through the Perspector Graph.) 
 
In addition to any Perspector Parameter that is specific to a particular Perspector, all Perspectors include several 
generic parameters that an engineer can specify to modify a Perspector’s construction. These parameters call methods 
that copy one or several Surfaces, Lines, and/or Points from the source Feature(s) to the dependent Feature(s) during 
construction of the dependent Perspective. For example, in Figure 7K, the Draw Line Perspector takes a source 
Feature containing two or more ordered Points and constructs a dependent Feature containing a Line. However, for 
subsequent Perspectors, it is desirable to keep the Points and the other Line in the dependent Feature. We therefore 
called copyAll(), which copies the entire source Feature’s geometry into the dependent Feature’s geometry.  
 
The next sections present the reusable Perspectors that we implemented to solve the test cases. The Perspectors are 
categorized in terms of whether they perform Selection, Reformulation, or Generation from the source Features when 
constructing the dependent Features. The name of the Perspector is in bold; Perspector Parameters are in 
parentheses if the Perspector uses them. The algorithms contained in the Perspectors described below are not new 
contributions; similar algorithms are implemented in many CAD programs, such as CATIA (Dassault 2003). The 
contribution to AEC project modeling is the generic formalism of Perspectors that make these algorithms composable 



and accessible to engineers from multiple disciplines on unique AEC projects to construct a dependent Perspective 
from source Perspectives. 

4.3.1 Selection Perspectors 
Associate One To All: For each source Feature in the first source Perspective, construct a dependent Feature in the 
dependent Perspective that contains the geometry of this source Feature and every source Feature in the second 
source Perspective. Relate the dependent Feature to all related Features. 
Each Line: For each Line in each source Feature, construct a dependent Feature containing that Line in the 
dependent Perspective. Relate each dependent Feature to the source Feature. 
Each Point: For each Point in each source Feature construct a dependent Feature containing that Point in the 
dependent Perspective. Relate each dependent Feature to the source Feature. 
Explode: For each Feature, for each Surface, Line, and Point in the Feature, construct a dependent Feature in the 
dependent Perspective containing just that Surface, Line, or Point. Relate each dependent Feature to the source 
Feature. 
Group By Point (Int PointNumber): Find all source Features that have the same Point (the same X,Y,Z position) in the 
PointNumber position of the source Feature’s Points. Group the geometry of these Features into one dependent 
Feature. Relate the dependent Feature to each related source Feature. 
Lines Shorter Than (Float distance): For each Feature containing a collection of Lines, construct a dependent Feature 
that contains the Lines that are shorter than distance, and relate the dependent Feature to the source Feature. 
Longest Lines (Int number): For each source Feature containing a collection of Lines, order the Lines by length, then 
construct a dependent Feature that contains the longest number of Lines, and relate the dependent Feature to the 
source Feature. 
Nearest Surface (Vertex v1, Vertex v2, Vertex v3): For each Feature in the source Perspective construct a dependent 
Feature in the dependent Perspective that contains the Surface in the source Feature that is closest to the plane 
defined by v1, v2, v3, and relate the dependent Feature to the source Feature. 
Points In Polygon: For each source Feature that contains a closed Line and a collection of Points, construct a 
dependent Feature that contains the same Line, and the Points that lie within this polygon, and relate the dependent 
Feature to the source Feature. 
Related Feature (Int [ ] path1, Int [ ] path2): For each Feature in the first source Perspective, construct a dependent 
Feature that associates it with the source Feature in the second source Perspective that shares a related Feature. 
Path1 and Path2 define the paths through the source Feature relationships to check for this relationship. For example, 
in Figure 6C, just prior to extruding the potential back faces, this Perspector is used to associate each Beam Edge and 
Outward Facing Normal that are Features of the Beam Top Face and relate the dependent Feature to the source 
Features. 
Shortest Lines (Int number): For each source Feature containing a collection of Lines, order the Lines by length, then 
construct a dependent Feature that contains the shortest number of Lines, and relate the dependent Feature to the 
source Feature. 



Surface Area Greater Than (Float size): For each Feature that contains a Surface with an area that is greater than 
size construct a dependent Feature that contains that Surface and relates the dependent Feature to the source 
Feature. 
Surface Area Less Than (Float size): For each Feature that contains a Surface with an area that is less than size 
Construct a Feature that contains that Surface, and relate the dependent Feature to the source Feature. 

4.3.2 Reformulation Perspectors 
Align Straight Lines: For each source Feature align the first Line with the second Line, and construct a dependent 
Feature that contains the aligned second Line, and relate the dependent Feature to the source Feature. 
Bounding Box: For each Feature, construct a dependent Feature containing a bounding box surrounding all the 
geometry in the source Feature, and relate the dependent Feature to the source Feature. 
Convex Hull XY: For each Feature in the source Perspective that contains at least one instance of geometry, 
construct one closed Line in the dependent Feature, representing the convex hull of all the geometry in the source 
Feature, and relate the dependent Feature to the source Feature. Although the algorithm does not consider the z value 
of any vertex while calculating the hull, it maintains the z values of all Points selected in the hull. 
Cross Product: For each Feature, construct a dependent Feature containing a point that is to be interpreted as the 
cross product of the vectors stored in the first and second Points of the source Feature.  
Direction Vector:  For each Feature, for each Line in the Feature, create a dependent Feature containing a Point that 
is to be interpreted as a Direction Vector or average orientation of the Line, and relate the dependent Feature(s) to the 
source Feature. 
Smoothing Groups (Float creaseAngle): For each source Feature that contains at least one Surface, construct a 
dependent Feature in the dependent Perspective breaking the source Surface into individual Surfaces wherever the 
crease angle between the normals of adjacent triangles is greater than the value of creaseAngle, and relate the 
dependent Feature to the source Feature. 
Outward Normal: For each source Feature, construct a dependent Feature containing a Point that is to be interpreted 
as the average outward normal of the Surface(s), and relate the dependent Feature to the source Feature. 
Perceived Edges (Float creaseAngle): For each source Feature, for each Line in that Feature, construct a dependent 
Feature that contains a Line for each perceived Line segment. Perceived Line segments are created where the angle 
between segments in the source Line exceeds the value of creaseAngle. Relate the dependent Feature(s) to the 
source Feature. 

4.3.1 Generation Perspectors 
Draw Line: For each Feature, construct a dependent Feature containing a Line that connects each Point in the source 
Feature and relate the dependent Feature to the source Feature. 
Draw Rectangle (Float X, Float Y): For each source Feature construct a dependent Feature containing a Line 
describing a rectangle around the first Point, and relate the dependent Feature to the source Feature. 



Extrude (Float distance): For each source Feature, extrude all the Lines in the Feature along the direction of the 
normal that is stored in the first Point of the Feature; construct a dependent Feature containing the resulting Surface(s), 
and relate the dependent Feature to the source Feature. 
Intersection: For each source Feature, find the intersection between the first Surface and the second Surface, 
construct a dependent Feature containing the resulting Line. 
Project Onto Line: For each source Feature, project all the Feature’s geometry onto the first Line in the source 
Feature. Construct a dependent Feature containing the resulting Lines (If Lines or Surfaces were projected) and/or 
Points (if Points were projected), and relate the dependent Feature to the source Feature. 
Ruled Surface: For each source Feature, rule a Surface between the first and second Lines in the source Feature, 
construct a dependent Feature containing this Surface, and relate the dependent Feature to the source Feature. 
Scale About Point (Float scaleFactor):  For each source Feature, construct a dependent Feature containing the 
source Feature’s geometry scaled about the first Point in the source Feature by scaleFactor, and relate the dependent 
Feature to the source Feature. 

5 Results: Faster, More Accurate Dependent Geometric Views on the WDCH 

The test cases from the WDCH establish that engineers could use simple formal methods to specify the automatic 
construction of a new dependent geometric view from information in many source geometric views. Section 4 
formalizes: (1) the concepts of Perspector and Perspective; (2) several reusable Perspectors; and (3) composed 
graphs of these reusable Perspectors that automatically construct a useful dependent Perspective for the test cases. 
This section reports the results of implementing these methods in a prototype called PerspectorApp, described in 
Haymaker et al (2003b), in which engineers select from a predefined collection of reusable geometric Perspectors, 
compose them into graphs, and construct and control the integration of dependent Perspectives as source 
Perspectives change. We implemented the reusable Perspectors described in Section 4.3, and composed the 
Perspector Graphs described in Section 4.1 and 4.2 to automatically construct the Deck Attachments and Cantilever 
Conditions Perspectives from Perspectives containing Features that were imported from the WDCH project. 
 
Figure 8A shows an as-built model of the deck attachments installed by the WDCH engineers on the roof of a portion 
of the project called Element 2. All of the deck attachments on this roof required field welding. Figure 8B shows the 
deck attachment Features constructed by the Find Deck Attachments Perspector in PerspectorApp. Figure 8C shows a 
table that compares the results of the WDCH engineers and Perspectors on the Element 2 roof. Perspectors found 114 
deck attachment conditions whereas the WDCH engineers installed (using field welding) 86. The 28 false positives are 
due to two factors: First, several of the deck attachments constructed by Perspectors were constructed on stiffener 
beams, which do not require deck attachments (these beams resist buckling of the longer beams, and they are not 
needed to support the metal deck). Second, due to the iterative nature of AEC processes, the position of a few of the 
beams had to be modified by the engineers very late in the design process. We did not receive an updated geometry 
model from the design team, so those results are on an older version of the model with slightly different beam 
conditions than the as- built conditions. This modified geometry was also the reason for the three false negatives. A 



visual inspection shows that Perspectors found all the deck attachments required by the detail shown in Figure 2D and 
are therefore functionally very accurate. 
 
Figure 8C also shows the amount of detail the WDCH engineers manually constructed to describe the deck 
attachments, versus the amount of detail constructed using automated Perspectors. The WDCH designers modeled 
deck attachment as a line, from which a fabricating engineer determined the length and location of each deck 
attachment; however, further work was required to determine the size of the deck attachment. The Find Deck 
Attachments Perspector constructs two surfaces of the deck attachments. This added detail contains additional 
information to establish the length, location, and size of each deck attachment.  

Figure 8: Comparing current practice (WDCH) to Perspectors on the deck attachment test case. 
 
Figure 9A shows PerspectorApp used to implement the deck attachment test case. Slab and beam features can be 
iteratively modified, causing the Deck Attachment Perspective’s integration status to be automatically set to 
“Not_Integrated”. The Find Deck Attachments Perspector can then be run to reconstruct the Deck Attachment 
Perspective. Figure 9B shows PerspectorApp used to implement the cantilever condition test case. Ceiling Panels and 
Hangers can be iteratively modified, causing the Cantilever Conditions Perspective’s Integration Status to be 
automatically set to “Not_Integrated”. The Find Cantilever Conditions Perspector can then be run to reconstruct the 
Cantilever Conditions Perspective. Figure 9C shows that seven of the reusable Perspectors are used in both 
Perspector Graphs, and six of the geometric Perspectors are re-used more than once in the same Perspector Graph. 
The high performance on these complex, industrial test cases provides evidence for the power of Perspectors. 
 
 

 A   B  

 C 

WDCH Perspectors Comments
     Accuracy 
          - Found in test case 0 (shop weld) 114
          - Missed in test case 86 (field weld) 2
     Completeness 
          - Amount of detail

Significant improvement over 
current practice. Further 
improvement possible. 

Automation with Perspectors  
makes creating more detail 
cost-effective.

 
A. The as-built condition of the deck attachments on the Element 2 roof (overlaid on concrete and steel) provided by 
Mortenson. All deck attachments on the Element 2 roof required field welding. B. The deck attachments constructed by 
Perspectors (overlaid on steel). C. The table compares the Accuracy and Completeness of the WDCH design team and 
Perspectors. 



 

Figure 9: The same method is applied to both test cases. 

6 Discussion: Better, Faster, Integrated Project Views for AEC 

This research has shown that engineers can use simple formal approach to automatically construct a dependent view 
from information in source views to support their tasks with timely, accurate geometric information that is integrated 
with geometric information that is constructed by other engineers. This approach could be used to augment predefined 
central or federated project model approaches, or as demonstrated in this paper, the approach can be used to 
construct and control an emerging, integrated, multidisciplinary project model. We: (1) formalized a generic task-
specific engineering view, called a geometric Perspective, and a generic reusable reasoning module, called a 
Perspector; (2) showed that engineers can modify, compose into graphs, and subsume geometric Perspectors; (3) 
implemented these test cases in a prototype called PerspectorApp to show that Perspector Graphs can automatically 
construct useful Perspectives; and (4) collected empirical test data that show the performance of this system on two 
complex industrial test cases. Such integrated views could have enabled the WDCH engineers to more efficiently and 
cost-effectively plan, design, and execute their project.  
 

A  

B  C 

Selection

Find        
Deck 

Attachments

Find 
Cantilever 
Conditions

Associate One To All 1 1
Each Line 0 1
Each Point 0 1
Explode 1 0
Group By Point 0 1
Lines Shorter Than 0 1
Longest Lines 1 0
Nearest Surface 2 1
Points In Polygon XY 0 1
Select Related Feature 7 3
Shortest Lines 0 1
Surface Area Greater Than 0 1
Surface Area Less Than 0 1
Reformulation 
Align Straight Lines 1 0
Average Point 0 2
Bounding Box 0 1
Convex Hull XY 1 1
Cross Product 1 0
Direction Vector 1 0
Smoothing Groups 3 1
Outward Normal 2 0
Perceived Edges 1 1
Generation
Draw Line 0 1
Draw Rectangle 0 1
Extrude 2 0
Intersection 1 0
Project Onto Line 1 1
Ruled Surface 1 0
Scale About Point 0 1  

A. The deck attachment Perspectors implemented in PerspectorApp B. The Cantilever Condition Perspectors 
implemented in PerspectorApp. C. Many Perspectors were reusable in both test cases, or multiple times in one test 

case (shown in gray). 



The power of Perspectors is demonstrated by the deck attachment test case. Engineers select from predefined 
geometric Perspectors and compose them into a Perspector Graph, which automatically constructs a Deck 
Attachments Perspective more accurately and with more useful detail than current, manual practice allows. The 
Perspector Graph did yield some false positives in the results: At a minimum, an engineer using manual Perspectors 
could remove these false positives more easily than manually constructing all the deck attachments, or he could 
assemble more Perspectors to remove these false positives automatically. Once composed, the Find Deck 
Attachments Perspector becomes a formal procedural specification for the deck attachment conditions, which can be 
reused on subsequent projects. The modularity may prove powerful on multi-disciplinary AEC projects, where 
organizational boundaries create liability issues. Enabling engineers to flexibly determine who produces what 
information, and in what format is an important issue in designing integrated project models. For example, a design 
engineer may only want to be responsible for representing the attachment as a line along the beam. Using geometric 
Perspectors, the fabricating engineer can then generate the remaining information.  
 
The generality of Perspectors is demonstrated by the cantilever conditions test case. The Perspector method applies to 
two very different kinds of problems: automating the design of deck attachments between slabs and beams, and 
automating the analysis of an architectural ceiling system for cantilever conditions between the panels and the 
hangers. In addition, Figure 9C also shows that several Perspectors are used in both test cases. Depending on the 
programmer and the required construction of Features, a Perspector could be programmed in a number of minutes to a 
number of hours. However, their reuse suggests that a language of reusable Perspectors can emerge. The 
development of such a language is enabled by the modularity of Perspectors, as additional Perspectors can be 
programmed and added to PerspectorApp, and because they use geometric Perspectives that are based on feature-
based geometric views in use today. Engineers may be able to learn to compose, modify, and subsume these 
Perspectors in order to construct many different kinds of useful dependent Perspectives of changing source 
Perspectives. Engineers could construct deck attachments or cantilever conditions Perspectives in different ways, thus 
composing varying, progressively better, Perspector Graphs. A Perspector Graph can serve as a template for similar 
problems; for example, the Find Deck Attachments Perspector would serve as a good starting point to define a 
Perspector that details the connection between beams and curtain wall systems that attach to the beams. Perspectors 
may enable engineers to generate the task-specific views they need when they need them and to contribute to an 
overall project model that emerges as a directed acyclic graph of views and dependencies as the design progresses. 
  
The limitations of the Perspector formalism include: (1) Representation: Any representation is an abstraction. The data 
types implemented in Features are Surfaces, Lines, and Points. Other geometric data types, such as NURBS, Solid 
Models, and other non-geometric data types, can increase the expressive power of Features, however at the expense 
of greater complexity for engineers working with the Perspectives and the Perspectors that transform them. (2) 
Reasoning: While they perform well on the test cases, we have only provisionally tested the individual Perspectors and 
Perspector Graphs presented in this paper. The research to date is an initial investigation into the power and generality 
of the approach. It was beyond the scope of this initial research effort to develop an exhaustive catalog or classification 



of reusable Perspectors, or to test them on hundreds of types of test cases. Rather, the research goal was to establish 
whether a formal, modular way to conceptualize constructing a dependent view from source views is feasible. (3) 
Management: The formalization does not currently support cycles in the dependencies that could support feedback for 
optimization searches. (4) Implementation: PerspectorApp is currently formalized to run on a single computer, issues of 
deployment of Perspectors and Perspectives over a network were scoped out of this research.  
 
The future work for the Perspector formalism will focus on developing a language of Perspectors. By applying 
Perspectors to more AEC design automation and analysis test cases, a better understanding of aspects of this 
language is expected to emerge: (1) What are the reusable Perspectors that multidisciplinary engineering teams need 
to construct their task-specific Perspectives of other Perspectives? (2) How general is the current formalization of a 
Perspective and Perspector? Put another way, in what contexts are new data types such as NURBS, Solid Models, 
and non-geometric data types and reasoning to handle these data types required? (3) How can Perspectors and 
Perspectives be distributed over a network to enable multiple engineers to construct task-specific Perspectives from 
other engineers’ Perspectives? The development of such a language is enabled by the modularity of Perspectors, as 
additional Perspectors can be programmed, or composed, modified, and subsumed, and added to PerspectorApp’s 
catalogue of Perspectors. 
 
In summary, to date it has been difficult to formalize integrated models for AEC projects because of their multi-
disciplinary, constructive, iterative, and unique nature. Many researchers are recognizing the need for model evolution, 
or customization; however, who will do the customizing, and when, has been an open question. Perspectors are a 
powerful and general approach that can enable engineers to iteratively construct useful dependent geometric views of 
changing source views of other engineers, enabling multidisciplinary engineering teams to engage in multi-disciplinary 
but integrated and automated design and analysis. The theoretical contributions of the research are the formal 
framework to enable engineers to work in this way. 
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