
 

 CIFECENTER FOR INTEGRATED FACILITY ENGINEERING  

 
 
 
 
 
 
 
 

Design Project Optimization 
 
 
 
 
 
 

By 
 

John Chachere 
 
 
 
 

CIFE Working Paper #095 
DECEMBER 2004 

 
STANFORD UNIVERSITY 

 

 



 

 

 

 
 

 
 
 
 
 
 
 

COPYRIGHT © 2004 BY 
Center for Integrated Facility Engineering 

 
 
 
 
 

If you would like to contact the authors, please write to: 
 
 

c/o CIFE, Civil and Environmental Engineering Dept., 
Stanford University 

Terman Engineering Center 
Mail Code: 4020 

Stanford, CA 94305-4020 



Design Project Optimization  John Chachere             

 1/13 

DDEESSIIGGNN  PPRROOJJEECCTT  OOPPTTIIMMIIZZAATTIIOONN  
 
 

This paper presents a quantitative algorithm that jointly optimizes diverse and 

interdependent decisions that shape a collaborative engineering venture of limited scope 

and duration.  Planning decisions include product component and subsystem 

configuration; organizational participants and structure; processes of design, 

collaboration, and testing; and environmental elements including design norms, 

incentives, and facilities.  We formulate project effectiveness and constraints in algebraic, 

domain-extensible terms, and integrate within the nonlinear optimization two established 

methods that originally addressed isolated problem aspects. 

We use the Virtual Design Team (VDT) [Cite] to simulate an information processing 

view of organizational behavior [Galbraith 1972] with precision that exceeds most 

competing theories.  VDT tests design organizations’ information processing capacities 

against processes’ information processing loads to forecast emergent distributions of 

project duration, labor costs, process quality, and organizational character. 

We use Probabilistic Risk Analysis (PRA) to examine products (such as the NASA 

space shuttle) whose dependability is difficult to assess.  PRA calculates a product 

design’s reliability by decomposing it conceptually into functional blocks, assessing 

component and subsystem reliabilities, and aggregating to a total failure probability using 

fault trees.  We base components’ design error probabilities on VDT’s predicted 

exception handling and communications behavior. 

To improve legibility, variables and functions are named verbosely and modularized.  

Quantities collected directly from domain experts are underlined, values derived from 

explicit formulae are bold, and formulae that apply to many parallel instances of a 

variable use subscripts.  External modules such as VDT and PRA identify input with Italics 

and output with Bold Italics. 

 
 

We are grateful to NASA Ames Research Center’s Engineering for Complex Systems Program for 

supporting this work under Grant Number NNA04CK20A, and for providing valuable feedback. 

 



Design Project Optimization  John Chachere             

 2/13 

BBEEHHAAVVIIOORR  MMEETTRRIICCSS    
We determine the value of a project alternative using a mathematical function of product 

structure (using PRA fault trees), project information processing behavior (using VDT 

simulation), and domain knowledge (ranging from a discount rate to the sensitivities and 

specificities of product components’ test suites).  We present product testing as a detailed 

module that may be omitted or adapted to represent development, operations, or other 

phases.  This section breaks intermediate calculations into product performance, product 

cost, integrated testing, element testing, project costs, and organizational behavior.  Later 

sections show how to introduce assessed uncertainties and investment opportunities into 

this system of equations. 

PPRROOJJEECCTT  PPRROOFFIITTAABBIILLIITTYY  
Space mission designers might aim to maximize product performance times reliability 

(minus costs), constrained by a launch window.  Other projects may optimize design time 

and cost tradeoffs by discounting anticipated profits according to the design project’s 

duration.  We can support pricing decisions by formulating sales quantity as an explicit 

function of product performance, reliability, and price over time. 

(ProfitNPV  | volume sales) = Σtime (Salestime * Margin time) * (1 - DiscountRate) time) – Cost project 

(ProfitNPV  | one product, internal use, risk neutral) = (Performance product * Reliability product – 
UnitCost product) * (1 - DiscountRate) Duration project – Cost project 

(Sales time  | time <= Duration project) = 0 

(Sales time  | time > Duration project) = Sales (Performance product, Reliability product, Price time, time) 

Margin time= Price time– UnitCost product  

PPRROODDUUCCTT  PPEERRFFOORRMMAANNCCEE  
To estimate the benefits that a functioning product coveys to end users, we mediate a 

QFD analysis by the performance of individual components, critical interfaces, and 

interdependent subsystems.  VDT’s design process analysis can signal the compromise of 

elements’ intended quality. 

(Performance product  | FullyIndependent, SingleString) = Πcomponent Performancecomponent * Πinterface 
Performanceinterface * Πsystem Performancesystem 

∀element ∈ {component} ∪ {interface} ∪ {system}  



Design Project Optimization  John Chachere             

 3/13 

Performance product = QFDPerformanceEstimate (ProductStructure, Performanceelement1, 
Performance element2, …) 

∀ component∀ interface∀ system  

Performancecomponent = VDTCommunicationsRisk component* PlannedPerformance component  

Performanceinterface = VDTCommunicationsRisk interface* PlannedPerformance interface  

Performancesystem = VDTMeetingRisk system* PlannedPerformance system  

PPRROODDUUCCTT  CCOOSSTT  
Each finished product costs as much as the sum of its elements (components, two-

component interfaces, and multi-component systems), inflated by the fraction of products 

that fail integrated testing.  Qualified parts in turn are more costly to produce (though 

generally more reliable) when element testing rejects a larger fraction.  Each element’s 

cost before testing depends upon a target cost and the design process’s support of 

economical design. 

UnitCost product = Σelement UnitCost element / TestPassRate product  

∀element ∈ {component} ∪ {interface} ∪ {system}  

UnitCost element = ProductionCost element / TestPassRate element  

∀ component∀ interface∀ system  

ProductionCost component = VDTCommunicationsRisk component * PlannedCost component  

ProductionCost interface = VDTCommunicationsRisk interface * PlannedCost interface  

ProductionCost system = VDTMeetingRisk system * PlannedCost system  

IINNTTEEGGRRAATTEEDD  TTEESSTTIINNGG  
We assess costs for the facilities that test finished product and constituent elements’ 

reliability.  We measure the effectiveness of testing using sensitivity (fraction of good 

products accepted) and specificity (fraction of bad products rejected).  The finished 

products’ reliability measure is the fraction of approved products that PRA analysis of 

approved constituent elements indicates will not fail.  The least reliable product 

configurations will fail whenever any component, interface, or subsystem fails. 

TestCost project = TestCost product + ΣelementTestCost  

Reliability product = PSucceed product * TestSensitivity product / Yield product  



Design Project Optimization  John Chachere             

 4/13 

Yield product = PSucceed product * TestSensitivity product + (1 - PSucceed product)* (1 – TestSpecificity 

product) 

(PSucceed product  | FullyIndependent, SingleString) = ΠelementReliability element  

∀ elementi ∈ {component} ∪ {interface} ∪ {system}  

PSucceed product = PRA (ProductStructure, Reliability element1, Reliability element2, …) 

EELLEEMMEENNTT  TTEESSTTIINNGG  
As with finished products, design elements’ reliability is probability that an approved 

product won’t fail.  Failure probability is based on the selected application and on the 

effectiveness of the design process. 

∀element ∈ {component} ∪ {interface} ∪ {system}  

Reliability element = PSucceed element * TestSensitivity element / Yield element 

Yield element = PSucceed element * TestSensitivity element + (1 - PSucceed element) * (1 – TestSpecificity 

element) 

∀ component∀ interface∀ system  

PSucceed component = VDTFunctionalRisk component * PlannedReliability component  

PSucceed interface = VDTProjectRisk interface * PlannedReliability interface  

PSucceed system = VDTMeetingRisk system * PlannedReliability system  

PPRROOJJEECCTT  CCOOSSTTSS  
VDT calculates the length of a design project, which we add to possible development and 

testing time.  A project’s cost is the sum of testing and facility expenses, organizational 

burden, and a product configuration’s elements fixed costs (such as licensing fees).  

Duration project = VDTProjectDuration + Duration product 

Cost project = TestCost project + Cost process + Cost organization + DesignCost product  

DesignCost product = Σelement DesignCost element 

Cost process = Σtask (VDTTaskWorkVolume task * VariableCost task +FixedCost task) 

OORRGGAANNIIZZAATTIIOONNAALL  BBEEHHAAVVIIOORR  
Labor costs equal total wages due each team for VDT predicted time spent on the project.  

In addition, we assign penalties for overloaded workers’ burnout because it increases the 

likelihood of absenteeism and turnover.  When VDT finds communications breakdowns 

between management and design teams we assign a cost to reflect the loss of goal 



Design Project Optimization  John Chachere             

 5/13 

alignment, and when VDT finds that teams communicate poorly we reflect the predicted 

future loss of future productivity. 

Cost organization = LaborCost organization + Burnout organization - Coherence organization - Leadership 

organization  

LaborCost organization = Σteam LaborCost team  

Burnout organization = Σteam Burnout team / |{teams}| 

Leadership organization = Σteam Leadership team / |{teams}| 

Coherence organization = Σteam Coherence team / |{teams}| 

∀team 

LaborCost team = VDTActorWorkVolume team * Wage team  

Burnout team = ∫time VDTBacklog team, time * StressResponse (team, VDTBacklog team, time) * dtime 

Leadership team = VDTDecisionLatency team * LatencyLeadership + VDTDecisionDefaults team * 
DefaultLeadership  

Coherence team = VDTInfoExchLatency team * LatencyCoherence + VDTInfoExchDefaults team * 
DefaultCoherence  

PPRROOJJEECCTT  UUNNCCEERRTTAAIINNTTIIEESS    
We model uncertain quantities by introducing discrete or continuous random variables 

into the behavior formulae.  Continuous variables defined by probability density 

functions offer the greatest precision for most applications.  The optimization step 

integrates over the joint distribution of these variables to determine their range of 

possible impacts.  When analytic complexity exceeds our resources, we sample the joint 

distribution and approximate in Monte Carlo fashion. 

Often the simplest way to model uncertainties is with discrete probability distribution 

functions.  Our formulation calculates the implications of each variable setting and uses a 

weighted average to assess the objective’s outcome. 

Using Probabilistic VDT 

Because VDT internally models stochastic behavior using a Monte Carlo approach, to 

assess information processing behavior we synthesize a number of simulation output 

“trials”.  As input VDT takes task complexity and other point estimates that can be 

uncertain, difficult to assess, and influential.  To refine the model we can define a 



Design Project Optimization  John Chachere             

 6/13 

distribution on important quantities, calculating the results of each case and then 

integrating into an outcome distribution. 

PPRROOJJEECCTT  SSTTRRUUCCTTUURREE    
Structure investments include those project design parameters that influence project 

(information processing) behavior.  Our analysis begins by enumerating structurally 

compatible choices of organization hierarchy, product component / subsystem 

decomposition, and task precedence.  A detailed iteration specifies variables including 

teams’ sizes, skills and experience levels, components’ / subsystems’ nominal failure 

probabilities, and task complexities and work volumes.  VDT probabilistically simulates 

many of these choices’ complex and subtle implications, indicating for example that a 

larger design team will work faster, but sometimes becomes alienated from managers 

who are too busy to keep the new pace. 

PPRROODDUUCCTT  CCOONNFFIIGGUURRAATTIIOONNSS        
D = {product configuration di} 

Product configuration defines a project design’s information processing deliverable.  A 

product configuration includes enough information to identify the set of processes that 

can meet the project goal.  The configuration includes, for example, hardware versus 

software programming choices, because they determine design work volumes.  The 

product configuration does not specify details that do not impact design behavior, such as 

the quality of materials or product testing. 

Selecting Component Redundancies 

Consider the conceptual phase design of a NASA program similar to that described in 

Dillon, Paté-Cornell and Guikema [2003].  At a high level of abstraction, there are four 

systems in the product: a launch vehicle, science instrumentation, mechanical structure, 

and electrical subsystem.  There are two alternative product configurations: d1 is a 

“single-string” design that fails if any of the subsystems fail, while d2 is “redundant” in 

the instrumentation component, and fails either if both of two instrumentation 

components fails, or if any of the other subsystems fails. 



Design Project Optimization  John Chachere             

 7/13 

PPRROOCCEESSSS  CCOONNFFIIGGUURRAATTIIOONNSS    
Pi = {process configurations pij| pij designs a product with configuration di} 

Process configuration defines a project design’s information processing load.  A process 

configuration defines each design task’s complexity, work volumes, precedence 

relationships, and communication and rework dependencies.  A process configuration’s 

task complexities and work volumes must generate all of a compatible product 

configuration’s elements.  Similarly, components that induce negatively interacting 

subgoals require corresponding information exchange links, rework dependencies 

connect the designs of interfacing components, and interdependent systems’ component 

designers conduct regular meetings. 

Assigning Responsibility for Component Interfaces  

We define one feasible process p11 for d1 with one task of 100 full-time equivalent (FTE) 

–hours’ design time for each subsystem.  We define two alternative processes for d2: p21 

and p22.  p21 designs the interfaces among redundant instruments within the 

instrumentation team.  In this case, the instrumentation process has work volume of 150 

FTE hours, as well as increased requirement complexity (this increases the likelihood of 

exceptions pertaining to instrumentation).  The second process, p22, requires interface 

design to be handled by the dependent mechanical and electrical subsystems.  

Instrumentation and launch vehicle tasks are unchanged from the p11 baseline, but the 

mechanical and electrical systems’ work volume increases to 125 FTE hours each, and 

their uncertainty and solution complexity are high.  This shares the direct work burden 

more evenly, but also increases the coordination load among subsystem designers. 

OORRGGAANNIIZZAATTIIOONNAALL  CCOONNFFIIGGUURRAATTIIOONNSS  
Oij = {organizational configurations oijk | oijk can execute processes with configuration pij} 

Organizational configuration defines a project design’s information processing capacity.  

It is feasible for a process configuration if each task is assigned one or more qualified 

design teams.  In this step, we identify the organization’s design teams, defining their 

skill, application experience, and task assignments.  We also specify an exception 

handling hierarchy (including levels of management), degree of centralization, and other 

VDT culture measures. 



Design Project Optimization  John Chachere             

 8/13 

Sizing Engineering and Management Resources 

The example project planners may choose small or large design teams, and they may 

allocate a small or large amount of management Priority.  Each of the four organizational 

configurations is compatible with all of the process configurations, so as shorthand we 

define o1 = o111 = o211 = o221 (and similarly for o2, o3, and o4).  o1 contains a two-person 

design team (2 FTEs) for each design task, and all teams report to a manager that 

simultaneously manages many other projects (10% available).  o2 differs from o1 in that 

each design team includes four designers (4 FTEs) rather than two.  o3 is like o1 except 

that the manager is more available to handle exceptions (20% time).  o4 has the more 

available manager and the larger design teams. 

PPRROOJJEECCTT  BBEEHHAAVVIIOORR  
∀ oijk ∈ Oij, Rijk = VDT (oijk, pij)  

VDT calculates information processing behavior by matching process and organization 

configurations (information processing load and capacity).  A first look at the diverse 

VDT product, process, and organization outcome metrics may inspire D, Pi, or Oij 

revisions.  For example, predicting an intolerably long project might inspire adding a new 

oijk alternative with teams of higher skill, experience and wage.  Once we are satisfied the 

VDT outcome distributions effectively forecast behavior, we proceed with an analysis 

that treats each simulation trial output as a constant. 

Assessing Product Failure Probability 

Probabilistic Risk Analysis forecasts complex products’ failure probabilities by 

characterizing each design element and defining their interactions: 

PSucceed product = PRA (ProductStructure, Reliability element1, Reliability element2, …) 

First we translate the product structure into a functional definition of interdependencies 

and distill minimal cut sets.  Also from the product structure, we seed each element with 

a failure probability that is intrinsic to its design intent and operational environment. 

Using VDT’s exception handling quality metrics we also estimate the probabilities of 

failure resulting from a design flaw.  VDT creates exceptions when designers aren’t 

sufficiently skilled or experienced to handle the complexity of their component design 



Design Project Optimization  John Chachere             

 9/13 

work.  These exceptions are most likely to lead to errors when decision makers are 

unavailable: 

PSucceed component = VDTFunctionalRisk component * PlannedReliability component 

When designers are too busy to consider adjusting their designs to changes in dependent 

components, we assign a probability that the interface between the components will fail: 

PSucceed interface = VDTProjectRisk interface * PlannedReliability interface 

Finally, complex interactions leading to failure are more likely for groups of 

interdependent components when system integration meetings have low attendance: 

PSucceed system = VDTMeetingRisk system * PlannedReliability system 

Aggregating design failure probabilities for components, interfaces, and systems to a total 

product failure probability allows us to relate subtle design project behavior to product 

outcomes. 

IINNVVEESSTTMMEENNTTSS  AANNDD  PPRRIIOORRIITTIIEESS  
In this step, we identify investments that benefit project performance in ways that we 

understand, but that are difficult to weight against corresponding costs.  We typically 

define them as decision variables in the optimization, with corresponding financial cost, 

non-negativity constraints, and (optionally) a discretionary budget limit: 

∀ measure 

Cost project = Cost process + Cost organization + DesignCost product  

Cost′ project = Cost process + Cost organization + DesignCost product + Σ measure Invest measure 

Σ measure Invest measure <= DiscretionaryBudget project 

Invest measure >= 0 

Focusing on Economy, Reliability, or Performance 

We can also model conserved, non-monetary resources such as priorities among design 

economy, reliability, and performance.  This may be an uncertain quality of design teams, 

a management choice, or a linear combination that takes VDT-predicted leadership into 

account.  As a simple management decision, each related formula: 

∀component 

PSucceed component = VDTFunctionalRisk component * PlannedReliability component  

ProductionCost component = VDTCommunicationsRisk component * PlannedCost component  



Design Project Optimization  John Chachere             

 10/13 

Performancecomponent = VDTCommunicationsRisk component* PlannedPerformance component  

is mediated with decision variables: 

∀component ∀measure 

PSucceed′ component = Priority Psucceed component * VDTFunctionalRisk component * PlannedReliability 
component  

ProductionCost′ component = Priority ProductionCost component * VDTCommunicationsRisk component * 
PlannedCost component  

Performance′component = Priority Performance component * VDTCommunicationsRisk component* 
PlannedPerformance component  

We also define conservation and a feasible range: 

Priority Psucceed component + Priority ProductionCost component + Priority Performance component = 3 

1.5 > Priority measure component > 0.5 

IINNVVEESSTTMMEENNTTSS  MMAADDEE  IINN  AADDVVAANNCCEE  
In our formulation, investments that influence information processing must appear as 

discrete project structure choices.  However, many continuously variable investments are 

independent of project structure and compensate for information processing weaknesses. 

Improving Tests to Catch Design Errors 

Although some failures may not be preventable, improving test facilities can reduce the 

anticipated risks of design flaws or manufacturing defects.  For an electrical component, 

for example, we can identify the testing formulae: 

Reliability electrical = PSucceed electrical * TestSensitivity electrical / Yield electrical 

Yield electrical = PSucceed electrical * TestSensitivity electrical + (1 - PSucceed electrical) * (1 – 
TestSpecificity electrical) 

and substitute functions of a new decision variable, such as: 

TestSensitivity electrical (x) = 1 – (1 - TestSensitivity electrical) (1 + x/100)  

TestSpecificity electrical (x) = 1 – (1 - TestSpecificity electrical) (1 + x/200)  

For Invest test electrical this yields: 

Reliability′ electrical = PSucceed electrical * TestSensitivity electrical (Invest test electrical) / Yield′element 

Yield′ electrical = PSucceed electrical * TestSensitivity electrical (Invest test electrical) + (1 - PSucceed electrical) 
* (1 – TestSpecificity electrical (Invest test electrical)) 



Design Project Optimization  John Chachere             

 11/13 

IINNVVEESSTTMMEENNTTSS  MMAADDEE  WWIITTHH  HHIINNDDSSIIGGHHTT  
Advance investments’ effectiveness is limited because (as VDT predicts) each project 

configuration’s performance is uncertain.  In contrast, some decisions occur after the 

design project is complete and information processing results are known.  We optimize 

investments made with perfect hindsight by linking decision variables to individual VDT 

trials’ output.  The investment’s costs and benefits are weighted accordingly in the 

optimization.  Computational complexity may limit the simulation trials of applications 

using this feature. 

Bonding, Inspiring, and Rejuvenating a Worn-Out Team 

Organizational sustainability can require investments that balance any VDT-predicted 

loss of coherence, leadership, and burnout.  Long term investments include facility 

comforts, incentive compensation, and vacation, while less economical, reactive solutions 

include team building, topical training, and comp time (off-record vacation).  We link 

global and (scaled) simulation - specific investments to each team’s performance using (3 

* |{project configurations}| * |{trials}| * |{teams}|) decision variables and constraints: 

∀team∀trial 

Invest incentives team + (|{trials}|/2) * Invest training team trial ≥ - 100 * Leadership team trial  

Invest vacation team + (|{trials}|/2) * Invest comp_time team trial ≥ 100 * Burnout team trial  

Invest facilities team + (|{trials}|/2) * Invest team_building team trial ≥ - 100 * Coherence team trial  

PPRROOJJEECCTT  DDEESSIIGGNN  OOPPTTIIMMIIZZAATTIIOONN  
Finally, we combine the system of equations describing project objective, uncertainties, 

information processing behavior, and investments into a nonlinear optimization.  We first 

take the Cartesian product of all sets of discrete alternatives to generate an exhaustive list 

of discrete strategies (simplifying with strategy tables per available computing power).  

For each discrete strategy, we generate the system of equations that reflects project 

performance and simplify wherever possible (through substitution using Mathematica™, 

for example).  We multifurcate again by collecting the Cartesian product of discrete 

uncertainties (including VDT trials), then substitute each joint sample’s results into a 

copy of the equations and simplify.  Next, we integrate over the joint distribution on all 

continuous variables, presumably simplifying to account for widespread independence. 



Design Project Optimization  John Chachere             

 12/13 

At this point, each strategy and unique set of discrete uncertainty values has an 

associated case whose objective function and constraints include Invest and Priority 

variables.  For each strategy we average the objective function over the discrete 

uncertainties, weighted by joint probability, and we take the union of the associated 

constraints (and simplify).  Solving this problem with nonlinear optimization algorithm 

will yield optimal investment choices for the Invest and Priority variables, and expected 

values on objective function outcomes, for each discrete strategy.  Our algorithm 

recommends the discrete strategy with continuous investments having the greatest 

expected objective function. 

Mathematically, we maximize: 

∀ strategy ∈ {strategy} = {decision1_alternatives} × {decision2_alternatives} … 

∀ c_uncertaintyi, c_uncertaintyj … ∈ {continuous uncertainty} 

Maximize  

ProfitNPV strategy = ∫ c_uncertaintyi ∫ c_uncertaintyj … [Σtrial (ProfitNPV strategy trial * Probability strategy trial) * 

Π c_uncertainty (Probability c_uncertainty dc_uncertainty)] 

Subject to the union of all equations developed above under the substitution: 

∀ Variable 

Variable strategy trial  = (Variable | evaluated at strategy and trial) 

In many cases, Probability strategy trial = Probability trial.  We recommend the strategy with 
highest ProfitNPV alternative and its corresponding {Invest} and {Priority} variables 

VDT calculates many variables of importance, but does not define their impact on project 

performance, and therefore cannot recommend one project configuration over another.  

To determine the better of two organizational configurations after 100 VDT simulation 

trials, we select the highest value of: 

ProfitNPV org_config = Σtrial (ProfitNPV org_config trial / 100) 

We calculate this by taking substitutions such as 

ProductionCost component = VDTCommunicationsRisk component * PlannedCost component  

and instantiating them with individual simulation outcomes: 

ProductionCost component org_config trial = VDTCommunicationsRisk component org_config trial * PlannedCost 

component  



Design Project Optimization  John Chachere             

 13/13 

If the decision-maker’s preferences and constraint structure show linear independence in 

ProductionCost and its probabilistically dependent variables, we consolidate: 

(ProductionCost component org_config | linear independence) = Σtrial (VDTCommunicationsRisk 

component org_config trial / 100) * PlannedCost component  

This problem does not require a nonlinear optimization solver because we exhaustively 

analyze all discrete cases.  To instead optimize the nonlinear Priority allocation decision 

above, we would use the formulation: 

ProductionCost′ component org_config trial = Priority ProductionCost component org_config * 
VDTCommunicationsRisk component org_config trial * PlannedCost component  

If Priority ProductionCost were a “hindsight” variable (subscripted by trial), its nonlinear 

interaction with VDTCommunicationsRisk would prohibit simplification. 

RREEMMAARRKKSS    
The algorithm includes several contributions, such as focusing the interpretation of VDT 

predictions and quantitatively linking design collaboration effectiveness to product risk.   

Some important questions are addressed in preceding work for this tutorial, but others 

remain: 

• We do not define formulations that capture certain relationships between 

uncertainties and decision variables.  Ideally, influence diagrams should be used 

to clarify the general case of relationships among more complex projects’ 

uncertainties, simulated outcomes, and decision variables. 

• Analytic and computational complexity will constrain the application to an 

unknown degree.  For example, the nonlinear optimization may require 

discretization (or numerical solution) when a continuous uncertainty and 

investment with “hindsight” share constraints or are linearly dependent in the 

objective function. 

• Further developing and solving a consistent example would clarify the algorithm. 


