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  AAbbssttrraacctt  

Producing manned space missions, new cancer drugs, and civil facilities all involve an 

expensive design and development effort that culminates in operations that are at risk of 

technical failure.  Today, few existing social science and engineering theories offer 

sufficient precision to support specific decisions involving project tradeoffs among 

operations failure risks and programmatic considerations (such as development schedule 

and cost).  The aim of this research is to precisely identify theory-based mechanisms by 

which management choices influence engineering processes—specifically the failure to 

complete necessary rework— that creates product flaws which jeopardize downstream 

operational success, and to quantify the degree to which these phenomena are likely to 

manifest for a given project.  We propose a quantitative method for analyzing these risks 

by modeling the interdependencies among upstream engineering and downstream 

operations considerations.  The proposed model integrates the Probabilistic Risk Analysis 

(PRA) model of product functions and operating environments, with the Virtual Design 

Team (VDT) simulation model of engineering organizations and processes.  This 

research offers a formal definition of the ways in which many theoretical factors (such as 

component redundancy, human error, constructive oversight, and information processing) 

that are chosen in the design phase may subsequently interact to determine operational 

phase failure risk.  The integrated model is intuitively more justified for interdependent 

project planning applications than either model alone because most failures involve 

interactions among product, organization, process, and environmental factors.  The 

proposed model offers project planners a more holistic assessment of operational failure 

risks and a broader range of testable mitigation strategies than models that are limited to 

consider the operations stage alone. 
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CChhaapptteerr  11  --  IInnttrroodduuccttiioonn  

11..11      PPRRAACCTTIICCAALL  PPRROOBBLLEEMM  
Attempting to manage high-risk technologies while 
minimizing failures is an extraordinary challenge.  By 
their nature, these complex technologies are 
intricate, with many interrelated parts.  Standing 
alone, the components may be well understood and 
have failure modes that can be anticipated.  Yet 
when these components are integrated into a larger 
system, unanticipated interactions can occur that 
lead to catastrophic outcomes.  The risk of these 
complex systems is increased when they are 
produced and operated by complex 
organizations that also break down in 
unanticipated ways.  -NASA 2003 

Many projects, such as space missions and pharmaceutical development, involve a 

complex and interdependent design and development effort that culminates in operations 

that are at risk of failure.  In many industries, these projects result in operational failure 

far more frequently than competent and careful human planners predict.  Recent advances 

in risk analysis and project management indicate that to walk the surface of Mars, 

humanity need not completely master its organizations, processes, products, and 

environmental factors.  Instead what we require is a way of understanding how the 

strengths and weaknesses in these four factors can complement or conflict with one 

another. 

The web of interdependencies among early phase engineering activities and 

operations failures is complex, dynamic, and acts over a long period.  Nevertheless, 

engineering flaws introduced during design and development frequently do result in 

catastrophic failure during operations.  Our intuition is that in these projects, the 

probability of failure depends greatly but also somewhat predictably on the way that 

engineering activities are planned and managed early in the project.  Stakeholders who 
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are serious about improving risk assessment and mitigation should consider their 

complex operations from a perspective that integrates more diverse upstream sources of 

error than traditionally have been considered.   

The National Aeronautics and Space Administration (NASA) workforce lives by the 

creed “Failure is not an option” [Kranz 2000], and strives also to be “Faster, better, 

cheaper” [NASA 2003].  These noble goals frequently conflict, however, and each of 

NASA’s public failings can be traced to honorable choices in service of one, but to the 

detriment of another.  This research will provide a tool that can help organizations like 

NASA become faster, better, cheaper, reliable, sustainable, and more, without “operating 

too close to too many margins” [NASA 2003].  

11..22      EEXXIISSTTIINNGG  AAPPPPRROOAACCHHEESS  
NASA has devoted tremendous resources to risk management and accident 

investigations, and they have consistently traced errors upstream from operations to roots 

in development and design [Bergner 2005].  Researchers estimate the fraction of major 

system failures that can be traced to human and organizational shortcomings to range 

from fifty to ninety percent [Paté-Cornell 1990, Murphy and Paté-Cornell 1996].   

In response to these phenomena, social science and engineering researchers have 

developed rich theories of collaborative activities and their relationships to risk (Most 

notably Bem et al 1965, Perrow 1986, Roberts 1990; For a literature review see Ciaverelli 

2003 and Cooke et al 2003).  Unfortunately, because these theories lack a quantitative 

definition, it is difficult to rigorously evaluate their range of valid application, their 

potential interactions, and their relative importance when in conflict with other theories. 

Modern project planners today find that few research findings provide enough 

precision to support analysis of common but difficult practical decisions involving 

specific project risks, costs, schedules, and other objectives.  Today some organizations 

reap important benefits from quantitative programmatic and risk models developed by 

engineers (Most notably Paté-Cornell 1990, Paté-Cornell and Fischbeck 1993.1 and 

1993.2, Murphy and Paté-Cornell 1996, Paté-Cornell et al 1996, and Dillon and Paté-

Cornell 2001), but we believe that increasing these tools’ level of integration can further 

improve decision making. 
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NASA has used Probabilistic Risk Analysis (PRA) to quantitatively estimate the 

failure probabilities of complex engineered systems [Paté-Cornell and Fischbeck 1993.1, 

1993.2], and is continuing to apply the technology on the International Space Station.  

Because the PRA method does not provide a model of the project’s upstream engineering 

organizations or processes, it cannot estimate the influence these factors will have on 

risk.  

NASA has also used the Virtual Design Team (VDT) simulation to quantitatively 

predict the behaviors of complex engineering activities, including many that are 

associated with risk [ePM 2003; see also Kunz et al., 1998; Levitt et al 1999].  

Unfortunately, this model does not include products or their operating environments, and 

is unable to assess the impacts these behaviors will have on the probability of failure in 

operations. 
 

11..33      RREESSEEAARRCCHH  QQUUEESSTTIIOONNSS  
We pose two questions: 

1. What are some mechanisms by which engineering design activities create product 

flaws that later increase the probability of downstream operational failure? 

2. What is a method that quantifies the degree to which specific engineering (design and 

development) phase choices change the operational phase failure probability of a 

given project?   

11..44      PPRROOPPOOSSEEDD  MMOODDEELL  
Figure 1 illustrates our proposal to quantitatively represent and interrelate in a theory-

founded manner both upstream engineering organization- and process-contingencies and 

possible downstream product- and environment-related factors.  The proposed solution 

integrates a PRA model of product functions with a VDT simulation of engineering 

organization and process.  The result is an estimate of operations failure probability that 

considers flaws that are introduced during the early design and development stages.  The 

proposal offers a structured method for the formal evaluation of the risk effects of many 

controllable design and management choices. 
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Figure 1 Proposed synthesis of VDT and PRA models. 
This schematic illustrates how we propose to link outcomes of VDT’s model of engineering organization and product with PRA’s 
estimates of product failure risk.  In the example, one manager oversees three teams with distinct and interdependent tasks.  If the 
organization cannot adequately meet the process requirements, our integration predicts that the reliability of corresponding 
engineered elements will tend to suffer.  During operations, flawed elements, in turn, can create errors that reduce the capacity of 
engineered systems, making functional and project failures more likely. We propose using VDT to evalutate specific engineering 
project conditions and using PRA to determine their impacts on project failure probability for a specific product. Figure 6 illustrates 
the required analytic steps, Figure 7 shows the relationships among data, and Table 4 provides calculations for a specific example. 
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11..55      CCOONNTTRRIIBBUUTTIIOONN    
This research extends project planning and risk management research traditions.  Its 

contribution to engineering risk analysis is that it formally defines theory-founded 

methods to relate risks in the operational phase product with design phase choices of 

organization and process design and the design phase environment.  More specifically, 

we use VDT to show how the match between organization and process influences a new 

rework deficit measure, and we use PRA and related methods to show the ways in which 

a high rework deficit can lead to errors and failure in operations.  This paper provides 

several illustrative examples, and discusses methods for further justifying the 

contribution’s power and generality.  

11..66      IIMMPPLLIICCAATTIIOONNSS  
It is unlikely that we will ever develop perfect knowledge and total control of our 

complex and interdependent organizations, processes, products, and environmental 

factors.  Taking an integrative view on recent advances in risk analysis and project 

management suggests that we can use these four factors to complement or constructively 

conflict with one another, building on strengths and diminishing weaknesses, even when 

our information and control are limited and uncertain. 

Because the specific synthesis we propose preserves the core, theory-founded PRA 

and VDT models, it provides a formal definition of the ways in which many theoretical 

factors—such as component redundancy, human error, constructive oversight, and 

information processing—interact to determine and decrease technical failure risk.  We 

hope that this contribution will lend precision to the communications among traditionally 

engineering and social science disciplines, and that this can improve the rates of 

constructive consolidation and agreement in the field. 

If successfully implemented in practice, project managers will be able to use our 

proposed method to coordinate the mission product, organization support and processes 

of the operations phase by considering the risk elements in early design and development.  

Planning decisions that appear to fit easily in our integrated model include product 

component and subsystem redundancy and configuration; organizational participants 



Probabilistic Engineering-Induced Operations Failure Risk Analysis   John Chachere  

11 

skills and structure; processes of design and development; and engineering collaboration 

mechanisms and authority distribution (centralization).  We believe that the proposed 

model’s broad view will provide a more realistic assessment of operational failure risks 

than models that are limited to consider operations or engineering alone, and that the 

method will make a broad range of mitigation strategies analytically tractable.  With a 

united model of the engineered system, engineers will be better equipped to make 

decisions and allocate resources across the complex system consistently, and in alignment 

with management objectives. 

11..77      OORRGGAANNIIZZAATTIIOONN  OOFF  TTHHIISS  PPAAPPEERR  
The remainder of this paper is organized as follows: 

Chapter 2- Existing Theory and Practice summarizes the current state of theory and 

practice in technical failure risk analysis and engineering program risk 

management, and then describes two important works that, like our 

proposed model, attempt to balance the two considerations. 

Chapter 3- Conceptual Model provides qualitative definitions, intuition and reasoning 

that give our proposed method face validity. 

Chapter 4- Analytical Model provides a mathematically formal, quantitative 

algorithm for calculating a project’s technical failure risks using a variety 

of methods. 

Chapter 5- Discussion offers a detailed description of the research contribution, a 

procedure for its ongoing justification, predicted impacts on theory and 

practice, and some promising next steps. 

Chapter 6- Conclusion reviews the methods and contributions of the research 

presented in this paper. 



Probabilistic Engineering-Induced Operations Failure Risk Analysis   John Chachere  

12 

CChhaapptteerr  22  --  EExxiissttiinngg  TThheeoorryy  aanndd  PPrraaccttiiccee  

In this section, we summarize the research and field applications that our contribution 

builds upon.  We also assemble a language for describing projects with the consistency 

that our contribution’s analytical presentation requires. 

A project is a collaborative endeavor undertaken in a limited timeframe by one or 

more organizations to create a specified product, using a particular process, and within an 

environmental context of uncontrolled factors.  This research targets projects that have a 

clear project objective— a goal of benefits such as a moon landing, or a new, approved 

drug— while subject to project constraints— limits on the schedule and resources that 

can be consumed to achieve the objective.  Project planning is the activity of evaluating 

and selecting among the available alternative organizations, products, processes, and 

operating environments.   

In planning a project, and in directing one during execution, managers continually 

commit time and resources to the project in order to balance two considerations.  The first 

is project failure risk— the probability that in the end, the product will fail to meet the 

project objective.  We explain that when resources allow it, the PRA method is ideal for 

analyzing project failure risk in the first section of this chapter. 

We call the second consideration program risk.  Program risk is the chance of 

exceeding project constraints such as available schedule or resources.  We explain that 

VDT operationalizes a range of organization and process theories that address program 

risks in this chapter’s second section. 

Many (if not most) project planning decisions impact both program risk and project 

failure risk, so decision makers must understand the impacts their interdependent 

decisions have upon both constraints and objectives.  We introduce two well-formulated 
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integrative models that assess the available alternatives and that recommend a course of 

action in this chapter’s third section. 

22..11      PPRRAA  MMOODDEELL  OOFF  PPRROOJJEECCTT  FFAAIILLUURREE  RRIISSKK  
Motivation 
The volume of research and industry attention that product failure risk garners is 

appropriate because it is both important and complex.  Project risk is important because 

for many stakeholders, success provides the project’s only benefits.  It is also difficult to 

analyze because failures typically have many interdependent and obscure causes.  Some 

researchers suggest that the difficulty of risk management does, and should, limit the 

complexity and interdependence of viable human activity [Perrow 1984, Perrow 1994]. 

Method 
Risk analysis is the identification, assessment, and mitigation of important events that 

cannot be predicted with certainty [Paté-Cornell 2004].  Risk analysis is particularly 

valuable in the scrutiny of complex products that contain many interdependent 

components (such as space craft and nuclear power plants), because their aggregate 

dependability is difficult to assess. 

Some complex systems are single string—they require reliability in all of their 

subsystems, while others are redundant—they can withstand certain individual 

component failures without causing a total system failure.  When a system includes a 

single-string component with a high failure risk, it is common to recommend redesigning 

the component with redundancy.  However, risk analysts know that functions’ 

probabilistic independence determines the effectiveness of redundancy as a risk reduction 

strategy.   
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Figure 2: Functional block diagrams and corresponding fault trees.   
We can derive a functional block diagram from process definitions starting with one 
essential function per design task.  For example, a project with three tasks includes 
three sources of possible unidisciplinary risk.  We will transform VDT’s measures of 
information and rework dependencies into instances of interface failure risk.  Finally, 
VDT measures of project meeting attendance provide information about subtle, multiple-
system interaction risks. 

Probabilistic Risk Analysis (PRA) forecasts complex systems’ failure probabilities by 

characterizing each potential contributor and defining their interactions.  PRA calculates 

a product design’s reliability by decomposing it conceptually into functional blocks, 

assessing component and subsystem reliabilities when subjected to external events, and 

aggregating to a total failure probability.  Figure 3 illustrates the principle using two 
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common PRA tools, functional block diagrams and fault trees, and explains the 

underlying logic—that aggregating constituent elements’ failure probabilities up to a total 

product failure probability allows us to relate subtle design project behavior to product 

outcomes. 

Limitations 
In many projects the upstream design organization and process is a common failure 

source that influences all engineered elements, and that is therefore of the utmost 

importance in estimating failure risk.  Regardless of their physical relationships, the 

manifestations of engineering errors during operations are probabilistically dependent on 

one another because the upstream processes interact in complex ways (Pooled or stronger 

interdependence, see Thompson 1967).   

The System-Actions-Management (SAM) Framework 
Understanding the risks of failure that engineered components present requires a deep 

understanding of engineering project performance that PRA leaves to domain experts 

under a guided conversation (given that few relevant statistics are available).  The tools’ 

predictive accuracy therefore remains limited by experts’ ability to assess human and 

organizational risks, at the same time that the competence of experts is a common source 

of criticism in PRA applications [Paté-Cornell 2004].   

Fortunately, the recent development of the System-Actions-Management model 

(SAM) [Murphy and Paté-Cornell 1996] offers a clear framework for integrating PRA 

with more advanced probabilistic models of human and organizational behavior.  The 

method shows how we can extend our analysis of engineered systems to the actions that 

impact it, and in turn, to the management decisions that lead to those actions.  The 

original formulation provides several examples of action models, including rational, 

boundedly rational, rule-based, and execution (under limited effectiveness). 

The model that we propose uses the SAM extensions to extend a base PRA model of 

an engineered system in operations.  Specifically, we tie the overall formulation to the 

SAM structure, and use two of the action models as guidelines for interpreting a 

sophisticated, theory-based model of engineering behavior and program risks. 
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22..22      VVDDTT  MMOODDEELL  OOFF  PPRROOGGRRAAMM  RRIISSKKSS  
Motivation 

Flawed practices embedded in NASA’s organizational system continued for 20 
years and made substantial contributions to both accidents ... For all its cutting-
edge technologies, “diving-catch” rescues, and imaginative plans for the 
technology and the future of space exploration, NASA has shown very little 
understanding of the inner workings of its own organization… 

Although schedule deadlines are an important management tool, those deadlines 
must be regularly evaluated to ensure that any additional risk incurred to meet 
the schedule is recognized, understood, and acceptable.  -NASA 2003 

In many industries such as aerospace and construction, complex and unique projects 

routinely overrun schedule and cost budgets, despite careful advance planning and mid-

stream adjustments by experienced managers.  Unfortunately, it is extremely difficult to 

correctly assess the extent of program and project risks, and to determine the implications 

of possible mitigation strategies.  Well-meaning project managers frequently make 

mistakes that only compound the existing problems.  For example, the common practice 

of adding software engineers to a project in response to schedule slippage can do more 

harm than good [Brooks 1975]. 

Galbraith (1973) indicates that organizations like these behave as if their primary 

function is to route and process information.  Shortcomings in information flow or 

knowledge in an organization produce exceptions— events that require information to be 

referred to management for decision making.  Exceptions occur during work with a 

frequency based on task complexity, as well as on the adequacy of the assigned actor’s 

experience and skills.  Exception handling is the manner in which organizations respond 

by routing information or queries to complementary resources such as management or 

technical experts.  Hidden work is the coordination and exception handling efforts that 

can represent a substantial fraction of the total labor and schedule pressures in complex 

and interdependent projects.  One reason why project managers underestimate the 

emergent workloads of subordinates whose work is highly interdependent is that hidden 

work is hard to predict and not explicit in traditional planning theories and schedule 

tracking systems.   

When a supervisor oversees many actors, each of whom has complex tasks that are 

being performed in parallel, the exception handling workload sometimes becomes 
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unmanageable.  The resulting backlog can cause a failure to respond to coordination 

attempts, creating a ripple effect of problems extending through all of the interdependent 

activities.  Overloaded workers who fail to respond to communications also compound 

the information supply problem and compromise others’ performance.  Projects that 

involve complex and interdependent tasks impose additional direct and communication 

requirements, and tend to create more unhandled exceptions. 

A second factor that critically impacts the model behavior is the amount of time 

between a request for action or information.  This is known as response latency, and this 

metric is both a cause and consequence of diverse and critically important success factors 

[Chachere et al 2004.1, Chachere et al 2004.2, Chachere et al 2004.3].  When projects fall 

far behind schedule due to managerial or technical bottlenecks, latency reaches a point at 

which rework decisions are no longer made.  Under these circumstances, rework 

requirements are more frequently ignored, often leading to a rapid degradation of process 

quality [Jin and Levitt 1996].   

Under these conditions, project performance can falter and can degrade rapidly in a 

manner that is analogous to the emergence of turbulence in fluid flows [Fayol].  When 

projects fall behind, well-founded decision making and corner cutting alike frequently 

push risks from the program into the product [Garber 2005].  Predicting the conditions 

under which project performance enters this stage is a challenging research question that 

has practical importance, as illustrated in Table 3.2.1. 

[NASA Administrator]  Goldin was also 
instrumental in gaining acceptance of 
the “faster, better, cheaper” approach 
… and downsizing … He rejected the 
criticism that he was sacrificing safety 
in the name of efficiency…  “When I 
ask for the budget to be cut, I’m told 
it’s going to impact safety on the 
Space Shuttle … I think that’s a 
bunch of crap.” -NASA 2003 

“A decade of downsizing and budget 
tightening has left NASA … with a less 
experienced staff and older 
equipment.”  …  The Program was 
operating too close to too many mar-
gins…  NASA has recently recog-
nized that providing an adequately 
sized and appropriately trained 
workforce is critical to the agency’s 
future success. -NASA 2003 
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Table 2.2.1 The Fine Line Between Pushing and Breaking the Envelope 
The memory of leaders who dramatically cut budgets depends on their projects’ subsequent 
successes or failures.  Not cutting enough can cause program failure, which risks termination by 
the financiers, and can sacrifice the organization’s other projects’ prospects.  However, cutting 
too much can result in a project failure, in which all benefits are lost and sometimes a lawsuit can 
bankrupt the organization.  Integrated project planning methods, including APRAM, VDT-GA, 
Pugnetti 1997, and the method we propose, can help decision makers to identify which aspects of 
a project should be cut and which should be preserved—or even enhanced. 

Method 

  Computational Organizational Modeling 
Computational organizational modeling quantitatively operationalizes established 

organizational theories, some of which are relevant to the study of risk.  Its practical 

appeal is that virtual testing of project plans and interventions can provide valuable 

insights before committing project resources.  Although schedule tracking systems such 

as Primavera and Microsoft Project are frequently consulted as quantitative project 

models, they depend on users to forecast the interactions among interdependent tasks and 

teams.  In contrast, the Virtual Design Team simulation system (VDT) was created in part 

to address project managers’ difficulty in predicting emergent project behavior.   

By grounding a computational model explicitly in a theoretical framework, 

researchers can explore complex ramifications of a theory (or set of theories) that extend 

qualitatively beyond the reach of human intuition.  Although some of the earliest and 

most influential work in organizational science was developed in concert with formal 

models [Cyert et al 1959, March and Olsen, March and Cohen], the method has never 

become a standard in the discipline.  In recent years, however, the computational 

modeling of organizations has enjoyed a popular resurgence among researchers seeking 

to better understand new and established theories [March 2001 and Burton 2001].   

  VDT 
We propose a method of understanding engineering project participants’ behavior that 

employs the Virtual Design Team (VDT) model, which is based on several of the most 

established theories of organizations (notably Galbraith 1977 and Thompson 1967).  For 

a review of VDT’s theoretical basis see Christiansen 1994, and for a technical 

explanation of its internal mechanics see also [Jin and Levitt 1996].   
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Whereas most project planners forecast the behavior of engineering efforts based 

largely on personal experience, those who employ VDT focus on accurately assessing 

engineering project parameters such as tasks’ complexities and workers’ skills.  Based on 

this information, the VDT model simulates the engineering work and coordination that 

established organizational theories predict would emerge in practice.   

By testing a project plan in the simulator, planners can predict participants’ backlog, 

coordination effectiveness, schedule risk, labor costs, and other objectives [Kunz et al 

1998; Jin et al 1995, Levitt et al 1999].  By comparing the predictions from alternative 

cases, VDT users can assess which proposed organizations, processes, and culture are 

most likely to meet their project’s goals.  Our method extends this capability by linking 

VDT outcomes to a model of an engineered product whose reliability impacts the 

probability of project failure in a later operations stage. 

Input 
VDT analysis begins by identifying the actors of organization hierarchy, and the tasks 

within a precedence network.  A second, iteration specifies details cultural measures such 

as centralization, formalization, and matrix strength (project versus functional 

orientation); Organizational factors such as actors’ varying levels of skill and experience; 

and process definitions including tasks with varying levels of procedural uncertainty, 

complexity, and required skills.  The VDT model also defines relationships among these 

basic elements, including authority hierarchies that interrelate actors; primary and 

secondary task assignments indicating which actors address which tasks; and links 

interrelating tasks that have rework and information exchange dependencies. 

Processing 
VDT probabilistically simulates the complex and subtle implications of project plans 

using a discrete event simulation that emulates actors processing work, attending to 

communications, handling exceptions, making decisions about rework, attending 

meetings.  Of equal importance, the method simulates the distribution of attention among 

these activities when more than one action is pending.  Simulated actors process 

information at a rate determined by task complexity and actor skill and experience.  VDT 

models exception handling as involving an upward flow of exception handling requests 
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and a downward flow of rework, quick fix, or no action choices along a fixed exception 

handling hierarchy.  When necessary rework is not performed, VDT predicts that 

engineering performance suffers, and our proposed model predicts that flaws in the 

engineered product are more likely. 

Design Processes

Organizational Structure

Design 
Payload

Payload
Design Team

Integration Meetings

Manager

Ground Systems
Design Team

Vehicle
Design Team

Design 
Vehicle

Design 
Ground 
Systems

 
Figure 3 Typical Virtual Design Team (VDT) Project Model.   
VDT models design project participants’ individual characteristics, organizational 
exception handling structure, scheduled meetings, task characteristics and precedence, 
information exchange requirements, and rework dependencies.  VDT compares the 
process’s information processing load with the organization’s information processing 
capacity.  It produces detailed estimates of a project’s emergent cost, schedule, quality, 
and other measures.  We combine VDT’s strengths with those of PRA, creating a model 
that is more valuable in some cases than the sum of its parts. 

Output 

VDT offers a range of performance predictions, including emergent work volumes, a 

project schedule, and coordination rates.  VDT estimates overall design quality using 

coordination time such as information exchange and meetings, and decision waiting time.  

We can view these metrics at an aggregate project level, or drill down to understand 

individual actor or task predictions in detail.   
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Limitations 
The goal of planning projects with a comparable methodology and accuracy as is 

demonstrated in planning today’s bridges [Levitt and Kunz] is exciting, but many years 

away.  The VDT model in particular has shown some remarkable successes in predicting 

the emergence of engineering phenomena that lead to operations failures [For an 

aerospace example see Levitt et al 1999], but it requires a significant calibration effort to 

be accurate in a predictive sense. 

In addition to calibration, the VDT system includes some important theoretical gaps 

in emulating projects.  For example, it does not model uncertainty in most input 

quantities, even though many experts are uncertain about the details of team or task 

composition (Chachere 2004.1 proposes a solution to this problem).  The system also 

does not simulate actor decisions to change the organization or process during the project, 

even though this behavior is common in large projects. 

As its name suggests, the Virtual Design Team Simulator was originally built to 

model routine design tasks.  Since its inception in 1988 [Cohen], researchers have 

developed enhancements to apply the tool to address operations [] and service processes 

[], fast-tracking [Salazar], learning [Oralkan], and trust in distributed teams [Zolin].  

These enhancements intuitively match specific applications more closely than the core 

model, but most require additional justification steps. 

As a practical tool, VDT also has room to grow.  It has no explicit product model, and 

does not directly address the impacts that engineering processes have on a product.  VDT 

makes no effort to automatically compare outcomes to determine which is most 

preferred.  The later chapters propose a model that uses PRA to may help to strengthen 

VDT in these areas. 

22..33      IINNTTEEGGRRAATTEEDD  MMOODDEELLSS  OOFF  PPRROOJJEECCTT  AANNDD  PPRROOGGRRAAMM  RRIISSKK  
In this section, I compare the proposed method and two existing project planning 

methods that consider both project failure risk and program risk. 
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APRAM 
The APRAM method [Dillon and Paté-Cornell 2001, Dillon et al 2003] is quite similar to 

the one proposed here, in that it addresses program and project risks simultaneously.  It 

achieves this by defining a budget that is divided between expenditures on the 

configuration and reinforcement of the engineered system, and a budgetary reserve that 

enables expenditures to counter uncertain programmatic events. 

APRAM uses decision trees to model the set of uncertainties and decisions that 

determine program risks.  Although this method is quite broadly applicable and is 

theoretically able to accommodate an organization theory-based model such as VDT 

within the event trees, it offers no specific guidelines on how to do so.  Section 2.2 

describes several benefits that the proposed method derives from linking to VDT. 

In the APRAM model, uncertain programmatic costs limit the budget that is 

appropriate to spend on reinforcing the operational system.  However, APRAM does not 

directly model the direct impact on project failure risk that engineering activities such as 

rework can have.  In contrast, the model we propose in this paper focuses on this 

relationship. 

An important strength of APRAM is that in may cases it is prescriptive, meaning that 

is able to mathematically select the best among several choices using decision trees and a 

Langrangian method.  In contrast, the proposed method is merely predictive, meaning 

that it estimates the impacts of discrete alternatives that decision makers must evaluate 

individually.  We may be able to extend the proposed method to optimize a broad range 

of important factors, such as management priorities, hardware reinforcement, and 

leadership, as long as they do not influence the predictions of the VDT simulation.  

Section 11.5 explains this and other optimization methods, and Chachere 2004.2 provides 

one formulation of a VDT-APRAM synthesis. 

It may be possible to enhance the proposed model by formulating the utility function 

similarly to APRAM using variables that represent operational function configuration, for 

example, or alternative base capacities that reflect choices of hardware materials.   
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Pugnetti 1997 
In his 1997 doctoral dissertation, Carlo Pugnetti also approaches the problem of 

simultaneously estimating program and project failure risks using PRA and VDT.  His 

approach is primarily to use a pure mathematical formulation based on discrete time 

queuing, and to use VDT sparingly to verify the organizational viability of optimized 

process and product configurations.  The method proposed in this paper satisfies the most 

critical of Pugnetti’s criteria for further enhancing the VDT-PRA integration (pp. 141-

144). 

For the most part, we agree with Pugnetti’s idea that unfixed engineering problems 

are an important part of the operations risk management problem.  Pugnetti [1997] p.71 

uses “undetected exceptions” to measure the risk associated with a simulated engineering 

project: 

E(Ui(t)) = K * Si * Ti
t 

Two minor problems with Pugnetti’s formulation are that the term exception is more 

generally used to refer to a procedural event, rather than an engineering fact (that we will 

term defect), and more importantly, that this formula always produces E(Ui(t)) = 0.  The 

correct formulation would be  

E(Ui(t)) = K* Ti
t * Si  

More significantly, Pugnetti assumes that all detected problems are fixed, and that a 

reworked element does not contribute to failure probability.  Field evidence including 

NASA 2003 appears to contradict these assumptions. 

Finally, in Equation 4.5 (p. 49) Pugnetti assumes that exceptions contribute to error 

probability in a linear fashion thus: 

F = F0 + N * E  

or, in a linear fashion, thus: 

F = F0 + Nγ * E  

When there are many errors, these equations can produce failure probabilities greater 

than one.  Nevertheless, we sustain the spirit of the latter equation by employing a 

geometric model of engineered subsystems’ anomalies’ impacts on functions during 

operations. 
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Another interesting result in the thesis is Pugnetti’s establishment of criteria that 

define the convergence of project duration.  When conditions are at their worst, more 

exceptions may be created than are fixed, and so the project may go on forever.  By 

providing convergence criteria that define the conditions under which this occurs, 

Pugnetti sheds light on the very important “turbulence” problem we described above.  In 

contrast with Pugnetti’s provision of crisp criteria, VDT merely balks when asked to run 

a simulation that produces task durations (or other intermediate parameters) that exceed 

certain feasibility limits.  The method we propose cannot offer convergence criteria 

because it relies on VDT to estimate the behavior of engineering projects.  In practice, we 

do not expect this to be an important differentiator between Pugnetti’s work and the 

proposed method, because managers generally prevent these degenerate behaviors by 

intervening during the course of real projects. 

Pugnetti’s “undetected exception” measure is closely related to the VDT-based 

“rework deficit” concept that we claim influences the likelihoods of product defects, 

subsystem anomalies, and project failures.  Pugnetti uses the results of engineering 

processes somewhat directly to estimate the probability of failure in operations functions.  

In contrast, the model we propose follows a sequence of inferences from engineering 

rework deficits, to product defects, to engineered subsystems’ anomalies, to the loss of 

capacity, to functional failure, and finally to failure risks of various severities.  This 

additional detail requires more data gathering, but in return, it offers more calibration 

opportunities and enables the analysis of a wider range of intervention strategies. 
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CChhaapptteerr  33  --  CCoonncceeppttuuaall  MMooddeell  

When a program agrees to spend less money or accelerate a schedule beyond 
what the engineers and program managers think is reasonable, a small amount 
of overall risk is added.  These little pieces of risk add up until managers are no 
longer aware of the total program risk, and are, in fact, gambling.  Little by little, 
NASA was accepting more and more risk in order to stay on schedule.  -NASA 
2003 

33..11      OOVVEERRVVIIEEWW  
Theoretical Conceptualization 
We propose to predict operations phase risks that result from shortcomings in the 

engineering stages by using an integrated model that follows three intuitive steps.  The 

first of these is embodied in VDT, the second is a novel contribution, and the third is 

fundamental to PRA.  More specifically, the VDT model compares an organizational 

hierarchy’s information processing capacity against a task network’s information 

processing load to predict emergent engineering behaviors.  Our proposed model extends 

this with the notion that this conduct influences the target product’s conformance to 

specification, and therefore, the probability that its elements will meet project objectives.  

Finally, we use a PRA model of the product to predict the combined significance that 

these impacts on engineered elements will have on project failure risk. 

To lend specificity to this claim, our model operationalizes the following observed 

and theory-founded trends.  Competent engineering organizations (those with adequate 

information processing capacity) are often able to recognize the need for and dedicate the 

time that is necessary to handle most emergent exceptions, by performing rework if 

necessary, and to fully staff coordination meetings.  The additional time and attention 

spent on engineering processes may increase the number of engineering flaws that are 

discovered and rectified, thus improving the probability that the resulting product will 
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conform to the specification.  The more engineering tasks are conducted in this way, the 

greater the improvements to conformance and to the probability that the final product will 

meet the project objectives during operations. 

In contrast, an inadequate design organization will have more mishandled and ignored 

exceptions, and lower attendance at meetings.  Each of these phenomena represents an 

opportunity to permit engineering flaws into the product, which probabilistically leads to 

a less conforming and more error-prone result. 

Formulation Method 
Figure 1 on page 6 shows how we operationalize the claim that engineering exception 

handling behaviors influence product failure risk.  We use a quantitative model that 

synthesizes VDT’s engineering behavior model with PRA’s model of the influence that 

engineered elements have on product failure probability.  In the remainder of this chapter, 

we present the theoretical conceptualization for each of our method’s four parts: 

11  FFrraammee  aanndd  FFoouunnddaattiioonn We must first define the project objectives, from which we 

derive definitions of success, failure, and project failure risk.  We can then identify 

at a high level the project structure, as well as the products, organizations, 

processes, and environmental factors that can influence the probability of meeting 

the project objectives. 

22  VVDDTT  MMooddeell  ooff  OOrrggaanniizzaattiioonn  aanndd  PPrroocceessss Using VDT, we can identify and model 

the organization and process that designs and develops the specification elements 

into operational elements upon which project success relies.  Then we can use VDT 

to predict the joint probability distributions of exception handling and meeting 

attendance to use in the estimation of failure risk.  Finally, we can apply the 

proposed method to estimate the degree to which each element conforms to 

specifications in design and development. 

33  PPRRAA  MMooddeell  ooff  PPrroodduucctt  aanndd  EEnnvviirroonnmmeenntt Using PRA, we can break down the 

operations’ total failure probability into functional components whose failure 

probabilities can be assessed independently.  This process should continue to the 

level of individual components, interfaces, and interdependent multi-systems.  
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Using statistics, expert assessments, or other methods appropriate to PRA, we can 

estimate the failure probabilities of functions that do not involve designed or 

developed elements. 

44  MMooddeell  SSyynntthheessiiss In software engineering, the term “integration points” refers to 

data types and structures that are linked directly from one software model to another 

software model.  In this step, we can calculate the rate of failure for each element 

based on engineering conformance estimates from VDT.  Finally, we can use the 

PRA methods and functional failure probabilities to calculate the probability of 

project failure. 

Chapter 4 presents a mathematical description of the problem we address, and formally 

derives our proposed solution.   

33..22      FFRRAAMMEE  AANNDD  FFOOUUNNDDAATTIIOONN    
In this step, we define the project objectives, from which we derive definitions of 

success, failure, and project failure risk.  We identify at a high level the project structure, 

as well as the products, organizations, processes, and environmental factors that influence 

the probability of meeting the project objectives.  Practitioners must assess the high-level 

project structure and each of these factors early in their planning process because the 

relationships among them determine the points at which VDT and PRA models should be 

integrated. 

POPE factors 
The method we propose is an example of a POPE model—a formal description of the 

planned engineering Process and Organization, the Product to be created, and the 

uncontrolled factors in the Environment where the product will operate.  Figure 5 

provides definitions of these four project factors.   

33..33      PPRROOJJEECCTT  SSTTRRUUCCTTUURREE  
In the application areas we have targeted, (including construction, aerospace, consumer 

products, and software development) large projects almost universally employ a stage-

gate structure.  Stage-gate projects are large efforts that are composed of a sequence of 

smaller segments of qualitatively different activity called stages.  Between each pair of 
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stages is a gate in which major decisions or events occur.  Table 1 describes each of four 

typical stages that we develop further in our example application. 

Stages 
We intend our model to address only those project activities that occur after the approval 

of a specification—a (usually written) declarative statement of subgoals that are believed 

necessary and sufficient to achieve the project objective.  In most applications, 

specifications are only approved to become projects after a thorough review process that 

we presume ensures a negligible probability of fundamental error.   

In a typical project, such as the one we illustrate in this paper, design stage activities 

elaborate and instantiate this specification into a blueprint for an organization and process 

that can achieve those goals.  Development stage activities translate the design blueprint 

into one or more physical artifacts that will enter operations. 

In VDT, simulated designers assess the degree of conformance between a design and 

specification explicitly after completing each subtask (portion of a design task).  When 

the verification is successful, a design actor is free to enter the design into the final 

product and attend to the next work item.  When they feel that the conformance is 

questionable, they raise exceptions, or work items that require decision making.  A 

decision-maker may choose to rework the subtask, which increases the designer’s work 

volume but evidences attention to the conformance of a subtask.   
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Table 3.3.1 Example Project Stages  
Complex projects often consist of sequences of smaller segments that aim to achieve a 
progression of subgoals.  Our method defines these project stages in order to show how 
flaws from early stage behaviors develop into operations errors and project failure. 

Stage Description 

Specification Assumed, initial declaration of project goals.  We model this stage 
implicitly by assuming it to be fully validated and approved. 

Design 
VDT model—stage one.  In it, the team translates project goals into 
specific recommendations for the organizations, processes, and 
products that will be employed in development and operations. 

Development 
VDT model—stage two.  Based on the design (mostly information) 
product, a physical spacecraft, ground systems, and set of formal 
procedures are created, tested and packaged for operations. 

Testing 

VDT model—stage three.  Engineered elements that were designed and 
developed in earlier stages undergo an evaluation of conformance by an 
external team.  Problems that surface in testing often lead to partial 
redesign or redevelopment. 

Operations 

PRA model.  The space mission is executed during this stage, and each 
of its functions may be called upon to ensure success.  Some of these 
functions are designed, and the robustness of the design and 
development will determine whether they fail, and possibly cause a 
mission failure. 

Under ideal circumstances, each stage of engineering proceeds smoothly and creates a 

product that conforms to the requirements handed down from the previous stage.  

Shortcomings in the match between process and organization generally result in 

exceptions being generated, however, and in some cases decision-makers may choose to 

ignore verification failures when an error has been committed. 

The VDT simulator predicts the “degree of conformance to requirements”; we claim 

that it can enable us to estimate the impact on failure probability that results from project 

stage behaviors occurring upstream from operations.  More specifically, we assert first 

that the degree of conformance between product component designs and their 

requirements influences function success probabilities.  By adopting the VDT model of 

information processing, we further assert that the design-phase disposition (designer and 

manager choices) and context that enable thoughtful design decision-making tends to 

improve design conformity.   
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Each stage culminates in the delivery of a product—all the work that participants 

judge to be of possible value during later stages, but that does not include intermediate 

results that are of little anticipated value. 

Gates 
Typically, each pair of adjacent stages is divided by a gate—a step in which management 

first translates the previous stage’s product (compiled results) into an estimation of the 

future project’s prospects, and then makes a “go/nogo” decision on whether to proceed 

with later stages.  When a gate is passed, the content of a previous stage’s product also 

influences the makeup of the next project stage (along with other factors such as 

earmarked resources and prevailing “standards of practice”).  For example, a spacecraft 

design that selects nuclear power will require a different development team than one that 

relies on conventional fuel. 
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Figure 4 Influence Diagram for a Stage-Gate Project   
The stage-gate structure helps decision makers to analyze decisions in the same way 
that many operations research algorithms employ “pinch points”.  Organizations prepare 
for gate decisions by distilling a wealth of diverse early stage phenomena into an 
assessment of  their far simpler influence over a standardized product that passes into 
the subsequent stages.  Their next step is to calculate the impact that important 
differences in these materials can have over the next stage.  Our analysis employs a 
similar method through multiple stages to model a project of arbitrary length, and finally 
estimate the distribution of operations stage outcomes.  Even late in the project, our 
estimate of early stage performance can provide information about the operational 
product that decision makers often lose at the pinch points.   

We believe that gates enable managers to understand and to control large and unique 

projects’ complexity by decomposing, routinizing, and distributing the decisions to 

specialized organizations and processes.  For example, decision makers often claim to 

base gate decisions on standardized criteria, such as confidence in the ability to meet a 

company-wide target for return on investment.  It is far simpler to base a gate decision on 

current product alone than it is to consider earlier phases’ organizations, processes, and 

emergent engineering behavior, so many organizations manage program risks and project 

failure risk with different authorities and do not explicitly consider the relationship 

between them during gate decisions.   
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Conformance and Failure Risk 
In most cases, a very complex combination of factors involving every project phase 

determines the failure or success of an engineered element.  We say that performance is 

conformance-dependent when it is affected by the degree to which objectives specified 

on completion of one phase are met through the next phase.  Failing to meet design and 

development objectives can alter operations behavior, so we say that operations behavior 

is both design-conformance-dependent and development-conformance-dependent.  

We term engineering-dependent failure risk the chance that behavior that is 

dependent on the conformance of engineering stages causing project failure, and we 

model it with probabilities derived from an analysis of organizational and procedural 

conditions.  We use the phrase design-dependent failure risk to describe the likelihood 

that design choices are fundamentally invalid or inconsistent with the target specification.  

Understanding design-dependent failure risk is important because failing to do so may 

lead to an improper decision over whether to proceed with a project, or to a project that is 

needlessly costly, risky, or extended in schedule.  We can define development-dependent 

failure risk similarly, where the physical product of a development phase is the primary 

focus.   

Value of Programmatic Information to Failure Risk Analysis 
Although the stage-gate project form keeps complexity under control, it does this by 

hiding information behind standardized deliverables.  In theory, uncertainty absorption is 

the loss of information that occurs when subordinates report their condensed findings to 

supervisors, and while it can help managers to make decisions by controlling complexity, 

it can also hide important and political information [March and Simon 1958, Simon 

1977].  In particular, standardizing deliverables and decision-making criteria before gates 

can occlude important and available information about the likelihood of flaws in the 

product that engineering activities produce.  When information about the engineering 

behavior is erased, we make decisions about whether to proceed with a mission more 

tractable.  However, we also lose important information about the likelihood of hidden 

flaws in the product.  Consequently, well-intentioned managers looking at operations 

failures have difficulty detecting the root causes of many engineering failures, because 
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records of the conditions that created those flaws are often discarded as relevant only to 

program risk analysis.   

We believe that including a VDT-PRA analysis with the product can provide some of 

this information and improve decision-making.  Information gathered about the product 

indirectly through knowledge of preceding organizations and processes can add value to 

the gate decision [Howard].  Most projects do not track engineering activities at the level 

of detail that VDT reports- for example, VDT predicts the backlog that can lead to 

corner-cutting, while many teams have no way to track this measure.  For example, if the 

VDT analysis performed before one Lockheed mission [Jin and Levitt] had been 

institutionalized, it might have triggered a more focused review of the project plan and 

prevented the mission’s operational failure. 

33..44      MMOODDEELL  SSYYNNTTHHEESSIISS  
The synthesis we propose translates information over time, from engineering stages to 

operations, and relates information between factors, from organization and process to 

product.  VDT predicts engineering stage activities—behaviors that result from a 

particular organization executing a specified process—that emerge from an organization 

and process plan.  PRA predicts the operations behaviors that result from an engineered 

product within an environment context.   
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Figure 5 Relationship Between POPE Stage-Gate Model and Integrated VDT-PRA 
Method  
This schematic illustrates the formal reasoning behind our proposed method.  An initial 
specification that we presume correct becomes the target of engineering stage activities.  
These activities introduce possible flaws into the product wherever VDT predicts the 
organization may compromise its process.  If they are exposed to adverse environmental 
conditions (as PRA predicts), these flaws can become product flaws and cause failure 
during operations.  The calculations synthesize previously established VDT and PRA 
methods using a set of integration points.  Figure 1 illustrates the involved objects, 
Figure 7 shows the relationships among data, and Table 4 provides the calculations for a 
specific example. 

The PRA method allows modelers to adapt their formulation to accommodate the 

available data sources in relating complex phenomena to underlying or constituent 

phenomena.  We can use standard PRA formulation techniques to assess the importance 

of, and relationships among, variables that influence project failure risk but that 

engineering activities do not influence.  We also can relate total failure probability to the 

probability of failure for three types of engineered elements, components, interfaces, and 

interdependent multi-systems, which we define below.  We can calculate the failure 
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probability of each of these elements based on output from the VDT simulation.  Finally, 

we can use the PRA fault tree and functional failure probabilities to calculate the 

probability of total failure. 

There are limits to the extent that engineered systems operations depend upon the 

quality of engineering organizations’ performance.  In particular, the engineering teams’ 

target specifications often stipulate that reliability under certain circumstances need not 

be assured, because the difficulty of achieving low-risk operations are too great under 

those circumstances.  For example, the power systems of NASA’s Mars Rovers, Spirit 

and Opportunity, are not designed to endure the occasional storms that occur on the red 

planet [JPL].  We can model this fact using a probability of failure in each engineering 

element that is not engineering-conformance-dependent.  Similarly, each engineered 

element has a probability of success that is not engineering-conformance-dependent, 

occurring for example if operations exactly match trivial conditions that are fully 

simulated in testing.   

Once the PRA framework is complete, we can trace the engineering roots of each 

component, interface, and multi-system to determine a scope of upstream projects whose 

performance we must predict using VDT.  For each component, we make sure that a task 

and corresponding team appear in the model, while interfaces map to rework links and 

multi-systems map to meeting schedules.  We must adapt our formula at integration 

points where the actual project plan deviates from this template.  In addition, we must 

add to the VDT model any external processes or organizational elements that may impact 

engineering performance (such as management multi-tasking), in accordance with 

standard VDT model development practices. 

Our proposed method calculates the probability of operations failure by relating 

lower-level engineered element failures to engineering conformance using three 

integration points.  In software engineering, the term “Integration points” refers to data 

types and structures that are linked directly between two software models.  The 

relationships between project structure and the four factors motivate our integration 

points, as we illustrate in Figure 6. 
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This model defines integration points that we believe are sufficient to predict some 

important influences that shortcomings in engineering conformance will have on the 

probability of operations failure.  Our integration addresses events where the engineered 

components must operate in a non-trivial manner, according to the specification 

originally provided to engineering.  At a high level, we claim that the number of unfixed 

design verification failure events that VDT predicts influences the component and 

interface failure probabilities in a PRA model.  For parallel reasons, multi-system failures 

are probabilistically dependent upon the predicted attendance at design coordination 

meetings.  For each element, we can develop a measure of engineered conformance, or 

flaw rate, that ranges from zero (unlikely to have significant flaws) to one (high 

probability of numerous flaws). 

Figure 7 provides an influence diagram showing the proposed model’s three 

integration points, each of which we describe in detail and illustrate below.  We can 

assess these probabilities using standard PRA techniques, such as working with human 

experts to precisely define engineered elements’ functional triviality, impossibility, and 

engineering-dependency, then predicting the probability of each case.  We provide 

mathematically precise derivations in the next chapter. 
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Figure 6 Influence Diagram Showing VDT-PRA Integration Points  
VDT analyzes each engineering stage’s organization and process and predicts three 
types of risk related data. We claim that each of these measures of engineering 
conformance relates to a distinct risk to the engineered product, and we operationalize 
this claim using three corresponding data integration points.  PRA calculates the 
significance of these risks within the broader product and environmental context.  
Quantitatively linking outcome failure probability to upstream decisions like design team 
centralization would be a new capability for project planners and accident investiators 
alike.  Figure 1 shows the objects that are involved, Figure 6 illustrates the analytic 
integration, and Table 4 provides the calculations for a specific example. 

1. Internal Exceptions and Component Failures 

  Intuition 
For our first integration point, we argue that the effective management of an engineering 

task’s internal exceptions decreases (but does not eliminate) the failure probability of its 

corresponding functional component.  Our method is to translate design subtask 

processing results into an estimate of the probability of component design flaws that can 

induce operations failure. 
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  Theoretical Basis 
In a well-structured project, we claim that the information dependency relationships 

among engineering tasks are often isomorphic to the operational behavior dependencies 

among engineered product components.  When it comes to internal exception handling 

behavior, dependence among engineering tasks is limited to the sharing of resources such 

as management, which Thompson defined as “pooled” dependence in 1967.  We claim 

that a component is an appropriate definition of tasks’ engineered products because this 

relative independence in engineering leads to a clear distinction between relatively 

independent artifacts in operations. 

  Internal Exceptions 
The first measure we use to predict failure risk is the rate of rework (or design iteration) 

that is ordered for individual tasks in an effort to guarantee correctness.  The best task 

processing behavior that VDT can forecast consists of each subtask being completed 

routinely, and we define this to produce the highest achievable degree of confidence in 

the element’s conformance.  In the other extreme case, each subtask produces an 

exception, but the organization is too overloaded to respond to any of them.  This case is 

quite unlikely, since in this case the simulation would almost certainly show a complete 

program failure.  Nevertheless, it defines the other end of our scale, and in this case, it is 

very unlikely but still possible that the engineered element conforms to specification. 

  Component Failures 
Components are elements whose engineering and operation is largely autonomous to 

other work.  Common examples include an electrical, structural, or air circulation system, 

although an explicit organizational design or cost estimate can also be a product. 

  Integration Points 
In our model, a component is generally distinguished as a single PRA functional block in 

operations, and its design and development are individual, dedicated VDT tasks.  We 

define a subcomponent as a part of a component that may or may not be used at any given 

time in operations, and that has corresponding subtasks (low-level work items) in design 

and development.  At any given moment, we assume that operations are equally likely to 

actively rely on the performance of any of these subcomponents.  Functional failure 
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depends upon the active subcomponents’ design effectiveness (measured as conformance 

of design subtasks) and development effectiveness (measured as conformance of 

development subtasks).  We estimate the probability at any point in time of a failure in a 

component, given VDT predicted engineering behavior, as the average conformance over 

all of the subcomponents. 

  Aerospace Examples 
An example of development-dependent component failure is the Challenger accident, in 

which the O-rings were developed to dimensions and material that could not perform as 

required under launch temperatures within the specified range [Vaughan 1996].  As a 

prominent design-dependent component failure, a comet return vehicle was developed 

and deployed in accordance with the design, but unfortunately, the original design 

oriented a battery in the reverse position- fundamentally inoperable.  We claim that in 

both of these cases, more effective engineering and internal exception handling methods 

might have been able to prevent the original error, or to discover and correct the error 

through rework. 

2. External Exceptions and Interface Failures 

  Intuition 
In practice, flaws very often occur in the interface between two components [Weiss 

2004].  This frequently results from ineffectively handling coordination between the 

components’ teams in design and development.  This relationship manifests in VDT as 

rework links between two tasks.  Therefore, we calculate the probability of interface 

failure (which is independent of failure in either component) using a parallel method as 

with components, but using external exception handling.   

  Theoretical Basis 
In a well-structured project, we claim that the information dependency relationships 

among engineering tasks are often isomorphic to the operational behavior dependencies 

among engineered product components.  When it comes to external exception handling 

behavior, dependence among engineering tasks consists of the direct transfer of 

information or physical product from one task to another, which Thompson defined as 

“sequential” dependence in 1967.  We claim that an interface is an appropriate definition 
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of rework-link-driven engineered elements, because it is an easily circumscribed 

interaction between the behaviors of artifacts in operations that motivates the engineering 

stage dependency. 

  External Exceptions 
The next measure we use to predict failure risk is the rate of rework (or design iteration) 

that is ordered for individual tasks in an effort to accommodate engineering-stage choices 

that were made in related tasks.  We can calculate this measure by applying to external 

(project) exceptions the same method as we used for Integration Point 1: Internal 

Exceptions and Component Failures.  

  Interface Failures 
We define interfaces as the engineered elements that determine whether two components 

will interoperate in the desired (specified) manner.  For example, the interfaces between 

an electrical component and a telecommunications component guarantees that power is 

supplied adequately, that the power does not interfere with communications signals, and 

that the components fit together physically. 

  Integration Points 
In our model, interfaces correspond to PRA functional blocks that appear where either of 

the related components blocks does, and their design and development corresponds to 

rework links between the components’ engineering tasks.  We claim that the higher the 

rework deficit at a particular rework dependency link in engineering, the more likely it is 

that there will be faults at the interface between elements engineered by the linked 

stations in operations. 

  Aerospace Examples 
A prominent example of design-dependent interface failure is from the Columbia 

accident, where insulation that was systematically loosened by a fuel line broke off 

during launch and caused a breach in the thermal protection system.  We claim that in 

this case, more effective external exception handling methods might have been able to 

prevent the original error, or to discover and correct it through rework. 
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3. Meetings and Interdependent Multi-System Failures  

  Intuition 
Our model presumes that interactions may occur among any subset of components that 

are represented by invitation to a meeting, and so meeting attendance provides all of the 

information from the design phase results that we evaluate in estimating a multi-system 

function’s failure probability.   

  Theoretical Basis 
In a well-structured project, we claim that the information dependency relationships 

among engineering tasks are often isomorphic to the operational behavior dependencies 

among engineered product components.  When it comes to meeting attendance, 

dependence among engineering tasks consists of mutual adjustment among many tasks 

with mutually conflicting subgoals, which Thompson defined as “reciprocal” dependence 

in 1967.  We claim that an interdependent multi-system is an appropriate definition of 

meeting attendance-driven engineered elements, because it is the complex interactions 

among the behaviors of engineered elements in operations that motivates engineering 

stage meetings. 

  Meetings 
Our final source of risk data is the rate of attendance at routine meetings that enable 

interdependent design actors to develop a holistic understanding of a complex 

interdependent system.  We can think of meetings as opportunities for a group as a whole 

to collaboratively identify problems, where the chance of identifying each potential 

problem equals the fraction of invitees who attend.  Low meeting attendance indicates 

that engineers are unlikely to have clearly understood and responded to the relationships 

among groups of related work items. 

  Interdependent Multi-System Failures 
A multi-system is a set of components and interfaces that interoperate tightly enough to 

be recognized as having the potential to interact in complex and unforeseen ways.  This 

integration point estimates the probability that the interactions among interdependent 

systems will result in a functional failure, independently of whether each component and 

interface operates properly in isolation.   
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  Integration Points 
During design and development, the engineers working on components within a multi-

system are typically assigned to attend meetings that focus on understanding and 

managing these interactions.  We model each multi-system in PRA using functional 

blocks that appear in series with each included component, so that a multi-system failure 

is functionally equivalent to a failure of all of these systems.  In VDT, we recognize 

regular coordination meetings as the opportunity to mitigate some multi-system failure 

risks. 

  Aerospace Examples 
The Mars Polar Lander [JPL 2000] provides an example of a multi-system failure.  The 

lander’s extension of landing gear (landing gear component) caused a vibration in the 

craft (structures component).  This was interpreted as contact with the surface (software), 

resulting in the premature termination of braking activities (propulsion) and loss of the 

mission.  We claim that in this case, more attention to the need for systems integration 

coordination might have led to engineering decisions that could have prevented the 

original error.  
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CChhaapptteerr  44  --  MMooddeell  OOvveerrvviieeww  

44..11      IINNTTRROODDUUCCTTIIOONN  
This thesis provides a mathematical definition of our method of relating project failure 

risk to engineering process measures using VDT and PRA.  The first chapter formulates 

the top-level problem of calculating the expected utility for a set of management choices, 

and serves to introduce our overall method and reasoning.  We assume here that the 

rational manager will choose the option that maximizes his/her expected utility.  Each of 

the remaining chapters provides a method for calculating one of the steps in our project 

failure method, estimating in turn: engineers’ rework-related actions, product 

conformance, anomalies during operations, the loss of operating capacity, functional 

failures, and project failures. 

After a brief, intuitive 

overview, each chapter lists, 

categorizes, and describes 

variables that are introduced 

to the model.  They then 

explain the theoretical 

foundations of each step in 

intuitive as well as formal 

terms, and finally offer a 

consistent space mission 

example.  Figure 7 shows the 

links between VDT input and 

PRA output. 
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Figure 7 Integrated Timeline of Specification, Engineering, and Operations 
This schematic illustrates a Hypothetical case in which a mars shuttle mission experiences an anomaly in the launch vehicle and a 
second in the shuttle itself.  Although the scientific data was gathered according to plan, the anomalies combined to cause the loss of 
the shuttle itself, at tremendous economic and political cost. 
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Foundations in the SAM Model 
We substitute and expand our nomenclature within the SAM tradition (Murphy and Paté-

Cornell 1996).  An important point of difference between SAM and the proposed model 

is that the latter limits itself, and goes into greater depth, into those decisions and actions 

that influence the rework deficit created during the engineering phase.  This close 

relationship between our proposed model and the SAM formulation lends confidence in 

its elegance.  However, we organize this paper around a more detailed formulation of Eq. 

4.2 that clarifies the relationships among additional factors.  A more detailed comparison 

between the proposed method and SAM is in Chapter 2 Section 4. 

Notation 
Table 5.1.1 defines the various formats that we use to describe random variables, 

constants, and other data types.  We make these conventions explicit because of a conflict 

between traditions in matrix algebra (which uses capitals for matrices and lower case for 

scalars) and probability (which uses upper case for random variables and lower case for 

constants). 

Table 4.1.1: Format of Data Representations 

Format Sample Data Represented 

Upper Case X Random variable 

Lower Case x Realization of a random variable X 

Upper Case Bold X Matrix, vector, or set of random variables 

Upper Case Subscripted Xij Random variable; appears in X 

Lower Case Bold x Matrix, vector, or set containing one realization xij 
for each random variable Xij in X 

Lower Case Subscripted xij Realization of a random variable Xij; appears in x 

Greek Upper Case ∆ Matrix, vector, or set of constants 

Greek Lower Case δ Constant 

Upper Case Italics G(x) Matrix, vector, or set of functions 

Lower Case Italics g(x) Function 

Upper Case Subscript X Index identifying a particular variable or structure 

Lower Case Subscript x Index identifying an arbitrary variable or structure 
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In order to clarify the equations, we group related random variables into vectors, 

matrices, or sets denoted with bold, upper case lettering.  We use lower case versions of 

the same letters to indicate realizations of those random variables, and lower case bold to 

indicate joint realizations of all the variables in a vector, matrix, or set.  When we are to 

execute a function g, for example, on all of the xij realizations in a matrix x that are 

sampled from random variables Xij in X, we have 

g(x) = g(x11, x12, … x1c, x21, … xr1, … xrc) Eq. 1

We define P(x) as the joint probability distribution on all the random variables Xij: 

P(x) = P(X = x) Eq. 2

= P(X11 = x11, … Xij = xij, … Xrc = xrc) Eq. 3

= P(x11, … xij, … xrc) Eq. 4

Because the random variables are not necessarily distributed independently, this equals 

the product of the probability of each variable taking on a particular value, conditional on 

all previously computed probabilities: 

= Πij P(xij | x11, x12, … x1c, x21, … xi1, … xi(j-1)) Eq. 5

Similarly, P(x | y) is a joint probability density on the realizations xij, each conditional on 

all of the realizations yij. 

P(x | y) = Πij P(xij | x11, x12, … x1c, x21, … xi1, … xi(j-1), y11, …  yrc) Eq. 6

For example, where we are to calculate the average value of g() over the joint 

distributions of all random variables Xij in X, we write: 

∫xg(x)f(x)dx=∫x11…∫xij…∫xrc g(x11,…xij,…xrc)f(x11,…xij,…xrc)dx11…dxij… dxrc Eq. 7
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Table 4.1.2: Notation Introduced for Model Overview 

Term Name Data Description Example 

m 

 
managemen

t choices 

Set of 
management 
choices and 

assessed values 

Assessed values: project plan consisting of many 
simultaneous choices and facts of importance in 
predicting the impacts of those choices.  We 
provide m as input to the proposed algorithm and 
calculate the implications of them, and 
recommend using the set of choices that produce 
the greatest expected utility. 

 

Te 

Distribution 
of all 

engineering 
task 

completion 
Times 

Set of continuous 
random variables 

Tei 

Output from many VDT runs:  joint distribution 
on durations of all the project’s engineering tasks 
(design, development, or testing), rework links, 
and meetings. Elements Tei for each engineering 
task i are uncertain because exception handling 
and coordination sometimes extend the target 
schedule. 

Te = (Te1 , Te2 , Te3 …) indicates that there are three 
engineering tasks whose completion times te1 , te2 
and te3 are distributed as random variables Te1 , Te2 
and Te3. 

i 

Engineering 
task or 

engineered 
element 

Discrete Index 

Identifies an engineering task (design, 
development, or testing), rework link, or meeting 
that we simulate using VDT, and that has a single 
corresponding engineered element (component, 
interface, or multi-system respectively). 

Index i = 1 for example identifies the “Ready 
Ground Systems” task, while i = 4 identifies the 
“Ground – Launch Interface” rework link. 

Tei 

Distribution 
of 

engineering 
task 

completion 
Times 

Continuous 
random variable 

Output from many VDT runs: distribution on 
duration of an engineering task (design, 
development, or testing), rework link, or meeting.  
Tei for each engineering task i are uncertain 
because exception handling and coordination 
sometimes extend the target schedule. 

Te1 ~ expo(1) indicates that the time between the 
beginning and the end of engineering task 1, 
“Ready Ground Systems”, is distributed 
exponentially with expected duration 365 days. 
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Term Name Data Description Example 

te 

Sample of 
all 

engineering 
task 

completion 
times 

Set with one 
realization for 

each variable in 
Te 

Output from one VDT run:  sampled durations of 
all the project’s engineering tasks (design, 
development, or testing), rework links, and 
meetings. Values indicate the extent to which 
exception handling and coordination will actually 
extend the target schedule. 

te = (te1 , te2, te3 … te7) indicates that each of the 
seven engineering tasks i took an amount of time 
equal to tei.  te = (1.0 , 1.0 , 1.5 …) indicates that 
the first two engineering tasks completed after one 
year, while the third took a year and a half. 

tei 

time of 
engineering 

task 
completion 

Real-valued 
Realization of Tei; 

element of te 

Output from one VDT run: actual duration of an 
engineering task (design, development, or 
testing), rework link, or meeting i, as determined 
by emergent exception handling and coordination 
behavior. 

te6 = 0.75 indicates that the sixth engineering task 
completed after nine months. 

Tg 

Distribution 
of all goal 
completion 

Times 

Set of continuous 
random variables 

Tgg 

Output from proposed algorithm:  joint 
distribution on failure times of all the project’s 
goals.  Elements Tgg for each project goal g are 
uncertain because subsystem anomalies arise 
probabilistically over time. 

Tg = (Tg1, Tg2) indicates that there are two project 
goals whose completion times tg1 and tg2 are 
distributed as random variables Tg1 and Tg2. 

g Project goal Discrete Index 
g is the index on project objectives and indexes  
all of their requirements, anomalies, and failures 
during operations  

Goal g = 1 identifies values related to completion 
of the trip to and from Mars, while g = 2 indicates 
that a variable is relevant to success in achieving a 
scientific data gathering goal.   

tg 
times of all 

goal 
completions 

Set with one 
realization for 

each variable in 
Tg 

One set of possible failure times for all the 
project’s goals (i.e., time between 
commencement of operations and the first 
occurrence of a failure mode of each goal).  
Elements tgg for each project goal g take into 
account a set of subsystem anomalies that has 
arisen over time. 

tg = (tg1, tg2) indicates that each of the two project 
goals g will fail after a time equal to tgg.  tg = (1.0, 
0.5) indicates that the first goal will fail if operated 
for longer than one year, while the second is only 
sustained for six months. 
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Term Name Data Description Example 

Tgg 

Distribution 
of goal 

completion 
Times 

Continuous 
random variable 

Output from proposed algorithm:  distribution on 
failure times for a project’s goal g.  Failure times 
are uncertain because subsystem anomalies arise 
probabilistically over time. 

Te1 ~ expo(1) indicates that the time between the 
beginning and the end of engineering task 1, 
“Ready Ground Systems”, is distributed 
exponentially with expected duration 365 days. 

tgg 
time of goal 
completion 

Real-valued 
realization of Tgi; 

element of tg 

Particular failure time for a project’s goal g, 
taking into account the specific subsystem 
anomalies that have arisen over time (i.e., time 
between commencement of operations and the 
first occurrence of a failure mode of goal g) 

tg2 = 0.5 indicates that the second project goal 
(scientific data gathering) will fail if operated for 
longer than six months. 

f(x) 
Probability 

Density 
Function 

Function 

For a random variable X with realization x and a 
set B, f(x) is shorthand for fX(x), the function such 

that P(X∈B) = ∫Bf(x)dx.  “All probability 
statements about the random variable can (in 
principle) be computed from fX(x)” [Law and 
Kelton 2000].   

Where X is the uniform distribution, f(x) = 1 for 
all x ∈ [0,1], f(x) = 0 for all x∉[0,1] 

R 

Distribution 
of all 

rework 
related 

engineering 
outcomes 

Set of discrete 
random variables 

Rhi 

Output from many VDT runs:  joint distribution 
on exception handling and meeting attendance for 
all of the project’s engineering tasks (design, 
development, or testing), rework links, and 
meetings.  Elements Rhi for each type of handling 
h by each engineering task i are random variables 
because exception handling and coordination 
activities vary and cannot be predicted with 
certainty. 

R = (R11 , R12 , R13 …) indicates that there are 
distributions on the number of times that 
engineering task 1 handles its limited number of 
subtasks in each of three ways.  The numbers of 
times subtasks are handled in these ways are 
distributed as random variables R11, R12 and R13. 
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Term Name Data Description Example 

h 
Exception 
handling 

Discrete Index 

Identifies an exception handling or meeting 
outcome from engineering subtasks (small 
portions of design, development, or testing work) 
that we simulate using VDT. 

For tasks and rework links, values for h are: 1 = 
verified, no exception; 2 = reworked, an exception 
and decision to redo the full subtask; 3 = quick-
fixed, an exception and decision to do partial 
rework; 4 = ignored, an exception and decision to 
do no rework; 5 = defaulted, an exception that was 
never addressed by a decision of whether or not to 
conduct rework.  For meetings, values for h are 1 
= attended and 5 = not attended. 

r 

Amount of 
all rework 

related 
engineering 
outcomes 

Set with one 
realization for 

each variable in R

Output from one VDT run:  sampled exception 
handling and meeting outcomes from engineering 
subtasks (small portions of design, development, 
or testing work).  Values indicate the extent of 
exception handling, rework, and meeting 
activities. 

r = (r11 , r21, r31 …) = (12 , 3 , 4 …) indicates that 
engineering task 1, “Ready Ground Systems”, 
resulted in r11 = 12 verified subtasks, r21 = 3 
reworked subtasks, r31 = 4 quick-fixed subtasks, 
etc. 

Rhi 

Distribution 
of all 

rework 
related 

engineering 
outcomes 

Discrete random 
variable 

Output from many VDT runs:  distribution on a 
type of exception handling or meeting attendance 
h for an engineering task (design, development, 
or testing), rework link, or meeting i.  Quantity is 
uncertain because exception handling and 
coordination activities vary and cannot be 
predicted with certainty. 

R57 ~ bin(20, 0.5) indicates that the number of 
absentees at the systems integration meeting is 
distributed in the same way as the number of heads 
among 20 coin flips.  In our model, VDT generates 
the distribution according to a complex model of 
organizational and procedural factors. 
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Term Name Data Description Example 

rhi 

Amount of 
rework 
related 

engineering 
outcomes 

Integer realization 
of Rhi, element of 

r 

Output from one VDT run:  sampled number of 
exception handling or meeting h outcomes from 
an engineering subtask (small portions of design, 
development, or testing work) i. Value indicate 
the number of instances of a particular exception 
handling, rework, or meeting activity. 

r42 = 3 indicates that the second engineering task 
“Prepare Launch Vehicle” involved three ignored 
exceptions. 

me 

 

engineering 
managemen

t choice 

Set of decision 
variables 

VDT Input: Engineering management plan, 
including a complete and consistent set of 
organizational and process design choices.  We 
simulate me using VDT and calculate possible 
implications for later operations. 

The set includes a diverse range of organization 
and process choices, including the definition of all 
engineering teams within a hierarchy, the tasks 
within a precedence network, and policies such as 
centralization and meetings.  Chapter 5 and Jin and 
Levitt 1999 provide more detail on these values. 

D 

distributions 
of possible 
defects in 
all product 
elements 

Set of continuous 
random variables 

Dgi  

Set of distributions on the conformance levels for 
all engineered elements and goals, derived from 
the distributions of engineering rework deficits. 

A matrix of all ones indicates that all of the 
engineering products satisfied all of the 
requirements at each goal. 

Dgi 

distribution 
on one 
product 

element’s 
possible 
Defects 

Continuous 
random variable; 

Element of D 

Random variable distributed according to the 
fraction of functionality that is defective in 
engineered product element i with regard to the 
requirements of project goal g. 

D13 ~ bin(100, 0.5) / 100 indicates that for goal 1 
“Mars Round Trip” requirements placed on 
product component 2 “Ground Systems”, the 
percentage chance of a conformance level equals 
the chance of that number of heads among 100 
coin flips.  Our method estimates the actual 
distribution using a Bayesian analysis of 
engineering rework deficits. 
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Term Name Data Description Example 

d 
All product 
elements’ 

defects 

Set with one 
realization for 

each variable in D 

Set of conformance levels for all engineered 
elements i and all project goals g.  The elements 
are dgi, which measure the fraction of 
requirements that a product meets. 

d = (d11 , d21, …) = (0.9, 0.8 …) indicates that 
engineering task 1, “Ready Ground Systems”, 
resulted in d11 = 90% conforming product as far as 
goal 1, “Mars Round Trip”, but only 80% as far as 
goal 2 “Collect Science Data” requirements.  This 
means that if both goals rely equally on ground 
systems during operations, the science data goal is 
more likely to be jeopardized by the ground 
systems than the mars round trip is. 

dgi 
One product 

element’s 
defects 

Real-valued 
realization of Dgi; 

Element of d 

Conformance of an engineered element i, 
represented as a random variable that serves as 
the probability that a randomly selected 
requirement for project goal g will be met in 
operations. 

A value of d12 = 0.5 indicates that the launch 
vehicle component, the product of engineering task 
2 “Prepare Launch Vehicle”, only satisfies half of 
the relevant goal 1 (critical) requirements. 

mv Verification  
Set of constant 

(expert-assessed) 
probabilities vghi 

Provides the posterior probabilities of 
conformance for each goal specification, given 
exception-handling behavior.  We develop this 
value based on expert opinions of the specificity 
and sensitivity of engineering teams’ internal 
verification procedures.  Cell values are vghi 

If mv has the value 0.95 in all of its cells, this 
indicates that product conformance will average 
0.95, no matter what the engineering exception 
handling behavior was. 

vghi verification 

Constant (expert-
assessed) 

probability; 
Element of mv 

Probability that a part of task i's product conforms 
to requirements of goal indexed by g, given that 
the organization produced exception handling h 
when processing that subtask. 

A value of v123 = 0.98 indicates that any work for 
task 3 that produced exception handling 2 (rework) 
has a 98% probability of meeting any given mars 
return trip (goal 1) requirement during operations 

mz 
Testing 

coverage 
Set of percentages 

zgin 

Provides the fraction of each task’s product that is 
tested or reviewed by testing tasks, at each goal.  
Cell values are zgin. 

If all of the values for mz are zero, no engineering 
tasks are explicitly dedicated to evaluating the 
correctness of other work. 
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Term Name Data Description Example 

zgin 
Testing 

coverage 

Percentage; 
element of matrix 

G 

Test coverage—the fraction of task i’s goal g – 
relevant requirements that are evaluated by 
testing task n. 

z139 = 0.8 indicates that task 9 “Electrical Testing” 
will evaluate the correctness of eighty percent of 
the work produced by task 3, “Electrical Design”, 
and will handle any perceived problems with goal 
1 requirements using VDT-modeled exceptions 
and rework. 

n 
Testing 
Task in 

Engineering 

Discrete Index 

Identifies a task in the engineering phase that is 
dedicated to evaluating the products of 
engineered elements (components, interfaces, or 
multi-systems) 

Index n = 9 for example could identify the 
“Electrical Testing” task. 

A 

Distribution 
on all 

possible 
operations 
Anomalies 

Set of continuous-
time stochastic 
processes Agj(t) 

Distribution on the total number of various 
system anomalies that will manifest over time 
during operations, and that are able to influence 
each function.  Results from the distribution of 
defects among the engineered elements and the 
pace and sensitivity of operations.  Fractional 
values represent anomalies of lesser significance.  
Elements are Agj(t) 

A = (A11(t) , A12(t), A13(t)…) = (t, t, t …) indicates 
that the number of anomalies is known, identical in 
all subsystems, and increases linearly over time. 

j  Discrete Index 
j identifies an engineered subsystem of 
components, interfaces, and multi-systems that is 
active during operations and capable of producing 
anomalies 

A variable identified with j = 1 would refer to 
system 1, “Electrical”, that is required to perform 
certain functions 
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Term Name Data Description Example 

Agj(t) 

Distribution 
of total 

anomalies in 
a subsystem 

at a time 
during 

operations 

Continuous-time 
stochastic 

process; Element 
of A 

Defines the distribution of total subsystem j 
anomalies that have manifested by time t during 
operations, and that are able to influence the 
achievement of goal g.  Results from the 
distribution of defects among the engineered 
elements and the pace and sensitivity of 
operations.  Fractional values represent anomalies 
of lesser significance. 

A11(t) ~ Poisson (1) indicates that the first 
subsystem, “Ground Systems”, develops around 
one anomaly per year in a Markovian fashion. 

a 

Total 
anomalies in 

all 
subsystems 
over time 

Set of functions 
of time to real 

numbers 

The number of anomalies that have manifested 
with the ability to affect each goal, in each 
subsystem, at each time. 

a = (a11(t), a12(t), a13(t) …) = (0, 0, 0, …) is the 
ideal case- in it, no anomalies ever occur! 

agj(t) 

Total 
anomalies in 
a subsystem 

over time 

Function of time 
to real numbers; 
Realization of 

Agj(t) 

The number of goal g-related anomalies that have 
manifested in system j by time t. 

A value of a13(2) = 5 indicates that five goal 1 
(mars round trip) anomalies have manifested by 
year 2. 

mw(t) Operations 
Pace 

Set containing w, 
wijg, or wgij(t) 

Rate of operations – the rate at which function j 
calls upon features provided in task i's goal g 
specification, at time t.   

 

ms(t) 
Operations 
Sensitivity 

Set containing s, 
sijg, or sgij(t) 

Sensitivity of operations – the probability of 
significant change in function j when 
encountering requirement violations of goal g 
from dependent task i, at a time t, given 
management choices m 
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Term Name Data Description Example 

w 

Homogeneo
us 

operations 
pace 

Real-valued 
constant 

Global rate of operations – the rate at which a 
dedicated function calls upon features provided in 
each task specifications.   

w  = 0.9 indicates that the product of an 
engineering task is relied upon to meet each goal 
of requirements in each system during most time 
units, throughout operations. 

s 

Homogeneo
us 

operations 
sensitivity 

Real-valued 
constant 

Global sensitivity of operations – the probability 
of significant change in a dedicated function 
when encountering requirement violations from a 
given task 

s  = 0.9 indicates that when a non-conforming 
portion of the product of an engineering task is 
relied upon to meet requirements in another 
system, it usually results in an anomaly. 

wijg 
Static 

operations 
pace 

Real-valued 
constant 

Static rate of operations – the rate at which 
function j calls upon features provided in task i's 
goal g specification.   

w123  = 0.9 indicates that the product of 
engineering task 2 is relied upon by subsystem 3 to 
meet goal 1 requirements during most time units 
throughout operations. 

sijg 
Static 

operations 
sensitivity 

Real-valued 
constant 

Static sensitivity of operations – the probability of 
significant change in function j when 
encountering requirement violations of goal g 
from dependent task i. 

s123  = 0.9 indicates that when a non-conforming 
portion of the product of engineering task 2 is 
relied upon to meet goal 1 requirements in system 
3, it usually results in an anomaly. 

wgij(t) 
Dynamic 
operations 

pace 

Function that 
maps a real 

number to a real 
number  

Rate of operations – the rate at which function j 
calls upon features provided in task i's goal g 
specification, at time t.   

w123 (t) = 0.9t indicates at first, nearly every time 
unit during operations engineered subsystem 3 
relies for on the conformance of engineered 
element 2 to satisfy a new goal 1 requirement for 
the first time.  However, operations test fewer new 
requirements as time goes on. 
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Term Name Data Description Example 

sgij(t) 
Dynamic 
operations 
sensitivity 

Function that 
maps a real 
number to a 
probability 

Sensitivity of operations – the probability of 
significant change in function j when 
encountering requirement violations of goal g 
from dependent task i, at a time t, given 
management choices m 

s123 (t) = 0.9t indicates that under management plan 
4, at first a goal 1 anomaly occurs during 
operations in subsystem 3 nearly every time that a 
non-conforming requirement from task 2 is tested.  
However, as time goes on, operations become 
more robust to these events. 

f 
Time of 

Functional 
failure 

Matrix of random 
variables fgk 

Cell values are fgk.  Represents the time at which 
failure or completion of each function k occurs as 
far as goal g is concerned.   

A matrix with all ones in column one, and all zeros 
in column two, indicates that all of the critical 
functions succeed, but none of the goal g two 
(non-critical) functions do. 

tff(t) 
Functional 

failure 

Matrix of boolean 
random variables 

fkv 

Represents the success or failure of all functions 
all goals.  Cell values are fkv 

A matrix with all ones in column one, and all zeros 
in column tow, indicates that all of the critical 
functions succeed, but none of the goal g two (non-
critical) functions do. 

fgk 
Functional 

failure 
Continuous 

Random Variable 
Random variable that represents the time at which 
function k ceases to support goal g. 

A value of f12 (t) = 1 indicates that operations 
function 2 succeeds, when evaluated against mars 
return trip (goal 1) functional criteria. 

k 
Function 

Index 
Discrete Index 

k identifies a function in operations that is 
important to the determination of whether failure 
occurs  

A variable identified with k = 1 would refer to 
function 1, “Launch”, that is required for project 
success 

my 
Functions’ 
capacity 

decay rates 

Set of continuous 
random variables 

ymkv 

Rate of capacity decay that anomalies cause for 
functions during operations.  Cell values are umkv 

When Um contains all ones, any engineered 
subsystem anomaly will cause a total loss of 
capacity in dependent functions. 
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Term Name Data Description Example 

ykg 
Function 
capacity 

decay rate 

Continuous 
random variable; 
Element of matrix 

my 

Rate of capacity decay that anomalies cause for a 
function k in preventing goal g failure (for 
management choices m). 

A value of u321 = .5 indicates that under 
management choice set 3, function 2 responds to 
each critical anomaly (goal 1) by losing 50% of 
capacity. 

mi 
Impact of 

subsystems 
on functions 

Set of continuous 
random variables 

igjk 

Defines the reliance of functions upon engineered 
subsystems during operations.  Cell values are 
ugjk 

When mu is set to the identify matrix, this 
indicates an isomorphism between engineered 
subsystems and operations functions, so that each 
anomaly in an engineered subsystem will impact 
exactly one function. 

igjk 
Use of 

subsystem 
by function 

Continuous 
random variable; 

Element of mi 

Degree of dependence upon an engineered 
subsystem j by an operations function k in 
preventing a failure of goal g. 

A value of i123 = 0 indicates that engineered 
subsystem 2 does not impact function 3 for the 
purposes of estimating mars return trip (goal 1) 
failure 

ml Load 

Matrix of 
continuous 

random variables 
lmkv 

Characterizes load- the pressure placed on all 
functions at all criticalities during operations 

Where ml has all ones, each function will be 
placed under the maximum load, so that any 
function that loses capacity to anomalies will fail. 

lgk load 

Continuous 
random variable; 
Element of matrix 

Lm 

Characterizes load- the pressure placed on 
function k during operations to suffer a failure of 
goal g (for management choices m). 

A value of l12 = 0.8 indicates that under the third 
set of management choices, function two 
undergoes a heavy load—as defined by the 80th 
percentile. 

mg Goals Set of Boolean 
expressions 

Defines the reliance of each goal upon the 
successful operation of a function k. 

mg = (g1, g1) indicates that there are two project 
goals. 

gg goal Boolean 
expression 

Defines the reliance of goal g upon various 
functions. 

g1= 1 + (2*3) indicates that goal 1 succeeds as 
long as either function 1 or both functions 2 and 3 
succeed. 
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Term Name Data Description Example 

m* 

Best 
operations 

managemen
t choice 
index 

Discrete index 

Identifies a set of management choices, including 
engineering and testing plans, and the use of 
engineered products during operations in systems 
that support project objectives. 

Index * = 1 could identify a conservative, serial 
engineering approach followed by extended 
operations in a challenging environment, if the 
alternative (index 2) identifies an aggressive 
parallel engineering approach followed by shorter 
operations, when the environmental hazards 
outweigh the benefits of engineering acceleration. 

U(X) Utility Function (returns 
a real value) 

Measure of the value to a decision maker that a 
state of the world represented as X represents 

If U(X) > U(Y), then we know that a decision 
maker prefers state X to Y. 

E(x) Expected 
Value 

Function (returns 
a real value) 

Average value of a random variable x, integrated 
(or summed) over all x of the probability that x = 
y times the value y. 

E(Bernoulli(0.5)) = 0.5, meaning that the average 
number of heads in a fair coin toss is one half 
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44..22      PPRROOBBLLEEMM  DDEECCOOMMPPOOSSIITTIIOONN  UUSSIINNGG  PPIINNCCHH  PPOOIINNTTSS  
Formulating the Research Question Mathematically 
The proposed algorithm is intended to help a decision maker to maximize his or her 

expected utility from a set of consistent management choices m. Our method analyzes 

decisions by considering two types of data to be of direct importance, in addition to the 

management choices themselves.  The first is the set of random variables Te, which 

contains distributions Tei on the predicted durations tei of each engineering task i.  We 

also impute primary importance to Tg, which contains distributions Tgg whose 

realizations tgg indicate predicted times of failure or completion for each project goal g.     

Given these distinctions, our primary research goal is to provide a method for estimating 

the mean time to failure, mean engineering phase length, and related measures.  We 

achieve this by producing an algorithm to calculate f(te, tg | m) (shorthand for fTe, Tg | m(te, 

tg | m)), the joint probability density function on engineering task completion and goal 

achievement/premature failure times that result from a set of management decisions m.   

This chapter divides this expression into 

several more individually manageable 

portions using “pinch points”.  The 

illustration at right shows how each 

portion is the subject of a specific chapter, 

follows a distinctive method, requires 

management choices or project constraint 

assessments from management, and 

produces output that brings us a step closer to our final goal.  In addition, most parts of 

the algorithm incorporate results from the previous section.  Each of the subsections 

below introduces a pinch point and explains how we use it to divide our complex 

probability distribution into two more manageable portions.   

Chapter

Input

Output

Method

g(x,y)

x

Prior 
Outputy

g()
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Rework Deficits 
In this section, we introduce our first pinch point, 

dividing our original probability density expression f(te, 

tg | m).  The first pinch point is based on rework 

deficit—the amount of rework that may well be 

appropriate, but that was not conducted, among various 

tasks performed during the engineering stage.  We 

describe rework deficit using a set R of random 

variables Rhi whose realizations rhi in r signify the 

number of rework handling choices h for each task i.  We use this new structure to 

develop the first term in Equation 8, which refers to engineering stage behavior: 

f(te, tg | m) = ∫r f(te, r, tg | m) dr Eq. 8

f(te, tg | m) = ∫r f(te, r | m) * f(tg | te, r, m)) dr Eq. 9

Next, we assume that the probability of achieving project goals is influenced by rework 

deficit, but is not directly linked to engineering stage schedules.  Mathematically, this 

means that product goal completion times in tg are independent of engineering task 

durations in te, when given the rework deficit set r.  We can thus simplify: 

f(te, tg | m) = ∫r (f(te, r | m) * f(tg | r, m)) dr Eq. 10

Finally, we note that the only engineering management decisions that influence our 

estimates of rework deficit and engineering task durations are those that the VDT 

simulation uses to define an organization, product, and culture.  We define these using a 

set me (here e is mnemonic for engineering phase structure). 

f(te, d | m) = ∫r (f(te, r | me) * f(tg | r, m)) dr Eq. 11

Chapter
5

Organization, 
Process, 
Culture

me

Rework 
Deficits

Virtual 
Design Team

r
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Product Defects 
As described in the Frame and Foundation, 

we assume that all the information from 

engineering that bears on operations 

behavior rests in the product.  We are 

uncertain about the numbers of defects in 

each element of the engineered product, 

and we describe them using a set D of 

random variables Dgi.  d provides 

realizations dgi that represent the fraction of specifications that are relevant to goal g that 

an element i the final engineered product meets.   

In the next step, we assume independence of operations on engineering given defects, and 

independence on engineering duration and defects from operations durations and choices, 

given engineering management choices: 

Intuitively, this is the probability of a certain behavior during the engineering phase, 

times the probability of a certain resulting operations stage behavior given that 

engineering behavior, times the utility that results from this combination of behaviors.   

We develop the second term from Equation 8 thus: 

f(tg | r, m) = ∫d f(d, tg | r, m) dd Eq. 12

f(tg | r, m) = ∫d (f(d | r, m) * f(tg | d, r, m)) dd Eq. 13

Furthermore, just two sets of engineering management decisions that influence our 

estimate of defects, given a rework deficit.  The first is the reliability of the internal 

verification procedures that instigate rework, which we define in the matrix mv. The 

second set, mv, defines which engineering tasks are dedicated to the verification and 

testing of prior task’s product.  Therefore, we can simplify further:  

f(tg | r, m) = ∫d (f(d | r, mz, mv) * f(tg | d, r, m)) dd Eq. 14

Chapter
6
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Product 
Defects
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We also assume that given a set of management decisions and product defects, the time 

to failure during operations of project objectives is independent of rework deficit.  This 

simplifies our second term: 

f(tg | r, m) = ∫d (f(d | r, mz, mv) * f(tg | d, m)) dd Eq. 15

Operations Anomalies 
The next pinch point is based on the 

concept of an anomaly—a behavior that 

occurs during operations that deviates 

from the specifications.  Our model only 

considers anomalies that result from 

product defects, and we also assume that 

given a set of anomalies distributed in 

time, no prior behavior influences the failure of functions and achievement of project 

goals. 

We develop the second term of equation 11 thus: 

f(tg | d, m) = ∫a f(tg, a | d, m) da Eq. 16

f(tg | d, m) = ∫a (f(a | d, m) * f(tg | a, d, m)) da Eq. 17

We assume that the duration of satisfaction of each goal is independent of product 

defects, given a set of anomalies.  Conceptually, the number of defects in a product is not 

what determines success or failure—instead it is the behavior during operations that we 

are concerned with.  This assumption offers a simplification: 

f(tg | d, m) = ∫a (f(a | d, m) * f(tg | a, m)) da Eq. 18

At this point, we can be more specific about which management choices influence the 

emergence of anomalies.  We define the operations pace mw as the average time between 

new requirements being placed on each engineered subsystem, and operations sensitivity 

Product 
Defectsd Chapter

7
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Pace

Subsystem 
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Stochastic 
Processes
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mwms
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ms as the chance that a requirement that is not met will cause an anomaly.  Using these 

terms makes our equation more specific: 

f(tg | d, m) = ∫a (f(a | d, mw, ms) * f(tg | a, m)) da Eq. 19

Functional Failures 
We base our last pinch point on the 

concept of functional success and 

failure.  The concept of a functional 

block that succeeds or fails during 

operations is fundamental in PRA and 

systems engineering.  In our model, we 

introduce a set of random variables F 

whose realizations f identify the time at 

which each component ceases to perform in its role viz. each project goal.   

We introduce this to the second term of equation 15 to obtain: 

f(tg | a, m) = ∫f f(tg, f | a, m) df Eq. 20

f(tg | a, m) = ∫f f(f | a, m) * f(tg | a, m, f) df Eq. 21

Next, we break up the integral based on the assumption that the behavioral aberrations we 

call anomalies cause functional failure, but that given a set of functional failure times, the 

success in reaching project goals is independent of the emergence of anomalies.  

Mathematically, this means: 

In our model, three management factors influence the times of functional failure.  

Capacity begins at a high nominal level but exponentially decays according to my 

whenever an anomaly occurs that impacts the function.  This latter event results from 

combining a, with an understanding (codified in mi of how each anomaly can impact a 

function.  In our model, loads distributed according to ml are placed on each function, 

and failure occurs when this exceeds the function’s capacity.   
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f(tg | a, m) = ∫f f(f | a, my, mi, ml) * f(tg | m, f) df Eq. 22

Goal Failures 
 Finally, mg is the subset of management 

decisions m that defines the structural 

relationships among functional blocks 

(expressed as minimal cut sets) when 

considering each goal.  mg identifies, for 

example, when a function is “single 

string”, meaning that its failure means 

not reaching a given goal. 

f(tg | m, f) = f(tg | mg, f) Eq. 23
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Expected Utility 
Deciding on the best choice m* for a 

decision maker requires his or her utility 

function U().  Our method presumes that 

the only values of importance to the 

decision maker are the original choices m, 

the times of engineering task completion 

te, and the times of goal achievement or 

failure tg (indicated by premature conclusion).  The expected utility of the joint 

management choices m that constitute a project plan is: 

U(m) ~ U(Te, Tg, m) 
Eq. 

24

EU(m) =∫te∫tg(f(te, tg | m) * U(te, tg, m)) dte dte 
Eq. 

25

44..33      SSOOLLVVIINNGG  TTHHEE  IINNTTEEGGRRAATTEEDD  FFOORRMMUULLAA  
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In our model, introducing pinch points (From Equations 15, 19, 22, and 28) into the top 

level decision formula (Equation 4) for the distribution of engineering and operations 

behaviors gives us a mathematical “big picture”: 

EU(m) =∫te∫tg U(te, tg, m) *f(te, tg | m) dte dtg Eq. 26
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= EU(me, mv, mz, mw, ms, mu, my, ml, mg)  

= ∫te∫ tg U(te, tg, me, mv, mz, mw, ms, mu, my, mi, ml, mg) * 

∫r (f(te, r | me) * ∫d f(d | r, mz, mv) * ∫a f(a | d, mw, ms) *      

∫f f(f | a, my, mi, ml) * f(tg | mg, tf) dte dtg dr dd da df 

Eq. 27

44..44      IILLLLUUSSTTRRAATTIIOONN  
Introduction 
This chapter illustrates our proposed method using a POPE model of a hypothetical mars 

shuttle flight.  Figure 1 (on page 10) is a schematic of the objects and relationships for 

this case, and Tables 3.1.1 and 3.1.2 provide a set of sample data that reflect an analysis 

using one trial simulation.  As we conclude each chapter below, we illustrate the 

introduced algorithm steps on this example problem. 

Model Structure 
We provide an intuitive formulation that does not reflect any actual aerospace project 

because our main purpose is to convey an intuition of the proposed method.  We model 

each of the following factors (at nominal values unless stated otherwise): 

PPrroodduucctt  The operational product components are a mars shuttle, ground 

systems, and launch vehicle, with interfaces between each pair.  There 

is also a potential for complex interactions involving all three systems.  

Failure created by any of these elements can cause a project failure, so 

we relate the product to a single string functional block diagram.  

PPrroocceessss  Tracing these components upstream, we see that the engineering 

process involves readying the mars shuttle, ground systems, and launch 

vehicle.  These three tasks overlap significantly, and the work is 

interdependent among them.  We model this in VDT using “start-to-

start with lag” precedence links, and rework links between all pairs.  

OOrrggaanniizzaattiioonn  Linking the process back to the organization, we identify the 
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engineering team responsible for each of these tasks, and find that a 

single manager oversees them.  We model this in VDT using a two-tier 

hierarchy of three subteams and a project manager, operating with high 

centralization and formalization. 

Every week, the groups assemble weekly for one-hour meeting to 

discuss possible interactions among the three components.  We model 

this in VDT as a meeting object with all actors invited.  

EEnnvviirroonnmmeenntt  NASA’s own PRA estimates indicate that by far the largest source of 

operations phase risk is the .005% probability that a shuttle will be 

destroyed as a result of an impact from micrometeoroids or space junk 

[NASA 2003].  This is an example of a functional failure cause that 

designers and developers cannot affect, and it can be assessed 

independently of our knowledge of the project structure.  We model 

this in PRA as a weather factor with a single-string influence over total 

failure probability.    

For ease of reference, at this point we consolidate the input, intermediate, and output data 

for our sample illustration.  At the conclusion of each chapter, we provide the data that 

we operate upon as well as an explanation of each step in the sample case. 

Table 4.4.1: Consolidated Data for Illustrative Case 

r This example evaluates only one distribution (one simulation run) of engineering stage actions b
Routine Rework QuickFix Ignore Default Subtasks

Ready Shuttle 17 2 0 1 0 20
Ready Launch 16 3 0 1 0 20
Ready Ground 15 3 1 0 1 20

Shuttle-Launch Rework Link 13 1 0 1 2 20
Shuttle-Ground Rework Link 17 2 1 0 0 20
Launch-Ground Rework Link 16 3 1 0 0 20
System Integration Meetings 15 0 0 0 5 20

 

mv The posterior probability of product conformance given different engginering stage actions
Critical Non-Critical 

Routine Rework QuickFix Ignore Default Routine Rework QuickFix Ignore Default
Ready Shuttle 80% 80% 80% 60% 60% 80% 80% 60% 60% 60%
Ready Launch 80% 80% 80% 60% 60% 80% 80% 60% 60% 60%
Ready Ground 80% 80% 80% 60% 60% 80% 80% 60% 60% 60%

Shuttle-Launch Rework Link 80% 80% 80% 60% 60% 80% 80% 60% 60% 60%
Shuttle-Ground Rework Link 80% 80% 80% 60% 60% 80% 80% 60% 60% 60%
Launch-Ground Rework Link 80% 80% 80% 60% 60% 80% 80% 60% 60% 60%
System Integration Meetings 80% 80% 80% 60% 60% 80% 80% 60% 60% 60%
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d The conformance (lack of defects) of each engineered element
Critical Non-Critical

 Shuttle Component 71% 71%
 Launch Component 67% 67%
 Ground Component 73% 70%

Shuttle-Launch Interface 61% 61%
Shuttle-Ground Interface 74% 73%
Launch-Ground Interface 74% 71%

Integrated Multi-System 75% 75%
 

mz The coverage of each engineering stage task's testing activities on output from other tasks

Critical Non-Critical 
 Shuttle Component mponent mponent Interfacend Interfaceulti-SystemComponentComponentComponent h Interfaced Interface Multi-System

 Shuttle Component 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
 Launch Component 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
 Ground Component 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Shuttle-Launch Interface 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Shuttle-Ground Interface 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Launch-Ground Interface 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Integrated Multi-System 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

d' = d Testing has no impact on conformance in this example
 

mw The pace at which subsystems employ engineered elements during operations
Critical Non-Critical 

Weather Ground Launch Vce Shuttle Science Goa Weather Ground Launch Veace Shuttle Science Goals
 Shuttle Component 0% 0% 0% 100% 0% 0% 0% 0% 100% 0%
 Launch Component 0% 0% 100% 0% 0% 0% 0% 100% 0% 0%
 Ground Component 0% 100% 0% 0% 0% 0% 100% 0% 0% 0%

Shuttle-Launch Interface 0% 0% 50% 50% 0% 0% 0% 50% 50% 0%
Shuttle-Ground Interface 0% 50% 0% 50% 0% 0% 50% 0% 50% 0%
Launch-Ground Interface 0% 50% 50% 0% 0% 0% 50% 50% 0% 0%

Integrated Multi-System 0% 33% 33% 33% 0% 0% 33% 33% 33% 0%
 

ms The sensitivity of subsystems to defective behavior by engineered elements during operations
Critical Non-Critical 

Weather Ground Launch Vce Shuttle Science Goa Weather Ground Launch Veace Shuttle Science Goals
 Shuttle Component 0% 0% 0% 100% 0% 0% 0% 0% 100% 0%
 Launch Component 0% 0% 100% 0% 0% 0% 0% 100% 0% 0%
 Ground Component 0% 100% 0% 0% 0% 0% 100% 0% 0% 0%

Shuttle-Launch Interface 0% 0% 50% 50% 0% 0% 0% 50% 50% 0%
Shuttle-Ground Interface 0% 50% 0% 50% 0% 0% 50% 0% 50% 0%
Launch-Ground Interface 0% 50% 50% 0% 0% 0% 50% 50% 0% 0%

Integrated Multi-System 0% 33% 33% 33% 0% 0% 33% 33% 33% 0%
 

b The rate at which engineering-induced anomalies manifest in operations
Weather Ground Launch Vce Shuttle Science Goals

Critical 0.0% 8.6% 8.0% 8.2% 0.0%
Non-Critical 0.0% 8.4% 7.9% 8.1% 0.0%

 

a(2) The total number of anomalies that occur in each system by time 2 during operations (point estimate)
Weather Ground Launch Vce Shuttle Science Goals

Critical -          0.17      0.16      0.16      -             
Non-Critical -          0.17      0.16      0.16      -             
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mi Influence that subsystem behavior has over the success or failure of functions
Critical Non-Critical 

Weather Ground Launch Vce Shuttle Science Goa Weather Ground Launch Veace Shuttle Science Goals
Launch 100% 100% 100% 100% 0% 100% 100% 100% 100% 0%

Orbit 0% 100% 0% 100% 0% 0% 100% 0% 100% 0%
Land 100% 100% 0% 100% 0% 100% 100% 0% 100% 0%

Collect Science Data 0% 0% 0% 0% 0% 100% 0% 0% 100% 100%
 

Σj (a gj ( 2)  *  igjk) The number of impacting errors on each system at time 2
Critical Non-Critical

Launch 0.49        0.49      
Orbit 0.34        0.33      
Land 0.34        0.33      

Collect Science Data -          0.16      
 

my Decay in capacity for each function resulting from each operations anomaly
Critical Non-Critical

Launch 50% 50%
Orbit 50% 50%
Land 50% 50%

Collect Science Data 50% 50%
 

c(2) Operating Capacities at time 2 for each operations function
Critical Non-Critical

Launch 71% 71%
Orbit 79% 80%
Land 79% 80%

Collect Science Data 100% 89%
 

P(Fgk < 2) (Independent) probabiliy of functional failure by time 2
Critical Non-Critical

Launch 29% 29%
Orbit 21% 20%
Land 21% 20%

Collect Science Data 0% 11%

P(Tgg < 2) (Individual) probability of project goal failures
Critical Non-Criti Probability

Failure 45% 40%
Success 55% 60%

P(Tg < 2) Joint probabiliy distribution project goal failures
Critical Non-Critic Probability

Success Success 33%
Failure Success 27%

Success Failure 22%
Failure Failure 18%
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CChhaapptteerr  55  --  EEnnggiinneeeerriinngg  RReewwoorrkk  DDeeffiicciittss  

EEssttiimmaattiinngg  ff((ttee,,  rr  ||  mmee))  UUssiinngg  tthhee  VVDDTT  SSiimmuullaattoorr  

55..11      EENNGGIINNEEEERRIINNGG  RREEWWOORRKK--RREELLAATTEEDD  AACCTTIIOONNSS  
The Virtual Design Team (VDT) is an object-

oriented discrete event simulation that models a 

wide range of distinctive real-world phenomena.  In 

mathematical terms, VDT uses a Generalized Semi-

Markov Process (GSMP) to estimate a function that 

has no closed form representation.  The output of 

this function is a joint distribution over a range of 

phenomena (including direct work, rework, waiting, 

and communications) that occur in continuous time. 

We have defined me as a consistent set of management choices that VDT can evaluate, 

including an organizational hierarchy, task network, and operating culture.  There are 

many diverse management choices that can influence these results, which are 

summarized in Pugnetti [1997] (in addition to previously cited VDT publications).  The 

number of management strategies that we will evaluate using this basic algorithm will 

generally be small, however, because each one requires a manual VDT simulation and 

considerable post-processing.  For example, one strategy might include a flat hierarchy, 

parallel tasks, and centralized culture.  An alternative strategy could include a deep 

hierarchy, sequential tasks, and decentralization.   

Chapter
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Process, 
Culture

me

Rework 
Deficits

Virtual 
Design Team
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Table 5.1.1: Notation Introduced for Rework Deficits Analysis 

Term Name Data Description Example 

ξ 

number 
of 

simulati
on 

iteration
s 

Integer 
Number of VDT simulation trials, each sampling 
different possible engineering phase actions based on 
management decisions 

b=100 indicates that we will estimate engineering 
behavior based on 100 samples from the 
distribution of possible outcomes. 

ψs 

Random 
Number 

Seed 

Sequence of 
Integers 

Random number seeds by each VDT simulation trial 
run s ∈{1, 2, … ξ} to sample a complex distribution 
of possible outcomes 

If s(1)= 74, the first VDT simulation for a case will 
offer a particular sample of emergent behavior that 
differs, for example, from a second run with s(1)= 
5641. 

Vdt(m, 
ψs) 

Virtual 
design 
team 

Function 

Sample of possible engineering project behavior (A), 
including emergent schedules, rework, and meeting 
attendance, as predicted by Virtual Design Team 
simulator based on project design m using random 
number seed s. 

A simulation Vdt(2, 34) could indicate that 
executing the second possible management plan 
would create a 140 day schedule overrun, with lots 
of ignored exceptions. Vdt(2, 432) might indicate 
more schedule overrun, while Vdt(2, 542) could 
indicate less. 

Vfp (m, 
ψs, i, t) 

Verificat
ion 

failure 
probabil

ity 

Function 
(returns a 

probability) 

Probability that an actor will fail to verify the 
conformance of work (and raise an exception) based 
on task or rework link i, at time t, during an 
engineering simulation run of m, using seed ψs. 

Vfp (M1, 543, 2, 0.5) = .1 indicates that for 
simulating the first possible management plan one 
time using seed 543 indicates that after a half year, 
around one in ten subtasks from task 2 “Design 
Electrical System” creates an exception 
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Term Name Data Description Example 

vfp* 

Verificat
ion 

failure 
probabil

ity- 
nominal 

Probability 
Expert-assessed percent of verifications that perceive 
non-conformance, for an average actor addressing an 
average task 

vfp* = 0.1 means that under nominal conditions, 
ten percent of all completed subtasks generate 
exceptions. 

AP(ki, 
pi, ti) 

Aptitude Function 

Aptitude for an assigned actor’s skill smi and 
experience emi in addressing the task i of complexity 
cmi under management choices m, expressed as a real 
number using an industry – calibrated lookup table in 
VDT 

AP(“High”, “High”, “Low”) = 0.67 means that an 
actor with high skill and experience generates only 
two thirds of the normal number of exceptions 
when working on a low complexity task (assuming 
no beneficial or detrimental events). 

ki skill Real 

Relevant skill of the actor assigned to task i under 
management choices m, expressed as High, Medium, 
or Low by experts and defined using industry – 
calibrated values in VDT 

s23 = “High” indicates that in the second 
management plan being considered, the third actor 
“Electrical Engineering Team” is exceptionally 
skilled (as defined by VDT). 

pi 
experien

ce Real 

Experience of the actor assigned to task i under 
management choices m, expressed as High, Medium, 
or Low by experts and defined using industry – 
calibrated values in VDT 

c12 = “Medium” indicates that in the first 
management plan being considered, the second 
actor “Mechanical Engineering Team” has a 
nominal level of experience (as defined by VDT). 

ti 
complex

ity Real 
Complexity of task i under management choices m, 
expressed as High, Medium, or Low by experts and 
defined using industry – calibrated values in VDT 

c12 = “Medium” indicates that in the first 
management plan being considered, the second 
task “Mechanical Engineering Design” involves a 
nominal level of difficulty. 
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Term Name Data Description Example 

V+(m, s, 
i, t) 

Verificat
ion 

positive 
events 

Function 

Number of beneficial events, such as successful 
communications, that occur before the time t of task i 
verification, during a VDT simulation of management 
choices m, with seed s.  These decrease vfp. 

V+(M4, 3, 2, 1) = 6 if after simulating management 
plan 4 for 1 time period using random seed 3, 
engineering task 2 has had 6 positive events occur, 
such as three completed communication attempts 
and two fully attended meetings. 

V —( m, 
s, i, t) 

Verificat
ion 

negative 
events 

Function 

Number of detrimental events, such as failed 
communications, that occur before the time of task I 
verification t, during a VDT simulation of 
management choices m, with seed s.  These increase 
vfp. 

V— (M4, 3, 2, 1) = 5 if after simulating management 
plan 4 for 1 time period using random seed 3, 
engineering task 2 has had 5 negative events occur, 
such as three failed communication attempts and 
two ignored exceptions. 

γ 
verificat

ion 
change 

Real 
VDT calibration constant that indicates the amount of 
impact that each positive or negative event has upon 
Vfp 

v∆ = 0.1 means that each time an exception is 
ignored, the probability of generating exceptions 
for that task goes up by ten percent. 

X(m, s, 
i) 

eXceptio
ns Function The total number of exceptions for a simulation of 

management choices m using seed s on task i 

X (M4, 3, 2) = 5 if when we simulate the 
engineering project of management plan 4 using 
random seed 3, task 2 generates a total of 5 
exceptions. 

Bernoull
i(x) 

Bernoull
i 

Function 
(returns a 
Boolean 
random 
variable) 

Produces a random variable that takes on value 1 with 
probability x, and value 0 otherwise 

Bernoulli(0.5) models a fair coin toss, where a 
result of 1 indicates heads and 0 indicates tails. 

ni 
number 

of 
subtasks 

Integer Number of subtasks, or atomic work items, that 
constitute task i. 

b4 = 20 indicates that the fourth task, “Electrical – 
Mechanical Interface Design” is broken into 
twenty work items. 
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Term Name Data Description Example 

av(m, s, 
i, t, g) 

availabil
ity Function 

Availability of an actor at hierarchy level g to attend 
to exceptions, in a reporting line for the actor 
responsible for task i, during a simulation of plan m, 
with seed s(s), at time t. Output is ∈ {0, 1} where 1 
represents availability, 0 represents overloading.   

av(M5, 4, 3, 2, 1) = 0 indicates that when we 
simulate management plan 5 using random seed 4, 
at time 2 the subteam leader (level 1) who the actor 
assigned to task 3 reports to is too busy to make 
decisions about whether or not to perform rework.  
Exceptions that are routed to this subteam leader 
will be defaulted (creating no rework). 

Av(m, s, 
i, t) 

Availabi
lity Function 

Availability of actors to attend to exceptions, in a 
reporting line for the actor responsible for task i, 
during a simulation of plan m, with seed s(s), at time 
t. Vector has with cell values av(r, i, t, g) ∈ {0, 1} 
where 1 represents availability, 0 represents 
overloading.  g is a level in the hierarchy (Project 
Manager, Subteam Leader, or Subteam). 

Av(M4, 3, 2, 1) = (1,1,1) indicates that when we 
simulate management plan 4 using random seed 3, 
at time 1 all of the decision makers who supervise 
the actor assigned to task 2 are available and will 
decide on whether to rework, quick-fix, or ignore 
any exceptions that occur. 

Γ Centrali
zation Vector 

Project-specific values that define the project’s 
centralization, a distribution that determines the 
probability of routing an exception to each of the 
different organizational levels 

Γ  = (.20, .40, .40) indicates that when an exception 
occurs under management plan 3, a subteam will 
make its own decision of whether or not to perform 
rework one-fifth of the time, while routing to a 
supervising subteam leader or project manager are 
each twice as likely. 

Λ Quality 
focus Matrix 

Industry-specific calibration constants indicating 
quality focus, specifically the tendency of actors at 
different organizational levels to rework exceptions 
(to keep project failure risk low) or ignore them (to 
minimize project duration and cost) 

A matrix with equal values (.333) in each cell 
means that subteams, subteam leaders, and project 
managers make rework decisions the same way- 
are distribute their decisions evenly among rework, 
quick-fix, and ignore exception handlings. 
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55..22      MMAATTHHEEMMAATTIICCAALL  BBAASSIISS  OOFF  SSIIMMUULLAATTIIOONN  
In this section, we explain mathematically how VDT derives a joint distribution on 

actions of interest to us, based on a set of management choices.  These actions of interest 

are the exception handling behavior for each task and rework link, and meeting 

attendance.   

Each  r is a set of engineering actions, such as schedule slippage, communications 

failures, and rework that can result from the management choices me.  Many possible 

results can occur for a given set of management choices m.  For example, R1 might be a 

case in which schedule and communications are kept, but a lot of rework gets ignored.  

R2 might show mild schedule slippage, but shortcomings in both communications and in 

the amount of rework.  The amount of variance between simulations of a particular set of 

management choices depends on those management choices, and is not straightforward to 

estimate a priori.   

The remainder of this subsection reviews the mathematical basis of simulation so that our 

definition of the probabilities is complete.  VDT does not calculate a continuous 

probability distribution on the possible actions that will occur during engineering.  

Instead, as a simulation it estimates that distribution by generating a set of n random 

samples that together approach the full distribution asymptotically [Law and Kelton, 

2000].  The simulator uses random numbers to sample different possible results from 

distributions of possible engineering micro-behaviors, thereby producing a set of 

aggregate outcomes that are presumed equally likely to reflect real emergent engineering 

behavior.   

Although the set of A possibilities is very large (meaning that it has many continuous 

dimensions), our algorithm only requires that we evaluate it at a limited set of points.  

Thus, we estimate that each set of actions A occurs with a probability equal to the long 

run fraction of simulations that predict those actions.  Formally, our formula takes the 

limit on ξ simulations with random number seeds ψs used to generate independent, 

identically distributed results: 

P(te, r | me) = lim n ∞ |{ ψs | Vdt (me, ψs) = (te, r) , s∈{ 1, 2, … ξ }}|/ ξ Eq. 1
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With enough trials, we can achieve an arbitrary degree of confidence that the joint 

distribution of sampled simulator outcomes characterizes the modeled theory.  For a 

given degree of desired precision, we can also identify the required number of samples n 

[Law and Kelton, 2000].  Although we do not assume this in the remaining algorithm, it 

is worth noting that in most cases, we can estimate the distribution of actions well enough 

to support a decision with a small number of simulations, on the order of 100 to 1000.  In 

this case, the probability of sampling the same result twice is negligible, and we are likely 

to have n equally probable possibilities to evaluate: 

P(te, r | me) = 1/ ξ when (te, r) = Vdt (me, ψs) for s∈{ 1, 2, … ξ } 

                       0 otherwise 
Eq. 2

55..33      IIMMPPOORRTTAANNCCEE  OOFF  EEXXCCEEPPTTIIOONN  HHAANNDDLLIINNGG  BBEEHHAAVVIIOORR  
Our analysis focuses on emergent exception handling and meeting attendance behavior 

because when engineering causes an operations failure, we can generally point to work 

that should have been done over.  Often, but not always, engineering displayed some 

warning signs, such as the escalation of engineering concerns that were subsequently 

ignored.   

The VDT mechanics support this model by deriging exception-handling behavior from a 

wide range of factors that have been linked to downstream operations failure risk.  In 

VDT, the number of exceptions is a function of: 

••  Actor skill and experience 

••  Task complexity 

••  Coordination and rework completion rates 

••  Industry- and project- specific calibration constants 

In addition, the exception handling of these exceptions is a function of 

••  Tendency to perform necessary rework at different organizational levels (determined 

by individual program vs. project priorities, risk attitude, and corner-cutting) 

••  Backlog and overloading of decision-makers (latency) 

••  Centralization 
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These factors each play a direct role in the VDT simulator’s predictions of emergent 

phenomena that we claim indicate rework deficit— an amount of rework that may be 

necessary, but that the organization has not conducted.  This simple concept of rework 

deficit suggests that when rework is necessary, but not performed, risk increases.  An 

important part of our model is to provide a precise estimate of the amount of increase in 

risk that occurs for a given change in rework deficit.  

55..44      VVEERRIIFFIICCAATTIIOONN  FFAAIILLUURREE  PPRROOBBAABBIILLIITTYY  
Although we have no closed form equation to define the actions that VDT predicts, by 

careful evaluation of VDT mechanics we can shed some light on its direct contributors.  

The first value of critical importance is the Verification failure probability, known in 

VDT parlance at Vfp.  Vfp is the probability that an actor perceiges just-completed work 

as not conforming to specifications, and will raise an exception.  An exception is a 

warning sign, suggesting that the work may not meet all the appropriate requirements – 

the organization may either ignore or respond to an exception in various ways.  

We formally define Vfp (me, ψs, i, t) as a function of task or rework link i and time t 

during a simulation of management choices m using random seed s.  Each task or rework 

link begins with an initial value Vfp (me, ψs, i, 0) based on two industry-specific 

calibration constants.  The first is vfp*, the nominal fraction of verifications that fail for 

an average actor addressing an average task.  The second parameter is the degree of 

aptitude AP(ki, pi, ti) of an assigned actor’s skill ki and experience pi in addressing task i 

of complexity ti. 

VfP(me, ψs, i, 0) = vfp* * AP(ki, pi, ti) Eq. 3

During each simulation run, various events occur that alter the likelihood of an actor 

raising an exception.  Of particular importance, these events include the success or failure 

of required coordination activities and rework.  Where V+(m, ψs, i, t) is the number of 

events that occur before the time of verification t during simulation r, that increase Vfp, 

and V —( me, ψs, i, t) is the number that decrease it, we have 

VfP(me, ψs, i, t) = VfP(me, ψs, i, 0) * (1+ γ) V +(me
, ψs, i, t)  - V -( me

, ψs, i, t) Eq. 4
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Here v∆ is a VDT calibration constant that indicates the amount of impact that each event 

has upon vfp.  The total formula for vfp is thus  

VfP(me, ψs, i, t) = vfp* * AP(sim, eim, cim) * (1+ γ) V +( me
, ψs, i, t)  - V -( me

, ψs, i, t) Eq. 5

55..55      TTOOTTAALL  NNUUMMBBEERR  OOFF  EEXXCCEEPPTTIIOONNSS  
We define X(me, ψs, i) as the total number of exceptions for a simulation of management 

choices me using seed ψs on task i.  If they were independent, these values would simply 

be based on VfP(me, ψs, i, t) at each of the times V(me, ψs, i, b) at which each subtask b 

is completed (because verification occurs immediately and automatically).  Formally, 

assuming independence, we have 

P(X(me, ψs, i) = y) ?= Σs Bernoulli(VfP(me, ψs, i, V(me, ψs, i, b))) Eq. 6

Mean(X(me, ψs, i)) ?= Σs VfP(me, ψs, i, V(me, ψs, i, b)) Eq. 7

These equations convey an intuition for simulated project behavior, but they are not 

accurate because the distributions of verification times, exceptions and vfp values are 

highly interdependent.  For example, raising too many exceptions for an organization to 

handle causes vfp to increase dramatically, causing a downward performance spiral.  

Similarly, staying on top of communications and conducting necessary rework at a high 

rate will decrease vfp and the number of exceptions over time.  The combination of 

uncertainty, discontinuity and sensitivity in organizational behavior is one reason why 

VDT, as opposed to pure mathematics, is an appropriate tool for predicting project 

behavior.   

55..66      EEXXCCEEPPTTIIOONN  HHAANNDDLLIINNGG  OOFF  EEXXCCEEPPTTIIOONNSS  
We use the term exception handling to describe the result of attempting to verify a 

subtask (portion of an engineering task or rework link) and handling any resulting 

exception.  VDT models five possible exception handlings, and for subscripting purposes, 

we index them using integers: 

1. Verified – Upon completion of the subtask, the actor successfully verified the 

created product’s conformance to specification. 
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2. Reworked – Conformance was not originally verified, however the task was later 

redone to fix the perceived shortcoming. 

3. Quick-Fixed – The subtask was not originally verified, but a portion of the 

subtask was redone in an effort to mitigate the risk of an anomaly 

4. Ignored – The subtask was not originally verified, however a decision was made 

not to redo an of the work involved (for example, because there was no time for 

rework, the risk was perceived as low, and/or verification of conformance was 

made by another actor) 

5. Default – The subtask was not originally verified, and a decision of whether or 

not to perform rework was not made due to overloaded organization.  The subtask 

was not reworked. 

Each subtask that is successfully verified requires no further action, so we can define the 

number of verified subtasks ri1 for a task or rework link i with bi subtasks as follows: 

ri1 = bi - X(me, ψs, i) Eq. 8

When verification fails, and an exception is raised, VDT creates a new decision—a work 

item that is routed to an actor at or above the working actor’s level in the hierarchy, 

depending on the project’s level of centralization.   

Overloaded actors sometimes fail to address decision items, resulting in a defaulted 

exception handling that causes no rework.  No simple mathematical expression tells us 

when an organizational level g is available to address a subordinate’s new exception.  

However we can describe this availability as a vector Av(me, ψs, i, t) with cell values 

av(me, ψs, i, t, g) ∈ {0, 1} where 1 represents availability.  Γ is a project-specific vector 

that defines the engineering organization’s centralization, a distribution that defines the 

probability of routing an exception to each of the different organizational levels.  Using 

this nomenclature, we can estimate ri2, the expected number of subtasks that result in 

exceptions about which no rework decision is made.   

ai5 = X(me, ψs, i) * (1 - Γ * Av(me, ψs, i, t)) Eq. 9
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These results are called delegations by default, and they result in no rework being 

performed.   

When the actor who receives a decision item attends to it, VDT simulates a decision 

based on the actor’s role.  This decision determines the subtask’s exception handling, 

whether to rework, quick-fix, or ignore the exception.  Where Λ is a matrix of industry-

specific calibration constants indicating the tendency of actors at different organizational 

levels to rework or ignore exceptions, the mean number of subtasks resulting in each 

exception handling is: 

(ri2, ri3, ri4) = X(me, ψs, i) * Γ * Av(me, ψs, i, t) * Λ Eq. 10

Again, these formulae for expected numbers are only approximations that we use for 

illustrative purposes.   

Our algorithm uses values from the matrix  r that come from the VDT simulation.  Using 

these values, we form a matrix of actions of interest that VDT predicts from management 

choices me, given random number seed ψs.  Recall that we estimate the probability of  r 

actions actually occurring, given management choices me, as  

P(te, r) = P((te, r) = Vdt(me, s)) Eq. 11

P(te, r) = |{ ψs | (te, r) = Vdt(me, ψs), i∈{1, 2, … n}} / n Eq. 12

Where the cell values of  r are rhi, the number of task i’s subtasks that result in exception 

handling h, as predicted for management choice me based on random seed ψs. 

55..77      IILLLLUUSSTTRRAATTIIOONN  
Calculations Using Hypothetical Data 

In this section, we illustrate each step of the proposed method using hypothetical data.  

Table 5.7.1: Sample Data on Rework Deficits 



Probabilistic Engineering-Induced Operations Failure Risk Analysis   John Chachere  

81 

 

r This example evaluates only one distribution (one simulation run) of engineering stage actions b
Routine Rework QuickFix Ignore Default Subtasks

Ready Shuttle 17 2 0 1 0 20
Ready Launch 16 3 0 1 0 20
Ready Ground 15 3 1 0 1 20

Shuttle-Launch Rework Link 13 1 0 1 2 20
Shuttle-Ground Rework Link 17 2 1 0 0 20
Launch-Ground Rework Link 16 3 1 0 0 20
System Integration Meetings 15 0 0 0 5 20
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CChhaapptteerr  66  --  EEnnggiinneeeerreedd  PPrroodduucctt  DDeeffeeccttss  

EEssttiimmaattiinngg  ff((dd  ||  rr,,  mmzz,,  mmvv))  UUssiinngg  BBaayyeessiiaann  IInnffeerreennccee  

66..11      EENNGGIINNEEEERREEDD  PPRROODDUUCCTT  EELLEEMMEENNTTSS’’  CCOONNFFOORRMMAANNCCEE  TTOO  
SSPPEECCIIFFIICCAATTIIOONNSS  

As explained above, the engineering 

specification lays out a set of requirements 

that an engineered product must meet.  

The actions that we observe or predict for 

an engineering phase are intended to 

create a product that conforms to the given 

specification.  r product that conforms 

perfectly will satisfy all of the 

specification’s requirements when it is operated.  In most cases, human limitations 

prevent the creation of a product that meets all of the requirements under all the specified 

circumstances.   

In this section, we estimate the fraction of each engineered element that does indeed 

conform to the specifications.  For each task, we develop a measure of conformance that 

ranges from one (no significant flaws) to zero (no requirements are perfectly satisfied).   

Because VDT does not have a product model, it does not tell use when a product is 

likely to conform.  Instead, we must use Bayesian inference to estimate the degree of 

conformance given specific exception handling behaviors.  Intuitively, the best task 

processing behavior that VDT can forecast consists of each subtask being completed 

routinely, and in this case, we have the highest achievable degree of confidence in the 

element’s conformance.  In the other extreme case, each subtask produces an exception, 

Chapter
6
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Product 
Defects

Bayesian 
Inference
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but the organization is too overloaded to respond to any of them.  This case is quite 

unlikely, since in this case the simulation would almost certainly show a complete 

program failure.  Nevertheless, it defines the other end of our scale.  Note that in this 

case, it is very unlikely but still possible that the engineered element conforms to 

specification.  The next section explains our exact mathematical method. 
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Table 6.1.1: Notation Introduced for Product Defects Analysis 

Term Name Data Description Example 

S Signal Event 

A given design element conforms to 
specification- it goes as far as possible 
toward project success within the 
management plan  

A given electrical circuit that conforms will not suffer a 
design error in operations 

S No Signal Event 

A given design element does not conform to 
specification—it is capable of creating 
anomalies during operations by violating 
requirements that are made of it. 

A given that does not conform can crash a software 
system during operations 

“S” signal 
Perceived Event 

An engineer who has just completed part of 
a given design element believes that he or 
she has done the work correctly (No 
exception occurs) 

A given programmer who reviews his work may perceive 
that it fulfills the requirements, and so will not require 
management attention. 

“S” signal not 
Perceived Event 

An actor reviewing a portion of a given 
design element will perceive that it does not 
conform, and will raise an exception. 

A given electrical engineer may feel that the requirements 
are probably not fully satisfied for the just-completed 
work item, and will request a decision on whether to do 
rework. 

P(“S”|S) Test 
Sensitivity Probability 

Test Sensitivity: The expert-assessed 
probability that an engineer will correctly 
verify a given design element, creating no 
exception  

P(“C”|C) = 1 indicates for example that a given 
mechanical engineer will always be able to verify that a 
conforming piece of work is correct.  

P(“S”|S) Test 
Specificity Probability 

Test Specificity: The expert-assessed 
probability that an engineer will correctly 
fail to verify a given design element, 
creating an exception  

P(“C”|C) = 0.1 indicates for example that ten percent of 
the time, a given mechanical engineer will believe that a 
correct component has problems.  
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Term Name Data Description Example 

P(“S”o) 

Nominal 
signal 

perception 
probability 

Probability Expert-assessed fraction of verifications that 
succeed under nominal variable settings 

P(“C”o) = 0.9 indicates for example that nine out of ten 
times, an average mechanical engineer on an average task 
will believe that his or her work was right the first time.  

P(So) 
Nominal 

signal 
probability 

Probability Calculated fraction of subelements that 
conform under nominal (initial) conditions 

P(Co) = 0.95 indicates for example that nineteen out of 
twenty times, an average electrical engineer on an 
average task will produce work that is correct on the first 
try. 

P(S|“S”) 
Probability of 
Signal given 
not perceived 

Probability 
Calculated probability that an unverified 
portion of a given design element conforms 
to specifications 

P(C|“C”) = 0.1 indicates that ten percent of the time, 
work which a given engineer thinks is flawed will 
actually be correct. 

P(S|“S”) 
Probability of 
Signal given 

perceived 
Probability Calculated probability of conformance for a 

given design element given verification 

P(C|“ C”) = 0.95 indicates that ninety five percent of the 
time, work which a given engineer thinks is correct will 
actually be correct. 

bin(a, b) Binomial 
Distribution 

Function 
returning a 
distribution 

Evaluates to a probability distribution based 
on the sum of a Bernoulli trials that each 
has probability of success b. 

bin (2, 0.5) = 0.25.  For example, this is the probability of 
getting heads twice on two coin flips. 

d’gi 
Product 

defects after 
testing tasks 

Real 
Engineered element i’s conformance level 
for goal g requirements—after any changes 
due to testing.  Derived from dgi and zgin. 

d’14 = 0.9 indicates that after testing, the product of 
engineering task 4 satisfies nine tenths of the relevant 
goal 1 (critical) requirements.  If d14 = 0.8, this would 
indicate that before testing the fraction was just eight 
tenths, so testing improved conformance by one tenth. 
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66..22      PPRRIIOORR  CCOONNFFOORRMMAANNCCEE  PPRROOBBAABBIILLIITTYY  AANNDD  VVEERRIIFFIICCAATTIIOONN  
QQUUAALLIITTYY  

Our interpretation of direct engineering work in VDT follows guidelines presented in the 

SAM framework’s “Execution Model” of action [Murphy and Paté-Cornell 1996, pp. 

508-509].  VDT divides each work task into atomic portions of activity, known as 

subtasks, that we consider to result in an atomic portion of their engineered output, called 

a subproduct.  The prior conformance probability for a subproduct is the chance that the 

requirements underlying the corresponding subtask were met after an actor’s first 

attempt. 

S = A given design element conforms to specification 

S = A given design element does not conform to specification 

In this section, we use abbreviated variable forms because they most clearly describe the 

verification process for a given subtask. 

After completing each subtask, actors assess their work’s degree of conformance, or 

achievement of the specification’s requirements, and either verify its correctness or raise 

an exception: 

“S” = A given design element’s conformance verification succeeds (No exception) 

“S” = A given design element’s conformance verification fails (Exception) 

Our interpretation of exception handling in VDT follows guidelines presented in the 

SAM framework’s “Rule-based Model” of action [Murphy and Paté-Cornell 1996, pp. 

507-508].  In this model, where S represents a signal, “S” represents an actor’s perception 

that the signal is there.  Verification is not a perfect process, so there is a chance that a 

verified subproduct does not meet all requirements, and there is a chance that an 

unverified subproduct actually conforms.  In order to capture this phenomenon precisely, 

we can ask domain experts to assess the following commonly understood measures: 

P(“S” | S) = Sensitivity: The probability that an engineer will correctly verify a given 

portion of a task or rework link's conforming product, creating no exception  
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P(“S” | S) = Specificity: The probability that an engineer will correctly fail to verify a 

given portion of a task or rework link's non-conforming product, creating an exception  

VDT does not require these values because the simulation has no product model.  We 

believe that these values can be derived through expert assessment, guided by the 

assessment of design review and testing results.   

During expert assessment, we should verify that:  

P(“S”| S) < P(“S”) < P(“S”|S) Eq. 1

This guarantees that the verification provides some indication of the underlying 

conformance, and some of the following calculations assume this. 

The next step is to provide a formula for the probability of conformance. 

P(“S”) = P(S, “S”) + P(S, “S”) Eq. 2

P(“S”) = P(S)P(“S”|S) + P(S)P(“S”|S) Eq. 3

P(“S”) = P(S)P(“S”|S) + (1-P(S))P(“S”|S) Eq. 4

P(“S”) = P(S)P(“S”|S) + P(“S”|S) – P(S)P(“S”|S) Eq. 5

P(“S”) – P(“S”|S) = P(S)P(“S”|S) – P(S)P(“S”|S) Eq. 6

P(“S”) – P(“S”|S) = P(S)(P(“S”|S) – P(“S”|S)) Eq. 7

(P(“S”) – P(“S”|S)) / (P(“S”|S) – (P(“S”|S)) = P(S) Eq. 8

In English, the probability of conformance is a function of the probability of verification.  

More specifically, the nominal probability of conformance equals the ratio between: 

verification probability minus false negative rate; and the sensitivity minus false negative 

rate. 

VDT input also requires, currently as a stage-wide variable assessed by experts, 

P(“S”o) = Fraction of verifications that succeed under nominal conditions (medium 

skill, experience, task complexity, with no complicating or simplifying events) 

During expert assessment, we should substitute nominal conditions (such as “S”o) into 

Eq. 24 and verify the reasonableness of our predicted fraction of subelements that 

conform under nominal (initial) conditions: 
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P(S o) = (P(“S”o) – P(“S”|S)) / (P(“S”|S) – (P(“S”|S)) Eq. 9

If experts do not feel this value is a reasonable nominal value, we can iterate among these 

variables (nominal verification, nominal conformance, test Sensitivity, and specificity) to 

reach a consistent set of assumptions. 

66..33      VVEERRIIFFIICCAATTIIOONN--PPOOSSTTEERRIIOORR  SSUUBBTTAASSKK  CCOONNFFOORRMMAANNCCEE  
PPRROOBBAABBIILLIITTYY  

In this section, we predict the chances of a subtask’s conformance, once we know 

whether an exception was raised or not.  These are the probability P(S|“S”) in the case 

that the work was verified and deemed correct by the completing actor, and the 

corresponding probability P(S|“S”) that a subtask satisfies the requirements in the 

specification given that there was an exception. 

Our first goal is to calculate P(S|“S”), the probability that an unverified portion of a 

product element conforms to specifications.  Applying Bayes’ Rule, we have 

P(“S”,S) = P(“S” |S)P(S) = P(S| “S”)P(“S”) Eq. 10

P(S|“S”) = P(“S” |S)P(S) / P(“S”) Eq. 11

If we assume that P(S|“S”) is fixed for a given task, we can calculate its exact value at 

the initial conditions: 

P(S|“S”) = P(“S”o |So)P(So) / P(“S”o) Eq. 12

P(S|“S”) = (1-P(“S”o|So))P(So) / P(“S”o) Eq. 13

That is, the probability of conformance given verification failure equals the chance of a 

false negative, times the ratio of initial conformances to initial verification failure 

probability. 

Similarly,  

P(“S”,S) = P(“S”|S)P(S) = P(S|“S”)P(“S”) Eq. 14

P(S|“S”) = P(“S”|S)P(S) / P(“S”) Eq. 15

If we assume P(S|“S”) is fixed for a given task, we can calculate its exact value at the 

initial conditions to get: 
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P(S|“S”) = P(“S”o|So)P(So) / P(“S”o) Eq. 16

Thus, the probability of conformance given verification equals the test sensitivity times 

the ratio of initial conformance to initial verification success probability. 

66..44      EEXXCCEEPPTTIIOONN  HHAANNDDLLIINNGG--PPOOSSTTEERRIIOORR  SSUUBBTTAASSKK  CCOONNFFOORRMMAANNCCEE  
PPRROOBBAABBIILLIITTYY  

We model two levels of goal among requirements.  The first are critical requirements, 

and failing to meet them can lead to critical anomalies that cause a failure to achieve 

primary objectives.  The second level of goal includes non-critical requirements, which 

can only lead to a partial failure (failure to achieve secondary objectives) during 

operations.  The algorithm we present assumes that critical and non-critical requirements, 

anomalies, and failure do not interact, and so they are independent given a set of 

predicted engineering actions.  That is, shortcomings in a particular engineering task are 

likely to cause both critical and non-critical failures, but the two do not directly influence 

one another. 

After verification fails and an exception is handled, our estimate of the final conformance 

of a subtask’s product can change.  We conceptualize rework decisions to assume that 

they do not involve an additional verification step, but rather a decision of whether to 

redevelop the product to meet both critical and non-critical requirements (rework), 

critical requirements only (quick-fix), or neither (ignore).  Using this model, products 

will tend to conform more to critical than to non-critical requirements. 

We can use the verification-posterior conformance probabilities to construct a matrix 

indicating our degree of belief in the ability of the exception handling process to ensure 

the conformance of a product.  This takes the form of expert-assessed values vghi that 

contain the probability that a part of task i's product conforms to requirements for goal g, 

given that the organization produced coordination handling h when processing that 

subtask.  Table 3 shows a matrix of formulae that we use to assign vghi based on 

calculations of P(S|“S”) and P(S|“S” ) for a given task i.   
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Table 6.4.1: Estimating Product Conformance from Subtask Exception 
handling 

vghi  Rework Handling (h)  

Goal (g)  Verified Reworked Quick-Fixed Ignored Defaulted 

Critical P(S|“S”) P(S|“S”) P(S|“S”) P(S|“S”) P(S|“S”) 

Non-Critical P(S|“S”) P(S|“S”) P(S|“S”) P(S|“S”) P(S|“S”) 

For example, the table indicates that for all I we have  

v13i = P(S|“S”) Eq. 17

v23i = P(S|“S”) Eq. 18

This indicates that a quick-fixed subtask from task i has a probability of meeting critical 

requirements that is equal to the probability of conformance, given verification success.  

The probability of meeting secondary (non-critical) requirements equals the probability 

of conformance given verification failure.  This operationalizes our assumption that 

quick-fixes address critical requirements only. 

Thus, we assume that rework decisions are based on no insight into conformance beyond 

that gained during the initial verification.  We can however extend our method to develop 

sophisticated models of decision-making, as illustrated in Figure 1.  To solve for vghi in 

the general case we use Bayesian inference to flip the event tree in Figure 11.  These 

more sophisticated models can take into account some controllable organizational 

features that are of interest for risk mitigation, such as technical insight (a “second 

opinion”), risk aversion, or corner-cutting [Garber].  This requires simply building an 

event tree based on the consequences of conformance and verification, and then flipping 

the tree to discern the posterior conformance for a given set of manifest behaviors. 

66..55      MMEEEETTIINNGG  AATTTTEENNDDAANNCCEE--PPOOSSTTEERRIIOORR  MMUULLTTII--SSYYSSTTEEMM  
CCOONNFFOORRMMAANNCCEE  PPRROOBBAABBIILLIITTYY  

This section provides a method to calculate the degree of engineering conformance to 

specifications that regard the interactions among interdependent systems, independently 

of whether each component and interface operates properly in isolation.  We assume that 
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meetings are the engineering stage opportunities for a group as a whole to collaboratively 

identify these problems. 

As we have with tasks, we assume that interactions may occur among any subset of 

represented systems, that all possible dependencies are equally probable, and that 

meeting attendance provides all of the information from the design phase results A that 

influences the multi-system function’s failure probability.   

We can estimate the conformance of the multi-systems that correspond to meetings by 

assigning r1i (corresponding to verification) to be the number of attendees, and r5i 

(corresponding to default) to be the number of absences, summed over all meetings.  In 

our simplified model (developed for a large number of equivalent and independent 

subtasks), this model will assume linear interpolation between the best and worst cases.  

In the best case, when all meetings have perfect attendance, we can expect the greatest 

possible conformance in the system-of-systems, equivalent to verification of all subtasks.  

The worst case is no attendance at any meeting, which is equivalent to a delegation by 

default in all subtasks. 

We can calculate the meeting attendance-posterior conformance rates, vg1i and vg5i, in a 

parallel fashion as we do for tasks, by soliciting the sensitivity and specificity of 

attendance as an indicator of multi-system conformance.  Alternatively, we may be able 

to assume the vg1i equals the average over the tasks i to which each invited actor is 

assigned. 

66..66      PPRROODDUUCCTT  CCOONNFFOORRMMAANNCCEE  RRAATTEESS  
In this section, we calculate a set D of random variables that describe the defects in 

different engineering products.  In the case where we are able to make some reasonable 

assumptions, we can use cell values that represent the rates at which anomalies will 

manifest when an engineered component is operated.  In a detailed model, cell values 

contain the future frequency of rates at which anomalies will manifest when an 

engineered component is operated. 
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We define the conformance Dgi of an engineered element i as a random variable that 

represents the probability of a randomly selected subtask conforming to the goal g 

requirements in the specification. 

Recall that to calculate the probability densities f(dgi) = P(Dgi = dgi) we are given rhi 

(sampled by VDT from random variable Rhi) equal to the number of task i’s subtasks that 

result in exception handling h. 

In the previous section, we also assessed mv, the set of probabilities vghi that an individual 

subtask from task i conforms to goal g requirements, given exception handling behavior 

h.   

In many cases, we can assume each subtask to either meet all requirements or none, that 

these trials are independent of one another, and that requirements are equally probable to 

be sampled from among each of the bi subtasks.  In this case, we can model the 

conformance of each subtask using a Bernoulli trial.  For the total distribution, we have a 

sum of five Binomial Distributions, each using a number of trials rhi and with a 

probability parameter from vghi.  This produces the formula that sums over all handling 

options h∈{1,2,3,4,5} (representing that the subtask was verified, reworked, quick-fixed, 

ignored, default results): 

Dgi  ~ Σh (1/ bi) * bin (rhi, vghi) Eq. 19

Here the binomial distribution (with x = rhi, p = vghi) is 

 
Eq. 20

where 

 Eq. 21

When we assume the distributions of defects Dgi are independent given rework deficits rhi 

and verification vghi, we can easily describe the distribution of joint conformance levels.  

Unfortunately, for large problems working with the joint distribution D on all Dgi can be 

analytically cumbersome.   
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Fortunately, we often can simplify the analysis greatly.  If we additionally assume that 

the number of subtasks m is large, the central limit theorem indicates that the mean will 

be a highly reliable point estimator: 

dgi = E(Σh (1/ bi) * bin (rhi, vghi)) Eq. 22

dgi = Σh (1/ bi) * E(bin (rhi, vghi)) Eq. 23

dgi = Σh (1/ bi) * rhi * vghi Eq. 24

In general, substituting point estimators must be done with care [Law and Kelton].  

However, where the above assumptions hold, we can calculate—with probability 

approaching one— the values dgi = the probabilities that a randomly sampled subelement 

from task or rework link i conforms to specification requirements of goal g. 

Sometimes these assumptions may not hold, for example, when conformance among 

subtasks is dependent given a set of actions, or when the number of subtasks is small.  In 

this case, we can attempt to work through the subsequent steps using the analytic form.  If 

this is not feasible, we can sustain VDT’s simulation paradigm by randomly sampling the 

joint defect distribution and performing later analytic steps on each sampled result. 

66..77      TTEESSTTIINNGG--PPOOSSTTEERRIIOORR  PPRROODDUUCCTT  CCOONNFFOORRMMAANNCCEE  RRAATTEESS  
Many projects include a separate test phase between development and operations.  This 

phase operates the developed product in various ways to determine whether it meets 

requirements, and if not, calls upon the engineering organization to rework the element.  

The advantage of an independent test stage is that it provides a level of redundancy in 

verifying the engineering conformance of a product. 

To model a test stage, we create the test stage as an interdependent sub-project in VDT 

with links to design and development.  This project could, for example, include a task for 

each of the designed elements (components, interfaces, and multi-systems) that will be 

tested.  By creating the testing task explicitly in VDT, we capture behaviors such as the 

creation of design and development rework based on test results, and the dependency of 

those results on the original quality of the design and development. 
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Test coverage is the fraction of requirements (weighted by likelihood in operations) that 

are simulated and assessed.  Short and simple test stages generally offer lower test 

coverage than more detailed efforts.  The corresponding tasks’ complexities and rework 

volumes will be greater when their test coverage is large.   

We use the estimated degree of test stage conformance to model the impact of a test stage 

on product conformance.  Specifically, our model assumes that if the design review 

process is executed perfectly, it will eliminate a fraction of the design’s nonconformances 

that is equal to the specified design test coverage.  If the design review is not performed 

well, it will have a less positive effect.  Design reviews and product testing do not 

directly reduce design or development conformance under this model.  Instead, we 

characterize the review of prior work using expert-assessed levels zgin of test coverage.  

Each task n that is dedicated to finding defects in the product of task i that can impact 

goal g has a degree of coverage zgin.  We can use zgin along with the levels of defects in 

both the original task and in testing itself to update our estimate of the product 

conformance thus: 

D'gi ~ Dgi + (1 - Dgi) * zgin * Dgn Eq. 25

For instance, a value of 0.5 for z123 indicates that task 3 tests half of task 2’s conformance 

to goal 1 (critical) requirements.  This model easily accommodates the incidental review 

of prior work, such the review of designs at the beginning of development tasks, by using 

low but non-zero values (zgin is zero wherever i = n because internal testing is already 

calculated into the rework deficit). 

When a project employs testing tasks of this kind, we can simply substitute the values d'gi 

for the original dgi values in d.  When more than one testing step occurs, we can apply the 

same method recursively.  Finally, we can proceed without any further variation through 

later analysis steps. 

66..88      IILLLLUUSSTTRRAATTIIOONN  
Calculations Using Hypothetical Data 

In this section, we illustrate each step of the proposed method using hypothetical data.  
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Table 6.8.1: Sample Data on Product Defects 

 

mv The posterior probability of product conformance given different engginering stage actions
Critical Non-Critical 

Routine Rework QuickFix Ignore Default Routine Rework QuickFix Ignore Default
Ready Shuttle 80% 80% 80% 60% 60% 80% 80% 60% 60% 60%
Ready Launch 80% 80% 80% 60% 60% 80% 80% 60% 60% 60%
Ready Ground 80% 80% 80% 60% 60% 80% 80% 60% 60% 60%

Shuttle-Launch Rework Link 80% 80% 80% 60% 60% 80% 80% 60% 60% 60%
Shuttle-Ground Rework Link 80% 80% 80% 60% 60% 80% 80% 60% 60% 60%
Launch-Ground Rework Link 80% 80% 80% 60% 60% 80% 80% 60% 60% 60%
System Integration Meetings 80% 80% 80% 60% 60% 80% 80% 60% 60% 60%

d The conformance (lack of defects) of each engineered element
Critical Non-Critical

 Shuttle Component 71% 71%
 Launch Component 67% 67%
 Ground Component 73% 70%

Shuttle-Launch Interface 61% 61%
Shuttle-Ground Interface 74% 73%
Launch-Ground Interface 74% 71%

Integrated Multi-System 75% 75%

mz The coverage of each engineering stage task's testing activities on output from other tasks
Critical Non-Critical 

 Shuttle Componentomponentomponent Interfacend Interfaceulti-SystemComponentComponentComponent h Interfaced Interface Multi-System
 Shuttle Component 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
 Launch Component 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
 Ground Component 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Shuttle-Launch Interface 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Shuttle-Ground Interface 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Launch-Ground Interface 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Integrated Multi-System 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

d' = d Testing has no impact on conformance in this example
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CChhaapptteerr  77  --  OOppeerraattiinngg  SSuubbssyysstteemm  AAnnoommaalliieess  

EEssttiimmaattiinngg  ff((aa  ||  dd,,  mmww,,  mmss))  UUssiinngg  SSttoocchhaassttiicc  PPrroocceesssseess  

77..11      AANNOOMMAALLIIEESS  DDUURRIINNGG  OOPPEERRAATTIIOONNSS  
Complex engineering projects’ tendency 

to create products that do not fully 

conform to specifications often causes 

unexpected and undesired behavior by 

engineering systems during operations.  

An anomaly is an initiating event in which 

an engineered subsystem behaves in a 

manner that violates the requirements presented in its specification.  In this section, we 

estimate the rate at which anomalies will manifest when an engineered element is 

operated, and the total number that will manifest within a given timeframe.  We can 

extend the model to include additional non-engineering anomaly sources, such as actions 

by human operators or by environmental factors, using a parallel method. 

Some operations call upon engineered elements to meet the requirements of their 

specifications.  As we have seen, these elements generally do not perfectly conform to the 

specification, and so they will sometimes fail to meet the requirements demanded of them 

during operations. 

When a requirement is placed that falls outside the engineering specification, the 

product’s degree of conformance to specifications does not influence the satisfaction of 

this requirement.  In this case, we say that the engineered product’s behavior (probability 

of anomaly) is engineering-conformance-independent.  We can assess the probability of 

an anomaly under these circumstances – an engineering-conformance-independent-

anomaly– through standard means such as statistical inference or expert assessment. 

Product 
Defectsd Chapter
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When operations place a product under a requirement that does appear in the 

specification, we say that the engineered product’s failure probability is engineering-

conformance-dependent.  A design-dependent anomaly is an anomaly that results from 

nonconformance in the design product, and a development-dependent anomaly results 

from development shortcomings.  In either of these cases, the initially developed product 

may not be able to meet the operating requirement. 
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Table 7.1.1: Notation Introduced for Subsystem Anomalies Analysis 

Term Name Type / Source Description Example 

b 

Homogen
eous 

anomaly 
rate 

Continuous 
random 
variable; 

Element of 
matrix B 

Static rate at which anomalies of all 
subsystems manifest in regard to all goals, 
for each engineered product defect. 

When β21 has value 0.81, this indicates that during 
operations, anomalies of goal 1 occur in engineered 
subsystem 2 approximately 0.81 time units apart. 

bgj 
Static 

anomaly 
rate 

Real-valued 
constant 

Static rate at which anomalies of goal g 
manifest in a system j as a result of 
engineering. 

When β21 has value 0.81, this indicates that during 
operations, anomalies of goal 1 occur in engineered 
subsystem 2 approximately 0.81 time units apart. 

bgj(t) 
Dynamic 
anomaly 

rate 

Function 
returning a 
continuous 

random 
variable) 

Changing rate at which anomalies of goal 
g manifest at a given point in time, in a 
system j, for each engineered product 
defect. 

b 21(t) = 0.92t indicates that toward the beginning of 
operations, system 2 exhibits anomalies of goal 1 during 
most time units, but they occur less frequently as 
operations continue. 

Bgj(t) 
Stochastic 
anomaly 

rate 

Continuous-
valued 

stochastic 
process 

Uncertain and changing rate at which 
anomalies of goal g manifest at a given 
point in time, in a system j, for each 
engineered product defect.  Realizations 
are bgj(t) 

 

ζgj remedy Real-valued 
constant 

The rate at which each manifest anomaly 
is fixed during operations, so that for h 
flaws manifest, the rate of fixing is h ζgj 

ζ12 = 0.9 indicates that a single anomaly that affects 
subsystem 2’s support of goal 1 will be fixed after 0.9 time 
units on average.  If there are two anomalies, they will both 
be fixed in about the same amount of time. 
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77..22      PPAACCEE  AANNDD  SSEENNSSIITTIIVVIITTYY  OOFF  SSUUBBSSYYSSTTEEMM  OOPPEERRAATTIIOONNSS    
Over time, operations rely in different ways upon the product of engineering tasks (even 

though we assume that their engineered conformance does not change).  We define an 

anomaly to be a significant behavior in an operational system that differs from what was 

targeted by the specification.  The probability of an anomaly per unit time equals the 

probability that an operational constraint is encountered, times the probability that the 

specification’s corresponding engineering requirement is not satisfactorily met in this 

situation (that it does not conform).   

Three factors determine the probability that an anomaly will occur in a particular system.  

First, the engineered subsystem must currently be operating at a certain pace, which we 

define as the rate at which new operating requirements are placed.  As an example, a pace 

of 1.0 means that in one time unit, the function generally calls upon as many 

requirements as appear in the specification (although some may be tested multiple times, 

and in different ways).  On average, a function’s will produce anomalies at half that rate 

if the pace of operations is 0.5. 

The second factor is the probability of that a constraint encountered in operations was 

engineered for properly.  Each time a requirement is tested, there is a probability that the 

engineered element will not conform, and will violate an operations constraint.  The 

probability of a randomly selected requirement being met by an engineered element is 

just its conformance, as found in the conformance matrix.  In the previous section, we 

developed this value as dgi – the goal g conformance level of an engineering task i. 

The third factor is the probability that a requirement placed upon an unsatisfied 

engineering requirement results in a deviation from operating expectations.  This is the 

probability of an anomaly, given that the engineering requirements upon which 

operations depend were not met during the engineering project.   

Thus, few anomalies will generally emerge during operations when a system is operated 

infrequently, or if operations are robust to engineering specification violations, or when 

the engineering tasks met most of the requirements.  More anomalies tend to emerge if a 
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system’s behavior is highly dependent upon design and development quality, the system 

is operated continuously, and/or engineering tasks were not completed effectively. 

Since requirements may be tested in different ways, meeting one test of a requirement 

does not guarantee it will be met later.  We model time as continuous, and we assume the 

manifestation of requirements as independent, so the probability of simultaneous 

manifestations (requirements) is zero [Law and Kelton].  We assume that each time unit 

of operations calls upon a large number of requirements.  Finally, we assume that 

anomalies cannot happen without new requirements being encountered in operations, 

anomalies only result from non-conforming products, and conformance does not change 

over time (since it was determined during the engineering stages). 

To illustrate, the correct operations of a “telecommunications system” might be equally 

sensitive to the effective conduct of thirteen engineered elements.  These would be the 

design and development tasks for telecommunications hardware, software, and human 

factors, the three interfaces among them, and finally a multi-system element that is the 

subject of periodic staff meetings.   

By consolidating the influences of these tasks into models of system anomalies, we 

capture the behavior of root causes—initiating events—that compromise the functions 

upon which project failure depends. 

77..33      MMOODDEELL  11::  HHOOMMOOGGEENNEEOOUUSS  OOPPEERRAATTIIOONN  OOFF  EENNGGIINNEEEERREEDD  
EELLEEMMEENNTTSS  

sgij(t) is the sensitivity of operations – the probability of significant change in function j 

when encountering requirement violations of goal g from dependent task i, at a time t. 

wgij(t) is pace of operations – the rate at which function j calls upon features provided in 

task i's goal g specification.  In most cases, wgij(t) is zero for all t because the 

relationships between engineered elements i and operating systems j is sparse. Formally, 

these factors combine to provide the following formula: 

bgj(t) = Σi dgi * wgij (t) * sgij(t) Eq. 1
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Intuitively, bgj(t) is the rate, at time t, at which anomalies with the potential to affect goal 

g manifest in a system j as a result of engineering nonconformance. 

In this paper, we assume wgij(t) and sgij(t) to be deterministic and known in advance.  The 

next section identifies several simple cases that are mathematically simpler to analyze. 

Operations Description 
In the simplest models, we define the emergence of anomalies during operations using 

the simplest of distinctions from the engineering phase.  Specifically, we define one 

operating subsystem for each task that was executed in the engineering phase.  We also 

assume that each engineered element is operated by a dedicated operations subsystem at 

the same, constant pace w and sensitivity s. 

As we will see, we can use the simplified model even when functional failure results 

from (for example) design anomalies producing a design function failure, or development 

anomalies producing a development failure, because in this case each function can rely 

upon the behavior of multiple, independent lower-level functions. 

Rate of Anomalies 
Because anomalies manifest independently of one another, the time between them is 

distributed exponentially.   

In this case, the rate of anomaly events in each subsystem is proportional to the number 

of defects in its corresponding engineering task:  

bgj = dgj * w * s Eq. 2

Distribution of Total Anomalies 
The rate at which multiple exponential samples occur equals the sum of their rates, and 

the number of samples from an exponential distribution that occurs in a given period is 

mathematically guaranteed to follow a Poisson distribution [Law and Kelton].   

P(agj(t) = n | bgj) = Poisson(n, bgj * t) Eq. 3

P(agj(t) = n | bgj) = e-( dgj * w * s * t) (dgj * w * s * t)n/n! Eq. 4
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Point Estimate of Total Anomalies 
In some cases, we may simplify our analysis by approximating the distribution on the 

total number of failures by using the expected value.  We estimate the average number of 

anomalies that have occurred at a time t* using a basic property of the Poisson process: 

a'gj(t) = E(ajg(t)) = E(Poisson(bgj * t)) Eq. 5

a'gj(t) = bgj * t Eq. 6

a'gj(t) = dgj * w * s * t Eq. 7

77..44      MMOODDEELL  22::  SSTTAATTIICC  OOPPEERRAATTIIOONN  OOFF  CCOOMMPPOOUUNNDD  SSUUBBSSYYSSTTEEMMSS  
Operations Description 
We cannot use these simplifications, however, and we must use the full matrix form of O, 

in a number of cases.  For example, the homogeneous model cannot accurately predict 

the distribution of anomalies with multiple root causes when, for example, design 

anomalies and development anomalies combine to reduce the capacity of a single 

function that succeeds or fails as a unit. 

To model this case we first define a compound subsystem or simply subsystem as a set of 

engineered elements (each produced by different engineering tasks) that act in concert 

during operations.  In this model, we consider anomalies to emerge within subsystems 

because of the combined behaviors of the integrated, engineered elements.   

The model remains simple however when we assume that the pace wgij and sensitivity sgij 

of operations is fixed over time for a given product element i, system j, and goal g. 

Operations Description 

Rate of Anomalies 
In this “static operations” case, we define bgj as the rate of subsystem j anomalies that can 

impact goal g: 

bgj = Σi dgi * wgij * sgij Eq. 8

Calibrating the values for the wgij and sgij requires expert assessment and/or statistical 

inference.  Specifically, experts may be able to provide a number of intuitive values that 
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we can transform into the variables in our equation.  These include the rate at which 

anomalies occur in a system due to problems in engineering, the average time between 

such anomalies (1/pace), and the probability that a nonconforming subelement will create 

an anomaly during the life of operations (rate/mission length).  If statistics are available 

on the rates at which anomalies have occurred in the operations of comparable products, 

and how these anomalies influenced different functions, we can combine these values 

with expert assessed figures using standard techniques from PRA. 

Distribution of Total Anomalies 
Because bgj is static we can estimate the total number of anomalies agj(t) as a Poisson 

process: 

Agj(t) ~ Poisson(bgj * t) Eq. 9

p(agj(t)) = e-(bgj * t) (bgj * t) agj(t) / agj(t)! Eq. 10

Joint Distribution of Total Anomalies 

Point Estimate of Total Anomalies 
In the case where the rate and pace of operations are certain and static (Eq. 20-21), we 

have: 

ajg(t*) = ∫t=o
t* Σi dgi * wijg * rijg dt Eq. 11

ajg(t*) = Σi dgi * wijg * rijg * t* Eq. 12

77..55      MMOODDEELL  33::  DDYYNNAAMMIICC  SSUUBBSSYYSSTTEEMM  OOPPEERRAATTIIOONNSS  
Operations Description 
In this case we define operations as a dynamic process with wgij(t) and sgij(t) as our pace 

and sensitivity over time. 

Rate of Anomalies 
We can generalize Eq. 8 to get 

bgj(t) = Σi dgi * wgij(t) * sgij(t) Eq. 13
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Distribution of Total Anomalies 
Therefore, we can calculate the probability of a given number of anomalies agj(t) as: 

P(agj(t*) = x | bgj()) = Poisson(x, ∫o t* bgj(t) dt ) Eq. 14

                               = Poisson(x, ∫o t*Σi dgi * wijg(t) * sijg(t) dt ) Eq. 15

When we assume pijg(t) and sijg(t) are deterministic functions (meaning that operations 

follow an essentially known “path”), the values agj(t) are independent (given dgi).  In this 

case we can easily compute the joint distribution on Agj(t) for all g and j as the product of 

their individual distributions. 

Joint Distribution of Total Anomalies 

Point Estimate of Total Anomalies 
To develop a point estimate of the number of anomalies that will manifest at time t, we 

can assume that the total number of requirements being tested is large.  This is the same 

assumption that justified a point estimate of defects, and one that is particularly justified 

if the number of engineering subtasks used in VDT is large.   

The anomalies occurrences are independent and identically distributed (iid), so we can 

use the central limit theorem to approximate the total number of anomalies using the 

mean [Law and Kelton].  The expected number of  anomalies (relevant to goal g) that 

have manifested by time t* and affect each function j is: 

E(ajg(t*)) = ∫o
t* Σi dgi * pgij(t) * sgij(t) dt Eq. 16

77..66      MMOODDEELL  44::  UUNNCCEERRTTAAIINN  SSUUBBSSYYSSTTEEMM  OOPPEERRAATTIIOONNSS  
In this section, we will relax the assumption that the pace and sensitivities of operations 

are deterministic and known in advance.  In this case we define operations as a stochastic 

process with wgij(t) and sgij(t) as our pace and sensitivity over time. 
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Operations Description 

Rate of Anomalies 

Distribution of Total Anomalies 

Joint Distribution of Total Anomalies 

Point Estimate of Total Anomalies 

77..77      MMOODDEELL  55::  LLOONNGG--RRUUNN  CCOORRRREECCTTIIOONN  OOFF  AANNOOMMAALLIIEESS  

Failure
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proceed continuously over time.

ß
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Figure 8 m/m/1 Long-Run Operations Stage Critical Failure Model  
This formulation allows us to estimate the steady-state failure probability when 
anomalies are probabilistically created and fixed over time. 

Sometimes operations stretch over a long period and the risk of failure at any given point 

in time is low.  However, in our simplest model, anomalies manifest at the same non-zero 

rate over time, so the total number of anomalies in the long run is infinite.  This measure 

of long-term system behavior is of limited value. 

Under these project circumstances, operators are often able to fix anomalies as well as to 

create them.  For example, including human astronauts in an extended space mission, or 

coding important elements in remotely adjustable software, makes possible the 

development of long-term workarounds that bring operations back into conformance.   
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Figure 10 shows that when at any given time we have a chance of correcting each 

anomaly, we can model the total number of flaws as an m/m/1 queue.  If the rate at which 

each manifest anomaly is fixed is ζ (so that for h flaws manifest, the rate of fixing is h ζ), 

then in the long run (for the simplest case) we have  

p(agj) = e –(dgj * ζ) * (dgj * ζ)agj / agj! Eq. 17

Note that being able to fix emergent anomalies is distinct from the ability to reduce the 

rate of flaws emerging, which we can model by reducing the pace and/or sensitivity of 

operations over time using the dynamic wgij(t) and sgij(t) forms. 
 

77..88      IILLLLUUSSTTRRAATTIIOONN  
Calculations Using Hypothetical Data 

In this section, we illustrate each step of the proposed method using hypothetical data.  

Table 7.8.1: Sample Data on Subsystem Anomalies 

 

mw The pace at which subsystems employ engineered elements during operations
Critical Non-Critical 

Weather Ground Launch Vce Shuttle Science Goa Weather Ground Launch Veace Shuttle Science Goals
 Shuttle Component 0% 0% 0% 100% 0% 0% 0% 0% 100% 0%
 Launch Component 0% 0% 100% 0% 0% 0% 0% 100% 0% 0%
 Ground Component 0% 100% 0% 0% 0% 0% 100% 0% 0% 0%

Shuttle-Launch Interface 0% 0% 50% 50% 0% 0% 0% 50% 50% 0%
Shuttle-Ground Interface 0% 50% 0% 50% 0% 0% 50% 0% 50% 0%
Launch-Ground Interface 0% 50% 50% 0% 0% 0% 50% 50% 0% 0%

Integrated Multi-System 0% 33% 33% 33% 0% 0% 33% 33% 33% 0%

ms The sensitivity of subsystems to defective behavior by engineered elements during operations

Critical Non-Critical 
Weather Ground Launch Vce Shuttle Science Goa Weather Ground Launch Veace Shuttle Science Goals

 Shuttle Component 0% 0% 0% 100% 0% 0% 0% 0% 100% 0%
 Launch Component 0% 0% 100% 0% 0% 0% 0% 100% 0% 0%
 Ground Component 0% 100% 0% 0% 0% 0% 100% 0% 0% 0%

Shuttle-Launch Interface 0% 0% 50% 50% 0% 0% 0% 50% 50% 0%
Shuttle-Ground Interface 0% 50% 0% 50% 0% 0% 50% 0% 50% 0%
Launch-Ground Interface 0% 50% 50% 0% 0% 0% 50% 50% 0% 0%

Integrated Multi-System 0% 33% 33% 33% 0% 0% 33% 33% 33% 0%

b The rate at which engineering-induced anomalies manifest in operations
Weather Ground Launch Vce Shuttle Science Goals

Critical 0.0% 8.6% 8.0% 8.2% 0.0%
Non-Critical 0.0% 8.4% 7.9% 8.1% 0.0%

a(2) The total number of anomalies that occur in each system by time 2 during operations (point estimate)
Weather Ground Launch Vce Shuttle Science Goals

Critical -          0.17      0.16      0.16      -             
Non-Critical -          0.17      0.16      0.16      -             
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CChhaapptteerr  88  --  OOppeerraattiioonnss  FFuunnccttiioonn  FFaaiilluurreess    

EEssttiimmaattiinngg  ff((ff  ||  aa,,  mmyy,,  mmii,,  mmll))  UUssiinngg  EExxppoonneennttiiaall  DDeeccaayy  

88..11      FFUUNNCCTTIIOONNAALL  CCAAPPAACCIITTIIEESS  DDUURRIINNGG  OOPPEERRAATTIIOONNSS  
Introduction 

In this section, for each functional 

block, we calculate the probability 

of failure per time unit during 

operations.  We begin by 

decomposing the operations into a 

set of functional blocks using any 

of the PRA methods that we wish.   

The next step is to distinguish 

between those factors whose failure probabilities are directly influenced by engineered 

subsystems behavior, and those whose failure probabilities are independent. 

In most projects, many factors that influence failure probability are not influenced by 

engineering-dependent anomalies.  We can assess failure probabilities for functions that 

are independent of engineered subsystems’ behavior, such as external events, operations 

actions, and environmental conditions, without recourse to the VDT output, using 

techniques described in the PRA literature such as statistical inference or expert 

assessment. 

Once this formula is complete, however, our analysis becomes integral to determining the 

probability of failure for those functions that rely upon the correct operation of 

engineered subsystems. 
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Because we will estimate the probabilities of design- and development- dependent 

failure, we require that the hardware portions of this decomposition be performed to the 

level of components, interfaces, and interdependent systems-of-systems. 
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Table 8.1.1: Notation Introduced for Function Failure Analysis 

Term Name Type / Source Description Example 

ckg(t) capacity Real 
Characterizes capacity- the resistance to 
operational pressures toward function k 
having a failure of goal g. 

y21 = 0.5 means that due to the manifestation 
of anomalies during operations, function 2 is 
only operating at half of nominal capacity 
with regards to goal 1 project failure risk. 

C Capacity    

F(x) 
Cumulative 
Probability 
Distribution 
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Function Capacities 
When an anomaly manifests during operations, it can stimulate differences in behavior 

that result in additional anomalies and eventually catastrophe.  In contrast, under some 

circumstances these problems may not lead to any significant consequence.  As a third 

possibility, a single anomaly that can be endured without failure may interact with 

another, independently manageable anomaly, and cause failure.   

In this section, we assume that it is the total number of independent anomalies that have 

occurred up to a target point in time t that determines the capacity of an operational 

function.   

In most models, there will be factors other than engineered subsystems anomalies that 

influence capacity, either positively or negatively.  For example, we can define a low-

probability micrometeoroid strike against an orbiter’s hull to reduce the capacity of the 

thermal protection function by a large percentage. 

Our first task is to derive the total number of goal g anomalies that have manifested 

during operations, and that are able to influence each function k.  To do this, we multiply 

the total goal g anomalies agj(t) manifested in each engineered subsystem j  by a 

coefficient igjk representing the influence over function k.  As part of the project 

definition, we collect this information igjk about which functions make use of which 

subsystems from management.   

Our analysis assumes that these values are fixed and certain, although generalizing to 

time-dependence or stochasticity can follow methods like those in the previous chapter.  

We further assume that the impact of anomalies is to reduce functions’ capacity 

exponentially.  Intuitively, we have some resilience, but anomalies cause “decay”, or 

operations lose access to orthogonal “degrees of freedom”.  In this model, each anomaly 

during operations will have the same impact: cutting a residual capacity by some fraction 

ugk (0<= ugk <=1) defined by management in the project plan.   

We can use this data to define cgk(t) as the capacity at time t that a function k will provide 

in support of goal g: 
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cgk(t) = ugk
Σ

j (agj(t) * igjk) Eq. 1

For example, if ugk = 0.5, then we will have 0.5 capacity when one anomaly occurs, 0.25 

when two occur, 0.125 when three occur, etc. 
 

88..22      FFUUNNCCTTIIOONNAALL  FFAAIILLUURREE  
Function Loads 
We model the load that functions are subjected to as ml, a matrix with elements lgk that 

each characterizes the pressure placed on function k’s support of goal g.  At this point, we 

assume that each lgk is distributed uniformly over [0,1] and is fixed over time.  This 

provides a clear interpretation of behavior during operations, and simplifies our 

mathematical analysis, but is not necessary for any other reason.  

In many models, it will be appropriate to model non-engineering factors that 

probabilistically influence load, either positively or negatively.  For example, maneuvers 

undertaken to avert an unanticipated encounter with space junk might place an additional 

load upon a spacecraft’s attitude control and propulsion functions. 

Functional Failure 
Our next step is to calculate a distribution on the time at which each function ceases to 

serve the project goals it is responsible for.  We define a set of random variables Fgk 

whose realization fgk represents the time at which the function k ceases to support goal g.  

We assume that failure occurs when load exceeds capacity: 

Fgk ~ Min(t |  Cgk(t) < Lgk) Eq. 2

fgk = Min(t |  cgk(t) < lgk) Eq. 3

Because capacity Cgk(t) ranges from zero to one, if load lgk is one, any anomaly will cause 

a goal g operations failure in function k.  If lgk is zero, no amount of anomalies will cause 

the function k to fail with regard to goal g.  Note that in this model we assume that 

capacity never increases, and so we have only one time fgk at which capacity falls below 

load. 
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Equation 3 provides the probability that a function has failed before a given time, also 

known as a cumulative distribution function on the time to functional failure, F(fgk) 

(shorthand for FFgk(fgk)).   

F(fgk) = FFgk(fgk)  Eq. 4

F(fgk) = P(Fgk <= fgk) Eq. 5

F(fgk) = P(Cgk(fgk) < Lgk) Eq. 6

Since we have assumed that Lgk is distributed uniformly on [0,1], and Cgk(t) is also 

distributed on [0,1], we can simplify Eq. 3 to get: 

F(fgk) = P(0 < Lgk - Cgk(fgk)) Eq. 7

F(fgk) ~ 1 - Cgk(fgk) Eq. 8

We differentiate this simple cumulative form to compute the probability density 

function f(fgk) on a given time to failure, fgk: 

f(fgk) = F'(fgk) Eq. 9

f(fgk) ~ d(1 - Cgk(fgk))/dfgk Eq. 10

f(fgk) ~ d(-Cgk(fgk))/ dfgk Eq. 11

Substituting from Equation 1 we get 

f(fgk) ~ d(- ugk
Σ

j (Agj(fgk) * igjk))/ dfgk Eq. 12

Because d(-xg(t))/dt = - xg(t) * ln(x) * dg/dt, we have  

 f(fgk) ~ - Cgk(t) * ln(ugk) * d(Σj (Agj(fgk) * igjk))/ dfgk Eq. 13

f(fgk) ~  -ln(ugk) * Cgk(fgk) * (Σj igjk * dAgj(fgk)/ dfgk) Eq. 14

We have moved the negative sign to the natural log term for two reasons: first to collect 

our constants together, and second to reduce the chance of misperception that a negative 

probability could result (f(fgk) is always positive because ln(x) is negative for 0<x<1).   
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88..33      FFUULLLL  EEXXPPAANNSSIIOONN  UUSSIINNGG  AA  PPOOIINNTT  EESSTTIIMMAATTEE  OONN  SSTTAATTIICC  
OOPPEERRAATTIIOONNSS  

We illustrate this formula using an expected-value point estimate on static operations.  

Substituting the formula for agj(t) from Equation 26 we get: 

f(fgk) = -ln(ugk) * cgk(fgk) * (Σj igjk * d(Σi dgi * pgij * sgij * fgk)/ dfgk) Eq. 15

f(fgk) = -ln(ugk) * cgk(fgk) * (Σi Σj dgi * pgij * sgij * igjk) Eq. 16

Intuitively, the probability that failure occurs at a given time fgk equals a constant (based 

on capacity decay rate), times the capacity at that time, times the (expected) number of 

defects that can create anomalies that impact the function. 

Cases in which these terms vary over time are similarly easy to solve when the functions 

are differentiable. 

Expanding dgi based on Equation 26 traces failure times to engineering rework deficits: 

f(fgk) = -ln(ugk) * cgk(t) * (Σh Σi Σj (1/bi) * rhi * vghi * pgij * sgij * igjk) Eq. 17

This equation treats rhi as deterministic.  In general, however, we are uncertain about rhi 

because it results from complex engineering stage behaviors.  We can incorporate the 

distribution of engineering phase behaviors created using the VDT simulator, as adapted 

from Equation 12.  Recall that the joint probability distribution on rework behavior 

equals the fraction of simulation trials that produces that behavior distribution.  Since rhi 

is a random variable based on VDT output r we have: 

f(fgk) = -ln(ugk) *cgk(fgk) *ΣRrP(r) *Σh Σi Σj(1/bi) * rhi* vghi * pgij * sgij * igjk) Eq. 18

f(fgk) = -ln(ugk) * cgk(fgk) * ΣRr(|{ψs|(te,r)=Vdt(me,ψs),i∈{1,2,…n}}/n)  

* Σh Σi Σj (1/bi) * rhi * vghi * pgij * sgij * igjk) 
Eq. 19

We can use the same method to include other uncertainties in our models, by summing or 

integrating over the joint distribution of possible values.  For example, we can model 
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different possible sequence of operations by integrating over the possible values of 

operations pace Wgij(t) and sensitivity Sgij(t). 

The equation becomes more intuitive if we introduce a random variable Zgk to represent 

the potential impact per unit of time from engineering stage rework deficits:  

Fgk ~ -ln(ugk) * ugk
Zgk* fgk * Zgk Eq. 20

Zgk ~ Σh Σi Σj (1/bi) * Rhi * vghi * pgij * sgij * igjk Eq. 21

Again using Equations 26 and 1 we have 

f(fgk) = -ln(ugk) * ugk
zgk* fgk * zgk Eq. 22

This intuitively reflects the constant rate of anomalies and resulting exponential 

degradation of capacity that we have assumed for this illustration. 

88..44      JJOOIINNTT  DDIISSTTRRIIBBUUTTIIOONN  OONN  FFUUNNCCTTIIOONNAALL  FFAAIILLUURREESS  
The next term we wish to calculate is f(F | E), where each possible realization f of F is a 

set of values fgk that represent the failure time of each function k at each goal level g.  In 

cases where we can assume that functional failures are independent, given a number of 

anomalies in each subsystem a, we can calculate the probability for a final state very 

easily: 

P(f | a) = P(f | a) Eq. 23

P(F | E) = Πkv ((fkv * P(ykv < lmkv)) + ((1 – fkv) * P(ykv >= lmkv)) Eq. 24

This is just the product of the failure probabilities over all functions that fail, times the 

success probability times the probability of success over all functions that succeed.  Since 

lmkv is a uniform distribution on [0,1] we can simplify further: 

P(F | E) = Πkv ((fkv * ykv) + ((1 – fkv) * (1 – ykv)) Eq. 25

88..55      IILLLLUUSSTTRRAATTIIOONN  
Calculations Using Hypothetical Data 

In this section, we illustrate each step of the proposed method using hypothetical data.  



Probabilistic Engineering-Induced Operations Failure Risk Analysis   John Chachere  

115 

Table 8.5.1: Sample Data on Function Failures 

 

mi Influence that subsystem behavior has over the success or failure of functions
Critical Non-Critical 

Weather Ground Launch Vce Shuttle Science Goa Weather Ground Launch Veace Shuttle Science Goals
Launch 100% 100% 100% 100% 0% 100% 100% 100% 100% 0%

Orbit 0% 100% 0% 100% 0% 0% 100% 0% 100% 0%
Land 100% 100% 0% 100% 0% 100% 100% 0% 100% 0%

Collect Science Data 0% 0% 0% 0% 0% 100% 0% 0% 100% 100%

Σj (a gj ( 2)  *  igjk) The number of impacting errors on each system at time 2
Critical Non-Critical

Launch 0.49        0.49      
Orbit 0.34        0.33      
Land 0.34        0.33      

Collect Science Data -          0.16      

my Decay in capacity for each function resulting from each operations anomaly
Critical Non-Critical

Launch 50% 50%
Orbit 50% 50%
Land 50% 50%

Collect Science Data 50% 50%

c(2) Operating Capacities at time 2 for each operations function
Critical Non-Critical

Launch 71% 71%
Orbit 79% 80%
Land 79% 80%

Collect Science Data 100% 89%

P(Fgk < 2) (Independent) probabiliy of functional failure by time 2
Critical Non-Critical

Launch 29% 29%
Orbit 21% 20%
Land 21% 20%

Collect Science Data 0% 11%
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CChhaapptteerr  99  --  PPrroojjeecctt  GGooaall  AAcchhiieevveemmeennttss  

EEssttiimmaattiinngg  ff((ttgg  ||  mmgg,,  ttff))  UUssiinngg  BBoooolleeaann  AAllggeebbrraa  

99..11      PPRROOJJEECCTT  FFAAIILLUURREE  DDUURRIINNGG  OOPPEERRAATTIIOONNSS  
We have formally defined a final 

state, the failure of individual 

functional blocks, using event F, 

which is defined by a matrix of 

values fkv that represent the goal g 

failure of each of the functional 

blocks indexed by k.  Our model of 

P(F | E) provided a joint 

probability distribution on fkv, based on an upstream engineering management plan m as 

simulated using random seed s.  Our goal in this section is to determine the set of project 

failures of various severities during operations that occur for a given set of final states F.   

To achieve this, we can apply the standard PRA method [Paté-Cornell 2004] to derive a 

mathematical formula from the final states of each function.  In accordance with standard 

PRA methods, we can illustrate the operations functions intuitively using a block 

diagram, which we can translate into a fault tree.  Using this representation we can distill 

a simple Boolean formula for P(F), then simplify down to “minimal cut sets” that fully 

characterize the requirements for operational success.  

We assume that each goal of possible failure v is related to functional blocks defined for 

that goal, so that:  

P(wwv| F) = PRA (f1v, f2v, f3v, … ) Eq. 1

Functional 
Failuresf Chapter

9

Fault Trees, 
Event Trees

Goal 
Failures

Probabilistic 
Risk Analysis

tg

mg
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Here W is a vector with cells wwv equal to one if a goal g failure will result during 

operations, and zero otherwise.   

If we assume a single-string case, in a goal g failure in one function causes total failure 

for goal g, we have 

P(wwv = Maximum(∑kv fkv, 1)| F) = 1 Eq. 2

If instead we assume a totally redundant case, in which only a goal g failure in all 

functions causes total failure for goal g, we have 

P(wwv = Maximum(∑kv fkv, 1)| F) = 1 Eq. 3

99..22      IILLLLUUSSTTRRAATTIIOONN  
Calculations Using Hypothetical Data 

In this section, we illustrate each step of the proposed method using hypothetical data.  

Table 9.2.1: Sample Data on Goal Achievements 

 

P(Tgg < 2) (Individual) probability of project goal failures
Critical Non-Critic Probability
Failure 45% 40%

Success 55% 60%

P(Tg < 2) Joint probabiliy distribution project goal failures
Critical Non-Critic Probability

Success Success 33%
Failure Success 27%

Success Failure 22%
Failure Failure 18%

P(Tgg < 2) (Individual) probability of project goal failures
Critical Non-Criti Probability

Failure 45% 40%
Success 55% 60%

P(Tg < 2) Joint probabiliy distribution project goal failures
Critical Non-Critic Probability

Success Success 33%
Failure Success 27%

Success Failure 22%
Failure Failure 18%
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CChhaapptteerr  1100  --  DDeecciissiioonn  MMaakkeerr  UUttiilliittyy  

CCaallccuullaattiinngg  UU((ttee,,  ttgg,,  mmee,,  mmvv,,  mmzz,,  mmww,,  mmss,,  mmuu,,  mmyy,,  mmii,,  mmll,,  mmgg))      aanndd  
MMaaxxiimmiizziinngg  EEUU((mmee,,  mmvv,,  mmzz,,  mmww,,  mmss,,  mmuu,,  mmyy,,  mmll,,  mmgg))  

Our analysis of project planning 

decisions assumes that costs are 

fixed and spent at the beginning of 

engineering.  We also assume that 

rewards are received at the end of 

operations, provide benefits 

independently, and are fixed (given 

success) at each goal level.  We also 

assume, as suggested by [NASA 2005], that project benefits materialize only when 

project failure does not occur.  

Goal 
Failurestg

Chapter
10

Benefits/Goal, 
Utility Function

Expected 
Utility

Decision 
Analysis

EU 
(m)

U()b
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Table 9.2.1: Notation Introduced for Decision Maker Utility Analysis 
 

mm 

 

Alternate 
Manageme
nt Choices 

Set of Decision 
Variables 

One possible choice of m that we provide as 
input to the proposed algorithm and calculate 
the implications of.  We then recommend 
using the plan Mm = m* that produces the most 
desired results. 

The set includes a diverse range of organization 
and process choices, including the definition of 
all engineering teams within a hierarchy, the 
tasks within a precedence network, and policies 
such as centralization and meetings. 

m 
Manageme
nt Choice 

Index 
Discrete index 

Identifies a set of management choices, 
including engineering and testing plans, and 
the use of engineered products during 
operations in systems that support project 
objectives. 

Index m = 1 for example could identify a 
conservative, serial engineering approach 
followed by extended operations in a 
challenging environment.  Index m = 2 could 
identify an aggressive parallel engineering 
approach followed by shorter operations in a less 
hazardous environment. 

B Benefit Real-valued 
constant 

Amount of benefit received at the end of a 
fully successful project  

A value of 500 million indicating that a total 
project success produces $500M of value 

δ  Real-valued 
constant  Discount rate  

A value of 0.1 indicates that the decision maker 
views money as of ten percent less worth when 
it is obtained one year further in the future. 

b0 budget Real-valued 
constant Budget invested at the beginning of a project A value of 200 million indicates that the total 

investment in the project is $200M 
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1100..11      FFOORRMMAALL  MMEETTHHOODD  
m contains teMax, which is the maximum length of operations, and b0, which is the fixed 

budget of the project.  The vector tg has cell values tgg that contain the time at which 

failure occurs for each goal g, and te has cell values tei that contain the time at which each 

engineering task i is completed.  Thus tgg is always less than or equal to tgMax and tei is 

always less than or equal to teMax:   

For all engineering tasks i, tei ≤ teMax Eq. 1

For all project goals g, tgg≤ tgMax Eq. 2

We also assume that the benefits of each objective accrue independently of one another. 

U(te, tg, m) = U(–b0+Σg( bg (tg/tgMax) *(1/(1+δ)) teMax+tg))) Eq. 3

The above equation assumes that benefits bg for each goal g are received at the time of 

completion (either failure, or end of operations).  As an example, if $100 of benefit 

accrues for a total success in reaching goal g, with partial success providing benefits 

equal to the fraction of operations that elapse before failure, times this $100 benefit, we 

have: 

b'g (x) = $100 * x Eq. 4

If benefits accrue only at the end of operations, and if no failure occurs, we have: 

b"g (x) = $100  if x = 1 

               $0 otherwise 
Eq. 5

When benefits accrue continually we can define a set of functions bv(t) that provides the 

(instantaneous) rate at which benefits accrue for goal g at a time t.  In this case, we 

reformulate Equation 1 as: 

U(te, tg, m) = U(–b0+Σg(∫t=o
tg(bg(t)*(1/(1+δ)) tEMax+t)dt))) Eq. 6

We can assist decision makers by using this algorithm to identify which among several 

possible management choices maximizes this expected utility figure.  Mathematically we 
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can identify discrete sets of prospective management choices mm, and find a particular 

m* such that  

For all mm, EU(te, tg, mm) ≤ EU(te, tg, m*) Eq. 7

1100..22      IILLLLUUSSTTRRAATTIIOONN  
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CChhaapptteerr  1111  --  DDiissccuussssiioonn  

1111..11      CCOONNTTRRIIBBUUTTIIOONN  
We have responded to our first research question with the claim that ignoring the need 

for coordination and rework during engineering phases tends to create product defects 

that increase the probability of subsequent operational failures.   

Table 4 illustrates the resulting intuition that risk mitigation should involve 

preventing the overlap of weaknesses among product, organization, process, and 

environment factors.  We first determine the adequacy of an organization to its assigned 

process, and then the adequacy of the product to endure its operating environment.  When 

a required process will be difficult for a given organization to complete, for example, we 

should ensure that the product is selected to be highly resilient when compared to its 

environment (for example by including component redundancy or adopting a slower but 

more robust operations plan).  Similarly, if the product will confront overwhelming 

hazards, project planners should select an organization that is able to execute the 

engineering to a very high standard (for example by hiring the best available team, or 

adding extra test cycles). 

In response to our second research question, we have proposed a model that 

translates VDT predicted engineering phase choices (exception handling and meeting 

attendance), into PRA estimates of engineering element failure risks (for components, 

interfaces, and interdependent multi-systems), which informs the calculation of the 

operations phase failure risk probability of a given project. 

In general, quantitative decision-making methods are far more effective than 

qualitative methods.  Even in cases where conversation requires qualitative terms, these 

terms should be grounded precisely so that communication is clear and analysis can be 
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rigorous.  However, one implication of decision makers’ bounded rationality is that the 

best decision making method is determined by the time that is available to conduct 

analysis.  In cases where time is short and data are complex, some organizations adopt 

qualitative analysis methods to provide some degree of common understanding.  

Although we feel that this consensus can be illusory, and generally recommend against 

employing qualitative methods for risk analysis, those who feel otherwise may benefit 

from our research even if they are unable or unwilling to adopt our analysis method. 

In particular, the relationships we have illuminated can provide important guidance 

even to a high-level qualitative evaluation, such as one based on Failure Mode Effects 

Analysis [NASA 1995].  However, we have provided a method for the detailed study of 

project failure risks that employs VDT to model engineering and PRA to model 

operations.  These theory-founded models from the social sciences and engineering can 

enable project planners to quantitatively assess the complex impacts of changes to any 

one of the POPE factors, and to assess their interactions. 
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Table 11.1.1: Qualitative Performance Predictions 

Process 
Engineering 

Easy Difficult 

Strong Low Risk Medium Risk 
Organization 

Weak Medium Risk High Risk 

 

Product 
Operations 

Robust Fragile 

Safe Low Risk Medium Risk 
Environment 

Hazardous Medium Risk High Risk 

 

Operations 
Total Project Failure Risk 

Low Risk Medium Risk High Risk 

Low Risk Lowest Risk Lower Risk Medium Risk 

Medium Risk Lower Risk Medium Risk Higher Risk Engineering 
High Risk Medium Risk Higher Risk Highest Risk 

At a high level, our model indicates that total failure risk often depends on risks 
introduced during engineering stages and risks from operations.  Engineering risks 
loosely depend in magnitude on the ability of the organization to execute its assigned 
process, and operations risks generally result from the robustness of a product relative 
to its operating environment.  Qualitatively, the greatest risks most often (but do not 
always) occur where weaknesses of organization, process, product, and environment 
are superimposed.  Although these guidelines may be of intuitive value, the proposed 
method of integrating VDT and PRA provides greater benefits by enabling decision 
makers to identify and quantify these risks under specific project circumstances. 

To understand this contribution’s power, consider the decision to employ a redundant 

telecommunications array on the Huygens probe [JPL 2000].  PRA alone might predict 

that because the two antennae fail in a probabilistically independent manner, redundancy 

is would improve the project failure risk.  VDT on the other hand, would predict that 

because the redundant system would require a more complex and uncertain process, 

greater risk is incurred.  Using a qualitative analysis based on table 4, high risk 

engineering and low risk operations suggest a medium risk total failure probability.  We 

believe that when properly calibrated the proposed integration of VDT and PRA will be 

able to shed additional light on the tradeoff.  Specifically, the method will use VDT and 
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the integration points to compute the change in antennae failure probability that 

engineering difficulty produces, and then it will use PRA to calculate the updated project 

risk based on the component redundancy.  The clarity of action this analysis offers is 

evident in the calculations of Figure 8. 

0.350

0.450

0.550

0.650

Single String

Redundancy

Single String 0.406 0.507 0.430 0.449 0.461 0.517 0.410

Redundancy 0.605 0.543 0.576 0.451 0.621 0.402 0.450

Payload 
Component

Payload 
Interface

Vehicle 
Component

Vehicle 
Interface

Ground 
Component

Ground 
Interface

Meeting 
(Systemw i

VDT Risk Measure PRA Reliability
SingleString Redundancy SingleString Redundancy

Payload Component 0.406 0.605 94.594% 94.395%
Payload Interface 0.507 0.543 94.493% 94.457%

Vehicle Component 0.430 0.576 94.570% 94.424%
Vehicle Interface 0.449 0.451 94.551% 94.549%

Ground Component 0.461 0.621 94.539% 94.379%
Ground Interface 0.517 0.402 94.483% 94.598%

Meeting (Systemwide) 0.410 0.450 94.590% 94.550%

SingleString Redundancy
P(DesignError) 32.5% 32.8%

SingleString Redundancy P(Success) 67.5% 74.9%
Communications Loss Rate 0.349 0.365 Quality 96.5% 96.4%

Product Value 65.17$              72.16$              
Figure 9 Quantitative Failure Risk Calculation for a Payload Redundancy Decision  
With a well-calibrated model, the precision of quantitative analysis can support decision-
making in the face of difficult tradeoffs.  For instance, we produced the chart and table 
above based on a payload redundancy option that increases product robustness but 
decreases engineering sureness.  Figure 3 provides our PRA fault tree and functional 
block diagram, while our VDT organization and process are isomorphic to those in 
Figure 1.  In our model, redundancy increases the spacecraft’s design complexity, and 
this raises the probability of engineering flaws causing components to fail.  However, the 
payload’s functional redundancy more than compensates, raising the total success 
probability above that of the “single string” case.  Thus the redundant case is more likely 
to suffer a component failure, but it is also more likely to complete the mission. 

1111..22      PPRRAACCTTIICCAALL  AAPPPPLLIICCAATTIIOONNSS  
Risk Analysis 
The Columbia Accident Investigation Board’s final report includes the following 

observation: 
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Although schedule deadlines are an important management tool, those deadlines 
must be regularly evaluated to ensure that any additional risk incurred to meet 
the schedule is recognized, understood, and acceptable. 

Based on this analysis, the board issued recommendation R62-1: 

Adopt and maintain a Shuttle flight schedule that is consistent with available 
resources.  Although schedule deadlines are an important management tool, 
those deadlines must be regularly evaluated to ensure that any additional risk 
incurred to meet the schedule is recognized, understood, and acceptable. 

The board also asserts that: 

unless the technical, organizational, and cultural recommendations made in this 
report are implemented, little will have been accomplished  

The analysis in this paper suggests that existing analysis tools are not sufficient to 

systematically enable NASA to meet the requirements of NASA 2003 recommendation 

R62-1.  Instead, we believe that NASA will need to implement an integrated planning 

tool like the one contributed by this research. 

The method we propose offers transparent and theory-based support to important 

project planning trade-offs that previously relied on human intuition.  The model of 

design projects brings together cost, schedule, quality, reliability, and sustainability 

predictions that can help individual designers to make difficult trade-offs [Chachere 

2004.1].  By adjusting and iterating on the design project’s POPE factors, we believe it 

will be possible obtain improved project plans as well as better and more accurate view 

of their expected performance. 

Project Management 
Another major concern in complex projects is the prediction of cost, schedule and other 

types of overruns that will occur in downstream project phases.  Benjamin and Paté-

Cornell [2004] highlight the need for probabilistic risk analysis in this project setting, and 

the Jet Propulsion Laboratory’s new Risk Station testifies to its perceived importance in 

project planning [Meshkat and Oberto 2004]. 

We can use the proposed model to predict the likely accuracy and completeness of 

upstream efforts to estimate the cost, quality, or schedule of downstream stages, even 

though these measures are not explicit within the system.  As with traditional engineering 

tasks, project planners require appropriate experts as well as an effective collaborative 
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process to correctly estimate a project’s programmatic risk, costs and schedule.  

Therefore, we can use the upstream error probabilities to estimate the chance of cost, 

schedule, and other overruns that result from flawed (unrealistic) designer estimates of 

downstream behavior.   

The proposed method improves the prospects for advancing VDT justification by 

introducing an explicit product model.  Translating VDT results into recommendations is 

currently difficult because even though VDT predicts schedule improvements, for 

example, the product often is affected in ways that VDT does not estimate.  Providing 

this ability using the proposed method also improves the joint system’s intuitiveness and 

provides a clear map for enhancements that individual applications require. 

The proposed also model compensates for a lack of specificity in some outcome 

measures that confound efforts to calibrate VDT against real-world projects.  The 

simulator offers a project schedule that estimates the specific days during which each task 

is executed, and illustrates the number of work items in each team’s “inbox” at any given 

time.  However, VDT theory currently describes some of its most important measures of 

outcome simply as “risks” because they are not explicitly related to a product model.  

Because the proposed model has a physical interpretation of information processing 

impacts, in the form of engineered elements’ failure probabilities, our contribution lends 

precision and verifiability to outcome measures, and can therefore improve the ease of 

precisely calibrating VDT. 

1111..33      TTHHEEOORREETTIICCAALL  IIMMPPLLIICCAATTIIOONNSS  
POPE Model Proof of Concept 
We believe that in project planning, effective risk management requires understanding 

the POPE—the Process, Organization, and Product to be designed, and the Environment 

in which the product will operate.  Project planners assess uncertainties about: how robust 

their operational processes are under different circumstances; the actual performance and 

properties of the products they are building (such as a spacecraft and its support systems); 

the organizations that conduct the mission during its operational phase; and the 

environments in which the product and project operate.  Of equal importance, planners 

must assess the possible interactions among the four factors.   
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The method we have proposed provides an important existence proof of practical 

POPE models—formal descriptions that span product, organization, process, and 

environment factors, as well as their interactions.  This paper illustrates the feasibility of 

integrated POPE modeling by emulating the influence that shortcomings in the process 

and organization that engineer a product have on failure probability in an operating 

environment.  Operations analysis tools can be applied to engineering activities, and 

engineering analysis tools can be applied to operations, but each is generally much 

weaker outside its target domain.  The proposed method tries to enable several methods 

to interoperate and to apply their strengths, while compensating as much as possible for 

one another’s weaknesses.  Developing models that span all four POPE factors in a 

justifiable manner is challenging (in technical, theoretical, and practical terms), so 

proving that a best of breed strategy can produce an effective POPE model is important. 

Refinement of Qualitative Theories 
The proposed method makes possible a quantitative definition of important theories of 

risk.  VDT’s task uncertainty and external rework links capture the “complexity and 

interdependence” concepts that Normal Accident Theory (NAT) claims are responsible 

for numerous errors [Perrow].  Similarly, the backlog and exception handling behavior 

that VDT predicts are important measures of safety culture according to Ciavarelli 2003, 

and Cooke et al 2003.  At the same time that comparing the proposed method’s 

predictions against these theories can help us to formalize their claims, it can also 

improve VDT’s calibration and justification. 

Although many of the dynamics this model illustrates have precedent in the social 

science literature, it is unprecedented for these sometimes-conflicting theories to be 

operationalized quantitatively.   

This improved precision might enable the comparison of competing theories of 

human and organizational risk management, and the eventual determination of how their 

dynamics interact under specific project circumstances.  For example, the proposed 

method can cross validate PRA predictions systematically against qualitative risk analysis 

theories including and High Reliability Organizations Theory (HROT) [Roberts, Weick].  

A simple intellective experiment could use idealized or representative POPE models to 
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illuminate the ways in which NAT’s predicted risk sources, complexity and 

interdependence, balance against HROT’s remedies, effective communications and 

redundancy.  We can also use the proposed method to predict how changes in the 

organization or the product structure could influence failure risks resulting from a rework 

deficit. 

We can also directly change VDT’s simulated actor decision-making behavior to 

approximate changes in safety culture.  The contributions that actor decisions make to 

project risks and rewards are a matter of personal judgment regarding the relative 

importance of the fundamental outcomes (speed, quality, cost, reliability, and 

sustainability).  In the field, both strategic and tactical mission designers’ concern over 

safety balances against the importance of meeting schedule and cost budgets.  A limited 

analytic focus neglects the complexity of these decisions and can compromise results.  

For example, a designer in doubt might.  Although choosing to rework a component in a 

simple response to strong safety climate can improve the reliability of a finished product, 

the increased schedule pressure can lead unexpectedly to stress-induced errors instead 

[Cooke et al 2003].   

Integrated Concurrent Engineering and Latency 
Field advances with highly parallel engineering teams demonstrate the potential for 

orders of magnitude improvements in efficiency [Wall, Mark].  However, existing 

theories struggle to explain these teams’ performance, and computational models have 

been unable to calculate their costs and benefits accurately [Chachere et al 2004.1, 

2004.3].  In particular, it is difficult for managers to determine whether improvements in 

design schedule are offset by possible increases in project risk [NASA 2004]. 

Analysis of these teams indicates that a key to understanding them theoretically is the 

response latency metric [Chachere et al 2004.2].  Response latency, the delay between 

actors’ requests and replies, is to information processing what “lead time” is to materials 

processing in a supply chain. 

According to Chachere et al 2004.1 and 2004.3, many factors that are theoretically 

related to project performance affect organizations only through latency, and this research 

promises to relate latency to its impacts on project and program risks.  Latency is 
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quantitatively observable metric that offers sufficient precision to compare and calibrate 

established but currently qualitative theories from the organizational and risk 

management literature [Chachere et al 2004.2, Chachere et al 2004.3].  In particular, very 

high latency conditions that arise in VDT simulations cause decision opportunities to be 

ignored, resulting in a dramatic increase in default dispositions.  By linking these defaults 

in exception handling through conformance measures and errors to project failure risk, 

the proposed model explains how latency can increase project risk as well as program 

risk.   

1111..44      JJUUSSTTIIFFIICCAATTIIOONN  
Justification Process 
Both human experts and computer models can add value at any stage of justification, but 

they are most valuable after they earn stakeholders’ confidence [Feigenbaum 1988].  This 

section lays out a procedural roadmap for our proposed model’s justification and 

compares it with PRA and VDT justifications.   

We first review common PRA and VDT validation methods because the integrated 

model relies crucially on them.  After indicating where concerns lie most prominently 

among academics and practitioners, we indicate where the proposed method contributes 

or detracts from PRA and VDT validation processes.  Finally, we review the state of our 

proposed model’s justification and indicate what next steps may be most appropriate.  

It is possible for even flagrantly inaccurate computational models to provide value by 

suggesting possibilities and alternatives that were not previously considered, and that can 

be independently explored.  Formal models like ours target applications when human 

experts are unable to predict behavior with sufficient precision.  An important milestone 

for project modelers is to offer performance predictions that significantly improve upon 

those made by human decision makers.  Models are sometimes indispensable, and 

sometimes offer both advantages and some disadvantages over experts.  The proposed 

model is a step in the development of project models systems that may one day enable 

projects to be designed using similarly scientific procedures and confidence as engineers 

enjoy in today’s bridge building projects [Levitt and Kunz]. 
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To contribute its full potential toward this aim, however, the proposed model requires 

a sustained investment in model refinement throughout which the system becomes 

increasingly useful.  To identify the stage that our models have reached, we adopt a 

validation framework explained in Levitt and Burton [], and in Thomson et al [1999], 

through which we can build confidence and adapt the models while progressing through a 

series of increasingly refined stages: 

11..   Toy Problems provide intuitive demonstrations of complex models 

22..   Intellective studies explore theoretical phenomena on cognitively tractable problems 

33..   Gedanken experiments compare expert and model predictions for a real-world project 

44..   Retrospective studies calibrate model predictions against historic documentation 

55..   Natural History predicts outcomes, then compares them against emergent reality 

66..   Prospective studies predict, recommend, and intervene in order to benefit a project 

Justification of Foundations 
Because our model’s broad span relies upon a large number of foundational assumptions, 

its power stems primarily from integrating a set of existing theoretical results.  Our model 

subjects the base models to additional interpretive rigor, and so in this section we 

summarize the base models’ independent justifications.   

  PRA Justification 
Intuitively conveying PRA’s theoretical justification is confounded by the need to 

recommend with confidence while simultaneously conserving the uncertainty in 

predictions.  PRA has nevertheless achieved a level of popular validation through 

strikingly accurate predictions such as the Columbia space shuttle’s thermal protection 

system failure [Paté-Cornell and Fischbeck 1993.1, 1993.2].  In some industries, PRA has 

already achieved a strong tradition of application and operates in the final, “prospective” 

study phase.   

  VDT Justification 
There is a considerable body of published documentation of VDT modeling efforts, 

including an important but limited body of predictive application.  VDT has had some 

striking success, notably an accurate prediction of schedule delay, and critical 
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organizational faults in the cabling contractor for a Lockheed satellite [Levitt et al].  VDT 

is intended for use on a specific range of routine project activities, and is said to model 

the “physics” of rational organizational behavior, but not the “chemistry” of, for example, 

ambiguity [March].  Because calibration also remains an important concern, we view the 

core VDT model as operating at the “retrospective” level of justification. 

Justification of Proposed Method 
In addition to calling upon VDT and PRA as base models, the proposed integration also 

requires several novel theoretical assumptions, and these assumptions’ clarity, 

verifiability and adaptability are essential to our contribution’s credibility and 

practicality.  After finding this integrated model intuitively more justified for many 

applications than either model alone, we provide a roadmap for further refinement and 

calibration. 

I base the integrated model’s validation on prior VDT and PRA justification, taking 

the information processing model and the PRA risk decomposition methods for granted.  

Although this can accelerate the process, this research must start at the beginning of the 

validation sequence because its predictions are critically influenced by fundamentally 

new components.  At its current level of justification, the proposed model relies in part on 

intuition and external observation to validate its claims.   

From a theoretical perspective, the “prior” probabilities and updating procedures that 

PRA develops in conjunction with domain experts are often the most debated.  Therefore, 

the most troublesome subjects for PRA validation are those domains that are difficult for 

experts to assess.  Many large projects, such as in aerospace or construction, are 

exceedingly complex, largely unprecedented, and face a legacy of mixed risk 

management results.  The proposed method enhances PRA’s justification in this domain 

by bolstering engineering failure probabilities with VDT’s organization-theoretic 

foundation. 

Changing the VDT formulation, calibration variables or code implementation makes 

comparison with other theoretical results from VDT less viable, reducing the value of 

results to the academic community.  However, certain of the VDT calibration measures 

may not be accurate for a particular application.  In other applications, substantial 
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extension may be appropriate, for example (provide a list of extension from prior theses).  

To contribute to this research, we must strive to document changes clearly and make the 

matrices available.  This should include a clear description of the intuitive impact- the 

real-world interpretation.   

To establish face validity we will integrate a simple illustrative example problem into 

the initial algorithm’s definition.  This example project illustration will satisfy a first step 

in our formal justification process [Burton and Levitt], by offering the simplest “Toy 

Problem” that is able to convey the algorithm’s complete essence.  This example project 

will include the five stages we have found to be the most common: specification, design, 

development, testing, and operations (as illustrated and described occasionally in the 

existing paper).  In practice, many projects involve additional steps, such as 

decommissioning (after operations).  However, as long as the foundational VDT 

assumptions hold for each stage, the algorithm we propose captures other project forms in 

a straightforward manner that requires neither mathematical nor theoretical extensions. 

The next step in our method’s justification will be to conduct a more complex 

intellective experiment in a later study.  One possible application is a comparison 

between ordinary shuttle missions and the final Columbia and Challenger launches: 

The four flights scheduled in the five months from October 2003, to February 
2004, would have required a processing effort comparable to the effort 
immediately before the Challenger accident.  -NASA 2003 

 This follow-on study will compare our calculated implications of micro-theories against 

established macro-level predictions, such as those of NAT or HROT.  Finding agreement 

among our model’s components, a broad range of social science results, and the empirical 

evidence that has sustained those theories, will improve our confidence in our model’s 

soundness.   

1111..55      EEXXTTEENNSSIIOONNSS  
Automated Search for Optimal Plans 

The proposed model requires that we separately calculate the expected utility for each 

alternative we wish to consider, and manually compare these results to select the best.  As 

a simulator, the core VDT system offers numerous performance metrics, but has no 
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model of an integrative objective function.  Instead, users who wish to optimize the 

schedule must conceptualize alternatives and test them iteratively.  As noted by Pugnetti 

[1997, p. 143], there are methods that may help us to overcome this hurdle. 

Figure 1 shows how we can build on this approach model using a synthesis of VDT 

and PRA.  This predictive model of a given project’s POPE factors and their interactions 

has the potential to recommend decisions that affect both program and project risks.  We 

claim that a fully developed configuration of VDT, PRA, and an optimization can 

integrate many important objectives such as design schedule, cost, product quality 

(variable amount of benefit that is achieved upon success), employee burnout, and team 

coherence [Chachere 2004.1, Chachere 2004.2].   

 

Model and Review Predicted Outcomes

Assess and Design Project
Product

- Components
- Interfaces
- Interdependent 

Systems

Organization
- Actors
- Hierarchy
- Centralization
- Decision-Making

Process
- Work Tasks
- Meetings
- Information Exchange
- Rework Dependencies

Environment
- Budgetary Constraints
- Public Opinion
- Operating Conditions
- Uncontrolled Factors

Development Programmatics Outcomes
- Cost of Design and Development Labor
- Schedule and Duration of Design Tasks

Operations Outcomes
- Quality of Engineering Processes
- Failure Probability for Product Elements

Figure 10: Project Decision Analysis Method  
This schematic diagram illustrates how a project decision analysis model could help 
project planners to design and optimize project plans, while taking account of the 
behavior of each project stage.  As in the basic VDT-PRA model, users of this system 
would build design choices into an integrated model of the project’s POPE building 
blocks (Product, Organization, Process, and Environment).  The assessment “engine” 
would predict the impacts of the design choices (the range of diverse and essential data 
suggested by bullet points in the top boxes ) by simulating the project from design 
through development.  For a particular project, the method would predict task schedules, 
costs and risks, as well as organizational and procedural compliance measures.  These 
output data would inform project managers of theory-founded predictions and enables 
them to iteratively improve project plans.  Finally, the decision analytic element would 
compare planner preferences with the model predictions for each case, and recommend 
an optimal choice among POPE factors. 

Rather than just predicting outcomes, we can incorporate one of several possible 

optimization modules to recommend action using a decision maker’s preferences.  To use 

decision analysis, we can group compatible POPE configurations into discrete 

alternatives, and maximize utility over the VDT and PRA predicted outcome 
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distributions.  Alternatively, or in combination with decision analysis, we can use 

nonlinear optimization methods to recommend continuous-valued choices, as pioneered 

in APRAM.  It is also possible for genetic algorithms [Koza 1992, Holland 1975]to 

effectively evaluate the large set of highly interdependent organization an process 

variables, as suggested by Pugnetti 1997, and as demonstrated by Bijan and Levitt () and 

Bijan, Levitt, and Koza () to be capable of beating human experts. 

Modeling Additional Error Sources 
There are theoretical predictors of design error rates that this method does not assess.  

Examples include conformity, which decreases the likelihood that individuals will 

contradict peers’ public, erroneous statements [Festinger 1954].  Groupthink reduces the 

likelihood of thorough, critical evaluation of alternatives in a group setting [Janis 

1982.2].  Finally, the risky shift phenomenon leads groups to select choices that are more 

risky than those that participants would individually choose [Bem et al 1965].  These 

additional factors can make it very difficult to isolate the exception-handling impact on 

risk, and to calibrate the model. 

We can capture some of these phenomena using new integration points between PRA 

and VDT.  For example, workers under stress tend to make mistakes [Cooke et al 2003], 

and so it is reasonable to expect a relationship between the VDT-predicted backlog of 

engineers, and the number of gross errors that enter operations.  To further refine this 

model, we consider that as work falls behind, a conflict of interest between a personal 

need to meet schedule and a project’s need for design robustness forms, and this moral 

hazard can produce harmful corner-cutting behavior [Garber]. 

Predicting Gate and Other Mid-Project Decisions  
VDT and PRA are theoretically and methodologically compatible, and pragmatically 

complementary in several important ways.  The model detailed in this paper is just one of 

three possibly useful ways of integrating PRA, VDT, and Decision Analysis that 

Chachere 2004.1 presents.  Although each synthesized model has distinctive 

characteristics, they are not mutually exclusive.  The same paper also outlines the 

methods and capabilities of an algorithm that applies all three integration methods 

simultaneously. 



Probabilistic Engineering-Induced Operations Failure Risk Analysis  John Chachere

136 

An example shortcoming that further integration points may be able to resolve is that 

VDT cannot model important mid-project decisions that are made during project 

execution.  Gate decisions critically influence project behavior, for example, and can 

adjust future stages’ POPE structure to account for observed engineering behavior.  Other 

mid-project decisions influence low level features that VDT models.  For example, a 

project’s quarterly re-evaluation of staffing levels might increase or reduce full-time-

equivalent levels for a particular position.  Although VDT does not currently model these 

mid-course corrections, we can employ a decision analysis engine to estimate the 

decisions that managers will make at these junctures.  In fact, we go further to model 

actors’ rework decisions using the general rational framework [March 1994], and 

interpret exceptions as a perceived shortcoming in the decision basis that prevents 

“Clarity of action” [Chachere et al 2004.1, 2004.2, Howard 1992, Howard and Matheson 

1993]. 
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CChhaapptteerr  1122  --  CCoonncclluussiioonn  

This research addressed the questions: 

11..  What are some mechanisms by which engineering design activities create product 

flaws that later increase the probability of downstream operational failure?  

22..  What is a method that quantifies the degree to which specific engineering (design 

and development) phase choices change the operational phase failure probability 

of a given project?      

These issues are important because in spite of prior efforts, engineering-stage errors 

repeatedly result in the operations-stage loss of space missions, pharmaceutical drugs, 

facilities, and other large investments.  This research puts forward the following claims: 

11..  Ignoring the need for coordination and rework during engineering phases tends to 

create product flaws that increase the probability of subsequent operational 

failures.    

22..  We have proposed a model that translates VDT predicted engineering phase 

choices (exception handling and meeting attendance), into PRA estimates of 

engineering element failure risks (for components, interfaces, and interdependent 

multi-systems), which informs the calculation of the operations phase failure risk 

probability of a given project.  

These results offer both intuition and precise analytic techniques that are valuable to 

theorists and practitioners alike.  We have identified several exciting implications, such 

as the potential to analyze the interactions among existing risk theories that are currently 

defined only in qualitative terms.  We have also identified promising next steps, such as 

the assessment of additional risk factors, the development of project optimization 

methods, and the advancement of justification for the proposed method. 
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