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A METHOD TO ANALYZE LARGE DATA SETS OF RESIDENTIAL
ELECTRICITY CONSUMPTION TO INFORM DATA-DRIVEN ENERGY

EFFICIENCY

Amir Kavousian1,∗ Ram Rajagopal1,2 Martin Fischer1

Abstract. Effective demand-side energy efficiency policies are needed to reduce residential

electricity consumption and its harmful effects on the environment. The first step to devise

such polices is to quantify the potential for energy efficiency by analyzing the factors that

impact consumption. This paper proposes a novel approach to analyze large data sets of

residential electricity consumption to derive insights for policy making and energy efficiency

programming. In this method, underlying behavioral determinants that impact residential

electricity consumption are identified using Factor Analysis. A distinction is made between

long-term and short-term determinants of consumption by developing separate models for

daily maximum and daily minimum consumption and analyzing their differences. Finally,

the set of determinants are ranked by their impact on electricity consumption, using a

stepwise regression model. This approach is then applied on a large data set of smart

meter data and household information as a case example. The results of the models show

that weather, location, floor area, and number of refrigerators are the most significant

determinants of daily minimum (or idle) electricity consumption in residential buildings,

while location, floor area, number of occupants, occupancy rate, and use of electric water

heater are the most significant factors in explaining daily maximum (peak) consumption.

The results of the models are compared with those of previous studies, and the policy

implications of the results are discussed.
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1. Introduction

Residential buildings consume 39% of the total electricity in the US, more than any other

sector or building type [65]. Their electricity consumption has increased by 27% from 1990

to 2008 and—provided the expected efficiency gains are realized—is projected to increase by

18% from 2009 to 2035. To meet this demand, 223 Giggawatts of new generating capacity

will be needed between 2010 and 2035, 75% of which is projected to be provided by fossil

fuels [68]. Detailed planning and execution of demand-side energy efficiency programs is

needed to reduce or stabilize residential electricity consumption, and to prevent its harmful

impact on the environment and on energy security [9].

To plan and execute consumption reduction policies and programs effectively, a sound un-

derstanding of the determinants that drive household electricity consumption (such as floor

area, average outside temperature, and number of occupants) is needed [26]. However, be-

cause of lack of easily-accessible, high-resolution consumption data, underlying determinants

of energy use and energy-related behaviors have hardly been examined before [1].

With growing deployment of smart meters and real-time home energy-monitoring services,

data that allow studying such underlying determinants are becoming available (for examples

of studies using high-resolution consumption data, see [8, 64, 47]). However, the methodolo-

gies to analyze the data and infer the results that can be used to support decision making

at the household level have not yet been formalized [1].

To address that gap, this paper proposes a methodology to analyze large data sets of res-

idential electricity consumption to derive insights for policy making and energy efficiency

programming. In particular, it offers a method to disaggregate the impact of structural

determinants (e.g., insulation level of the residence) from behavioral determinants (e.g., oc-

cupant habits). As a case study, we use a large data set of ten-minute interval smart meter

data for 1628 households in the U.S.. The data set is collected over 238 days in 2010, and
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is supported by an extensive 114-question survey of household data. The household survey

covers information about the climate, location, dwelling, appliances, and occupants.

Using this methodology and the data, this paper develops a model to estimate the impact

of each of the following interventions on residential electricity consumption: (a) behavioral

modifications; (b) improving the efficiency of appliances and electronics; and, (c) improving

the physical characteristics of dwellings. By estimating the amount of reduction achievable

through each of these interventions, one can also infer what portion of residential electricity

consumption is outside the scope of the influence of current methods and programs.

In the following sections, we start with a review of existing models for residential electricity

consumption, followed by our methodology and corresponding model. We then describe the

data and preprocessing methods normally needed to prepare the data for modeling. Next, we

present the results of our model applied to the data set introduced above, while comparing

them with the results of previous studies and commenting on potential causes for discrepancy

among the results. Finally, we suggest the policy implications of the results.

2. Review of Residential Electricity Consumption Modeling

Several studies in the past have proposed models to explain determinants of residential

electricity consumption. One of the first groups of studies in this regard were economics-

oriented studies that were published in the aftermath of the 1970’s energy crisis. These

studies primarily focused on informing high-level energy conservation policies such as en-

ergy pricing mechanisms and taxation to manage electricity demand, hence reducing the oil

consumption and the rate of resource depletion [1, 40]. Therefore, they focused primarily

on explaining the decision making process of the households, and in particular explaining

how the consumers respond to changes in price given their income levels; i.e., whether the

decision to reduce electricity consumption is price-elastic, income-elastic, or neither [12, 60].

The explanatory variables used in these models were primarily socioeconomic factors of the

household, or the ownership of certain high-consumption appliances such as refrigerators or
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electric water heaters, while the specific contribution of many end uses or physical charac-

teristics of the dwelling were not included in the models. In other words, these models were

mostly top-down models, providing insights into high-level policy design [62]. For examples

of economics-oriented papers see [6, 27, 28, 31, 34, 38, 16, 56].

However, the purpose of our study is to use a large set of explanatory variables to inform

energy efficiency programs that attempt to reduce consumption by addressing the drivers

of consumption and to understand the interaction of these factors [13]. In other words, our

goal is to create a bottom-up model for electricity consumption, which is different from the

goal of the economics-oriented models.

Another group of studies have attempted to create bottom-up models for electricity con-

sumption by disaggregating the total electricity consumption into its constituent parts in a

process called Conditional Demand Analysis (CDA) [2, 5, 11, 36, 24, 41, 46, 50, 62]. These

studies adopt an econometrics perspective, attempting to explain aggregate consumption

data based on a selected stock of appliances. Therefore, the effect of behavior and other

variables such as climate are merged with the effect of appliances, mainly because one goal

of these studies is to minimize the amount of data requirements for end use consumption es-

timation. However, since the effect of occupant behavior is explained in the context of using

a few major appliances, it is not feasible to disaggregate the effect of structural determinants

(e.g., insulation of the house, efficiency of the appliances) from the behavioral aspects (e.g.,

usage levels, conservation efforts of the occupants) using these models.

A third group of studies have analyzed the role of occupants in residential electricity con-

sumption, sometimes with contrasting results: while some studies have estimated that oc-

cupancy and occupant behavior can impact residential energy consumption by a scale of

two (e.g., see [57]), others have observed no significant correlation between occupant behav-

ior and electricity use (e.g., see [15]). Most behavioral analysis studies have only analyzed

the behavioral determinants1 of electricity consumption [60]; the few studies that have also

1also called “internal” factors in behavioral studies literature
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included structural determinants2 use aggregate consumption data or a limited number of

explanatory variables. These studies normally adopt a behavioral sciences or behavioral

economics point of view. For examples of these studies see [3, 35, 55].

3. Summary of Limitations of Existing Models

For our purposes, we need a bottom-up model that can make use of high-resolution electricity

consumption data and a large set of information about the households. Existing models

cannot support the use of high-resolution data due to:

(a) Use of aggregate (low-resolution) consumption data: Most studies in the past

have used monthly billing data, mainly because the advanced metering technologies of today

were not easily accessible [2, 5, 11, 36, 24, 41, 46, 50, 62]. However, Masiello and Parker

[47] show that residential electricity consumption has strong temporal variation, which is

not captured with low-resolution consumption data such as monthly bills.

(b) Partial set of explanatory variables: A large number of previous studies have

analyzed only a partial set of residential electricity consumption determinants; e.g., only

appliance stock, weather conditions, or behavioral factors [12, 60]. However, the interaction

between different factors (e.g., the relationship between weather, appliance load, lighting

load, and heating load) offer considerable potential for improving energy efficiency [1]. An-

other limitation of some of the previous studies is the use of “bundle” variables (such as zip

code) that combine (hence obscure) the effect of several underlying determinants.

(c) No distinction between “idle” consumption of the house and peak consump-

tion: Most studies in the past have either looked at peak consumption (mostly at the utility

level) or the total electricity load. However, understanding the lower limit of electricity con-

sumption (i.e., the part of consumption that is almost constant, regardless of active end uses)

2also called “external” or ”contextual” factors in behavioral studies literature
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enables policy makers and planners to quantify the potential for energy efficiency. In this pa-

per we also show that the distinction between idle and maximum consumption distinguishes

the ways in which different factors impact electricity consumption.

(d) Using energy intensity as the only indicator for analyzing electricity con-

sumption: Most studies have used energy intensity (kWh per square foot) as the metric

to measure residential electricity consumption [6, 27, 28, 31, 34, 38, 16]. This designation

implies that, for example, a refrigerator in a 2000 sq.ft house will consume twice as much as

the same refrigerator in a 1000 sq.ft house, even when all other factors are held constant. In-

stead, we scale only those factors whose consumption is dependent on floor area by the area

of the house (e.g., lighting and heating loads), and use the actual kWh value for other factors.

The following section describes our proposed solution to address these shortcomings.

4. Model Setup

Our proposed model addresses the limitations of existing models by: (a) classifying ex-

planatory variables based on their physical properties, and their interaction with each other

and with electricity consumption; (b) selecting the most significant variables; (c) identify-

ing different features of high-resolution smart meter data that offer a better understanding

of residential electricity consumption; and (d) fitting the model via a stepwise method to

identify the ranks of most important variables.

4.1. Explanatory Variables. Through a review of the residential electricity consumption

models and building sciences literature [26], we identified four major categories of residential

electricity consumption determinants (Table 2):

(1) Weather and location. Examples: daily outdoor temperature and climate zone;

these determinants are normally outside the scope of influence of the household.
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Table 1. Comparison of the categories of determinants influencing residential elec-
tricity consumption, and the (perceived) level of effort required to modify each.

Determinant Category Scope of Investment Persistence

Weather and location Outside influence scope Long-term with seasonal variations
Physical characteristics of dwelling Long-term Long-term
Appliance and electronics stock Medium to short-term Medium to short-term
Occupancy Normally outside the scope of concern Long-term
Occupant behavior Normally short-term Short to medium-term

(2) Physical characteristics of the building. Examples: level of insulation and fuel

use for water heating; modifying these determinants is normally considered long-term

investments.

(3) Appliance and electronics stock. Examples: the number of refrigerators or com-

puters; modifying these determinants is normally considered medium to short-term

investments.

(4) Occupancy and occupants’ behavior towards energy consumption: determi-

nants in this category have different levels of effort and impact span. Some behavioral

modification determinants such as proper management of thermostat settings are of

short-term effort and impact. Another group of determinants are associated with

long-term effort and impact (such as purchasing energy-efficient appliances). Finally,

some determinants in this category are outside the scope of interest of occupants to

change (such as occupancy level during the day).

Table 2 maps the residential electricity consumption determinants to the level of effort and

investment commonly associated with them.

Several questions of the survey were targeted at collecting a few behavioral characteristics of

the households from different perspectives; therefore, multicollinearity between these ques-

tions was an issue. We used Factor Analysis [63] to (a) remove multicollinearity of the

variables, and (b) identify latent, underlying behavioral variables that were not captured

directly by questions. This approach eases the interpretation of the results, since factors
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Table 2. Summary of the impact of each of the categories of determinants on
residential electricity consumption. The results are summarized from models without
floor area, hence the smaller contribution of physical characteristics of buildings to
electricity consumption. Zip code is also not included in these models; however,
weather variables mostly covered the explanatory potential of zip code.

Determinant Category Scope of Investment Explain % of the Variation in Elec. Consumption by

Total Max Min Max-Min

Weather and location Outside influence scope 41% (summer) 33% (summer) 26% (summer) 27%
Physical characteristics
of dwelling Long-term 2-5% 4-11% – 6-24%
Appliances and electronics Medium to short-term 6-8% 6-9% 10-11% 5-6%
Occupancy Normally outside 5% 2-8% 2% 3-7%

the scope of concern
Occupant behavior Normally short-term 2-25% 13% 4-26% –

that are created by Factor Analysis are linear combinations of the original variables, hence

have physical significance and can be labeled.

In short, Factor Analysis identifies the set of k latent factors (f1, f2, ..., fk) that drive q

observable variables (e.g., survey questions) indexed as xt = (x1, x2, ..., xq), where k < q,

(Equation 1, [19]):

(1) x = Λf + u

Where Λ is the q×k matrix of factor loadings (regression coefficients of observable variables

on latent variables), and f and u are q × 1 matrices of factors and variances.

While estimating Λ by the Maximum Likelihood method, Factor Analysis identifies a rota-

tion and a scale of Λ that contracts as many coefficients to zero as possible. Having a sparse

matrix Λ increases the interpretability of the factor model, since any factor will be cre-

ated using only a few observable variables, hence allowing us to bundle several inter-related

variables and label them as a factor.

4.2. Model Selection. When working with a large number of explanatory variables, even

after Factor Analysis, the number of model variables may be too large to support a model
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that is easy to interpret and statistically stable. Furthermore, it is important to identify

the most important variables (those variables that contribute the most to the variation in

consumption) to inform future data collection efforts and avoid collecting data that will

not significantly contribute to the accuracy of the model. Our preferred method for model

selection is forward stepwise selection [29] because (a) it ranks the variables based on their

importance; and (b) in sequentially adding variables to the model, it ensures multicollinearity

does not negatively affect the performance of the model.

The forward stepwise algorithm starts with the mean value of the consumption (i.e., the

intercept) and then sequentially adds to the model the determinant that best improves the

fit, as measured by the Akaike Information Criteria (AIC, [52]), given by Equation 2:

(2) AIC = −2. logL+ 2edf

where L is the likelihood and edf the equivalent degrees of freedom (i.e., the number of free

parameters for usual parametric models) of fit. The use of AIC to evaluate the fit at every

step of adding a new variable to the mix prevents over-fitting the model.

4.3. Response Variables. We considered four different features of the hourly electricity

consumption data: daily average, minimum, maximum, and maximum-minus-minimum (also

called “range”). For example, daily minimum and daily maximum consumption refer to the

lowest and highest values of the hourly consumption data as recorded by the meter (2

extreme values from 24 daily values). Each feature was then used as the response variable

in a separate regression model. Such approach enables disaggregating the role of structural

versus behavioral determinants of consumption.

4.4. Regression Model. We developed a weighted regression model to explain the variation

in household electricity consumption. Those determinants whose contribution to electricity

consumption has a linear relationship with floor area are multiplied by the floor area of
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the residence. For example, poor insulation will cause larger houses to waste more energy

(through increased envelope surface) compared to smaller houses. On the other hand, a

refrigerator has the same consumption level regardless of the size of the house. The majority

of previous papers that we reviewed regress energy intensity (kWh/sq.ft) on all end uses.

The regression equation of our model is given by:

(3) yj = β0j +
M∑
i=1

βijXij + Aj.

K∑
i=M+1

βijXij + εj,

where yj is the electricity consumption (kWh) of household j, Xij is the value of the deter-

minant number i for household j, and βij is the regression coefficient for that determinant.

M is the number of variables (household features) that do not depend on floor area, while

K is the total number of variables, and ε is the error term.

After selecting the p variables that contribute the most to the model fit using forward stepwise

model selection (explained above), and multiplying the floor-area-dependent variables by the

square foot value of the dwelling, we formed a single matrixX and formed the final regression

model as:

(4) y = Xβ + ε,

where y is the n× 1 vector of household consumption values (in kWh), X is a n× (p + 1)

matrix where p is the number of selected variables, ε is a n× 1 vector of residuals, and β is

the (p+ 1)× 1 vector of regression coefficients.

To summarize, our model enables working with large data sets of electricity consumption

data and large household surveys, by (a) using several indicators (electricity consumption

features or load characteristics) in addition to the aggregate load that help understand

different aspects of consumption (e.g., long-term steady idle load versus short-term volatile

peak load); and, (b) choosing variables that contribute the most to those load characteristics.
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Our model also introduces a novel approach to understanding the effect of appliances more

accurately by (c) properly considering the effect of floor area.

5. Data Summary and Preprocessing

We applied our model to a data set of ten-minute interval smart meter data for 1628 house-

holds, collected over 238 days starting from February 28, 2010 through October 23, 2010.

Detailed data about household characteristics were available via a 114-questions online sur-

vey. The survey questions covered a wide range of characteristics including climate and

location, building characteristics, appliances and electronics stock, demographics, and be-

havioral characteristics of occupants. The following sections explain the data in more detail.

5.1. Consumption Data. Participant households were selected through a voluntary en-

rollment in the program, and were provided with a device that recorded the electricity

consumption of the household every ten minutes and sent the data to a central server to be

stored. The device installation and server costs were covered by the experiment adminis-

trators, and participants volunteered to participate merely based on their interest (for more

details of the experiment, refer to [33]).

The consumption data were converted to hourly data (a) to ensure that the fluctuations

in electricity consumption are considered, but not obscured by sudden spikes in the con-

sumption; and (b) to compare the results of our models with those of previous studies on

smart meter data and electricity market analysis [44]. Furthermore, we chose not to remove

extreme-consumption households from the sample to ensure that the model captures deter-

minants that are associated with a wide range of consumption volumes. Such a model would

enable the prediction of likely extreme users in other household samples.

5.2. Household Data. The smart meter data were supported with a detailed survey of

geographical and physical characteristics of dwellings as well as appliance stock, occupant
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Table 3. Summary statistics of the daily maximum, minimum, and average hourly
consumption, averaged over all users in the case study. The variability in daily
minimum hourly consumption is the lowest, and that of the daily maximum is the
largest.

Variable no. of days Min x̃ x̄ Max s
Daily maximum kWh∗ 238 1.7 2.5 2.5 3.5 0.256
Daily minimum kWh∗ 238 0.2 0.4 0.4 0.5 0.039
Daily average kWh∗ 238 0.5 0.8 0.9 1.2 0.1

*Averaged over all households.

0
1

2
3

4

kW
h

03
/0

1/
10

04
/0

1/
10

05
/0

1/
10

06
/0

1/
10

07
/0

1/
10

08
/0

1/
10

09
/0

1/
10

10
/0

1/
10

11
/0

1/
10

Daily Maximum
Daily Average
Daily Minimum

Figure 1. Comparison of daily average, maximum, and minimum consumption,
averaged over all users for each day of the experiment.

profiles, and attitude of occupants towards electricity usage, for a total of 114 questions.

The survey was administered online.
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Table 4. Distribution of survey questions covering four major categories of house-
hold characteristics.

Question Categories No. of Survey Questions
External determinants
Climate and Geography 6

Building Design and Construction
Buildings 5
Home Improvements 12

Building Systems and Appliances
Fuel Use 6
Appliances 14

Occupants
Occupants age and employment profile 12
Energy efficiency habits 14
Payment items, method, estimate, feedback 6
How informed about appliances’ use 5
Motivation level 17
Effort to learn energy efficiency actions 7
Thermostat setpoint 6
Income, age, race, and other personal information 4

Total 114

After collecting the data, 952 households for which reliable smart meter and survey data were

available were selected for the analysis. Less than 3% of survey responses were inconsistent

or missing, for which we imputed data using iterative model-based imputation techniques

([14, 23]). The selected households are located in 419 different zip codes, 140 different

counties, 26 different states, and are spread across all six climate zones defined by the

Department of Energy [65]. California has the largest representation (53% of households)

of all states in the data set. During the data collection process, the weather conditions in

most areas where participant households resided were similar to the 30-year average climatic

conditions; however, some areas, especially in the north east of the U.S., experienced slightly

higher-than-normal temperatures [48]. Average electricity consumption in our sample lies

between California and US averages. Some structural determinants such as household size,

square footage of the house, and the proportion of single family detached units in our sample

are close to US population averages [33]. Furthermore, to ensure that the homogeneity
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of socioeconomic status does not reduce the power of our model in explaining behavioral

determinants, we performed a Factor Analysis of the behavioral variables.

All participants in our study had at least a house member working for a high-tech company.

As such, the attitudes and lifestyles of these families were more homogeneous than the real

sample of US households. In particular, 79% of the participants were engineers, and they were

mostly from well-educated, upper and middle class families. More than 50 percent reported

income higher than $150,000. However, it is worth mentioning that the mix of households in

our study (i.e., well-educated, upper and middle class families who are also early adopters of

new technologies such as home energy monitoring systems) are also more likely to respond to

energy efficiency programs by investing in energy-efficient products [17]. Hence, the results

of our analysis can be particularly helpful to energy efficiency program managers and policy

makers to develop programs specifically targeted towards the households represented by our

sample.

We transformed some variables to better reflect the technical characteristics of buildings.

For example, we transformed the construction year to a categorical variable that indicated

the residential building code that was effective at the time of the construction (i.e., different

revisions of ASHRAE 90.2 [66]). We also included a categorical variable for House Size to

capture the effects of the floor area that are not completely explained by square footage.

For example, when a building’s floor area passes a certain threshold, the type of structural

and architectural material that is used in the building often changes significantly. Since we

do not have a separate variable for floor area and are not dividing the electricity consump-

tion of the dwelling by its floor area, introducing the house size variable does not create a

multicollinearity problem.

We also examined mathematical transformations of the variables, such as power and loga-

rithm transforms, and included those that showed statistically significant correlation with

electricity usage in the regression model. The final model variables are represented in the

Appendix.
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The household survey captured the attitudes of occupants towards energy consumption us-

ing 40 variables, many of which capturing similar behavioral information from different

perspectives. Using Factor Analysis as was explained in previous sections, and informed

by behavioral sciences research, we formed 22 major factors that collectively explain more

than 80% of the information included in the original 40 questions. The 22 variables explain

the attitudes of households in three major dimensions: (1) Energy Efficiency Actions, (2)

Information Seeking Behaviors, (3) Home Improvements Behaviors. Tables in the appendix

provide factor loadings and labels for the behavioral factors.

6. Results

After Factor Analysis and adding a number of transformations of the original variables, the

total number of household variables was reduced from 114 to 97. We fit separate models for

daily maximum, minimum, maximum minus minimum, and average consumption, both for

summer and winter (for the period when the data were available), and ranked the variables

by their importance through a forward stepwise model selection procedure.

Through comparison of these different models, we show that the daily minima are most

influenced by external conditions or physical characteristics of the building. On the other

hand, end uses that are energy-intensive and do not run constantly (e.g., electric water

heater) are mostly influenced the daily maxima. This group of end uses mostly depend on

the occupancy levels and activities of occupants. These results are summarized in Table 5,

Table 6, and Table 7.

Overall, locality (usually measured by a proxy such as Zip Code) and House Size demon-

strate considerable correlation with residential electricity consumption [? ], most likely

because they are correlated with several other variables that characterize a household. For

example, Zip Code is often correlated with weather conditions, building type, type of sys-

tems used in the building, building materials, and socioeconomic status of the household.
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On the other hand, House Size is often correlated with affluence, socioeconomic status,

number of residents, and appliance stock. We fitted separate models with and without Zip

Code (using the first two digits of zip code to avoid over-fitting) and House Size to (a)

study the impact of locality and house size on electricity consumption, and (b) identify the

variables that are obscured by zip code and house size through a comparison of the models

with and without these two variables.

6.1. The Effect of External Determinants on Residential Electricity Consump-

tion. As it is expected, when included in the model, Zip Code is a significant determinant of

household electricity consumption, contributing by up to 46% to the variability in consump-

tion. However, once Zip Code is removed from the models, underlying drivers of electricity

consumption such as Cooling Degree Days are highlighted. This is expected because Zip

Code is a proxy for climate and weather, and hence obscures cooling degree days when it is

present in the model.

Cooling Degree Day(CDD) is the dominant factor in the summer, explaining 38% of the vari-

ability in total electricity consumption. On the other hand, Heating Degree Day (HDD) is

not a significant factor, even in the winter model. We offer an explanation for this observation

in subsection 6.2.
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Table 5. Summary of the most important factors explaining different aspects of residential electricity consumption. (F:
full model; P: partial model (excluding Zip Code and Floor Area))

Variable Min Max Max-Min Average

Summer Winter Summer Winter Summer Winter Summer Winter

F P F P F P F P F P F P F P F P
Ave. of CDD 26% 31% 27% 38%
Climate Zone 2% 3%
Zip Code 12% 12% 39% 26% 37% 25% 46% 17%
House Size 2% 21% 11% 2% 9% 12% 23%
Type of bldg 12% 2%
Ownership of elec.
water heater 4% 4% 11% 2% 6% 5% 12% 2% 5%

Ownership of elec.
clothes dryer 2% 2% 3% 3% 2% 4%

Nb of spas/pools 2% 2% 2%
Nb of freezers 3% 2%
Nb of refrig’s 7% 7% 7% 7% 3% 4% 4% 3% 2% 2% 3% 2% 3% 4% 6% 6%
Nb of entert’t devices
Except TV’s 3% 2% 4% 2%

Total nb of occup’ts 8%
Total nb of occup’ts
(sq. rt) 2% 2% 2% 4% 2% 3% 7% 4% 2% 2%

Pet ownership 2% 2% 2% 4% 3% 2% 3%
Purchasing E-Star Appl’s 2% 2% 2% 3% 2%
Energy Conserv’n w.r.t.
Elec. Heater Usage 2% 2% 2% 2%

Turning lights off
when not in use 19% 13% 20%

Motivated to reduce coumspt’n
to address Global Warm. 2% 2% 3%

Summer model: total number of variables: 93; R2
adj=0.52

Winter model: total number of variables: 82; R2
adj=0.48
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Table 6. Summary of the model coefficients of the most important factors explaining different aspects of residential
electricity consumption for minimum and maximum consumption models. (F: full model; P: partial model (excluding Zip
Code and Floor Area)

Variable Min Max

Summer Winter Summer Winter

F P F P F P F P
Ave. of CDD 0.005 0.001 0.052
Climate Zone -0.35 to +0.12

(ave: -0.03)
Zip Code -0.30 to +1.66 -0.27 to 1.13 -1.47 to +3.51 -2.64 to +2.50

(ave: 0.26) (ave: 0.13) (ave: 0.011) (ave: 0.03)
House Size -0.28 to +0.75 -0.04 to +0.13 -0.35 to +3.35 -1.40 to +1.73

(ave: 0.04) (ave: 0.38) (ave: 0.74) (ave: 0.74)
Type of bldg

Ownership of elec.
water heater 0.670 1.009

Ownership of elec.
clothes dryer 0.344 0.396

Nb of spas/pools
Nb of freezers 0.061 0.234
Nb of refrig’s 0.308 0.305 0.106 0.239 0.941 1.08 0.941
Nb of entert’t devices
Except TV’s 0.020 0.013 0.019 0.026

Total nb of occup’ts -0.05
Total nb of occup’ts
(sq. rt) 0.987 1.14 0.792

Pet ownership 0.036 0.042 0.021 0.029 0.058 0.148
Purchasing E-Star Appl’s 0.008 0.013 0.013 0.015
Energy Conserv’n w.r.t.
Elec. Heater Usage -0.026 -0.015 -0.017

Turning lights off 0.046
when not in use

Motivated to reduce coumspt’n
to address Global Warm.

Summer model: total number of variables: 93; R2
adj=0.52

Winter model: total number of variables: 82; R2
adj=0.48
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Table 7. Summary of the model coefficients of the most important factors explaining different aspects of residential
electricity consumption for maximum-minimum and average models. (F: full model; P: partial model (excluding Zip Code
and Floor Area)

Variable Max-Min Average

Summer Winter Summer Winter

F P F P F P F P
Ave. of CDD 0.041 -0.09 to +0.15

0.041 (ave: 0.00)
Climate Zone 3%
Zip Code -1.52 to +3.23 -2.69 to +1.72 -0.47 to +2.56 -0.59 to +1.56

(ave: 0.088) (ave: 1.10) (Ave: 0.47) (ave: -0.01)
House Size -0.09 to +2.65 -0.31 to +2.22 -0.54 to +1.79

(ave: 0.71) (ave: 0.54) (ave: 0.21)
Type of bldg -0.17 to +0.45

(ave:0.25)
Ownership of elec.
water heater 0.830 0.652 0.151 0.204 0.255

Ownership of elec.
clothes dryer 0.388 0.344 0.387

Nb of spas/pools 0.304 0.272 0.230
Nb of freezers 0.155
Nb of refrig’s 1.095 0.875 0.801 0.184 0.187 0.186 0.429
Nb of entert’t devices
Except TV’s 0.038

Total nb of occup’ts
Total nb of occup’ts
(sq. rt) 1.020 0.736 0.920 0.723 0.249 0.169

Pet ownership 0.134 0.052 0.051
Purchasing E-Star Appl’s 0.014
Energy Conserv’n w.r.t.
Elec. Heater Usage -0.041 -0.051

Turning lights off
when not in use 0.080

Motivated to reduce coumspt’n
to address Global Warm. -0.020 -0.024

Summer model: total number of variables: 93; R2
adj=0.52

Winter model: total number of variables: 82; R2
adj=0.48
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6.2. The Effect of Physical Characteristics of the Dwelling. Type of building and

house size are the most important factors among building characteristics in our models, while

house age and ownership status do not show significant impact on electricity consumption

in our sample. Other variables such as insulation level and installation of energy-efficient

lighting fixtures show correlation with reduced electricity use when analyzed individually;

however, in the full model with other variables they do not show a significant impact. The

following sections explain these results in more detail.

6.2.1. Type of building. Type of Building is most significant in the winter daily maximum

model where heating load dominates. In the winter, households who live in multifamily

apartments have the lowest daily maximum consumption (per household), followed by town

houses; finally, detached (free-standing) houses have the highest daily maximum consumption

in the winter. Similar results are reported by Guerra Santin et al. [25] and Haas [26].

6.2.2. House size. Based on the results of our models, the effect of House Size is more

pronounced in the winter models: while House Size explains 21% of winter minimum load,

it only explains 2% of the minimum load during summer. The large difference between House

Size’s impact on summer and winter load shows that heating load is more dependent on

the size of the house, compared to cooling load that has an intermittent load nature: a

larger house not only requires more heating energy to warm up, but also has higher heat loss

through larger building envelope areas.

Inverse to daily minimum and average loads, the effect of House Size on daily maximum and

maximum-minimum is more pronounced during the summer. Again, this can be explained

by the inherent relationship of house size and space conditioning load. In the summer, when

the dominant space conditioning load is cooling load, house size is a major contributor to

daily maximum load, because cooling load (air conditioning electricity consumption) is often

active only during a few hours of a day, peaking at certain times.



DATA-DRIVEN ENERGY EFFICIENCY 21

6.2.3. House age. We did not observe any significant difference in the electricity consump-

tion of houses of different ages. While some previous studies have observed an increase in

household electricity consumption of new houses due to more penetration of air conditioning

and other high-consumption appliances [67], other studies have observed the reverse, report-

ing a decrease in household electricity consumption for newer houses, and have attributed

that pattern to improved insulation and use of more efficient lighting and air conditioning

stock [43, 45]. In our data, these two forces have canceled out each other’s effect, resulting

in a uniform trend between household electricity consumption and the age of the house. An-

other possible explanation for the uniform trend in our data is that the physical conditions

of buildings have been maintained through time, possibly due to the enforcement of building

regulations.

To further study the impact of building codes on residential electricity consumption, we

grouped the households into different time periods based on the prevalence of different

ASHRAE 90.2 residential building codes. We observe that the houses that were built before

1975 consume less electricity than the houses that were built between 1993 and 2003 (the p-

values of two indicator variables built between 1993 and 2001 and built between 2001

and 2003 in the ANOVA model between total kWh consumption and house age are 0.00266

and 0.00105, respectively). This trend can be attributed to factors mentioned above, such

as increased penetration of air conditioners and other high-consumption appliances.

6.3. The Effect of Appliance Stock and Electronics. As Table 6 and Table 7 show,

Number of Refrigerators is a statistically significant factor in almost all models, but its

effect is more highlighted in the daily minimum consumption (about 7% in minimum, com-

pared with 3-4% in maximum consumption models). The number of refrigerators explains

such a large part of the variability in electricity consumption because (a) refrigerators are

the largest electricity consumer among household appliances, and (b) the secondary refrig-

erators in the US households are on average considerably older (and less-efficient) than the
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primary refrigerators [67]. Therefore, the ownership of more than one refrigerator in a house-

hold implies a high probability of having an inefficient, high-consumption fixture, hence the

significant contribution of the number of refrigerators to household electricity consumption.

Other than refrigerators that have a steady load, most high-consumption, intermittent ap-

pliances such as Electric Water Heater, Electric Clothes Dryer, and Spas/Pools pri-

marily contribute to daily maximum consumption. These are the appliances that are not

“always on” and their operating schedules are dependent on the activities and habits of

the occupants. Therefore, they are indicators of (and are driven by) occupants’ habits and

activities rather than the location and physical characteristics of the dwelling, hence their

correlation with daily maximum load.

Several previous studies have also shown the large impact of high-consumption appliances

on total electricity consumption. For example, according to the U.S. Energy Information

Administration, air conditioners, electric water heaters, and laundry appliances consume

16.0%, 9.1%, and 6.7% of the total electricity consumption in US households, respectively

[67]. Similary in Europe, according to EuroAce, 57% of the energy consumed in buildings

is used for space heating, 25% for hot water, 11% for lighting and electrical appliances, and

7% for cooking [37].

6.4. The Effect of Occupants. We analyzed the effect of occupants from three different

perspectives: the effect of occupancy level, the effect of occupant behavior (long-term habits

and preferences), and the effect of occupant socioeconomic status. The following section

summarizes our results for each perspective.

6.4.1. The Effect of occupancy level. Number of Occupants is a significant variable in ex-

plaining daily maximum models while it is not a significant variable in daily minimum

models, which supports the notion that the presence of occupants primarily impacts the

consumption in excess of the daily minimum. Furthermore, the models suggest a non-linear
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relationship between household electricity consumption and the number of occupants, select-

ing the Square Root of Number of Occupants over the Number of Occupants. In other

words, our model verifies that when the number of occupants double, electricity consumption

increases at a slower rate (1.4 in our data), leading to the conclusion that larger households

have higher aggregate electricity consumption but lower per capita consumption. A similar

concave non-linear relationship between number of occupants and electricity consumption

has been reported by [7, 30, 70].

Pet Ownership (a proxy for determining whether the house is “active” during the day or

not) is a statistically significant factor in all of the models, while the magnitude of its

impact is the largest for the summer daily minimum, winter daily maximum, and winter

daily maximum-minimum models. Table 8 shows the results of our analysis of the impact

of pet ownership on electricity consumption, after removing the effect of other significant

variables. We are not aware of any study that has studied the impact of pet ownership on

residential electricity consumption; however, previous studies have reported similar results

for the impact of occupancy on residential electricity consumption [25].

Table 8. Comparison of consumption levels of pet owners versus non pet owners.
This table reports the statistics of the dummy variable “Pet Ownership” in different
models.

Regression Model Determinant Coeff. Estimate P-Value

Max-Min | Summer Pet Ownership 0.08 0.015585
Max-Min | Winter Pet Ownership 0.13 1.49E-05
Max | Summer Pet Ownership 0.12 0.000286
Max | Winter Pet Ownership 0.15 4.00E-06
Min | Summer Pet Ownership 0.04 8.19E-06
Min | Winter Pet Ownership 0.02 0.003058
Average | Summer Pet Ownership 0.06 0.000358
Average | Winter Pet Ownership 0.05 3.34E-05

6.4.2. The Effect of Long-Term Habits and Preferences. Behavioral factors that have long-

term impacts (such as Purchasing Energy-Star Appliances and Air Conditioners) or

are considered long-term habits (such as Energy Conservation When Using Electric Heater;
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i.e., adjusting thermostat settings moderately and according to occupancy) are significant

explanatory variables for daily minimum consumption.

As Table 6 (variable coefficient estimates) shows, in the daily minimummodel, the behavior of

Purchasing Energy-Star Appliances and Air Conditioners has a positive coefficient.

This suggests that, in our study sample, contrary to common belief, households that have

expressed motivation to buy energy-efficient appliances and air conditioners have higher levels

of daily minimum consumption, after adjusting for all other variables. Similar observations

have been reported by several previous researchers, leading Sütterlin et al. [61] to declare that

“the green purchaser is not necessarily the green consumer”. Some researchers have attributed

this behavior to the “rebound effect” where an increase in the efficiency of appliances results

in increased use of them [1, 9].

Another long-term habit is Turning Off Lights When Not in Use, which is significant for

most winter models. However, the variable that represents the habit of Turning Lights Off

When Not In Use manifests a significant geographical pattern, as it becomes insignificant

when Zip Code is included in the model. While turning unnecessary lights off reduces con-

sumption, the effect of its associated variable is augmented in our sample by the geographical

distribution of the households on the two coasts that have declared environment-conscious

behavior, and at the same time benefit from milder climate throughout the year. Therefore,

further data are needed to quantify the individual effect of energy-conscious behavior of

turning off unnecessary lights.

6.4.3. Effect of Income Level. We did not observe any statistically significant correlation

between Income Level and electricity consumption. In our sample, more affluent house-

holds tend to have lower daily maximum consumption values in the summer compared to

less-affluent households, because they have more energy-efficient appliances on average (see

Figure 2). This is significant because the most important determinants of the summer daily
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maximum model are (model coefficients in parenthesis): cooling degree days (0.052), owner-

ship of electric water heater (0.670), ownership of electric clothes dryer (0.344), number of

occupants (0.984), and climate zone (five categorical variables ranging from -0.353 to 0122).

Furthermore, since all participants of the study are well-educated and work in a high-tech

company, one can conclude that once the consumers pass a certain level of education and

awareness of energy efficiency matters, the more affluent they are, the lower their daily maxi-

mum consumption is likely to be, mainly because of improved efficiency of high-consumption

appliances.

The relationship between household income and energy consumption has been the subject

of extensive research. While a large number of studies have concluded that energy con-

sumption increases monotonically with income [10, 12, 20, 69], a number of studies have

reported observing an inverted U-path comparing energy consumption and household in-

come. At the same time, the effect of income on household electricity consumption has

been shown to be mediated by ownership of appliances: since electricity cost makes up a

small percent of households’ expenditure, economic factors such as price of electricity and

income of the household impact the consumption through affecting the stock (quantity and

quality) of appliances rather than having a direct effect (Sudarshan [59] offers more details

on this hypothesis and cites previous works that confirm this hypothesis [16, 50, 54]). This

hypothesis is in agreement with the inverse U-path observation: in the lower-income segment

of the inverted U-path which is the monotonically-increasing part, households acquire more

energy-intensive appliances as the level of income increases. Then, once the income passes

a certain level, in the decreasing segment of the U-path, households purchase more efficient

appliances as their level of income increases [18, 21, 40, 42]. Our data captures the latter

part of the inverted U-path when the energy consumption decreases as the level of income

increases, since we have data from well-educated and middle to upper class households.

The plots of selected stepwise models are included in the appendix to illustrate how a few

important factors explain the variability in residential electricity consumption.
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Figure 2. Daily maximum consumption slightly reduces with increase in income
(not a statistically significant trend). The kWh consumption is not adjusted for any
other effect to enable a direct comparison of kWh consumption versus income.

6.5. Results of Individual ANOVA Models. Other than age, size, and type, other

physical characteristics of the building were not selected by our stepwise model. However,

several of those variables have significant correlation with electricity consumption, but were

not selected for the multivariate model because of their correlation with other variables in

the model. In other words, once a variable is added to the model, it “explains away” the

effect of other variables with which it is correlated. Because of the importance of several

physical characteristics of buildings for policy making and planning for energy efficiency, we

summarize the results of the individual models in this section.

6.5.1. Ownership Status. Our data do not show statistically significant difference in elec-

tricity consumption between rented and owned houses, contrary to several previous studies

which showed that energy consumption is higher in rented houses, especially when the energy

bill is included in the rent as a lump sum [25].
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6.5.2. Insulation level. Insulating the residence significantly contributes to electricity con-

sumption reduction. In our data set, wall insulation shows the largest impact (the p-value

of the ANOVA model of total kWh consumption versus wall insulation is 1.68E−05, and its

coefficient was −0.20). The second most effective insulation is caulking (p-value=0.000863;

coefficient=−0.16), followed by basement insulation (p-value=0.0176, coefficient=−0.11).

Ceiling insulation does not show a significant contribution to the consumption reduction

(p-value=0.169). Our results are in agreement with the majority of previous studies that

have analyzed the impact of insulation on electricity consumption [4, 32, 58].

6.5.3. Energy-efficient lights. Our analysis does not show a statistically significant difference

in the amount of total electricity consumption between households which declared the use of

energy-efficient light bulbs in their houses compared with those who did not (p-value=0.46).

Note that 82% of the population declared the use of energy-efficiency light bulbs, reducing

the statistical power of the hypothesis for the effect of energy-efficient light bulbs.

6.5.4. Double-pane windows. Installing double-pane windows has statistically significant im-

pact on household electricity consumption, although the impact is not physically significant;

i.e., while the p-value of the individual model is low, the coefficient of the regression model

is also very small (p-value=0.00230, coefficient=−0.05).

6.5.5. Programmable thermostats. As expected, programmable thermostats show a signifi-

cant effect in reducing household electricity consumption (the p-value of the ANOVA model

between total kWh consumption and the indicator variable for installation of programmable

thermostat is 1.65E − 08, and its coefficient is −0.29).

6.5.6. Space conditioning equipment. In our sample, Ownership of Electric Heater is not

a significant factor for explaining the variability in household electricity consumption in any

of the models. On the other hand, electric heaters are known to contribute to a large
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portion of household electricity consumption. For example, in the US in 2001, heating, ven-

tilation, and air conditioning (HVAC) accounted for about 30% of total residential electricity

consumption; during that period, electric heaters alone consumed 10% of total household

electricity consumption (which is significant since only 29% of US households used electricity

as the main heating fuel for their houses in 2001) [67]. This discrepancy in our results with

those of previous studies is partly because only 19% of the population indicated that their

central space heater uses electricity, compared with the national average of 29%. On the

other hand, some variables that are related to heating load, such as House Size and Energy

Conservation When Using Electric Heater, are capturing the effect of heating during

the winter.

Number of Air Conditioners is not a statistically significant variable in our models; in-

stead, Cooling Degree Days (CDD) is capturing the effect of air conditioners: CDD ex-

plains 26%, 31%, 27%, 38% of the total variability in residential electricity in the summer

for minimum, maximum, maximum-minimum, and average electricity consumption, respec-

tively. This pattern is in line with the results of previous research that shows that 31% of

total household electricity is consumed by electric air conditioning systems, making thm the

largest consumers of household electricity [67].

7. Conclusions

The electricity consumption of US households has been increasing in the past decades, and

is projected to continue its upward trend [68]. Based on a sound understanding of the

factors that drive household electricity consumption, policy measures can be designed and

implemented to effectively reduce consumption. These measures can target macro-level

factors such as technological developments, regulations, cultural and social norms; or, they

can target micro-level factors such as individual decision-making of households for energy

efficiency and conservation [22, 49]. Summarizing our findings, we showed that:
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(a) Factors that influence residential electricity consumption can be categorized into four

major groups: external conditions (e.g., location and weather), physical characteristics

of dwelling, appliance and electronics stock, and occupants.

(b) Each of the four categories above, on average, has a different time span and effort level for

modification; while location, weather, and occupancy are outside the scope of influence

for modification, physical characteristics of the building, appliance stock, and occupant

behavior factors can be modified in long-term, medium-term, and short-term investment

spans, respectively. Accordingly, the persistence of the modification effect is generally

proportional to the level of effort and investment that was allocated to it.

(c) Daily minimum and daily maximum consumption are explained by different sets of ex-

planatory factors. Daily minimum has a lower variation level compared with daily max-

imum, and is best explained by factors that are steady through time, such as weather

(Degree Days), location (Zip Code), House Size, and Number of Refrigerators. On

the other hand, daily maximum is best explained by large and intermittent loads such

as Electric Water Heater and Air Conditioners.

(d) Using our model, we were able to explain 55-65% of the variability in electricity con-

sumption, as measured by the R2 of the regression model. This is comparable with

most studies in the past. Using variable transformations and other machine learning

techniques [39], we were able to achieve R2 values of above 70%. However, the linear

model is still preferred because it faciliates interpretation because its coefficients have

physical significance (i.e., the coefficients of different variables can be compared with

each other to estimate their physical impact on electricity consumption). Furtheremore,

we deliberately did not use variables such as Zip Code or the households’ estimate of

their electricity bill (both available from the survey) that improve the R2 of the fit, but

add little explanatory significance to the results of the model.

(e) Overall, weather and physical characteristics of the building illustrate more influence

on residential electricity consumption compared to other categories such as occupant

behavior. These results are comparable with the results reported by Guerra Santin
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et al. [25] who showed that building characteristics determine 42% of the variability in

residential electricity consumption, whereas occupant behavior explains 4.2% (see 5 for

our results). Within the physical characteristics of the building, floor area, type of

building, and use of electric water heater contributed the most to consumption,

whereas within the appliance stock, number of refrigerators was the most important

factor. Finally, pet ownership (which can be considered a proxy for the percent of time

that the house is active) was a significant factor in explaining variation in electricity

consumption.

8. Policy Implications

Based on the results of our models, we highly recommend policies and regulations aimed at

improving the thermal performance of buildings, including both improvements to the insu-

lation level of the dwelling and improving the efficiency of the stock of air conditioning and

electric heaters. Since certain end uses such as space heating are more prone to rebound

effects [12], we strongly recommend provisions for regular home energy audits in codes and

regulations [32]. Furthermore, we recommend policies and regulations aimed at improving

the efficiency of the appliance stock. Certain end uses such as refrigerators illustrate great

potential for consumption reduction. Refrigerators consumed 14% of total electricity deliv-

ered to U.S. homes in 2001, only second to air conditioners who consumed 15% [67]. This

situation is exacerbated because the second refrigerator in the US households is on average

considerably older (and less efficient) than the primary refrigerator [67]. This suggests that

many US households do not discard their old, inefficient refrigerator when they purchase a

new one. Therefore, policies and programs that encourage the purchase of energy-efficient

refrigerators must also devise provisions for buying back the old refrigerators or make the

financial incentive contingent on households returning the old refrigerators.

Other kitchen and laundry appliances are also significant contributors to household electric-

ity consumption, and collectively are responsible for 17% (excluding refrigerators) of total
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residential electricity consumption in the U.S. [67]. Most high-consumption, intermittent

appliances such as Electric Water Heater, Electric Clothes Dryer, and Spas/Pools

demand high volume and intermittent electric loads, hence are attractive targets for both

consumption reduction and load shifting programs and policies. Since these end uses are

primarily driven by occupants’ habits and activities rather than the location and physical

characteristics of the dwelling, policies that target reducing electricity consumption of these

high-consumption, intermittent appliances must be focused primarily on behavioral modifi-

cation. For example, educational campaigns encouraging households to use larger loads of

laundry, to lower the temperature of their electric water heaters, or to shift their laundry

time to a more appropriate time in the day can be effective in this regard.

On the other hand, contrary to several previous studies, we did not observe any statistically-

significant correlation between income level and electricity consumption. The slight trend

observed was inverse of previous observations [10, 12, 20, 69]: as Figure 2 shows, more

affluent households in our sample tend to have lower values of peak consumption compared

to less-affluent households. This observation, combined with previous observations on the

ineffectiveness of tax credits in certain populations [51] suggest that tax credits and financial

rewards need to be supported by additional policies to be effective [12].

In terms of the impact of behavioral factors, our study confirmed the views of Cramer [15]

that residential electricity consumption is primarily determined through the way households

use electricity, rather than the way they value energy efficiency. On the other hand, some

energy-saving values impact efficiency through certain longer-term “habits” such as purchas-

ing energy-star appliances. These are also the group of habits that are most influenced

by changes in price of electricity [20]. These observations suggest that behavior modifica-

tion programs can be more effective when supported by monetary and regulatory policies.

Ultimately, the factors that drive consumption can vary significantly from one population

to another. This diversity is even more pronounced when the behavioral determinants of

electricity consumption are studied. Our model is a first step to disaggregate the impact
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of structural determinants from that of behavioral determinants using high-resolution con-

sumption data. However, we observed considerable diversity among the results of previous

works and our model. Therefore, we strongly recommend that future energy-efficiency pro-

gramming efforts collect specific data about target population and use population-specific

data to build models.

9. Contribution

This paper offers several contributions to the body of knowledge in residential electricity

consumption modeling. First, it formalizes a methodology to analyze large data sets of resi-

dential electricity consumption and household information, by using statistical methods such

as Factor Analysis and stepwise regression, and the application of building sciences domain

knowledge. Furthermore, by distinguishing the daily minimum load versus maximum load,

the model offers a novel method to disaggregate the impact of long-term factors versus that

of short-term factors. While most available studies use total consumption to explain residen-

tial electricity usage, using our models we show that different aspects of energy usage such

as daily minimum have different patterns and are explained by different characteristics of

the household (see Figure ?? and Table 5). Furthermore, we show that disaggregating elec-

tricity load allows for identification of the individual impact of factors that drive electricity

consumption. For example, some factors such as ownership of electric clothes dryers only

contribute to daily maximum consumption, while some other factors such as considering en-

ergy conservation when using electric heater only contribute to daily minimum consumption.

This work presents a new method for adjusting for the effect of the floor area of the residence

on its electricity consumption: instead of the common practice of applying a global factor

of the inverse of the floor area, this paper suggests a more realistic model in which only the

impact of those end uses which are correlated with floor area are augmented. Finally, by

applying model selection techniques (i.e., forward stepwise regression), this work identifies a

set of variables that are most important in explaining the variability in residential electricity

consumption. This reduced set of variables (Table 5) can be used in the experimental design
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for future studies, where the number of questions asked in a questionnaire or the amount of

data that can be collected about subjects is limited and should be reduced to the smallest

number of questions that explain an adequate amount of variability in electricity consump-

tion. Ultimately, this paper illustrates how the results of residential electricity consumption

models can be used by policy makers and program managers of energy efficiency programs in

utility companies. Especially, the distinction between short-term, medium-term, and long-

term factors that impact residential electricity consumption can be used by energy-efficiency

planners to inform strategic planning and management of demand-side energy efficiency pro-

grams. Moreover, the paper presents the implications of the model results for building and

appliance codes and regulations and behavioral modification campaigns. Future researchers

in this field can also use the methods presented in this work to analyze large data sets of

smart meter data and household information more efficiently and effectively.

10. Future Work

More data are needed to validate some of the findings of this paper. Specifically, household

data from a more heterogeneous sample over a larger period of time are needed for validating

the generality of these results. The use of self-reports to measure behavior may have intro-

duced some bias in the data, called “social desirability” bias [53]. However, since the purpose

of this study was to explain the variability in electricity consumption, and furthermore the

households in our study were all from middle and upper social class, we assume that the

bias in responses were uniform over the respondents and therefore the results of the model

explain the variability in electricity consumption with a reasonable accuracy.

In this paper, we examined energy consumption and its features such as daily maximum and

minimum consumption, and explained their variability using household data. A potential

follow-up to this study is to develop a metric for quantifying energy efficiency of the house-

holds, and compare households using that metric instead of their consumption data. Such
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metric needs to be defined in a way that recognizes the inherent differences among different

groups of households and at the same time enables comparison across those different groups.
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2. Appendix 1: Summary Statistics of the Study Households

Table B.1. Physical and Geographical Characteristics of Dwellings: Nominal Variables.

Variable Levels n %
∑

%
Climate Zone Cold 175 18.4 18.4

Hot-Dry 65 6.8 25.2
Hot-Humid 71 7.5 32.7
Marine 515 54.1 86.8
Mixed-Dry 25 2.6 89.4
Mixed-Humid 101 10.6 100.0
all 952 100.0

Type of Building Apt 2-4 Units 63 6.6 6.6
Apt 5 Units or More 159 16.7 23.3
Detached 1-Story 171 18.0 41.3
Detached 2-Story 358 37.6 78.9
Detached 3-Story 84 8.8 87.7
Townhouse 117 12.3 100.0
all 952 100.0
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Table B.2. Home Improvements Performed on Dwellings: Binary Variables.

Variable Levels Nb of Households %
Installed Energy-Efficient Lights Yes 785 82.5

No 167 17.5
all 952 100.0

Installed Double-Pane Windows Yes 650 68.3
No 302 31.7
all 952 100.0

Installed Ceiling Insulation Yes 714 75.0
No 238 25.0
all 952 100.0

Installed Basement Insulation Yes 421 44.2
No 531 55.8
all 952 100.0

Installed Wall Insulation Yes 552 58.0
No 400 42.0
all 952 100.0

Installed Caulking Yes 578 60.7
No 374 39.3
all 952 100.0

Installed Programmable Thermostat Yes 692 72.7
No 260 27.3
all 952 100.0

Installed Renewable Energy Generators Yes 16 1.7
No 936 98.3
all 952 100.0

Installed Solar Hot Water Yes 18 1.9
No 934 98.1
all 952 100.0

Installed Energy-Star Air Conditioning Yes 423 44.4
No 529 55.6
all 952 100.0

Installed Energy-Star Appliances Yes 680 71.4
No 272 28.6
all 952 100.0

Installed Energy-Monitoring Device Yes 147 15.4
No 805 84.6
all 952 100.0
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Table B.3. Fuel Use: Distribution of households possessing certain number of
major electric end uses.

Variable Count of End Uses Nb of Households %
∑

%
Electric Central Heater 0 2 0.2 0.2

1 50 5.2 5.5
2 186 19.5 25.0
3 714 75.0 100.0

all 952 100.0
Electric Hot Tub 0 53 5.6 5.6

1 874 91.8 97.4
2 21 2.2 99.6
3 4 0.4 100.0

all 952 100.0
Electric Water Heater 0 3 0.3 0.3

1 696 73.1 73.4
2 208 21.9 95.3
3 45 4.7 100.0

all 952 100.0
Electric Clothes Dryer 0 821 86.2 86.2

1 126 13.2 99.5
2 5 0.5 100.0

all 952 100.0
Electric Oven 0 91 9.6 9.6

1 847 89.0 98.5
2 13 1.4 99.9
3 1 0.1 100.0

all 952 100.0
Electric Stove 0 94 9.9 9.9

1 845 88.8 98.6
2 12 1.3 99.9
3 1 0.1 100.0

all 952 100.0
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Table B.4. Home Appliances and Electronics Stock

Variable Count Nb of Households %
∑

%
Nb of Dishwashers 0 53 5.6 5.6

1 874 91.8 97.4
2 21 2.2 99.6
3 4 0.4 100.0
all 952 100.0

Nb of Refrigerators 0 3 0.3 0.3
1 696 73.1 73.4
2 208 21.9 95.3
3 45 4.7 100.0
all 952 100.0

Nb of Freezers 0 821 86.2 86.2
1 126 13.2 99.5
2 5 0.5 100.0
all 952 100.0

Nb of Washing Machines 0 91 9.6 9.6
1 847 89.0 98.5
2 13 1.4 99.9
3 1 0.1 100.0
all 952 100.0

Nb of Clothes Dryers 0 94 9.9 9.9
1 845 88.8 98.6
2 12 1.3 99.9
3 1 0.1 100.0
all 952 100.0

Nb of Computers 0 2 0.2 0.2
1 50 5.2 5.5
2 186 19.5 25.0
3 714 75.0 100.0
all 952 100.0

Nb of Non-TV Entertainment Devices 0 26 2.7 2.7
1 135 14.2 16.9
2 207 21.7 38.6
3 231 24.3 62.9
4 198 20.8 83.7
5 102 10.7 94.4
6 53 5.6 100.0
all 952 100.0

Nb of TVs 0 51 5.4 5.4
1 415 43.6 49.0
2 282 29.6 78.6
3 179 18.8 97.4
4 20 2.1 99.5
5 2 0.2 99.7
6 3 0.3 100.0
all 952 100.0



DATA-DRIVEN ENERGY EFFICIENCY 43

Table B.5. Home Major Space Conditioning End Uses

Variable Count Nb of Households %
∑

%
Nb of Air Conditioners 0 339 35.6 35.6

1 462 48.5 84.1
2 107 11.2 95.4
3 44 4.6 100.0
all 952 100.0

Nb of Heaters 0 776 81.5 81.5
1 125 13.1 94.6
2 28 2.9 97.6
3 23 2.4 100.0
all 952 100.0

Nb of Spas / Pools 0 829 87.1 87.1
1 115 12.1 99.2
2 7 0.7 99.9
3 1 0.1 100.0
all 952 100.0

Nb of Acquariums and Terrariums 0 884 92.9 92.9
1 58 6.1 99.0
2 8 0.8 99.8
3 2 0.2 100.0
all 952 100.0
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Table B.6. Occupants Age Profiles: Nb of Households with Residents Aged within
Major Age Groups.

Variable Count Nb of Households %
∑

%
Nb of Individuals Under 5yrs Old 0 615 64.6 64.6

1 209 21.9 86.5
2 114 12.0 98.5
3 14 1.5 100.0
all 952 100.0

Nb of Individuals between 6 and 12 0 800 84.0 84.0
1 92 9.7 93.7
2 54 5.7 99.4
3 6 0.6 100.0
all 952 100.0

Nb of Individuals between 13 and 18 0 891 93.6 93.6
1 43 4.5 98.1
2 16 1.7 99.8
3 2 0.2 100.0
all 952 100.0

Nb of Individuals between 19 and 35 0 283 29.7 29.7
1 186 19.5 49.3
2 418 43.9 93.2
3 41 4.3 97.5
4 24 2.5 100.0
all 952 100.0

Nb of Individuals between 36 and 54 0 546 57.4 57.4
1 139 14.6 72.0
2 258 27.1 99.0
3 8 0.8 99.9
4 1 0.1 100.0
all 952 100.0

Nb of Individuals between 55 and 65 0 893 93.8 93.8
1 38 4.0 97.8
2 20 2.1 99.9
3 1 0.1 100.0
all 952 100.0

Nb of Individuals Over 65yrs Old 0 927 97.4 97.4
1 11 1.2 98.5
2 12 1.3 99.8
3 1 0.1 99.9
4 1 0.1 100.0
all 952 100.0
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Table B.7. Occupants Exployment Status: Nb of Households with Residents with
Specified Employment Status.

Variable Count Nb of Households %
∑

%
Nb of Individuals Full-Time Employed 0 14 1.5 1.5

1 501 52.6 54.1
2 373 39.2 93.3
3 43 4.5 97.8
4 21 2.2 100.0
all 952 100.0

Nb of Individuals Part-Time Employed 0 835 87.7 87.7
1 110 11.6 99.3
2 4 0.4 99.7
3 2 0.2 99.9
4 1 0.1 100.0
all 952 100.0

Nb of Individuals Working from Home 0 788 82.8 82.8
1 158 16.6 99.4
2 6 0.6 100.0
all 952 100.0

Nb of Individuals Unemployed 0 669 70.3 70.3
1 244 25.6 95.9
2 26 2.7 98.6
3 10 1.0 99.7
4 3 0.3 100.0
all 952 100.0
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Appendix: Additional Tables and Figures

More details of the model results and performance are offered in this section, along with tables

describing model parameters.
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Table A.1. List of model variables and associated survey questions (structural
determinants questions).

Variable Name Corresponding survey question

Zip.code Zip code of the dwelling
Climat.Zon Climate Zone (inferred from the zip code)
Typ.Bldg What type of building do you live in?
Own.Rent Do you own or rent this home
Year.Built In what year was the residence built?
Floor.Area.C What is the floor area of living space your home?
Floor.Area.Q What is the floor area of living space your home?
Mean.DD Average of degree day values
Mean.DD.Pos Average of positive degree day values
Mean.DD.Neg Average of negative degree day values
Nb.DD.Pos Number of positive degree days
Nb.DD.Neg Number of negative degree days
HI.EE.Lights Have you installed energy-efficient lights in your house?
HI.DP.Win Have you installed double-pane windows in your house?
HI.Cei.Ins Have you installed ceiling insulation in your house?
HI.Bas.Ins Have you installed basement insulation in your house?
HI.Wal.Ins Have you installed wall insulation in your house?
HI.Caulk Have you installed wall caulking in your house?
HI.Prog.Th Have you installed programmable thermostat in your house?
HI.Ren.Gen Have you installed renewable energy generation systems in your house?
HI.Sol.HW Have you installed solar hot water systems in your house?
HI.ESta.AC Do you purchase energy-star air conditioners?
HI.ESt.App Do you purchase energy-star appliances?
HI.E.Monit Have you previously installed energy consumption

monitoring systems in your house?
Elec.Cent.Htr Do you use electricity as the fuel for central heater?
Elec.Hot.Tub Do you use electricity as the fuel for hot tub?
Elec.Water.H Do you use electric water heater?
Elec.Cloth.D Do you use electric clothes dryer?
Elec.Oven Do you use electric oven?
Elec.Stove Do you use electric stove?
Nb.TV How many TVs do you own?
Nb.Comput How many computers do you own?
Nb.Non.TV.Entrmnt How many non-TV entertainment devices do you own?
Nb.DishWas How many dishwashers do you own?
Nb.Refridg How many refrigerators do you own?
Nb.Freezer How many freezers do you own?
Nb.Wash.M How many washing machines do you own?
Nb.Cloth.D How many clothes dryers do you own?
Nb.SpaPool How many spas/pools do you own?
Nb.Acq.Ter How many aquariums or terrariums do you own?
Nb.AC How many AC’s do you own?
Nb.Heater How many heaters do you own?



DATA-DRIVEN ENERGY EFFICIENCY 48

Table A.2. List of model variables and associated survey questions (occupancy
level questions).

Variable Name Corresponding survey question

Ind.Und.5 How many individuals under 5 years old do live in the house?
Ind.6.12 How many individuals between 6 and 12 years old do live in the house?
Ind.13.18 How many individuals between 13 and 18 years old do live in the house?
Ind.19.35 How many individuals between 19 and 35 years old do live in the house?
Ind.36.54 How many individuals betweem 36 and 54 years old do live in the house?
Ind.55.65 How many individuals between 55 and 65 years old do live in the house?
Ind.Ove.65 How many individuals over 65 years old do live in the house?
Tot.Nb.Occpnts Total number of occupants
Pets.YN Do you have pets?
Tot.Income What is your total annual household income?
Birth.Yr What is your birth year?
Gender What is your gender?
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Table A.3. List of model variables and associated survey questions (behavioral
questions).

Variable Name Corresponding survey question

Th.SP.Hm.S In the SUMMER, to what temperature is your thermostat
usually set while you’re at home?

Th.SP.Ot.S In the SUMMER, by how many degrees do you
turn up your thermostat when you leave the house?

Th.SP.Hm.W In the WINTER, to what temperature is your thermostat usually set?
Th.SP.Ot.W In the WINTER, by how many degrees do you turn down

your thermostat when you leave the house?
How.Pay How do you typically pay for your electricity bill?

Over the past three months, how often have you ...
Off.Comp ... turned off computers when not in use?
Off.TV ... turned off TV’s when not in use?
Off.GamCon ... turned gaming consoles off when not in use?
Off.Lights ... turned off lights when leaving the room?
Off.PwrStr ... turned power strip off when leaving the room?
Off.AC ... turned the AC off when leaving the room?
Warm.Cloth ... worn warmer clothes to save energy?
Full.WashM ... used a full laundry load to conserve energy?
Lndry.Cold ... done your laundry in cold water to conserve energy?
Dry.Clo.Li ... dried clothes on line to conserve energy?

In the past three months, how often have you ...
Moni.Onlin ... monitored your electricity consumption online?
Moni.Bill ... monitored your bill online?
Srch.Intnt ... searched the internet for ways to reduce elec. consumption?
Read.Artic ... read articles about energy efficiency?
TV.Story ... attended to TV stories about energy efficiency?
Dscs.En.In ... discussed energy consumption matters inside house?
Dscs.En.Ot ... discussed energy consumption matters outside house?

Your motivation to visualize electricity use is ...
MK.Tot.C ... to know total elec. consumption
MK.App.C ... to know appliances’ consumption
MK.Beh.Imp ... to know the impact of behaviors on usage
MK.Carb.Ft ... to know carbon footprint of your activities
M.Cmpr.Ele ... to compare your electricity usage with others
M.Frcst.Fut ... to forecast future electricity usage
ML.Red.Cns ... to reduce consumption
M.Shr.Info ... to share consumption info
MR.Save.Mo ... to save money
MR.Red.Cns ... to reduce impact on environment
MR.Gd.Czn ... to be a good citizen
MR.Glob.W ... to address global warming
MR.Ene.Sec ... to address energy security concerns
MR.Moral ... to do the moral thing
MR.Fol.Rsp ... to follow the lead of the people you respect
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Table A.4. Factor Loadings of Variables Representing Home Improvements Be-
haviors. Note that the table only shows major loadings for each factor, to facilitate
interpretation of the factors. However, due to Jolliffe (1982), we did not discard any
loadings and created the factors using all non-zero loadings. As a result, this set of
factors explains more than 80% of the total variance of the original variables.

Factor #
1 2 3 4

Installed energy-efficient lights – – – –
Installed double-pane windows – – – 0.73
Installed ceiling insulation 0.70 – – –
Installed basement insulation 0.67 – – –
Installed wall insulation 0.77 – – –
Installed caulking 0.53 – – –
Installed programmable thermostat – – – 0.30
Installed renewable energy generation – 0.93 – –
Installed solar water heater – 0.73 – –
Installed energy-star air conditioners – – 0.41 –
Installed energy-start appliances – – 0.78 –
Installed energy-monitoring devices – – – –
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Table A.5. Factor Loadings of Variables Representing Information Seeking Be-
haviors. Note that the table only shows major loadings for each factor, to facilitate
interpretation of the factors. However, due to Jolliffe (1982), we did not discard any
loadings and created the factors using all non-zero loadings. As a result, this set of
factors explains more than 80% of the total variance of the original variables.

Factor #
1 2 3 4 5 6 7 8 9 10 11 12

How you pay your bill – – – – – – – – – – 0.47 –
Your motivation to install
the smart meter is to know...
consumption consumption – 0.61 – – – – – – – – – –
appliance consumption – 0.64 – – – – – – – – – -=
impact of behavior changes – 0.47 – – – – – – – – – –
carbon footprint of my usage – – – 0.44 – – – – – – – –
compare my usage with others – – – – 0.63 – – – – – – –
better forecast my future bills – – – – – 0.52 – – – – – –
learn how to reduce usage – – – – – – – – – 0.79 – –
share my usage info w/ others – – – – 0.55 – – – – – – –

Your motivation for
reducing elec. usage is to:
save money – – – – – 0.76 – – – – – –
reduce energy consumption – – – – – – – – 0.49 – – –
be a good world citizen – – – – – – – – 0.70 – – –
address global warming – – – 0.87 – – – – – – – –
support energy security – – 0.46 – – – – – – – – –
do the moral thing – – 0.65 – – – – – – – – –
follow the lead
of the people whom I respect – – 0.58 – – – – – – – – –

How activated or excited
do you get when talking or
thinking about energy issues? 0.39 – – – – – – – – – – –

In the past 3 months
how often did you
monitored online elec. account – – – – – – 0.63 – – – – –
monitored your elec. bill – – – – – – 0.58 – – – – –
searched the Internet to
find ways to reduce usage 0.58 – – – – – – – – – – –
read articles
about energy use and impact – – – – – – – 0.90 – – – –
attend to TV series
about energy use and impact – – – – – – – – – – — 0.29
discussed energy use
with adults in the house 0.61 – – – – – – – – – – –
discussed energy use
with people outside the house 0.70 – – – – – – – – – – –
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Table A.6. Factor Loadings of Variables Representing Energy Efficiency Actions.
Note that the table only shows major loadings for each factor, to facilitate interpre-
tation of the factors. However, due to Jolliffe (1982), we did not discard any loadings
and created the factors using all non-zero loadings. As a result, this set of factors
explains more than 80% of the total variance of the original variables.

Factor #
1 2 3 4 5 6

Thermostat Setpoint...
... When Home in Summer 0.85 – – – – –
... When Leaving Home in Summer 0.67 – – – – –
... When Home in Winter – – – – 0.36 –
... When Leaving Home in Winter – 0.99 – – – –
In the past 3 months how often did you:
(when not is use):
... turn off computers – – – – – 0.32
... turn off the TV – – – 0.50 – –
... turn off gaming and entert’t devices – – 0.92 – – –
... turn off the lights – – 0.91 – – –
... turn off power strips – – – – – 0.48
... turn off air conditioning 0.87 – – – – –
... wear warmer clothes to use less heat – – – – 0.44 –
... fill the clothes washer and dishwasher – – – – 0.31 –
... laundry in cold water – – – – 0.26 –
... dry clothes on a line – - – – 0.16 –
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Table A.7. Labels assigned to each of the 22 behavioral factors. Each factor is be-
lieved to represent a certain underlying behavioral characteristic that is not directly
observable, but can be estimated using a combination of observable variables. These
labels show our interpretation of those underlying variables based on an analysis of
the loadings matrix, and identifying how different variables “bunched” together (all
had large factor loading values) in a factor. (EE: Energy Efficiency)

Information Seeking Attitudes
Factor 1 Is a thought leader
Factor 2 Is motivated to learn about electricity

consumption and impact of behavior
Factor 3 Is motivated to reduce usage

for morality reasons
Factor 4 Is motivated to reduce usage

to address global warming
Factor 5 Is motivated to share and

compare electricity consumption
Factor 6 Is motivated to forecast

future consumption and save money
Factor 7 Monitors bill online and in person
Factor 8 Reads articles on energy efficiency
Factor 9 Is motivated to reduce

usage to be a good citizen
Factor 10 Is motivated to learn

how to reduce consumption
Factor 11 Pay electricity bill after

reviewing it (payment method)
Factor 12 Attends to TV stories about EE

Energy Efficiency Actions
Factor 1 Uses air conditioning efficiently
Factor 2 Uses heater efficiently
Factor 3 Turns off lights when not in use
Factor 4 Turns off TV and game consoles

when not in use
Factor 5 Adjusts clothing and activities to conserve electricity
Factor 6 Turns off computers and

power strips when not in use

Home Improvement Actions
Factor 1 Performs home weatherization improvements
Factor 2 Installed on-site renewable energy generation
Factor 3 Purchases energy star appliances and AC
Factor 4 Installed double-pane windows and

programmable thermostat
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Table A.8. Parameter estimations and significance levels for summer daily mini-
mum model, including all variables (1/2).

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.223725 0.286001 0.782254 0.43428
Mean.DD.Pos 0.004987 0.00172 2.899637 0.003831
Nb.Refridg 0.307756 0.098258 3.132114 0.001794
Zip.code2 0.115074 0.152806 0.753075 0.45161
Zip.code6 0.123177 0.274127 0.449343 0.653297
Zip.code7 0.187381 0.147758 1.268164 0.205081
Zip.code8 0.356179 0.166379 2.140772 0.032572
Zip.code10 0.108306 0.149268 0.725582 0.468292
Zip.code11 0.040661 0.148613 0.273601 0.784457
Zip.code12 0.105155 0.312966 0.335994 0.736957
Zip.code15 0.0934 0.149782 0.623574 0.533072
Zip.code16 0.293126 0.274747 1.066893 0.286318
Zip.code17 0.290931 0.27498 1.058009 0.290347
Zip.code19 0.048596 0.183505 0.264822 0.79121
Zip.code20 0.413367 0.161856 2.553923 0.010822
Zip.code21 0.139271 0.218945 0.636102 0.524879
Zip.code22 1.655814 0.221775 7.466174 2.02E-13
Zip.code23 0.571786 0.279238 2.047664 0.040895
Zip.code27 -0.13947 0.218811 -0.63742 0.524022
Zip.code28 0.437003 0.166252 2.628558 0.008727
Zip.code29 0.119461 0.160155 0.74591 0.455925
Zip.code30 0.441824 0.149349 2.958339 0.003177
Zip.code32 0.67551 0.279379 2.417897 0.015817
Zip.code35 1.514607 0.271758 5.573358 3.34E-08
Zip.code37 0.477376 0.274221 1.740844 0.082067
Zip.code46 0.433347 0.274025 1.581416 0.114149
Zip.code48 0.161737 0.151271 1.069186 0.285285
Zip.code51 0.03527 0.271731 0.129797 0.896757
Zip.code53 0.153101 0.175936 0.87021 0.384428
Zip.code55 0.264982 0.27676 0.957445 0.338611
Zip.code60 0.103743 0.148246 0.699805 0.484238
Zip.code68 0.480559 0.218993 2.194408 0.028472
Zip.code74 0.183129 0.277742 0.65935 0.509847
Zip.code75 0.536065 0.227454 2.356805 0.018655
Zip.code76 0.177533 0.299335 0.59309 0.553276
Zip.code78 0.422437 0.197131 2.14293 0.032398
Zip.code80 0.143258 0.156629 0.914636 0.360638
Zip.code84 -0.29837 0.311764 -0.95702 0.338823
Zip.code87 0.012928 0.28397 0.045525 0.963699
Zip.code90 0.012326 0.156499 0.078759 0.937242
Zip.code91 -0.01745 0.168416 -0.10362 0.917496
Zip.code92 0.107262 0.171879 0.624052 0.532758
Zip.code94 0.097203 0.144061 0.674732 0.500027
Zip.code95 0.071467 0.145501 0.491178 0.623426
Zip.code96 0.073766 0.274392 0.268833 0.788122
Zip.code97 0.192792 0.14808 1.301946 0.193282
Zip.code98 0.161234 0.144713 1.114166 0.265518
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Table A.9. Parameter estimations and significance levels for summer daily mini-
mum model, including all variables (2/2).

Estimate Std. Error t value Pr(>|t|)

Pets.YN 0.036294 0.008088 4.487366 8.19E-06
Beh.HI.Est.App.AC 0.008055 0.004591 1.754277 0.079738
Beh.EA.Htr -0.02236 0.004883 -4.5783 5.38E-06
Nb.TV 0.023161 0.010063 2.301749 0.021587
Floor.Area.C375 -0.2817 0.185651 -1.51739 0.129535
Floor.Area.C625 -0.19031 0.175765 -1.08274 0.279228
Floor.Area.C875 -0.20556 0.178062 -1.1544 0.248656
Floor.Area.C1250 -0.09441 0.188198 -0.50166 0.616035
Floor.Area.C1750 -0.06735 0.210592 -0.3198 0.749196
Floor.Area.C2250 0.014152 0.241148 0.058686 0.953216
Floor.Area.C2750 0.078228 0.272703 0.28686 0.774288
Floor.Area.C3500 0.127316 0.332087 0.383381 0.701531
Floor.Area.C4500 0.306527 0.410011 0.747606 0.454902
Floor.Area.C5000 0.750373 0.456811 1.642634 0.100823
Beh.EA.Off.Cmp.Pwr -0.05495 0.015441 -3.55881 0.000393
Beh.IS.M.Rd.GlWrm -0.01099 0.003092 -3.55505 0.000398
Beh.EA.Lights.Off 0.074458 0.030979 2.403524 0.016448
Nb.AC.3 0.005694 0.001601 3.555552 0.000398
Nb.Freezer 0.056531 0.025288 2.235474 0.025641
Nb.Non.TV.Entrmnt 0.014653 0.006308 2.322939 0.020414
Beh.EA.TV.Cnsl.Off -0.05851 0.028224 -2.07323 0.038447
Ind.13.18 0.044237 0.012213 3.622044 0.000309
Ind.Und.5 0.038401 0.009262 4.14591 3.72E-05
Nb.SpaPool 0.090375 0.030114 3.001056 0.002768
HI.DP.Win -0.04619 0.014532 -3.1782 0.001535
Beh.HI.Win.Prg.Th 0.020886 0.008929 2.339236 0.01955
HI.Wal.Ins 0.026764 0.009162 2.921276 0.003577
Nb.Comput 0.035378 0.0146 2.423165 0.015591
Nb.Heater.2 -0.01292 0.005313 -2.43176 0.015228
Beh.IS.M.Shr.Cmpr 0.010297 0.003969 2.594579 0.009631
HI.Cei.Ins -0.02105 0.010806 -1.9484 0.05169
Tot.Nb.Occpnts -0.02402 0.0074 -3.24538 0.001218
sqrt.Nb.Refridg -0.48487 0.245049 -1.97867 0.04817
Ind.36.54 0.007259 0.004639 1.564854 0.117984
Elec.Hot.Tub -0.05703 0.038076 -1.49771 0.134574
HI.EE.Lights 0.019121 0.01029 1.858139 0.06349
Beh.IS.Mntr.Bill -0.00807 0.005472 -1.47514 0.140539
sqrt.Tot.Nb.Occpnts 0.101864 0.04977 2.046689 0.040991
Child.YN -0.03168 0.01424 -2.22475 0.026356
Ind.6.12 0.015844 0.008323 1.903628 0.057291
HI.ESt.App 0.016674 0.01041 1.601731 0.109581
HI.ESta.AC -0.01266 0.008513 -1.48665 0.137473
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Table A.10. Parameter estimates and significance levels for winter daily mini-
mum model, including all variables (1/2).

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.45212 0.228711 -1.97682 0.048384
Floor.Area.C375 -0.03724 0.164183 -0.22682 0.820618
Floor.Area.C625 0.002238 0.153554 0.014574 0.988375
Floor.Area.C875 0.037569 0.15377 0.244317 0.807044
Floor.Area.C1250 0.146222 0.159362 0.917542 0.359118
Floor.Area.C1750 0.229407 0.173007 1.325999 0.185195
Floor.Area.C2250 0.31108 0.192932 1.612383 0.107248
Floor.Area.C2750 0.458786 0.214218 2.141679 0.032502
Floor.Area.C3500 0.52733 0.255445 2.064358 0.039285
Floor.Area.C4500 0.803067 0.306209 2.622607 0.008881
Floor.Area.C5000 1.351332 0.342975 3.940033 8.81E-05
Nb.Refridg 0.105466 0.013787 7.649733 5.43E-14
Zip.code2 0.106186 0.133081 0.797906 0.425147
Zip.code6 0.074521 0.243277 0.30632 0.759436
Zip.code7 0.09999 0.12977 0.770517 0.441207
Zip.code8 0.270647 0.146027 1.853408 0.064169
Zip.code10 -0.00345 0.131403 -0.02626 0.979053
Zip.code11 -0.01078 0.131159 -0.08223 0.934487
Zip.code12 0.56748 0.242084 2.344145 0.019299
Zip.code15 0.017935 0.130623 0.137305 0.890822
Zip.code16 0.185006 0.240461 0.76938 0.44188
Zip.code17 -0.01957 0.24006 -0.08151 0.935052
Zip.code19 -0.01445 0.161844 -0.08928 0.92888
Zip.code20 0.163795 0.142917 1.146087 0.25208
Zip.code21 -0.01466 0.192351 -0.07623 0.939256
Zip.code22 1.132723 0.196948 5.751383 1.23E-08
Zip.code23 0.186163 0.24494 0.760035 0.447443
Zip.code27 -0.23169 0.195313 -1.18623 0.235862
Zip.code28 0.151119 0.147376 1.025392 0.305468
Zip.code29 0.109667 0.144782 0.757461 0.448983
Zip.code91 -0.01103 0.151075 -0.07303 0.9418
Zip.code92 0.052781 0.152901 0.345195 0.730033
Zip.code94 0.00486 0.127371 0.038153 0.969574
Zip.code95 -0.00112 0.128799 -0.00867 0.993083
Zip.code96 -0.13317 0.246672 -0.53985 0.589439
Zip.code97 0.20281 0.130925 1.549054 0.121739
Zip.code98 0.080896 0.127336 0.635299 0.525404



DATA-DRIVEN ENERGY EFFICIENCY 57

Table A.11. Parameter estimates and significance levels for winter daily mini-
mum model, including all variables (2/2).

Estimate Std. Error t value Pr(>|t|)

Beh.HI.Est.App.AC 0.013306 0.00328 4.056475 5.44E-05
Beh.EA.Htr -0.01458 0.00428 -3.40539 0.000692
Nb.Non.TV.Entrmnt 0.012522 0.005568 2.248928 0.024771
Nb.SpaPool 0.101823 0.019797 5.143489 3.35E-07
Beh.IS.M.Rd.GlWrm -0.00987 0.002504 -3.94218 8.74E-05
sqrt.Nb.DD.Neg 0.036687 0.007049 5.204531 2.44E-07
Pets.YN 0.021269 0.00716 2.9703 0.003058
Beh.EA.Off.Cmp.Pwr -0.04786 0.013625 -3.51266 0.000467
Ind.13.18 0.022115 0.008757 2.525387 0.011737
Mean.DD.Pos 0.006048 0.002368 2.554218 0.010815
Nb.Comput 0.029687 0.012807 2.318101 0.020679
Mean.DD.Neg -0.0019 0.001919 -0.99114 0.321896
Nb.TV 0.024514 0.008898 2.754941 0.005995
Birth.Yr1960 - 1969 0.019427 0.042935 0.452489 0.651032
Birth.Yr1970 - 1979 -0.02463 0.042316 -0.58201 0.560715
Birth.Yr1980 and after -0.05148 0.043831 -1.17446 0.240536
Birth.YrBefore 1950 0.254568 0.113062 2.251578 0.024602
Birth.YrPrefer not to answer -0.00166 0.054893 -0.03015 0.975952
HI.DP.Win -0.01545 0.008805 -1.75496 0.079625
Nb.Freezer 0.049781 0.021803 2.2832 0.022663
Elec.Oven 0.053364 0.01825 2.924149 0.003545
Nb.AC.2 0.007813 0.004225 1.849094 0.06479
Beh.EA.TV.Cnsl.Off -0.0379 0.024655 -1.53702 0.124659
HI.Cei.Ins -0.02788 0.009642 -2.89191 0.003926
HI.Wal.Ins 0.024647 0.00809 3.046573 0.002386
Ind.Und.5 0.002873 0.005241 0.548172 0.583717
sqrt.Nb.DD.Pos.2 0.01776 0.006108 2.907685 0.003735
sqrt.Mean.DD.Pos -0.06446 0.030019 -2.14732 0.032049
Ind.55.65 -0.01651 0.009118 -1.81095 0.0705
Tot.Income$150,000 - $250,000 0.012106 0.020796 0.582133 0.560631
Tot.Income$250,000 or more -0.03257 0.024578 -1.32506 0.185504
Tot.Income$30,000 - $50,000 -0.1421 0.106788 -1.33072 0.183637
Tot.Income$50,000 - $75,000 -0.13094 0.057514 -2.27668 0.023052
Tot.Income$75,000 - $100,000 -0.00649 0.033177 -0.19547 0.845072
Tot.IncomeDon’t know / Prefer not to answer -0.0246 0.023545 -1.0449 0.296365
Beh.EA.En.Csrv -0.0167 0.010385 -1.60766 0.10828
Elec.Stove -0.03394 0.019953 -1.70099 0.089309
Mean.DD.Pos.2 0.0006 0.000379 1.584375 0.113479
Nb.P.T.Emp -0.01546 0.009164 -1.68746 0.091879
sqrt.Tot.Nb.Occpnts 0.056205 0.027191 2.067049 0.03903
Ind.Ove.65 -0.01562 0.009743 -1.60301 0.109303
HI.Bas.Ins -0.01087 0.007602 -1.4305 0.152938
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Table A.12. Parameter estimates and significance levels for summer daily mini-
mum model, excluding zip code and floor area.

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.16734 0.148018 1.130535 0.258548
Mean.DD.Pos 0.009783 0.001373 7.125907 2.10E-12
Nb.Refridg 0.304529 0.090842 3.35231 0.000834
Nb.Non.TV.Entrmnt 0.019568 0.006606 2.962185 0.003134
Pets.YN 0.041526 0.008325 4.987872 7.31E-07
Beh.EA.Htr -0.02593 0.004993 -5.19258 2.56E-07
Beh.HI.Est.App.AC 0.012653 0.004778 2.648175 0.008232
Nb.Freezer 0.061234 0.024224 2.527848 0.011644
Beh.IS.M.Rd.GlWrm -0.01244 0.00319 -3.89947 0.000103
Typ.BldgBT.Apt.5.units -0.0753 0.038437 -1.95914 0.0504
Typ.BldgBT.Dtch.1stry 0.071324 0.038894 1.833822 0.067006
Typ.BldgBT.Dtch.2stry 0.048351 0.038982 1.240343 0.215167
Typ.BldgBT.Dtch.3stry 0.024814 0.048301 0.513728 0.607567
Typ.BldgBT.TwnHse 0.014659 0.040338 0.363404 0.716387
Nb.AC.3 0.004973 0.001581 3.14556 0.001711
HI.DP.Win -0.04674 0.014334 -3.26073 0.001152
Floor.Area.Q.3 2.56E-12 1.05E-12 2.44343 0.014737
Beh.EA.Off.Cmp.Pwr -0.04732 0.016004 -2.95691 0.003187
Nb.TV 0.028146 0.010574 2.661881 0.007907
Nb.Comput 0.039052 0.014922 2.617026 0.009017
Climat.ZonHot-Dry -0.01895 0.038055 -0.49797 0.618627
Climat.ZonHot-Humid -0.06137 0.036979 -1.65968 0.097322
Climat.ZonMarine -0.03052 0.025138 -1.21391 0.225097
Climat.ZonMixed-Dry 0.011855 0.055489 0.213644 0.830872
Climat.ZonMixed-Humid 0.059082 0.032839 1.799124 0.072329
Beh.EA.Lights.Off 0.080558 0.026064 3.090825 0.002057
Beh.EA.TV.Cnsl.Off -0.0579 0.023205 -2.49509 0.012768
Ind.13.18 0.018095 0.009033 2.003289 0.045441
Beh.IS.M.Shr.Cmpr 0.010037 0.00413 2.430202 0.015282
Ind.55.65 -0.02174 0.010166 -2.13828 0.032759
Beh.HI.Win.Prg.Th 0.019575 0.009098 2.151606 0.03169
sqrt.Nb.Refridg -0.45873 0.22484 -2.04024 0.041614
GenderMale 0.055766 0.02697 2.067692 0.03895
GenderPrefer not to answer 0.004182 0.063703 0.065645 0.947675
Ind.6.12 -0.00986 0.005915 -1.66623 0.096011
HI.ESta.AC -0.01668 0.008773 -1.9011 0.057603
Ind.Ove.65 -0.0172 0.011368 -1.51335 0.130536
HI.ESt.App 0.016389 0.010992 1.490931 0.136325
Elec.Stove 0.026806 0.018117 1.479614 0.139321
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Table A.13. Parameter estimates and significance levels for winter daily mini-
mum model, excluding zip code and floor area.

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.24903 0.136532 1.823971 0.068481
Beh.EA.Lights.Off 0.045672 0.023264 1.963183 0.049926
Nb.Refridg 0.239485 0.078513 3.05026 0.002352
Nb.Non.TV.Entrmnt 0.019209 0.005645 3.402914 0.000696
Beh.HI.Est.App.AC 0.015447 0.003374 4.577654 5.35E-06
Beh.EA.Htr -0.01713 0.00435 -3.93805 8.84E-05
Pets.YN 0.028545 0.007161 3.985873 7.26E-05
Beh.IS.M.Rd.GlWrm -0.01046 0.002628 -3.97832 7.49E-05
Mean.DD.Pos 0.01692 0.002594 6.521936 1.14E-10
Mean.DD -0.00682 0.001271 -5.36844 1.01E-07
Nb.SpaPool 0.075608 0.020432 3.70055 0.000228
Nb.Freezer 0.054141 0.020619 2.62584 0.008787
Nb.Comput 0.043829 0.01285 3.410666 0.000676
Beh.EA.En.Csrv -0.02335 0.010131 -2.3047 0.021405
Nb.TV 0.019884 0.00898 2.214215 0.027059
sqrt.Mean.DD.Pos -0.05377 0.020637 -2.60547 0.009323
Beh.EA.Off.Cmp.Pwr -0.033 0.013824 -2.38723 0.017177
Ind.13.18 0.018431 0.007763 2.37425 0.017789
HI.DP.Win -0.01738 0.008314 -2.0903 0.036865
Typ.BldgBT.Apt.5.units -0.07556 0.0332 -2.27593 0.02308
Typ.BldgBT.Dtch.1stry 0.052881 0.033579 1.574828 0.11564
Typ.BldgBT.Dtch.2stry 0.047881 0.033583 1.425768 0.154275
Typ.BldgBT.Dtch.3stry 0.051321 0.041351 1.241084 0.214891
Typ.BldgBT.TwnHse 0.008521 0.034978 0.243602 0.807593
Floor.Area.Q.3 2.99E-12 9.02E-13 3.317104 0.000945
Nb.Heater 0.011977 0.006855 1.747269 0.080925
Beh.EA.TV.Cnsl.Off -0.04683 0.020954 -2.23488 0.025665
GenderMale 0.052582 0.023244 2.262174 0.023919
GenderPrefer not to answer 0.017293 0.054611 0.316661 0.751573
sqrt.Nb.Refridg -0.34216 0.194028 -1.76348 0.078152
Nb.AC.2 0.00707 0.003976 1.778162 0.075708
Elec.Oven 0.023104 0.014899 1.550679 0.121323
Beh.IS.Pay.Meth 0.024823 0.016147 1.537301 0.124564
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Table A.14. ANOVA table for summer daily minimum model, including all variables.

Step Df Deviance Resid. Df Resid. Dev AIC

1 ’ NA NA 951 119.2955 -1975.27
2 ’ + Mean.DD.Pos -1 31.60908 950 87.68645 -2266.33
3 ’ + Nb.Refridg -1 8.71996 949 78.96649 -2364.04
4 ’ + Zip.code -44 14.61456 905 64.35193 -2470.88
5 ’ + Pets.YN -1 2.931293 904 61.42063 -2513.26
6 ’ + Beh.HI.Est.App.AC -1 2.159643 903 59.26099 -2545.34
7 ’ + Beh.EA.Htr -1 1.672949 902 57.58804 -2570.6
8 ’ + Nb.TV -1 1.523162 901 56.06488 -2594.12
9 ’ + House.Size -10 2.0016 891 54.06328 -2608.73
10 ’ + Beh.EA.Off.Cmp.Pwr -1 1.076723 890 52.98656 -2625.88
11 ’ + Beh.IS.M.Rd.GlWrm -1 0.555471 889 52.43109 -2633.91
12 ’ + Beh.EA.Lights.Off -1 0.465937 888 51.96515 -2640.41
13 ’ + Nb.AC.3 -1 0.453185 887 51.51196 -2646.75
14 ’ + Nb.Freezer -1 0.440174 886 51.07179 -2652.92
15 ’ + Nb.Non.TV.Entrmnt -1 0.37646 885 50.69533 -2657.96
16 ’ + Beh.EA.TV.Cnsl.Off -1 0.34076 884 50.35457 -2662.38
17 ’ + Ind.13.18 -1 0.330545 883 50.02402 -2666.65
18 ’ + Ind.Und.5 -1 0.342495 882 49.68153 -2671.19
19 ’ + Nb.SpaPool -1 0.328239 881 49.35329 -2675.5
20 ’ + HI.DP.Win -1 0.267264 880 49.08603 -2678.67
21 ’ + Beh.HI.Win.Prg.Th -1 0.320682 879 48.76534 -2682.91
22 ’ + HI.Wal.Ins -1 0.250851 878 48.51449 -2685.82
23 ’ + Nb.Comput -1 0.266669 877 48.24782 -2689.07
24 ’ + Nb.Heater.2 -1 0.240997 876 48.00683 -2691.84
25 ’ + Beh.IS.M.Shr.Cmpr -1 0.229504 875 47.77732 -2694.4
26 ’ + HI.Cei.Ins -1 0.237245 874 47.54008 -2697.14
27 ’ + Tot.Nb.Occpnts -1 0.199365 873 47.34071 -2699.14
28 ’ + sqrt.Nb.Refridg -1 0.177826 872 47.16289 -2700.72
29 ’ + Ind.36.54 -1 0.156546 871 47.00634 -2701.88
30 ’ + Elec.Hot.Tub -1 0.146412 870 46.85993 -2702.85
31 ’ + HI.EE.Lights -1 0.139591 869 46.72034 -2703.69
32 ’ + Beh.IS.Mntr.Bill -1 0.138016 868 46.58232 -2704.51
33 ’ + sqrt.Tot.Nb.Occpnts -1 0.110944 867 46.47138 -2704.78
34 ’ + Child.YN -1 0.112897 866 46.35848 -2705.1
35 ’ + Ind.6.12 -1 0.179098 865 46.17938 -2706.78
36 ’ + HI.ESt.App -1 0.103341 864 46.07604 -2706.91
37 ’ + HI.ESta.AC -1 0.117698 863 45.95834 -2707.35
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Table A.15. ANOVA table for winter daily minimum model, using all variables.

Step Df Deviance Resid. Df Resid. Dev AIC

1 ’ NA NA 951 83.81089 -2311.36
2 ’ + Floor.Area.C -10 17.81057 941 66.00031 -2518.8
3 ’ + Nb.Refridg -1 5.875237 940 60.12508 -2605.56
4 ’ + Zip.code -44 10.12915 896 49.99592 -2693.19
5 ’ + Beh.HI.Est.App.AC -1 2.039737 895 47.95619 -2730.84
6 ’ + Beh.EA.Htr -1 1.624814 894 46.33137 -2761.65
7 ’ + Nb.Non.TV.Entrmnt -1 1.404181 893 44.92719 -2788.95
8 ’ + Nb.SpaPool -1 1.029766 892 43.89743 -2809.03
9 ’ + Beh.IS.M.Rd.GlWrm -1 1.047702 891 42.84972 -2830.02
10 ’ + sqrt.Nb.DD.Neg -1 0.752466 890 42.09726 -2844.89
11 ’ + Pets.YN -1 0.753645 889 41.34361 -2860.09
12 ’ + Beh.EA.Off.Cmp.Pwr -1 0.511967 888 40.83165 -2869.95
13 ’ + Ind.13.18 -1 0.5398 887 40.29185 -2880.62
14 ’ + Mean.DD.Pos -1 0.610564 886 39.68128 -2893.16
15 ’ + Nb.Comput -1 0.364589 885 39.31669 -2899.94
16 ’ + Mean.DD.Neg -1 0.311556 884 39.00514 -2905.52
17 ’ + Nb.TV -1 0.296896 883 38.70824 -2910.79
18 ’ + Birth.Yr -5 0.577538 878 38.1307 -2915.1
19 ’ + HI.DP.Win -1 0.298128 877 37.83258 -2920.58
20 ’ + Nb.Freezer -1 0.268043 876 37.56453 -2925.34
21 ’ + Elec.Oven -1 0.22004 875 37.34449 -2928.94
22 ’ + Nb.AC.2 -1 0.198852 874 37.14564 -2932.02
23 ’ + Beh.EA.TV.Cnsl.Off -1 0.154236 873 36.99141 -2933.98
24 ’ + HI.Cei.Ins -1 0.15201 872 36.8394 -2935.9
25 ’ + HI.Wal.Ins -1 0.280359 871 36.55904 -2941.17
26 ’ + Ind.Und.5 -1 0.163606 870 36.39543 -2943.44
27 ’ + sqrt.Nb.DD.Pos.2 -1 0.140943 869 36.25449 -2945.14
28 ’ + sqrt.Mean.DD.Pos -1 0.142814 868 36.11167 -2946.9
29 ’ + Ind.55.65 -1 0.125667 867 35.98601 -2948.21
30 ’ + Tot.Income -6 0.464985 861 35.52102 -2948.6
31 ’ + Beh.EA.En.Csrv -1 0.096326 860 35.4247 -2949.18
32 ’ + Elec.Stove -1 0.10831 859 35.31639 -2950.1
33 ’ + Mean.DD.Pos.2 -1 0.095664 858 35.22072 -2950.68
34 ’ + Nb.P.T.Emp -1 0.092558 857 35.12816 -2951.18
35 ’ + sqrt.Tot.Nb.Occpnts -1 0.106969 856 35.02119 -2952.09
36 ’ + Ind.Ove.65 -1 0.097718 855 34.92348 -2952.75
37 ’ + HI.Bas.Ins -1 0.083483 854 34.83999 -2953.02
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Table A.16. ANOVA table for summer daily minimum model, excluding zip code
and floor area variables.

Step Df Deviance Resid. Df Resid. Dev AIC

1 ’ NA NA 951 119.2955 -1975.27
2 ’ + Mean.DD.Pos -1 31.60908 950 87.68645 -2266.33
3 ’ + Nb.Refridg -1 8.71996 949 78.96649 -2364.04
4 ’ + Nb.Non.TV.Entrmnt -1 3.877855 948 75.08863 -2409.98
5 ’ + Pets.YN -1 2.711534 947 72.3771 -2442.99
6 ’ + Beh.EA.Htr -1 2.327494 946 70.0496 -2472.11
7 ’ + Beh.HI.Est.App.AC -1 2.184354 945 67.86525 -2500.27
8 ’ + Nb.Freezer -1 1.122599 944 66.74265 -2514.15
9 ’ + Beh.IS.M.Rd.GlWrm -1 0.760425 943 65.98222 -2523.06
10 ’ + Typ.Bldg -5 1.466189 938 64.51604 -2534.45
11 ’ + Nb.AC.3 -1 0.587379 937 63.92866 -2541.16
12 ’ + HI.DP.Win -1 0.449391 936 63.47927 -2545.87
13 ’ + Floor.Area.Q.3 -1 0.638175 935 62.84109 -2553.49
14 ’ + Beh.EA.Off.Cmp.Pwr -1 0.572677 934 62.26841 -2560.21
15 ’ + Nb.TV -1 0.439755 933 61.82866 -2564.96
16 ’ + Nb.Comput -1 0.355972 932 61.47269 -2568.45
17 ’ + Climat.Zon -5 0.879509 927 60.59318 -2572.17
18 ’ + Beh.EA.Lights.Off -1 0.377112 926 60.21607 -2576.12
19 ’ + Beh.EA.TV.Cnsl.Off -1 0.381484 925 59.83458 -2580.17
20 ’ + Ind.13.18 -1 0.3055 924 59.52908 -2583.04
21 ’ + Beh.IS.M.Shr.Cmpr -1 0.282887 923 59.24619 -2585.57
22 ’ + Ind.55.65 -1 0.238586 922 59.00761 -2587.42
23 ’ + Beh.HI.Win.Prg.Th -1 0.214254 921 58.79335 -2588.88
24 ’ + sqrt.Nb.Refridg -1 0.201757 920 58.5916 -2590.15
25 ’ + Gender -2 0.315935 918 58.27566 -2591.3
26 ’ + Ind.6.12 -1 0.190194 917 58.08547 -2592.41
27 ’ + HI.ESta.AC -1 0.192551 916 57.89292 -2593.57
28 ’ + Ind.Ove.65 -1 0.15781 915 57.73511 -2594.17
29 ’ + HI.ESt.App -1 0.138475 914 57.59663 -2594.46
30 ’ + Elec.Stove -1 0.137779 913 57.45885 -2594.74
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Table A.17. ANOVA table for winter daily minimum model, excluding zip code
and floor area variables.

Step Df Deviance Resid. Df Resid. Dev AIC

1 ’ NA NA 951 83.81089 -2311.36
2 ’ + Beh.EA.Lights.Off -1 15.94699 950 67.8639 -2510.29
3 ’ + Nb.Refridg -1 6.015745 949 61.84815 -2596.66
4 ’ + Nb.Non.TV.Entrmnt -1 3.286682 948 58.56147 -2646.64
5 ’ + Beh.HI.Est.App.AC -1 2.38564 947 56.17583 -2684.23
6 ’ + Beh.EA.Htr -1 1.903443 946 54.27239 -2715.05
7 ’ + Pets.YN -1 1.218338 945 53.05405 -2734.67
8 ’ + Beh.IS.M.Rd.GlWrm -1 1.344991 944 51.70906 -2757.11
9 ’ + Mean.DD.Pos -1 0.95161 943 50.75745 -2772.79
10 ’ + Mean.DD -1 1.27528 942 49.48217 -2795.02
11 ’ + Nb.SpaPool -1 0.850469 941 48.6317 -2809.52
12 ’ + Nb.Freezer -1 0.552625 940 48.07908 -2818.4
13 ’ + Nb.Comput -1 0.519036 939 47.56004 -2826.74
14 ’ + Beh.EA.En.Csrv -1 0.438643 938 47.1214 -2833.56
15 ’ + Nb.TV -1 0.377906 937 46.74349 -2839.22
16 ’ + sqrt.Mean.DD.Pos -1 0.289743 936 46.45375 -2843.14
17 ’ + Beh.EA.Off.Cmp.Pwr -1 0.321233 935 46.13251 -2847.75
18 ’ + Ind.13.18 -1 0.259776 934 45.87274 -2851.12
19 ’ + HI.DP.Win -1 0.22949 933 45.64325 -2853.9
20 ’ + Typ.Bldg -5 0.610084 928 45.03316 -2856.71
21 ’ + Floor.Area.Q.3 -1 0.428254 927 44.60491 -2863.81
22 ’ + Nb.Heater -1 0.23409 926 44.37082 -2866.82
23 ’ + Beh.EA.TV.Cnsl.Off -1 0.198894 925 44.17193 -2869.09
24 ’ + Gender -2 0.280924 923 43.891 -2871.17
25 ’ + sqrt.Nb.Refridg -1 0.151642 922 43.73936 -2872.46
26 ’ + Nb.AC.2 -1 0.13003 921 43.60933 -2873.3
27 ’ + Elec.Oven -1 0.119799 920 43.48953 -2873.91
28 ’ + Beh.IS.Pay.Meth -1 0.111551 919 43.37798 -2874.36
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Figure A.1. Residual deviance versus model step plot for summer daily mini-
mum model. This plot shows the residual deviance of the model as new variables
(determinants) are added to the daily minimum summer stepwise model. The first
few determinants explain most of the variability. Also note that Floor Area is the
same as House Size explained in the paper.
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Figure A.2. Residual deviance versus model step plot for winter daily minimum
model.
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Figure A.3. Signs of variables are mostly in agreement with the results of pre-
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(smallest floor area) to most positive (largest floor area)
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Figure A.4. Daily minimum consumption is most affected by the location and
physical characteristics of the house, and the appliance stock
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Figure A.6. Residual deviance versus model step plot for summer daily maxi-
mum model. This plot shows the residual deviance of the model as new variables
(determinants) are added to the stepwise model.
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Figure A.7. Residual deviance versus model step plot for winter daily maximum
model.
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Figure A.8. Residual deviance versus model step plot for summer daily maximum
minus minimum model. This plot shows the residual deviance of the model as new
variables (determinants) are added to the model. Daily maximum - minimum model
is very similar to the daily maximum model, but it highlights occupants’ variables
even more because the effect of the longer-term structural determinants (location
and building) is removed by subtracting the daily minimum. The summer model,
even in the presence of zip code and floor area, now includes Number of Occupants,
Ownership of Electric Water Heater, and Number of Refrigerators. When
zip code and floor area are excluded from the summer model, temperature vari-
ables and high-consumption variables increase in rank. The winter model shows
the relationship between maximum load and number of occupants more explicitly:
only the square root of number of occupants appears in the model, implying
that the daily maximum has an inverse quadratic relationship with the number of
occupants. This means if the number of occupants is doubled, the daily maximum
is increased by a factor less than 2, because some of the energy end uses are shared
by the occupants.



DATA-DRIVEN ENERGY EFFICIENCY 72

●

●

●

●

●

●

●

●
●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ● ● ● ●

50
60

70
80

90
10

0

% Residual Deviance for Forward Stepwise Regression
on Max−Min−Winter kWh for All Users | All Variables (Baseline) | R2= 0.48

%
 R

es
id

ua
l D

ev
ia

nc
e

In
te

rc
ep

t
+ 

Zi
p.

co
de

+ 
sq

rt.
To

t.N
b.

O
cc

pn
ts

+ 
El

ec
.W

at
er

.H

+ 
N

b.
R

ef
rid

g

+ 
El

ec
.C

lo
th

.D

+ 
N

b.
Sp

aP
oo

l
+ 

Pe
ts

.Y
N

+ 
N

b.
H

ea
te

r

+ 
In

d.
O

ve
.6

5
+ 

In
d.

19
.3

5

+ 
Be

h.
IS

.F
rc

st
.S

v

+ 
Be

h.
IS

.M
.R

d.
M

or
+ 

H
I.C

au
lk

+ 
H

I.E
E.

Li
gh

ts

+ 
sq

rt.
N

b.
R

ef
rid

g
+ 

N
b.

TV
+ 

In
d.

55
.6

5

+ 
H

I.S
ol

.H
W

+ 
Be

h.
IS

.T
h.

Ld
r

+ 
H

I.E
.M

on
it

+ 
Be

h.
IS

.M
.R

d.
G

lW
rm

+ 
M

ea
n.

D
D

.P
os

+ 
sq

rt.
N

b.
D

D
.N

eg

+ 
sq

rt.
N

b.
D

D
.P

os
.2

+ 
Ye

ar
.B

ui
lt

+ 
N

b.
Fr

ee
ze

r

+ 
sq

rt.
N

b.
AC

+ 
Be

h.
IS

.R
d.

Ar
tc

l

+ 
Be

h.
IS

.E
E.

TV
.S

tr

+ 
H

om
.A

ct
v.

D
ay

t
+ 

In
d.

U
nd

.5

+ 
N

b.
D

is
hW

as

+ 
N

b.
H

ea
te

r.2

+ 
Be

h.
IS

.L
rn

.C
ns

.Im
p

+ 
Be

h.
EA

.O
ff.

C
m

p.
Pw

r

●

●

●

●

●

●

●

●
●

●
● ●

● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ● ● ● ●

Figure A.9. Residual deviance versus model step plot for winter daily maximum
minus minimum model.


	CIFECENTER FOR INTEGRATED FACILITY eNGINEERING
	Copyright © 2012 by
	WP130 content.pdf
	1. Introduction
	2. Review of Residential Electricity Consumption Modeling
	3. Summary of Limitations of Existing Models
	4. Model Setup
	4.1. Explanatory Variables
	4.2. Model Selection
	4.3. Response Variables
	4.4. Regression Model

	5. Data Summary and Preprocessing
	5.1. Consumption Data
	5.2. Household Data

	6. Results
	6.1. The Effect of External Determinants on Residential Electricity Consumption
	6.2. The Effect of Physical Characteristics of the Dwelling
	6.3. The Effect of Appliance Stock and Electronics
	6.4. The Effect of Occupants
	6.5. Results of Individual ANOVA Models

	7. Conclusions
	8. Policy Implications
	9. Contribution
	10. Future Work
	11. Acknowledgments
	References
	2. Appendix 1: Summary Statistics of the Study Households
	Appendix: Additional Tables and Figures


