Study of Timing and Efficiency Properties of Multi-Anode Photomultipliers T. Hadig, C.R. Field, D.W.G.S. Leith, G. Mazaheri, B.N. Ratcliff, J. Schwiening, J. Uher, J. Va'vra

Stanford Linear Accelerator Center, Group EB October 20th, 2004

Using PMTs in Cherenkov detector:

DIRC particle identification subsystem in BaBar detector

Thomas Hadig, IEEE 04 Conference, Rome, Oct 20th, 2004

Using PMTs in Cherenkov detector:

DIRC particle identification subsystem in BaBar detector $\approx 11000~{\rm EMI}~9125{\rm FLB17}~{\rm PMTs},$

1.7 ns timing resolution, 30 mm diameter Measuring PMT position and photon arrival time Timing mainly used for signal vs. background separation

Using PMTs in Cherenkov detector:

DIRC particle identification subsystem in BaBar detector $\approx 11000~{\rm EMI}~9125{\rm FLB17}~{\rm PMTs},$

1.7 ns timing resolution, 30 mm diameter Measuring PMT position and photon arrival time Timing mainly used for signal vs. background separation

Event display without(top) and with(bottom) time cut

Using PMTs in Cherenkov detector:

DIRC particle identification subsystem in BaBar detector $\approx 11000~{\rm EMI}~9125{\rm FLB17}~{\rm PMTs},$

1.7 ns timing resolution, 30 mm diameter Measuring PMT position and photon arrival time Timing mainly used for signal vs. background separation

Performance:

	Current limit	Could be improved by
size of bar	pprox 4.1 mrad	focusing optics
size of PMT pixel	$pprox 5.5~{ m mrad}$	smaller pixel size
chromaticity		
$n=n(\lambda)$	$pprox 5.4~{ m mrad}$	better time resolution
total single photon	$pprox 9.6~{ m mrad}$	
total per track	pprox 2.4 mrad	

Event display without(top) and with(bottom) time cut

Burle MCP 85011

Hamamatsu PMT H-8500

Multiplier	$25~\mu{ m m}$ pore MCP	12 stage metal channel dynode	
Effective area	$51~{ m mm} imes 51~{ m mm}$	$49~{ m mm} imes 49~{ m mm}$	
Packing density	67%	89%	
Spectral response	$165~nm\dots 660~nm$	$300~nm\dots650~nm$	
Gain	$0.5 imes10^6$	$1 imes 10^6$	
Uniformity	1: 1.25	1:3	
Transit time spread50 ps 60 ps400 psall data from company data sheets)			

Thomas Hadig, IEEE 04 Conference, Rome, Oct 20th, 2004

Light source

Pilas pico-second laser $\lambda = 635 \text{ nm}/430 \text{ nm}$ $\sigma_{\text{pulse}} < 35 \text{ ps}/60 \text{ ps}$ Operated in single photon modeMotion Controller:

Repeatability $< 7 \ \mu$ m

Light source

Pilas pico-second laser $\lambda = 635 \text{ nm}/430 \text{ nm}$ $\sigma_{\text{pulse}} < 35 \text{ ps}/60 \text{ ps}$ Operated in single photon mode

Motion Controller:

Repeatability $< 7 \ \mu$ m

PMT

Hamamatsu H-8500/Burle MCP-85011

Laser Intensity Monitoring

Two standard PMTs used for calibration (Photonis XP2262B, EMI 9125FLB17)

Light source

Pilas pico-second laser $\lambda = 635 \text{ nm}/430 \text{ nm}$ $\sigma_{\text{pulse}} < 35 \text{ ps}/60 \text{ ps}$ Operated in single photon mode

Motion Controller:

Repeatability $< 7 \ \mu$ m

PMT

Hamamatsu H-8500/Burle MCP-85011

Laser Intensity Monitoring

Two standard PMTs used for calibration (Photonis XP2262B, EMI 9125FLB17)

Amplifier

Elantec, EL2075C, 40×2 , GHz bandwidth

Light source

Pilas pico-second laser $\lambda = 635 \text{ nm}/430 \text{ nm}$ $\sigma_{\text{pulse}} < 35 \text{ ps}/60 \text{ ps}$ Operated in single photon mode

Motion Controller:

Repeatability $< 7 \ \mu m$

PMT

Hamamatsu H-8500/Burle MCP-85011

Laser Intensity Monitoring

Two standard PMTs used for calibration (Photonis XP2262B, EMI 9125FLB17)

Amplifier

Elantec, EL2075C, 40×2 , GHz bandwidth

Readout

Single threshold discrimination

Light source

Pilas pico-second laser $\lambda = 635 \text{ nm}/430 \text{ nm}$ $\sigma_{\text{pulse}} < 35 \text{ ps}/60 \text{ ps}$ Operated in single photon mode

Motion Controller:

Repeatability $< 7 \ \mu$ m

PMT

Hamamatsu H-8500/Burle MCP-85011

Laser Intensity Monitoring

Two standard PMTs used for calibration (Photonis XP2262B, EMI 9125FLB17)

Amplifier

Elantec, EL2075C, 40×2 , GHz bandwidth

Readout

Single threshold discrimination CAMAC based readout 500 ps per count TDC (LeCroy 2277) connected to Linux PC

2D Efficiency Comparison – Red (635 nm)

Burle

Hamamatsu

Scans: $100 \ \mu m \times 1 \ mm$ Efficiency relative to Photonis XP2262B PMT. Burle more uniform, but Hamamatsu higher peak efficiency.

2D Efficiency Comparison – Blue (430 nm)

Burle

Hamamatsu

Scans: $500 \ \mu m \times 1 \ mm$ Efficiency relative to Photonis XP2262B PMT. For Cherenkov detectors the more relevant wavelength region. Burle more uniform; similar efficiencies.

225

200

Burle: narrow main components smaller MCP-to-cathode gap version: smaller tail.

3.5

4

3

2.5

2

Timing

 $\sigma_{narrow} = (140.5 \pm 5.4) \text{ ps}$ $\sigma_{wide} = (219.1 \pm 41.6) \text{ ps}$

5.5

5

time (ns)

4.5

To measure timing properties: need faster electronics !

Using Burle MCP with reduced MCP-to-cathode gap: $750 \ \mu m$ (std: 6 mm)

Timing

Thomas Hadig, IEEE 04 Conference, Rome, Oct 20th, 2004

Timing To measure timing properties: need faster electronics !

Our group developed: Constant Fraction Discriminator

Using Burle MCP with reduced MCP-to-cathode gap: 750 μ m (std: 6 mm)

Thomas Hadig, IEEE 04 Conference, Rome, Oct 20th, 2004

20 TAC/SAH 25 30 5 10 20 15 **Channel Number** Time-to-amplitude converter ADC Sample-and-hold VME based 12-bit ADC $\Rightarrow \approx 25$ ps resolution Using Burle MCP with reduced MCP-to-cathode gap: 750 μ m (std: 6 mm) 8/12 Thomas Hadig, IEEE 04 Conference, Rome, Oct 20th, 2004

Timing

Hit Time distribution fitted with double Gaussian + flat background. Plotting sigma of narrow Gaussian. Very uniform, very good timing (≈ 70 ps) Outside of pad, low number of hits \Rightarrow larger uncertainty.

Prototype and Test Beam

- Focusing optics eliminates effect of bar size
- Smaller pixels improve the θ_c resolution
- Smaller expansion region reduces amount of background hits
- $\bullet < 100$ ps timing enables better signal vs. background separation
- < 100 ps timing enables partial correction of chromatic effect

Prototype and Test Beam

How to correct for chromatic effect ?

- Precision timing ($< 100~{\rm ps})$ for propagation time
- Use dispersion effect to constrain λ

Calculation:

 $3.66~\mathrm{m}$ long DIRC fused silica bar: $\approx 1~\mathrm{ns}$ difference over $300~\mathrm{nm}$ to $650~\mathrm{nm}$ range

Prototype and Test Beam

- Prototype has been build
- Single fused silica bar
- Spherical mirror for focusing
- Mineral oil as matching liquid (KamLAND)
- 4 Burle MCPs
 - 2 Hamamatsu PMTs

Test beam (\approx pions @ 10 GeV) at SLAC in Nov 04, Dec 04, Feb 05 Goals :

- validate design
- measure and correct chromatic effect