Novel Photon Detectors for RICH applications

J. Va'vra

Content

- Multi-anode PMTs
- . Microchannel plates
- HPDs
- HAPDs
- . APDs operating in a Geiger mode
- . Gaseous Detectors

Aim of this talk

- . Discuss devices detecting photons.
- **.** Discuss <u>only</u> examples, which are "<u>possibly</u>" relevant to the RICH.
- New ideas are fragile. Initially, we do not know if any one will be either fruitful or useless.
- In this talk, I will try to give the "fragile" ideas equal chance.

<u>RICH detector interests:</u>

- . Rate capability.
- . High "effective" efficiency.
- . Aging issues.
- . Reliability.
- . Timing resolution (aim for σ ~100 ps).

<u>Why a timing resolution of $\sigma \sim 100 \text{ps}$?</u>

- All this is driven by a success of DIRC in BaBar, and a desire to develop this concept further both at BaBar and Belle B-factories.
 DIRC with such a timing resolution can correct the <u>chromatic error</u> out.
 This goal drives the present DIRC R&D program.
- Other possible applications: Aqua RICH and cosmic ray telescopes.
- One should say that the LHC RICH detectors would not benefit from it.

Examples of the "DIRC-like" R&D:

1) "Time-of-Propagation = TOP counter":

R&D at Nagoya University, Japan:

What are the devices, which can deliver presently a single photon timing resolution of $\sigma \sim 100$ ps ?

Manufacturer	Name	PMT	Dia.	σ _{TTS}	
Photonis	Quantacon	XP2020	2"	250 ps	
Photonis	PMT	XP2020/UR	2"	150 ps	
Photonis	PMT	XP2262B	2"	500 ps	DIRC PMT
Electron Tubes	PMT	9125B	1"	1500 ps	-
Electron Tubes	PMT	911B	1"	500 ps	
Hamamatsu	Multianode	R-5900	I	70 ps	
Hamamatsu	Flat panel	H-8500	-	80 ps	
Hamamatsu	Multi-mesh	R-6135	_	80 ps	
Dolgoshein et al.	Silicone PM	SiPM	_	60 ps	
Photek, DEP,	Micro	MCP	1"	60 ps	
Burle, or	channel plate				
Hamamatsu.					

. What is the right choice ?

Multi-anode PMTs

- Hamamatsu Flat Panel 64-pixel H-8500 (BaBar DIRC R&D upgrade).
- Hamamatsu Multi-anode 16-channel R-5900-U-L16 (Belle TOP counter).
- Hamamatsu Multi-anode Multi-mesh R-6135-L24-γ (Belle TOP counter).

Hamamatsu Flat-Panel PMT H-8500: DIRC R&D at SLAC:

Photocathode	Bi-alkali (visible & UV)	
Accelerating medium	vacuum	
Geometrical packing efficiency	~97%	
Collection efficiency of the dynode structure	~70-80%	
Operating voltage (max.)	-1 kV	
Pixel size	5mm x 5mm	
Matrix	8 x 8	
Number of pixels	64	Low
Gain (Hamamatsu claim)	$\sim 10^{6}$ @ -1 kV	÷
Type of amplifier (SLAC)	Elantec EL2075C	
Amplifier BW (SLAC test)	2 GHz @ gain 1	
Number of stages	12	
Resistor chain (K - D1 - D2 - \rightarrow A)	1-1-11-0.9-0.1	
Transit time distribution (Hamamatsu claim)	$\sigma \sim 80 \text{ ps} + \text{tail}$	
Timing resolution per single photon (SLAC)	σ~125 ps	┝

- The tube has a low gain at present -> <u>need an amplifier</u> !!
- Good timing resolution, and an excellent packing efficiency.
- However, to achieve such a timing resolution, it is necessary to correct the timing for the pulse height variation. <u>This means an additional considerable cost increase!!!</u>

b) Relative uniformity response (Hamamatsu data): (measured with a 1mm dia. light spot using a current mode)

e) Transit time distribution (Hamamatsu data):

f) Single electron PH spectrum (Hamamatsu data):

Cross-talk: Worst neighbor ~3-4 %, typically <1%.

h) Timing resolution needs a sophisticated light pulser:

- In SLAC tests, we use the picosecond laser diode:

* Not yet directly confirmed directly by tests at SLAC.

Timing resolution study at SLAC (author's own data): (a) Correct time walk with an ADC measurement:

- For all these tests run the PMT at -1.0 kV, and using a nominal resistor chain as recommended by Hamamatsu.

(b) Correct time walk with the two-threshold timing:

- t_0 -extrapolated is a time extrapolated to the base line using the TDC₁,TDC₂, Threhold₁, Threshold₂ and a known pulse shape.
- Each imaging pixel needs:
 - a) a fast amplifier, and
 - b) either TDC & ADC, or two TDCs (!!!..)
 - c) in a long run, need a cheap constant-fraction discriminators.

Hamamatsu Multi-anode PMT R-5900-U-L16:

TOP Counter R&D at Nagoya University, Japan:

Photocathode	Bi-alkali (visible & UV)
Geometrical packing efficiency	~40%
Collection efficiency of the dynode structure	~50%
Anode-to-anode pitch	1 mm
Maximum recommended voltage (Hamamatsu)	-900 V
Pixel size	16 mm x 0.8 mm
Number of pixels	16
Number of stages	10
Gain (Hamamatsu)	~10 ⁷ @ –900 V
Typical cross-talk	~1-3%
Number of stages	12
Resistor chain (K - D1 - D2> - D10 - A)	2-1-11-1
PMT rise-time	~0.6 ns
Transit time distribution (Hamamatsu)	σ~70 ps
Timing resolution per single photon (Nagoya)	σ~83 ps @ –1000 V

- This PMT has ~10x higher gain than H-8500 at nominal voltages.
- Does not work in a high magnetic field, and has a poor efficiency.

a) Beam test - a time-walk correction with an ADC:

b) Beam test with 96 anodes:

T. Ohshima, ICFA Instr. Bulletin, ICFA-J-20, Spring 2000:

• A timing resolution of ~80 ps achieved by a combination of:

- (a) running with a gain of $\sim 2 \ge 10^7$ at 1000V (!!!),
- (b) a modification of the resistor chain (2-1-1-1-...-1),
- (c) applying an ADC correction.
- (d) split the signal actively, i.e., do not loose an amplitude.
- Time resolution grows as a function of path length due to (a) bar quality and (b) chromatic error.

Hamamatsu Multi-anode Fine-mesh PMT R-6135-L24-α,β,γ:

Hamamatsu&Nagoya R&D: M. Hirose et al., NIM A460(2001)326:

Photocathode	Bi-alkali (visible & UV)
Maximum magnetic field	1.5 Tesla
Geometrical packing efficiency	~90%
Collection efficiency of the dynode structure	52% (α) & 63% (β) & 85% (γ)
Cathode-the 1-st dynode distance $=$ L	2.5-3 (α) and 1 (β , γ) mm
Mesh design (lines/inch)	2000 (α , β) 2500 (γ) lines/inch
Mesh design (pitch)	9 (γ) &12.5 (β) μm
Operating voltage (B=1.5 Tesla)	-3.4 kV (γ)
Pixel size	26.5 mm x 0.8 mm
Number of pixels	24
Gain in 1.5 Tesla	~5x10 ⁶ @ -3.4 kV (γ)
Number of stages	24 (α) 19 (β,γ)
Resistor chain (K - D1 - D2 - \rightarrow A)	1-11 (α) & 2-11 (β , γ)
PMT rise-time	~1.0 ns
Timing resolution per single photon (Nagoya)	$\sigma \sim 100 \text{ ps at B} < 1 \text{Tesla}$
Timing resolution per single photon (Nagoya)	σ ~150 ps at B ~ 1.5Tesla

- This PMT has a good single photon pulse height distribution.
- It can operate at 1.5 Tesla magnetic field.

b) Relative gain = f(Magnetic field):

- <u>Conclusion of the test</u>:
 - To reach σ ~100ps, one needs a gain of 3-5x10⁷ at 1.5 Tesla, and an ADC corrected timing.

<u>Multi-anode Microchannel Plates ?</u> Example: Photek MCP 340:

Photek Ltd., U.K. (Note: other companies make similar devices):

Photocathode	Bi-alkali	
Accelerating medium	vacuum	
Detector	Microchannel plate	
Max. recommended value of V _{photocathode}	-2.15 kV	
Max. voltage per one microchannel plate	~850 Volts	
Sensitive area	40 mm dia.	
Multi-anode arrangement	8x8 matrix	
Geometrical packing efficiency	~20 %	
Gain	~ 10 ⁷	
Rise time	~0.5 ns	
Transit Time Distribution	σ ~ 55 ps	
Magnetic field	1.5 Tesla possible	

- Good single electron pulse height spectrum.
- Two MCPs would deliver a sufficient gain.
- Why don't we all use it? (<u>assuming that money does not matter</u>) <u>The answer</u>: A significant aging is observed.

Aging with Microchannel plates:

V.V. Anashin et al., Nucl. Instr. & Meth., A357(1995)103:

Photocathode	Bi-alkali	
Maximum magnetic field	1.5 Tesla	
Operating voltage	1.5 kV	
Number of Microchannel plates	2	
Gain	~ 10 ⁷	
Significant gain reduction after anode charge	10-20 mC/cm²	
Dead time per MCP channel	a few ms]

- Significant aging of the <u>gain and QE</u> by an ion bombardment (authors did not separate the two contributions, unfortunately).
- DIRC, with such a detector, would not live even a year.

- CERN HPD development.
- DEP HPD development for LHC-b.
- A sub-nanosecond timing resolution with an ordinary HPD ?

Electrostatics of the HPDs:

D. Ferenc, Nucl. Instr. & Meth., A431(1999)460:

1) Introduced the bleeder electrode concept[.]

• The bleeder electrode is essential to define unique mapping.

2) Cross-focussing optics allows a positive ion barrier:
D. Ferenc, Nucl. Instr. & Meth., A431(1999)460,
D. Ferenc, D. Hrupec and E. Lorentz, NIM, A427(1999)518:

c) Positive ions are trapped by a +100 Volts bias:

• Simulation software used: SIMION 3D (D.A.Dahl,43-rd ASMS Conf. on Mass Spectrocopy and Applied topics, Atlanta, 1995).

CERN/LHCb 5" Pad HPD:

J. Sequinot, C. Joram, A. Bream, P. Wielhammer, E. Chesi, T. Ypsilantis:

Photocathode	Bi-alkali	
Accelerating medium	vacuum	
Operating voltage	-20 kV	
Detector	Pixel Silicon PIN diode	
Pixel size	1mm x 1mm	
Matrix	16 x 128	
Number of pixels	2048	
Pixel size (granularity at the photo-cathode plane)	1 mm x 1 mm	
Electron optics	Fountain focusing	
Demagnification	4	
Photo-electron transit time distribution σ_{TTD}	<100 ps	
Hole transit time distribution σ_{TTD}	~3-4ns	
PIN diode signal formed from:	Motion of holes	
Gain ~ $(V-V_{th}) q_e / 3.62 eV, V_{th} ~2.1 kV$	~5000 @ -20kV	f
Measured electronics noise	~400 electrons	ł
Random noise per pad at 20 kV	5.6 x 10 ⁻⁴	
Type of amplifier	Viking VA3	
Shaping time	1.3 μs	

• Internal electronics: Viking VA3.

Measured Quantum efficiency = f(E_{photon}):

Pulse height spectrum:

CERN 10" Pad HPD:

J. Sequinot, Ch. Joram, P. Wielhamer, E. Chesi, M. Alemi, D. Ferenc, etc.: CLUE cosmic ray experiment, La palma, Canary Islands.

Photocathode	Bi-alkali	
Accelerating medium	vacuum	
Operating voltage	Up to -30 kV	←
Detector	Pixel Silicon PIN diode	
Pixel size	8mm diameter	
Number of pixels	85	
Pixel size (granularity at the photo-cathode plane)	32 mm diameter	
Electron optics	Fountain focusing	
Demagnification	4	
PIN diode signal formed from:	Motion of holes	
Gain $\sim (V - V_{th})q_{e}/3.62 \text{ eV}, V_{th} \sim 2.1 \text{kV}$	~8000 @ _30kV	

• The device will use an external electronics.

<u>LHCb – HPD made by DEP:</u>

Thierry Gys, LHC-b R&D:

Photocathode	Bi-alkali (K ₂ CsSb)
Accelerating medium	vacuum
Operating voltage	-20 kV
Geometrical packing efficiency	~81%
Detector	Canberra PIN diode
Pixel size	50μm x 500 μm
Pixel capacitance	~4pF
Matrix	320 x 32
Number of pixels	1024
Pixel size (granularity at the photo-cathode plane)	2.5 mm x 2.5 mm
Electron optics and demagnification	Cross-focussed and 5
PIN diode silicon volume resistivity	~5 kΩ.cm
Photo-electron transit time distribution	<100 ps
Hole collection time spread	~3-4ns
PIN diode signal formed from:	Motion of holes
Gain $\sim (V - V_{th})q_e/3.62 \text{ eV}, V_{th} \sim 2.1 \text{kV}$	~5000 @ -20kV
Electronics noise (plan for LHCb)	~250 electrons
Type of amplifier	New development
Shaping time (plan for LHCb)	~25 ns

• Internal electronics.

Measured Quantum Efficiency = f(E_{photon}):

Pulse Height Spectrum:

BTEV – HPD made by DEP:

Ray Mountain, Syracuse University:

Photocathode	Bi-alkali (K ₂ CsSb)
Accelerating medium	vacuum
Operating voltage	-20 kV
Geometrical packing efficiency	81%
Detector	Canberra PIN diode
Pixel size	1.4 mm flat-to-flat, hex.
Pixel capacitance	~10pF
Number of pixels	163
Pixel size (granularity at the photo-cathode plane)	6.5 mm flat-to-flat, hex.
Electron optics and demagnification	Cross-focussed and 4.1
PIN diode silicon volume resistivity	~5 kΩ.cm
Photo-electron transit time distribution	~100 ps
Hole collection time spread	~3-4ns
PIN diode signal formed from:	Motion of holes
Gain $\sim (V-V_{th})q_e/3.62 \text{ eV}, V_{th} \sim 2.1 \text{kV}$	~5000 @ -20kV
Electronics noise	~500 electrons
Type of amplifier	VA-2 type of amplifier
Shaping time during the initial tests	~2 µs

• External electronics.

Electronics for HPDs:

1) CERN HPD Development

- a) VA2 / VA3 (presently used): $\tau_{peak} = 1.3 \ \mu s$, Noise $\approx 400 \ e^{-1}$
- b) VA1-PRIME: $\tau_{peak} = 0.35 2 \ \mu s.$
- c) SCTA 128: $\tau_{peak} = 20 \text{ ns}$, Noise 450 e⁻+35 e⁻/pF.
- d) VATAGP 128: $\tau_{peak} = 3 \mu s$, Self-triggering "slow" chip.

2) LHC-b HPD Development

 τ_{peak} ~25 ns, Noise ~250e.

Other variables:	
Discriminator threshold:	2000e
Power consumption of chip:	~ 0.5 W
Radiation dose over 10 years:	30 kRad
Level-0 trigger:	1 MHz, 4 µs latency
Process:	0.25 um CMOS

3) BTEV HPD Development

a) VA2 - CLEO III (present tests): $\tau_{peak} = 2 \mu s$, Noise $\approx 500 e^{-1}$

b) VA-32/75 (BTEV experiment): $\tau_{peak} = 75$ ns.

Can one achieve a good timing resolution with an HPD ?

• The last time I spoke with Tom Ypsilantis was about this subject. Tom was very optimistic that one can achieve a 100ps resolution with CERN-style HPD with PIN diode, I was rather skeptical. Two years later, what is my opinion ?

Expected timing resolution:

For Si detectors, followed by charge sensitive amplifier, the timing resolution is typically determined by a ratio of the amplifier noise and the slope of the pulse at the threshold V_0 .

$$\sigma_{t} = \sigma_{AMP} / (dV/dt |_{at threshold Vo}) \sim \sigma_{AMP} * Tr / Vpeak$$

where σ_{AMP} [mV] is amplifier noise, Tr is the pulse rise time, and V_{peak} [mV] is the peak amplitude of the HPD signal.

- Tr should be small (small capacitance/pixel, large PIN diode bias voltage, use APDs, drift electrons instead of holes in silicone, etc).
- V_{peak} should be large (high HPD gain, use APDs).
- σ_{AMP} should be small.
- Want to trigger where pulses dV/dt is max.

The timing formula correct within ~10%.

R. DeSalvo et al., Nucl. Instr. & Meth., A367(1995)384:

Tested by varying:

- HPD gain,
- HPD rise time by varying the PIN diode bias voltage,
- the preamplifier input impedance,
- the preamplifier noise.

HPD DEP-P-25: PIN diode, Proximity focussed, -15kV, Gain ~3500, Amp:~2ns risetime, (home made) V_b ~200-300 V, 300µm thick Si, 270pF capacitance!

A.H. Heering - DEP internal memo: $\sigma = f(N_{pe})$

HPD DEP-E18: PIN diode, Electrostatically focusing, -15kV, Gain ~3500, Ortec 142A amplifier, <5ns risetime,

- $\sigma \sim 100-200$ ps is definitely achievable for N_{pe} ~ 100.
- However, for $N_{pe} \sim 1$ not clear (can we extrapolate like this?).

Equivalent circuit:

1) <u>Gain</u>: Gain ~ $(V_{high voltage} - V_{threshold}) q_e / 3.62 eV$

where $V_{\text{threshold}} \sim -2.1 \text{ kV}$ typically, is energy loss in the aluminum contact layer, q_e is the electron charge.

2) <u>HPD rise time Tr is a convolution of</u>:

Amp \approx Electron drift distr. \otimes Hole drift distr.~2-3 ns \otimes ~100ps \otimes 3-4ns.

Electron drift distribution (σ_{TTD}):

D. Ferenc, Nucl. Instr. & Meth., A431(1999)460:

a) Fountain-focussing optics with the bleeder electrode:

b) Cross-focussing optics with the bleeder electrode:

- The cross-focussing optics has more uniform timing spread if the bleeder electrode voltage is properly tweaked.
- $\sigma_{TTD} \sim 100-200$ psec for electron appears possible.

Hole drift distribution (σ_{TTD}):

P.B. Cushman and A. Heering, IEEE, San Diego, CA, 2001. **Current pulse:**

$$I(t) = e^{(\frac{2\mu V_d}{d^2})t} N q \mu (V_b - V_d) / d^2$$

and its width:

$$\Delta(ns) = d^2 \ln(\frac{\sqrt{V_b + V_d}}{\sqrt{V_b - V_d}}) / \mu V_d \approx d^2 / \mu V_b (\text{ for } V_d \text{ small})$$

where Nq is total charge, V_b is bias voltage, V_d is depletion voltage, d is depletion depth, and μ is hole mobility.

To minimize $\Delta(ns)$, d should be small, V_b large, and V_d small, which corresponds to a high Si resistivity.

Smaller Δ (ns) yields smaller risetime of the HPD pulse.

(a) Tune bias voltage V_b (d = 200 μ m, V_d small)

(b) Tune Si thickness (thinner means more noise !!!):

(c) Tune Si resistance, i.e. depletion depth:

- For higher depletion (lower Ohmic silicon) V_b - V_d ~ V_b is not true.

n - 3 k Ω -cm diodes, H - 12 k Ω -cm diodes

DEP Proximity Focussing HPD (0380AJ):

Used in P.B. Cushman's tests:

Photocathode	Bi-alkali
Accelerating medium	vacuum
Operating voltage	-12 kV
Geometrical packing efficiency	~63%
Detector	Canberra PIN diode
Overall uniformity	~98%
Cross-talk from pixel-to-pixel	<2%
Pixel capacitance	~5pF
Number of pixels	73
PIN diode bias voltage	60-100 Volts
Ŭ	
Pixel size (granularity at the photo-cathode plane)	2.5 mm flat-to-flat
Pixel size (granularity at the photo-cathode plane) Electron optics and demagnification	2.5 mm flat-to-flat Proximity focussed and 1
Pixel size (granularity at the photo-cathode plane) Electron optics and demagnification PIN diode silicon volume resistivity	2.5 mm flat-to-flat Proximity focussed and 1~5 kΩ.cm
Pixel size (granularity at the photo-cathode plane) Electron optics and demagnification PIN diode silicon volume resistivity Photo-electron transit time distribution	2.5 mm flat-to-flatProximity focussed and 1~5 kΩ.cm<100 ps
Pixel size (granularity at the photo-cathode plane)Electron optics and demagnificationPIN diode silicon volume resistivityPhoto-electron transit time distributionHole collection time spread	2.5 mm flat-to-flatProximity focussed and 1~5 kΩ.cm<100 ps
Pixel size (granularity at the photo-cathode plane)Electron optics and demagnificationPIN diode silicon volume resistivityPhoto-electron transit time distributionHole collection time spreadPIN diode signal formed from:	2.5 mm flat-to-flatProximity focussed and 1~5 kΩ.cm<100 ps
Pixel size (granularity at the photo-cathode plane) Electron optics and demagnification PIN diode silicon volume resistivity Photo-electron transit time distribution Hole collection time spread PIN diode signal formed from: Gain \sim (V-V _{th})q _e /3.62 eV, V _{th} \sim 2.1kV	2.5 mm flat-to-flatProximity focussed and 1~5 kΩ.cm<100 ps
Pixel size (granularity at the photo-cathode plane)Electron optics and demagnificationPIN diode silicon volume resistivityPhoto-electron transit time distributionHole collection time spreadPIN diode signal formed from:Gain \sim (V-V _{th})q _e /3.62 eV, V _{th} \sim 2.1kVRequired electronics noise	2.5 mm flat-to-flatProximity focussed and 1 $\sim 5 \text{ k}\Omega.\text{cm}$ $< 100 \text{ ps}$ $\sim 3-4\text{ns}$ Motion of holes $\sim 3000 @ -12\text{kV}$ $\sim 400-600 \text{ electrons}$
Pixel size (granularity at the photo-cathode plane)Electron optics and demagnificationPIN diode silicon volume resistivityPhoto-electron transit time distributionHole collection time spreadPIN diode signal formed from:Gain \sim (V-V _{th})q _e /3.62 eV, V _{th} \sim 2.1kVRequired electronics noiseType of amplifier	2.5 mm flat-to-flatProximity focussed and 1~5 kΩ.cm<100 ps

• Can operate in a 4 Tesla magnetic field.

DEP Electrostatically Focussing HPD (PP0380AU): DIRC R&D at SLAC:

Photocathode	Bi-alkali (visible & UV)
Accelerating medium	vacuum
Operating voltage	-20 kV
Geometrical packing efficiency	~81%
Detector	Canberra PIN diode
Overall uniformity	>80%
Cross-talk from pixel-to-pixel	<2%
Pixel capacitance	~4pF
Number of pixels	61
PIN diode bias voltage	60-100 Volts
Pixel size (granularity at the photo-cathode plane)	2.5 mm flat-to-flat
Electron optics and demagnification	Proximity focussed and 5
PIN diode silicon volume resistivity	~5 kΩ.cm
Photo-electron transit time distribution	<100 ps
Hole collection time spread	~3-4ns
PIN diode signal formed from:	Motion of holes
Gain $\sim (V - V_{th})q_e/3.62 \text{ eV}, V_{th} \sim 2.1 \text{kV}$	~5000 @ –20kV
Required electronics noise	~400-600 electrons
Type of preamplifier & amplifier	ORTEC 142A + 9302
Combined max. charge gain of the system	~32 μV / e-h pair
Amplifier rise time (both together)	~5 ns
Expected timing resolution per single photon	Possibly a sub-ns

• Timing tests are in progress at SLAC.

What do we expect ?

4) What to do next?

Discussions with DEP/Canberra, P. Cushman, R. DeSalvo, V. Radeka, D. Gedcke:

- Drift electrons. Unfortunately, Canberra does not plan to do this in the near future.
- Make silicon thinner (means more noise), of higher resistance, and run a large bias voltage.
- Run higher HPD voltage to get more signal.
- Can we gain from a multiple sampling of the waveform ?
 V. Radeka (BNL) or D. Gedcke (ORTEC) argue that this works only in a noise-free limit, and not in the practical systems.
- Use APD for the detector instead of PIN diode.

Hamamatsu HAPD R7110U-07:

S. Matsui et al., NIM A463(2001)220, Belle Detector R&D in Nagoya:

Photocathode	Multi-alkali	
Accelerating medium	vacuum	
Max. recommended value of $V_{photocathode}$	-8.5 kV	
APD diode bias voltage V _{APD}	~155 Volts	
Avalanche Photodiode Detector diameter	3mm dia.	
Sensitive area	8 mm dia.	
Pixel capacitance	120 pF	
Geometrical packing efficiency	16 %	
Gain @ $V_{\text{photocathode}} = -9 \text{ kV}$ and $V_{\text{APD}} \sim 160 \text{ V}$	$\sim 1.5 \times 10^5$	
Type of amplifier	MITEQ, 60dB,300MHz BW	
Rise time	~1.1 ns	
Fall time	~14.8 ns	
Pulse width	~4.9 ns	
Timing resolution per single photon	σ~150 ps	
Planned operating magnetic field	1.5 Tesla	

- They reached σ ~150ps at a total HAPD gain of ~1.5x10⁵, by correcting the time walk with an ADC.
- To reach σ ~100ps, they conclude that they would need a total HAPD gain of ~4x10⁵.

a) HAPD pulses with <u>60dB</u>, <u>300MHz BW</u> amplifier:

100mV/div, 5 ns/div

b) HAPD pulse height distribution:

Hamamatsu HAPD R7110U-07 is a derivative from an old INTERVAC tube:

E. Lorenz, private communication:

Photocathode	GaAs	
Accelerating medium	vacuum	
Max. recommended value of $V_{photocathode}$	<10 kV	
Pixel capacitance	40 pF	

• The INTERVAC tube developed in 1995.

<u>R7110U-01MOD – a new development</u> of high Q.E. (>45%), red extended, and very fast HAPD:

E. Lorenz, private communication (MPI/Hamamatsu joint development):

Goal:

- For harsh background from night sky or moonlight (3-10 GHz).
- Single electron sensitivity.
- Expect to reach time resolution of ~100ps.
- 18 mm diameter.
- Limit voltage to <10kV.

Solution:

• HPD with GaAsP photocathode and low capacitance APD.

Present status:

Photocathode	GaAsP	
Accelerating medium	vacuum	
Max. recommended value of V _{photocathode}	-8 kV	
APD diode bias voltage V_{APD}	~338 Volts	
Sensitive area	18 mm dia.	
Pixel capacitance	24 pF	{
Total Gain (APD gain alone is ~30x)	$\sim 5 \ge 10^4$	
Rise time	~ 0.8 ns	{
Fall time	~1.9 ns	
Pulse width	~2.1 ns	

Pulses:

(Light source: FWHM ~ 35ps, 780nm; Photocathode voltage: -8kV; Load: 50Ω)

Q.E. of GaAsP photocathode:

(A further improvement at small wavelengths with a wavelength shifter)

Pulse height spectrum with slower charge integrating amplifier: (Photocathode voltage: -8kV; APD voltage: 338V; Light source: 650nm)

Hamamatsu offers "multi-pixel" 4x4 array R7110U-01 HPDs:

Hamamatsu information:

Photocathode	Multi-alkali
Detector	3mm dia. Avalanche Photodiode
Sensitive area	7 mm dia.
Amplifier	Ortec 142A
Planned operating magnetic field	1.5 Tesla

• It can work in a strong magnetic field (1.5 T).

Advanced Photonics VAPD:

M. Szawlowski, Advanced Photonics, Internal note, 1995:

Photocathode	Multi-alkali
Accelerating medium	vacuum
Max. recommended value of $V_{photocathode}$	-10 kV
APD diode bias voltage V _{APD}	~2.2 kV
Detector	Aalanche Photodiode
APD size	16 mm dia.
Gain @ $V_{\text{photocathode}} = -10 \text{ kV}$ and $V_{\text{APD}} \sim 2.2 \text{ kV}$	up to $\sim 10^6$
Rise time	~2-5 ns

- It was not tested for timing since they did not have a ps pulser at that time.
- The device was called VAPD.

64-channel APD-HPD:

P. Cushman, R. Rusack and V. Singh, Nucl. Physics B, 44 (1995) 35:

Photocathode	S-20	
Accelerating medium	vacuum	
Max. recommended value of $V_{photocathode}$	-10 kV	
APD diode bias voltage V_{APD}	~2.0 kV	
Detector	Aalanche Photodiode	
APD array	8 x 8	
APD Gain @ V _{APD} ~2.0 kV	~1000	
Total Gain @ $V_{photocathode} = -10 \text{ kV } \& V_{APD} \sim 2 \text{ kV}$	up to ~10 ⁶	
Rise time	2-5 ns	

- The APD array was manufactured by Advanced Photonics Inc.
- The HPD was manufactured by Litton Electron Devices.
- This was another casualty of the SSC death....

ReFerence Photosensor:

D. Ferenz, IEEE, Lyon, France, 2001, and private communication:

- Optimal usage of photocathode surface.
- Excellent Time-Resolution, although flat photocathode.
- Higher Quantum Efficiency in reflection mode.
- Efficient magnetic shielding.
- Many permutations of this idea possible.
- The first fully functional sealed prototype from ITT Night Vision will be soon available for evaluation.
- Use of very reflective film.

A very transparent foil: E. Lorenz, private communication (3M product):

- Reflectivity of the film can be selected.

APD silicone arrays operating in a Geiger mode

• Silicon PMT - SiPM.

Silicon Photomultiplier - SiPM:

P. Buzhan, B. Dolgoshein et al., ICFA Instr. Bulletin, Fall 2001 issue G. Bondarenko et al., Nucl. Instr. & Meth., A442(2000)187:

Photocathode	Silicon
Accelerating medium	Si
Operating voltage	24-25V
Geometrical packing efficiency	~44%
Detector (possible range: 15-70 µm)	Pixel Silicon PIN diode
Pixel size	42 μm x 42 μm
Pixel capacitance	~100 fF
Protecting resistor on each pixel	~100-200 kΩ
V_{bias} - $V_{\text{breakdown}}$ (Geiger condition: $V_{\text{bias}} > V_{\text{breakdown}}$)	A few Volts
Number of pixels (possible limit ~4000/mm ²)	~576 / mm ²
Electric field in the silicon	$(3-5) \ge 10^5 \text{ V/cm}$
Dark noise rate (at room temperature)	A few MHz/mm ²
Gain	1.5x10 ⁶ @ 24.5V
Gain uniformity	~10%
Typical rise time	~1ns
Typical fall time ($\tau \sim C_{\text{nixel}} \times R_{\text{nixel}} \sim 30 \text{ ns}$)	~100ns
Measured timing resolution per single photon	60ps

- Insensitive to magnetic field, excellent timing and PH.
- In practice one would gang many pixel together to one channel.

- Actually $\sigma \sim 60$ ps per single photon was already achieved.
- To get $\sigma \sim 60$ ps one does not need ADC or double threshold timing corrections because the pulse height is so uniform.
- One needs a lens to correct for a large geometrical inefficiency.
- A US company, called RMD, is offering 16 pixel arrays.
 - Gain $\sim 10^8$ achieved.
 - QE: ~50% at 400nm, 75% at 532nm, and 20% at 1064nm.
 - $100k\Omega$ resistor to protect the diode.
 - Active are of each diode 10-30µm.
 - Noise rate at room temperature: 0.01-1kHz.
 - However, presently a large dead spaces between diodes.

Comparison

Paramatar	Flat_Panal	I HC-b	P7110U	SiDM
			A11100-	
	Multi-anode	Electrostat.	UIMOD	
	H-8500 PMT	Focus. HPD		
Company	Hamamatsu	DEP	Hamamatsu	Dolgoshein
Model	H-8500	PV0380AU	_	_
Q.E. blue	~20 %	~20 %	>45 %	~12 %
Mag. Field	Problematic	Problematic	OK	ОК
operation				
Gain per pe ⁻	~10 ⁶	~5000	~5x10 ⁴	1.5x10 ⁶
	@ 1kV	@ 20kV	@ 8kV	@ 25V
Pulse height	Poor	Superb	Good	Superb
spectrum				
Voltage	-1 kV	-20kV	-8kV	25 Volts
Timing	~100 ps	~500 ps	~100 ps	60 ps
resolution σ		(possibly)		
per photon				
Noise rate	<1kHz/PMT	6x10 ⁻⁴ /pixel	_	a few
	@ 1kV	@ 20kV *		MHz/mm ²
Number	64	61	1	Not
of anode				defined
pads				yet

* Test performed with the CERN HPD actually

Gaseous Detectors

- Multiple-GEM + Pads.
- Hadron-blind detector for RHIC.
- MICROMEGAS + single-GEM + Pads.
- Multiple-Capillary + Pads.
- MICROMEGAS + single-Capillary + Pads.
- Some think that gaseous photon detectors are dead. However, if one would give you a detector working at 4 Tesla, with visible photocathode, timing resolution of 1 ns, and your own geometry, wouldn't you take it ?
- All detectors mentioned in the following can work at 4 Tesla.

Tripple-GEM + Pads:

A. Breskin, R. Chechik et al., Nucl. Instr. & Meth., A478 (2002) 225.

Photocathode	CsI	-
Method	Quartz/30Å Cr/150Å CsI	
Carrier gas (1atm)	CF_4	←
Gas	Permanently sealed	
Method of sealing	Indium seal	
Baking procedure	200°C for a few days	
GEM-to-GEM and GEM-to-Pad distance	1.2 mm	
The 1-st GEM-to-photocathode distance	6.5 mm	
Kapton and copper hole diameters	50 & 80 µm dia.	
GEM hole pitch	140 µm	
Max. achieved charge gain on single electron	$\sim 3 \times 10^6 (CF_4)$	-

- It can operate up to ~4 Tesla magnetic field.
- Can define your own geometry.
- Aging rate: a significant gain drop after $\sim 10\mu$ C/mm²; however, this rate is similar to that of the non-sealed detectors.

RICH2002

a) Gain in Quadruple and Tripple GEM in different gases: A. Breskin, R. Chechik et al., Nucl. Instr. & Meth., A478 (2002) 225.

b) <u>Secondary effects</u> occur only at extremely large gain of $\sim 6 \times 10^6$ in CF₄ gas in a tripple-GEM:

2 V			50	15	
		.			
		ŧ			
		ł			
		ŧ			

Fast amplifier single electron pulses at a gain of $\sim 2.7 \times 10^6$:

• <u>Remarkable result!!!</u> The GEM structure shields the scintillation photons very efficiently. Remember, CF_4 is a good scintillator !

c) Aim: develop a device with a Bialkali photocathode R. Chechik, talk at this conference.

<u>Status</u>: Stable sealed Bialkali photocathodes for 6 months.

- <u>Undergoing work</u>: sealed multi-GEM PMT operating with 95/5% Ar/CH₄ at 1 bar. Obtained gain of 2000 with two GEMs with no secondary effects.
- Q.E. is stable 2 weeks presently with a gas at 1 bar.
- <u>A remarkable result !!!</u>

Hadron-blind GEM-based Detector:

I. Tserruya et al., Phenix proposal, RHIC, BNL. Based on work D. Mormann et al., Nucl. Instr. & Meth., A478 (2002) 230.

CsI evaporated on top of the GEM foil:

Advantages:

- Thick reflective photocathodes have superior QE.
- The detectors are almost free of the photon feedback.
- Detectors are fast (time resolution $\sigma \sim 2.1$ ns in CF₄).
- High gain operation demonstrated $(>10^5)$.
- Good 2D resolution ($\sigma \sim 100 \mu m$).

Possible difficulties:

- The CsI may end up in the GEM holes during evaporation.
- CF₄ gas can be corrosive.

Quadruple-GEM + Pads:

J. Va'vra and A. Sharma, Nucl. Instr.&Meth., A478(2002)235.

Photocathode	TMAE or s.s. mesh
Carrier gas (1atm)	$C_{2}H_{6}$
Pad size and pitch	1.25 mm dia. & 2.5 mm
Pad connected in y-direction via resistive ink	~40 k Ω /column of pads
GEM source	CERN (F. Sauli)
GEM-to-GEM distance	1.6 mm
GEM-to-Pad distance	0.8 mm
Kapton and copper hole diameters	40 & 80 µm dia.
GEM hole pitch	120 µm
GEM design	Conical hole
Amplifier gain (charge sensitive)	~ 2.7 µV/electron
Amplifier shaping time	~65ns
Max. achieved charge gain on single electron	$\sim 10^6$ in C ₂ H ₆

- Motivation: candidate for a possible last SLD runs in 1999. It would work well, if this run would happen.
- The reason for four GEMs: Reduce a load on any single GEM, & to reduce the TMAE photon feedback into the drift volume.

Single electron pulse height spectra:

J. Va'vra and A. Sharma, Nucl. Instr.&Meth., A478(2002)235.

- All single electron spectra have an exponential shape. I have never seen a Polya distribution type of turnover with the GEM detectors.
- No sign of a poor quenching, which would show up as an excessive tail in the single electron spectrum.

Where does the charge go ?

J. Va'vra and A. Sharma, Nucl. Instr.&Meth., A478(2002)235.

Electric field flux lines and charge termination

Charge losses [%]	GEM 1	GEM 2	GEM 3	GEM 4
Ions charge ending at the top GEM electrode	6	4	5	6
Ions charge ending on the Kapton insulator	2	3	3	6
Electron charge ending at the top GEM electrode	15	10	12	5
Electron charge ending on the Kapton insulator	1	3	5	15
Electron charge ending at the bottom GEM electrode	20	26	28	32
Transmitted electron charge	56	54	47	36

• The transmitted electron charge is only 36%, the ion deposition on the Kapton insulator in the last GEM is ~6%.

Charging effects:

J. Va'vra and A. Sharma, Nucl. Instr.&Meth., A478(2002)235.

Response to switching the light off:

- The charging is related to the Kapton resistance. It takes minutes to discharge the Kapton.
- . Does this matter ? It may in very high rate environment.

MICROMEGAS + Strips/Pads:

Y. Giomataris, Nucl. Instr. & Meth., A419 (1998) 239, and

G. Charpak et al., Nucl. Instr. & Meth., A478 (2002) 26.

Photocathode	CsI
Method	CsI deposited in the mesh
Typical Gases used	$Ar/10\%C_4H_{10}$, He/10% C_4H_{10} ,
	$Ne/5\%C_4H_{10}$, $Ar/5\%CF_4$
Mesh type	s.s. electro-mesh
Mesh thickness	3 µm
Mesh pitch	50 μm
Mesh-to-pad distance	50 μm or 100 μm
Electric field in the amplifying gap	50-100 kV/cm
Max. achieved charge gain on single electron	~10 ⁶ (Ar /10%iC ₄ F_{10})

- It can operate up to ~4 Tesla magnetic field.
- The proponents argue that it is a very resilient structure.

a) Single Electron Pulse Height Spectrum:

G. Charpak et al., Nucl. Instr. & Meth., A478 (2002) 26.

CsI is evaporated on the micromesh in this particular case

b) Timing Resolution with Single Electrons: G. Charpak et al., Nucl. Instr. & Meth., A478 (2002) 26.

• This is a best timing resolution a gas detector ever achieved.

Rate capability of various gas detectors:

Y. Giomataris, Nucl. Instr. & Meth., A419 (1998) 239.

However, the maximum achieavable gain drops earlier, if we consider sparking as a limiting factor.

G. Charpak et al., Nucl. Instr. & Meth., A478 (2002) 26.

MICROMEGAS + single-GEM + Pads:

J. Va'vra, unpublished.

Photocathode	s.s. mesh
Carrier gas (1atm)	90%He+ $10%$ iC ₄ H ₁₀
Pad size and pitch	1.25 mm dia. & 2.5 mm
GEM source	CERN (F. Sauli)
GEM-to-Mesh distance	1.24 mm
Kapton and copper hole diameters	40 & 80 µm dia.
GEM hole pitch	120 µm
GEM design	Conical hole
Mesh type	s.s. electro-mesh
Mesh thickness	3 µm
Mesh pitch	50 µm
Mesh-to-pad distance	100 µm
Amplifier gain (Elantec 2075C)	10x
Amplifier bandwidth	2GHz
Max. achieved charge gain on single electron	~10 ⁷

- A resistor chain used to avoid the damage of the GEM foil.
- A stable single electron operation at very large gain achieved. No tripping !!! The detector is quiet when triggering on itself.
- Too soon to claim anything. Needs much more study.

Photocathode	SbCs
Q.E. reached	A few %
Carrier gas (1atm)	95%Ar+5%CH ₄
Lead Glass Capillary source	Hamamatsu
Capillary thickness	1 mm
Capillary hole diameter	100 µm dia.
Glass Capillary hole pitch	130 µm

- A gas gain of $\sim 10^5$ just about reached in 90%He+10%iC₄H₁₀.
- However, no convincing stable single electron mode operation proved at this point, i.e., <u>not yet clear if this is a right avenue.</u>

Tripple-Capillary + Pads:

J. Va'vra, T. Symioshi provided capillary plates made by Hamamatsu.

Photocathode	TMAE	
Carrier gas (1atm)	C_2H_6	
Lead Glass Capillary source	Hamamatsu	
Measured capillary resistance		
Capillary thickness	1 mm	
Capillary hole diameter	100 µm dia.	
Glass Capillary hole pitch	130 µm	
Max. achieved charge gain on single electron	~10 ⁴ (ethane)	┣

- Would barely support a gain of $\sim 2 \times 10^4$ in C₂H₆.
- The reason for problems: capillary resistance too high, causing charging effects.
- V. Peskov: ~80% of microchannel plates fail his qualifying test.

Conclusions

- HPD detectors have made a huge progress since the last RICH workshop.
 - The next challenge: 100ps resolution.
- The imaging with >10,000 PMTs has been a real success in DIRC.
 - The next challenge: ~30,000 channels with σ ~100ps.
 - Potential benefit: correction of the chromatic error.
- Gaseous detectors are under pressure, but not dead yet for the RICH applications. From some reason, the ingenuity has no bounds here.
 - **The next challenge:** operation in a high magnetic field with a Bialkali photo-cathode, and geometry "defined by us."

My personal choice of amplifying structure:

- The Triple or Quadruple-Gem structure + Pads.
- Possibly, a Micromegas + Single-GEM + Pads, or Double-Cappilary + Pads. However, still needs much more study.