PROGRESS ON THE FAST FOCUSING DIRC R&D

DIRC R&D group at SLAC:

I. Bedajanek, J. Benitez, A. Barnyakov, D.W.G.S. Leith, G.Mazaheri, B. Ratcliff, J. Schwiening, K. Suzuki, J. Uher, J. Va'vra and B.J. Wogsland

Outline

- **≻**Motivation
- **≻**Prototype
- ➤ Recent Beam Test
- ➤ Preliminary Results
- **≻**Conclusions

MOTIVATION

DIRC - <u>D</u>etection of <u>I</u>nternally <u>R</u>eflected <u>C</u>herenkov light

- ➤ Ring Imaging CHerenkov detector used for the first time in the BABAR Experiment (operating since 1999).
- > 3D imaging of photons: θ_c , ϕ_c & time of propagation (TOP).
- \triangleright $\theta_{\rm C}$ resolution ~9.6 mrad.
- \triangleright Very successful in hadronic particle identification (PID), with $\sim 3\sigma$ π-K separation at 4 GeV/c.

BABAR-DIRC

MOTIVATION

Improvements in the Focusing DIRC

- ➤ Smaller expansion region (25% of BABAR-DIRC)
 - less accelerator induced background.
- Faster PMTs: $\sigma \sim 100$ ps (BABAR-DIRC $\sigma \sim 1.7$ ns)
 - better background rejection
 - color of photons becomes measurable→ better PID resolution
- ➤ Possibly operable in strong magnetic field. (BABAR-DIRC is not operable in magnetic field)

Ultimate DIRC Design

This detector could be used in a future experiment like a Super B-Factory, Panda, GlueX, ILC, ...

A Prototype of the Focusing DIRC

PROTOTYPE

Radiator

- ➤ a 3.7m-long bar (3/4 of BABAR-DIRC) made from three high-quality BABAR-DIRC bars
- ➤ use same glue as BABAR-DIRC (Epotek 301-2)

Expansion region

- > coupled to radiator bar with small fused silica block
- ➤ filled with mineral oil (KamLand experiment) to match fused silica refractive index
- include optical fiber for electronics calibration

Focusing optics

> spherical mirror with 49.2 cm focal length focuses photons onto the detector plane.

Radiator bar

Expansion Region

PHOTON DETECTORS

 $(\rightarrow NIM A 553 (2005) 96)$

Our research has identified several detectors which have:

- \triangleright Good timing resolution (transit time spread < ~200ps), about 10x better than BABAR-DIRC PMTs.
- Small pixel size (6x6mm and 12x3mm)
 - →allow for smaller expansion region
- Good detection efficiency and uniformity.

The following three detectors are currently in the prototype:

Burle 85011-501 MCP-PMT (6x6mm pixels)

PHOTON DETECTORS

Hamamatsu H-8500 Multianode PMT (6x6mm pixels)

Hamamatsu H-9500 Flat Panel Multianode PMT (12x3mm pixels)

These timing resolutions were obtained using a fast laser diode in bench tests with **single photons** on pad center.

Beam Test of the Prototype

BEAM TEST

Experimental Setup:

- ➤ Prototype is located in the beam line in End Station A at SLAC, third beam test conducted this past July.
- ➤ Accelerator delivers low intensity 10 GeV/c electron beam (e⁻)
- ➤ Beam enters bar at 90° angle.
- ➤ Prototype is movable to 7 beam positions along bar.

End Station A

BEAM DETECTORS

Event analysis:

- require single track signal in hodoscope.
- require charge in lead glass to be consistent with single electron.
- The trigger is obtained from the linac RF signal.

Start counters: event time $\sigma \approx 35 \text{ps}$ $\sigma \approx 35 \text{ps}$

Hodoscope: Beam Position

CHERENKOV PHOTONS

- Almost 200 pixels are instrumented around the expected ring image.
- Time of propagation measurement allows one to determine if the photon is direct or indirect (end mirror reflected).
- As a function of path length the time distribution spreads out due to chromatic dispersion and the number of photons decreases due to absorption.
- Ring image is most narrow in the 12x3mm pixel detector.

Cherenkov ring in pixel plane

DIRC RECONSTRUCTION

- DIRC detectors have the property that they can be simply ray-traced into the bar or track coordinate system.
- →Each detector pixel defines the photon track parameters:
- $\theta_c, \phi_c,$ path length L, # of bounces, $\cos \alpha$, $\cos \beta$, $\cos \gamma$,
- We use GEANT4 simulation and stand-alone ray-tracing software to obtain photon track parameters for each pixel.

Prototype coordinate systems.

Preliminary Results: Single photon θ_c resolutions

THETAC RESOLUTION (GEOMETRIC)

Take the θ_c angle assigned geometrically to each pixel and combine all pixels to determine the width of the Cherenkov ring.

- ➤ Pixelated distribution due to relatively large pixel size.
- Contributions to this resolution include:
- 1) chromatic smearing: ~ 3.5 mrad,
- 2)pixel size: ~5.5mrad,
- 3)optical aberrations: grows from 0 mrad at ring center to 9 mrad in outer wings of Cherenkov ring. (due to focusing mirror)

THETAC RESOLUTIONS (USING TOP)

Cherenkov angle from time of propagation (TOP)

- Vuse measured TOP for each pixel and combine with the associated path length L to get group velocity v_g =L/TOP → n_g = c_0/v_g → n= $n(n_g)$ → n_g = $n(n_g)$ → n_g = $n(n_g)$ → $n(n_g)$ → $n(n_g)$ (Assume β=1 for 10GeV e-) where n_g is the group index of refraction and n is the (phase) index of refraction.
- \triangleright Resolution of θ_c from TOP is quite good (6-7mrad for photon path length above ~4m).
- \triangleright This measurement is useful for checking the effect of timing resolution on θ_C , however it cannot be used for PID purposes because it assumes the particle ID (β =1).

CHROMATIC CORRECTION

The theory of Cherenkov radiation predicts a smearing of θ_c due to different wavelengths produced, however there is correlation between θ_c and the wavelength λ of the photons. If we can measure this correlation we can correct θ_c . In practice we use the group velocity $v_g(\lambda)$ =L/TOP instead of λ because it is easily measurable; v_g is equivalent to λ since there is a one-to-one map between them .

16

CORRECTED THETAC VS. PATH LENGTH

- resolution by about 2 mrad for the long paths.
- This correction starts to work after about 2 m, below this path length the group velocity resolution is not good enough.

Performance of the 12x3 mm pixels

Hamamatsu H-9500 Flat Panel Multianode PMT

θ_{C} RESOLUTIONS (12x3MM PIXELS)

- ▶Due to smaller size of pixel in the y direction we have better θ_C resolution with this detector (< 7 mrad).
- ➤ Pixelization effects are less visible.

CORRECTED θ_C RESOLUTIONS (12x3mm pixels)

- The correlation of θ_C with v_g follows the expected curve.
- ➤ The amount of correction is about 1 mrad for the longest path lengths.
- ➤ Quadratic difference is 3-4 mrad consistent with the expected chromatic smearing.
- The chromatic correction starts to work at about 3m.

$\theta_{\rm C}$ Corrected

CONCLUSIONS & OUTLOOK

- We have demonstrated that we can measure the correlation of θ_C with v_g and thereby correct for chromatic smearing of θ_C . This is the first RICH detector which has been able to do this.
- ➤ Focusing DIRC R&D has identified several PMTs capable of delivering single photon timing resolution on the order of ~100ps, with good uniformity and efficiency.
- \geq 3D (θ, ϕ, t) readout makes the system more robust and helps with backgrounds and calibrations.
- For the case of 6x6mm pixels, our θ_C resolutions measured in the beam test are quite competitive with BABAR-DIRC implying this detector is capable of obtaining comparable PID resolutions.
- \triangleright In the case of 12x3mm pixels the θ_C resolution is considerably better than BABAR-DIRC.
- > Remaining questions include: behavior in magnetic fields, aging, rate capability.
- ➤ Next beam test of prototype is scheduled for 2007:
 - 12x3mm pixel detectors in all slots
 - Improved readout (add ADC information)

BACKUP SLIDES

PRINCIPLE OF CHROMATIC CORRECTION

The theory of Cherenkov radiation predicts a correlation between θ_c and the λ of the photon. In practice we use the group velocity (v_g) since there is a 1-1 map between v_g and λ .

Consider π 's and K's of p=5GeV traversing a radiator and assume we can measure both θ_c and v_g precisely.

$$\cos(\theta_c) = \frac{1}{\beta n(\lambda)} \int_{500}^{90} \left[\frac{1}{\beta n(\lambda)} \right]_{500}$$

$$N(\lambda) \propto \left(1 - \frac{1}{\beta^2 n^2(\lambda)}\right) \frac{1}{\lambda^2} \varepsilon(\lambda)$$

$$v_g = \frac{c}{n_g(\lambda)} \quad n_g = \frac{1}{1 + \frac{\lambda}{n} \frac{dn}{d\lambda}} \quad \frac{200}{100}$$

Simple projection on θ axis: Particles are merged.

Projection after Rotation: Particles are separated

