A high resolution TOF counter - a way to compete with a RICH detector ?

J. Va'vra, SLAC

representing

D.W.G.S. Leith, B. Ratcliff, and J. Schwiening

Note: This work was possible because of the Focusing DIRC R&D

Content of this talk

- A bit of history
- TOF detector for Super-B Forward PID
- Timing strategy
- Laser diode measurements
- Lessons from the test beam
- Systematic errors (decided to drop this as it would take an hour)
- Summary

Tom Ypsilantis always liked to end his talks with: "... and an equivalent performance with a TOF detector would require this σ_{TOF} timing resolution ..." (usually << 1 psec for a RICH detector with n = n_{gas})

However, it is possible to start competing if n is larger: 1) For $n \sim 1.03$, the required $\sigma_{TOF} \sim 5-10$ psec & Lpath $\sim 2m$ 2) For $n \sim 1.47$, the required $\sigma_{TOF} \sim 15-20$ psec & Lpath $\sim 2m$

A bit of history as I know it

• <u>~35 years ago:</u>

Helmuth Spieler of LBL (private communication):

- Built, as a part of his Ph.D. thesis work, a TOF system using MCPs for an experiment detecting heavy ions. He routinely achieved a timing resolution of $\sigma \sim 20-30$ ps.

- <u>~27 years ago:</u>

Bill Attwood of SLAC (lecture on the TOF technique at SLAC in 1980):

- The lecture series did not even mention MCP-PMTs. The technology clearly existed at that time, but was either not affordable or obtainable or simply ignored for large scale HEP applications. Instead, Pestov spark counters were mentioned as a way to progress towards a resolution of $\sigma \sim 30$ -50 ps for large areas.

• <u>~ 4 years ago:</u>

- **Henry Frisch** of Univ. of Chicago (**the 1-st proposal for a 1 ps timing** with a MCP-PMTs coupled to a Cherenkov radiator):
- Aspen talk in 2003, and Credo et al., IEEE Nucl. Sci. Symp., Conf. Records, Vol. 1 (2004).

<u>~2 years ago:</u>

Takayoshi Ohshima's group in University of Nagoya (reached a $\sigma \sim 6.2$ ps in the test beam)

- "The Pico-Sec Timing Workshop," 18 Nov 2005, U. of Chicago, http://hep.uchicago.edu/psec/.

10/18/07

What are the reasons to push the TOF technique towards the new limits ?

- Fast Cherenkov light rather than a scintillation
- New detectors with small transit time spread $\sigma_{TTS} < 30$ ps
- Fast electronics
- New fast laser diodes for testing

Forward PID with TOF detector at Super B (in Italy)

PID systems in Super-B

• Two PID systems: **Barrel DIRC & Forward TOF**

Timing at a level of σ ~15-20 ps can start competing with the RICH techniques

Example of various Super-B factory PID designs:

Calculation done for a flight path length: 2 m

Present detector choice for the TOF application

10/18/07

l	Burle/Photonis Burle/Photoni	MCP- s data	-PMT	
Indium Seal Du	al MCP Faceplate		A real device:	
Anode & PINS Ceramic Insulators Parameter Photocathode: Bi-alkali QE at 420nm			Value 28 - 32%	
Number of MCPs/PMT Total average gain @ -2.4kV & B = 0 kG			2 ~5 x 10 ⁵	
Geometrical collection efficiency of the 1-st MCP Geometrical packing efficiency			70 - 80% * 85 - 90% *	
PDE = Total fraction of "in time" photoelectrons detected (for Bi-alkali QE) Fraction of photoelectrons arriving "in time"			17 - 23% * 70 - 80%	
σ _{TTS} - single electron transit time spread (for 10 μm dia. pores) Matrix of pixels			27 ps 2x2, 8 x 8, 16x16 or 32 x 32	
Number of pixels Pixel size (8x8 & 32x32 matrix)			4, 64, 256 or 1024 5.94 x 5.94 or ~1 x 1 [mm ²]	
10/18/07J. Va'vra, TOF vs. RICH, Trieste, RICH 2007		* Higher number is a future improvement 10)	

A TOF counter prototype

Four pads connected via equal-time traces:

Radiator

- Burle/Photonis MCP-PMTs with 10 μm MCP holes.
- Short together 4 pads to get a signal; all the rest of pads grounded.
- A 10mm-long, 10mm dia, quartz radiator, Al-coating on cylinder sides.
- Ortec 1GHz BW 9327Amp/CFD & TAC566 & 14 bit ADC114.
- Calculation: 10mm long quartz radiator & a window should give Npe ~ 50 pe/track.
- Laser diode light adjusted to provide typically Npe ~ 50 pe.
- The laser spot size: ~1mm dia.; beam spot size typically σ ~1-2mm

What resolution do we expect to get ?

 A calculation indicates N_{pe} ~50 for 1 cm-long Fused Silica radiator & Burle/Photonis Bialkali photocathode:

• Expected resolution:

a) Beam (Radiator length = 10 mm + window): $\sigma \sim \sqrt{[\sigma_{MCP-PMT}^2 + \sigma_{Radiator}^2 + \sigma_{Pad broadenibng}^2 + \sigma_{Electronics}^2 + ...]} =$ $= \sqrt{[(\sigma_{TTS}/\sqrt{N_{pe}})^2 + (((12000 \mu m/cos\Theta_C)/(300 \mu m/ps)/n_{group})/\sqrt{(12Npe)})^2 + ((6000 \mu m/300 \mu m/ps)/\sqrt{(12Npe)})^2 + (3.42 ps)^2]} \sim$ $\sim \sqrt{[3.5^2 + 3.3^2 + 0.75^2 + 3.42^2]} \sim 5.9 ps$

b) Laser (N_{pe} ~ 50 pe⁻):

$$\sigma \sim \sqrt{[\sigma_{MCP-PMT}^2 + \sigma_{Laser}^2 + \sigma_{Electronics}^2 + ...]} =$$

 $= \sqrt{[\sigma_{TTS}/\sqrt{N_{pe}}]^2} + \sqrt{((FWHM/2.35)/\sqrt{N_{pe}})^2 + (3.42 \text{ ps})^2]} \sim$
 $\sim \sqrt{[3.8^2 + 1.8^2 + 3.42^2]} \sim 5.4 \text{ ps}}$

This test: σ_{TTS} (Burle MCP-PMT, 10µm) = 27 ps Nagoya test: σ_{TTS} (HPC R3809U-50, 6µm) = 10-11 ps

10/18/07

Timing strategy

(this is the hardest part of the problem)

Timing strategy

- Work with the detector & amplifier gain to be sensitive to a single photoelectron:
 - => a better resolution at lower Npe
 - => can use thinner radiator
 - => however, expect worse aging effects
- Reduce the amplification gain to be sensitive to larger threshold:
 - => worse resolution at lower Npe limit,
 - => more linear operation
 - => may need a bit thicker radiator

• What speed of amplifier does one need ?

- => It needs to be fast enough to follow MCP (this means ≥1 GHz BW for 10µm MCP)
- => A deciding factor is a <u>rise-time & noise</u>:

I see this type of dependency in data:

• CFD, or time-over-threshold timing with ADC correction, or waveform sampling ?

=> I am leaning towards the third option.

10/18/07

Two laser diode setups

- Single MCP-PMT providing a TDC start, and the laser diode PiLas electronics provides a TDC stop.
- Two identical MCP-PMTs providing a TDC start & stop. The light is split by a fiber splitter.

Single MCP-PMT measurements

10/18/07

Timing resolution with PiLas laser diode

$\sigma = f(Npe)$ - with amplifier, timing with a CFD

• One Burle/Photonis MCP-PMTs with 10 μm MCP holes ; red laser wavelength (635 nm).

The 1-st pe⁻ timing mode can reach a σ ~ 12 ps resolution even for Npe ~ 25, which corresponds to a 5mm long quartz radiator; a higher threshold leads to a requirement of larger Npe, and thus thicker radiator.

 10/18/07
 Va'vra, TOF vs. RICH, Trieste,
 18

RICH 2007

$\sigma_{RMS} = f(Npe)$ - no amplifier, timing with a 1GHz BWscope

- No amplifier => MCP voltage rather high to see small Npe; threshold: 15-20 pe.
- The scope-based timing resolution are worse, probably due to scope triggering noise.

Time-walk = f(Npe) for all methods so far

- Time-walk needs to be corrected with ADC for all methods !
- Ortec 9327 Amp/CFD time-walk is the smallest, but still significant !
- So, why to use a CFD discriminator at all ?

Double MCP-PMT measurements

10/18/07

RICH 2007

Calibration of the electronics

RICH 2007

A final result with two TOF counters in tandem

- Two Burle/Photonis MCP-PMTs with 10 µm MCP holes operating at 2.27 & 1.88 kV.
- Ortec 9327Amp/CFD (two) with a -10mV threshold and a walk threshold of +5mV & TAC566 & 14 bit ADC114

10/18/07

A single MCP resolution = $f(Npe)_{threshold}$

• Two Burle/Photonis MCP-PMTs with 10 μm MCP holes operating at 2.27 & 1.88 kV.

• Ortec 9327Amp/CFD (two) with a walk threshold of +5mV & TAC566 & 14 bit ADC114

Can we aim for a 5mm thick radiator (Npe ~25 pe⁻) ?

Let's change the voltage divider to reduce the MCP rise time

(Can we improve the resolution further ?)

10/18/07

A single MCP resolution = $f(Npe)_{MCP-to-anode field}$

Comparison of two resistor chains:

- Two Burle/Photonis MCP-PMTs with 10 µm MCP holes operating at 2.27 & 1.88 kV.
- Ortec 9327Amp/CFD (two) with a -10mV threshold and a walk threshold of +5mV & TAC566 & 14 bit ADC114
- Some improvement when running a high MCP-to-anode field.
- Not worth the risks of a possible damage and reduction of the operating range for the magnetic field application.

10/18/07

The best result with two TOF counters in tandem

Two Burle/Photonis MCP-PMTs with 10 um MCP holes operating at 2.85 & 2.43 kV.

Ortec 9327Amp/CFD (two) with a walk th. of +5mV & TAC566 & 14 bit ADC11

•

•

Each detector has Npe ~ 115-120 pe⁻:

 $\sigma_{\text{single detector}} \sim (1/\sqrt{2}) \sigma_{\text{double detector}}$ ~ 5.0 ps

Running conditions:

- 1) Low MCP gain operation (<10⁵)
- 2) Linear operation
- 3) CFD discriminator
- 4) No additional ADC correction

Contribution of the MCP-PMT itself to the above single detector resolution:

Lessons from the test beam

Beam test - problem with the radiators

To make these pictures possible, send monitor signals over a long delay cable => rise time is degraded:

 \mathbf{O}

0

- A poor reflectivity of radiator's Al coating created a non-uniform number of photoelectrons. The 2-nd radiator's yield is worse than the 1-st one.
- One could still correct it if we would have a fast ADC !!

(Ortec 9327 Amp/CFD provides a fast bipolar monitor of the amplifier. However, an ordinary ADC, such as LeCroy, would integrate it to a fixed constant. We did not have a better ADC available, which could be used to correct for the pulse height variation. If we would have it, we would get a better result.)

 $\sigma_{\text{single detector}} \sim (1/\sqrt{2}) \sigma_{\text{double detector}} \sim 22.6 \text{ ps}$

10/18/07

J. Va'vra, TOF vs. RICH, Trieste, RICH 2007 31

Towards a final design

My initial thoughts:

U. of Chicago solution:

Equal-time trace PC board & new ground layout:

- Starting parameters, which Burle/Photonis is willing to try:
 - 5 mm quartz window & radiator $\Rightarrow \sim 25 \text{ pe}^-$
 - 0.07" cathode-to-MCP distance (this still allows a placement of the getter)
 - 0.02" MCP-to-anode distance
 - 64 pads, 6x6 mm initially

Time-walk in a double threshold method using a 1GHz BW scope

- Burle/Photonis MCP-PMTs with 10 μm MCP holes operating at 2.80kV; no amplifier; red laser (635 nm).
- Tektronix TDS 5104 scope with 1 GHz BW; trigger: PiLas trigger; thresholds 5 & 20 mV; scope: 200ps/div & 10 mV/div.
- A double-threshold method does not lead to a single intersect point, probably due to a nonlinearity in the amplification process, <u>if one accepts a large variation in Npe</u> ! It may work only over a very small range of variation in Npe.
- May have to digitize pulses with 2-4 sampling points on both leading & trailing edges to get best timing and amplitude. 10/18/07 J. Va'vra, TOF vs. RICH, Trieste, 33 RICH 2007

Conclusions

- **Our present best laser diode results:**
 - $\sigma_{single MCP} \sim 7.2$ ps for Npe ~ 50, expected from a 1cm thick radiator.
 - $\sigma_{TTS} \sim 27$ ps for Npe ~ 1 .
 - Electronics contribution (Amp, CFD, TAC, ADC): $\sigma_{\text{Total electronics}} \sim 3.4 \text{ ps.}$
 - Upper limit on the MCP-PMT resolution: σ_{MCP-PMT} ~ 4.5 ps, obtained for a modified resistor chain and Npe ~120.
- **Our present best test beam results:**
 - σ_{single MCP} ~ 22.5 ps (believed to be due to a poor radiator Al-coating, and due to not having a fast ADC to correct PH variation).

10/18/07

Backup slides

New laser-based testing methods

PiLas laser head:

Calibration of a fast detector:

Parameter	Value		
Laser diode source	PiLas		
Wavelength	635 nm		
TTS light spread (FWHM)	~ 30 ps		
Fiber size	62.5 μm		
Manufacturer: Ultra-fast Si Detector or a streak camera : F vs. RICH, Trieste,	36		

10/18/07

Single-photon timing resolution - σ_{TTS}

Burle/Photonis MCP-PMT 85012-501 (64 pixels, ground all pads except one)

- 10 µm MCP hole diameter •
- Phillip CFD
- PiLas red laser diode (635 nm): •

Hamamatsu C5594-44 amplifier

Ortec VT120A amplifier

J. Va'vra, TOF vs. RICH, Trieste, **RICH 2007**

Super-B Belle: Status of Japanese competition

K.Inami et al., Nagoya Univ., Japan - SNIC conference, SLAC, April 2006

MCP-PMT:

R3809U-50-11X Window : 11mm

 $\sigma_{\rm TTS} = 10-11 \rm ps$

Amp/CFD/TDC:

Use two identical TOF detectors in the beam (Start & Stop):

Electronics resolution:

Beam resolution with qtz. radiator $(N_{pe} \sim 50)$:

10/18/07

Systematic errors

(They will ultimately decide what will be a final performance)

10/18/07

Systematic errors when doing timing at a level of σ ~10-20ps

- Laser diode start up instability
- Laser diode temperature stability
- Noise
- TDC linearity stability
- "Sleep-wake up" ADC effect
- Non-uniform MCP gain response
- Deflection of MCP front window
- Cross-talk, ringing
- Vertexing, track length
- START time
- Aging
- Magnetic field