A high resolution TOF counter - a way to compete with a RICH detector?

J. Va’vra, SLAC

representing
D.W.G.S. Leith, B. Ratcliff, and J. Schwiening

Note: This work was possible because of the Focusing DIRC R\&D

Content of this talk

- A bit of history
- TOF detector for Super-B Forward PID
- Timing strategy
- Laser diode measurements
- Lessons from the test beam
- Systematic errors (decided to drop this as it would take an hour)
- Summary

Tom Ypsilantis always liked to end his talks with: "... and an equivalent performance with a TOF detector would require this $\sigma_{\text {TOF }}$ timing resolution ..." (usually $\ll 1$ psec for a RICH detector with $\mathrm{n}=\mathrm{n}_{\text {gas }}$)

However, it is possible to start competing if n is larger:

1) For $n \sim 1.03$, the required $\sigma_{\text {TOF }} \sim 5-10$ psec $\&$ Lpath $\sim 2 \mathrm{~m}$
2) For $\mathrm{n} \sim 1.47$, the required $\sigma_{\mathrm{TOF}} \sim 15-20 \mathrm{psec} \&$ Lpath $\sim 2 \mathrm{~m}$

A bit of history as I know it

- ~ 35 years ago:

Helmuth Spieler of LBL (private communication):

- Built, as a part of his Ph.D. thesis work, a TOF system using MCPs for an experiment detecting heavy ions. He routinely achieved a timing resolution of $\sigma \sim 20-30 \mathrm{ps}$.
- ~27 years ago:

Bill Attwood of SLAC (lecture on the TOF technique at SLAC in 1980):

- The lecture series did not even mention MCP-PMTs. The technology clearly existed at that time, but was either not affordable or obtainable or simply ignored for large scale HEP applications.
Instead, Pestov spark counters were mentioned as a way to progress towards a resolution of $\sigma \sim 30$ 50 ps for large areas.
- ~ 4 years ago:

Henry Frisch of Univ. of Chicago (the 1-st proposal for a 1 ps timing with a MCP-PMTs coupled to a Cherenkov radiator):

- Aspen talk in 2003, and Credo et al., IEEE Nucl. Sci. Symp., Conf. Records, Vol. 1 (2004).
- 2 years ago:

Takayoshi Ohshima's group in University of Nagoya (reached a $\sigma \sim 6.2$ ps in the test beam)

- "The Pico-Sec Timing Workshop," 18 Nov 2005, U. of Chicago, http://hep.uchicago.edu/psec/.

What are the reasons to push the TOF technique towards the new limits ?

- Fast Cherenkov light rather than a scintillation
- New detectors with small transit time spread $\sigma_{\text {TTS }}<30$ ps
- Fast electronics
- New fast laser diodes for testing

Forward PID with TOF detector at Super B
 (in Italy)

PID systems in Super-B

- Two PID systems: Barrel DIRC \& Forward TOF

Timing at a level of $\sigma \sim 15-20 \mathrm{ps}$ can start competing with the RICH techniques

Example of various Super-B factory PID designs:

Calculation done for a flight path length: 2 m

Expected $\pi /$ K separation

Present detector choice for the TOF application

Burle/Photonis MCP-PMT

Burle/Photonis data

Parameter	Value
Photocathode: Bi-alkali QE at 420 mm	28-32\%
Number of MCPs/PMT	2
Total average gain @ -2.4kV \& B = 0 kG	$\sim 5 \times 10^{5}$
Geometrical collection efficiency of the 1-st MCP	70-80\% *
Geometrical packing efficiency	85-90\% \%
PDE = Total fraction of "in time" photoelectrons detected (for Bi-alkali QE)	17-23\% *
Fraction of photoelectrons arriving "in time"	70-80\%
$\sigma_{\text {TTS }}$ - single electron transit time spread (for $10 \mu \mathrm{~m}$ dia. pores)	27 ps
Matrix of pixels	$2 \times 2,8 \times 8,16 \times 16$ or 32×32
Number of pixels	4, 64, 256 or 1024
Pixel size (8x8 \& 32x32 matrix)	5.94×5.94 or ~1 x 1 [mm²]

10/18/07

> J. Va'vra, TOF vs. RICH, Trieste, RICH 2007

A TOF counter prototype

Four pads connected via equal-time traces:

Radiator

- Burle/Photonis MCP-PMTs with 10 um MCP holes.
- Short together 4 pads to get a signal; all the rest of pads grounded.
- A 10 mm -long, 10 mm dia, quartz radiator, Al-coating on cylinder sides.
- Ortec 1GHz BW 9327Amp/CFD \& TAC566 \& 14 bit ADC114.
- Calculation: 10 mm long quartz radiator \& a window should give Npe ~ 50 pe/track.
- Laser diode light adjusted to provide typically Npe ~ 50 pe.
- The laser spot size: $\sim 1 \mathrm{~mm}$ dia.; beam spot size typically $\sigma \sim 1-2 \mathrm{~mm}$

What resolution do we expect to get ?

- A calculation indicates $\mathbf{N}_{\mathrm{pe}} \sim 50$ for 1 cm -long Fused Silica radiator \& Burle/Photonis Bialkali photocathode:

- Expected resolution:

```
a) Beam (Radiator length \(=10 \mathrm{~mm}+\) window):
\(\sigma \sim \sqrt{ }\left[\sigma^{2}{ }_{\text {MCP.PMT }}+\sigma_{\text {Radiator }}+\sigma_{\text {Pad broadenibng }}^{2}+\sigma_{\text {Electronics }}^{2}+\ldots\right]=\)
\(=\sqrt{ }\left[\left(\sigma_{\text {TTS }} \delta \sqrt{ } \mathrm{N}_{\mathrm{pe}}\right)^{2}+\left(\left(\left(12000 \mu \mathrm{~m} / \cos \Theta_{\mathrm{C}}\right) /(300 \mu \mathrm{~m} / \mathrm{ps}) / \mathrm{n}_{\text {group }}\right) / \sqrt{ }(12 \mathrm{Npe})\right)^{2}+\right.\)
    \(\left.+((6000 \mu \mathrm{~m} / 300 \mu \mathrm{~m} / \mathrm{ps}) / \sqrt{ }(12 \mathrm{Npe}))^{2}+(3.42 \mathrm{ps})^{2}\right] \sim\)
    \(\sim \sqrt{ }\left[3.5^{2}+3.3^{2}+0.75^{2}+3.42^{2}\right] \sim 5.9 \mathrm{ps}\)
```

b) Laser $\left(\mathrm{N}_{\mathrm{pe}} \sim 50 \mathrm{pe}^{-}\right)$:

This test: $\quad \sigma_{\text {TTS }}($ Burle MCP-PMT, $10 \mu \mathrm{~m})=27 \mathrm{ps}$
Nagoya test: $\sigma_{\text {TTS }}($ HPC R3809U-50, $6 \mu \mathrm{~m})=\mathbf{1 0 - 1 1} \mathrm{ps}$

b) Laser ($\mathrm{N}_{\mathrm{pe}} \sim 50$ pe- :

$$
\begin{aligned}
\sigma & \sim \sqrt{ }\left[\sigma_{\text {MCP.PMT }}^{2}+\sigma_{\text {Laser }}^{2}+\sigma_{\text {Electronics }}^{2}+\ldots\right]= \\
& \left.=\sqrt{ }\left[\sigma_{\text {TTST }} / \sqrt{ } \mathrm{N}_{\mathrm{pe}}\right)^{2}+\sqrt{ }\left((\mathrm{FWHM} / 2.35) / \sqrt{ } \mathrm{N}_{\mathrm{pe}}\right)^{2}+(3.42 \mathrm{ps})^{2}\right] \sim \\
& \sim \sqrt{ }\left[3.8^{2}+1.8^{2}+3.42^{2}\right] \sim 5.4 \mathrm{ps}
\end{aligned}
$$

Timing strategy

(this is the hardest part of the problem)

Timing strategy

- Work with the detector \& amplifier gain to be sensitive to a single photoelectron:
=> a better resolution at lower Npe
=> can use thinner radiator
=> however, expect worse aging effects
- Reduce the amplification gain to be sensitive to larger threshold:
=> worse resolution at lower Npe limit,
=> more linear operation
=> may need a bit thicker radiator
- What speed of amplifier does one need ? => It needs to be fast enough to follow MCP (this means $\geq 1 \mathrm{GHz} \mathrm{BW}$ for $10 \mu \mathrm{~m} \mathrm{MCP}$)
$\Rightarrow \quad$ A deciding factor is a rise-time $\&$ noise:

- CFD, or time-over-threshold timing with ADC correction, or waveform sampling ? => I am leaning towards the third option.

Two laser diode setups

- Single MCP-PMT providing a TDC start, and the laser diode PiLas electronics provides a TDC stop.
- Two identical MCP-PMTs providing a TDC start \& stop. The light is split by a fiber splitter.

Single MCP-PMT measurements

Timing resolution with PiLas laser diode

$\sigma=f(N p e)-$ with amplifier, timing with a CFD

- One Burle/Photonis MCP-PMTs with $10 \mu \mathrm{~m}$ MCP holes ; red laser wavelength (635 nm).
- The 1-st pe- timing mode can reach a $\sigma \sim 12$ ps resolution even for Npe ~ 25, which corresponds to a 5 mm long quartz radiator; a higher threshold leads to a requirement of larger Npe, and thus thicker radiator.

10/18/07

$$
\begin{aligned}
& \text { J. Va'vra, TOF vs. RICH, Trieste, } \\
& \text { RICH } 2007
\end{aligned}
$$

$\sigma_{\mathrm{RMS}}=\mathrm{f}(\mathrm{Npe})-$ no amplifier, timing with a 1 GHz BWscope

- No amplifier => MCP voltage rather high to see small Npe; threshold: 15-20 pe.
- The scope-based timing resolution are worse, probably due to scope triggering noise.

Time-walk = f(Npe) for all methods so far

Zoom into a more likely range of variation in Npe:

- Time-walk needs to be corrected with ADC - for all methods !
- Ortec 9327 Amp/CFD time-walk is the smallest, but still significant !
- So, why to use a CFD discriminator at all ?

Double MCP-PMT measurements

Setup with two MCP-PMTs and a fiber splitter

Calibration of the electronics

A final result with two TOF counters in tandem

Two detector resolution:

Each detector has Npe ~ 50 pe-:
$\sigma_{\text {single detector }} \sim(1 / \sqrt{2}) \sigma_{\text {double detector }}$ $\sim 7.2 \mathrm{ps}$

Running conditions:

1) Low MCP gain operation $\left(<10^{5}\right)$
2) Linear operation
3) CFD discriminator
4) No additional ADC correction

- Two Burle/Photonis MCP-PMTs with $10 \mu \mathrm{~m}$ MCP holes operating at $2.27 \& 1.88 \mathrm{kV}$.
- Ortec 9327Amp/CFD (two) with a -10 mV threshold and a walk threshold of +5 mV \& TAC566 \& 14 bit ADC114

$$
\begin{aligned}
& \text { J. Va'vra, TOF vs. RICH, Trieste, } \\
& \text { RICH } 2007
\end{aligned}
$$

A single MCP resolution $=f(\mathbf{N p e})_{\text {threshold }}$

CFD threshold:

$$
\begin{aligned}
& 10 \mathrm{mV} \Leftrightarrow 2-3 \mathrm{pe} \\
& 20 \mathrm{mV} \Leftrightarrow 3-6 \mathrm{pe} \\
& 100 \mathrm{mV} \Leftrightarrow 15-20 \mathrm{pe}
\end{aligned}
$$

- Two Burle/Photonis MCP-PMTs with $10 \mu \mathrm{~m}$ MCP holes operating at 2.27 \& 1.88 kV .
- Ortec 9327Amp/CFD (two) with a walk threshold of +5 mV \& TAC566 \& 14 bit ADC114
- Can we aim for a 5 mm thick radiator ($\mathrm{Npe} \sim 25 \mathrm{pe}$) ?

Let's change the voltage divider to reduce the MCP rise time

(Can we improve the resolution further ?)

Rise time $=\mathbf{f}\left(\right.$ pore size $\left., \mathrm{E}_{\text {MCP-to-anode }}, \mathrm{E}_{\text {Cathode-to-MCP }}\right)$

Pore size:

MCP-to-anode electric field:
 MCP-to-anode electric fied.

 (Photek Ltd. information) Cathode-to-MCP voltage:

- Rise time is determined by:
- Transit time variation in MCP pores

Smaller MCP pore size, faster rise time

- Exit velocity variation from MCP towards anode Larger MCP-to-Anode electric field, faster rise time
- Exit velocity variation from cathode towards MCP Small effect for red wavelengths \& Bialkali [635 nm $\left.<=>\sim 2 \mathrm{eV}=>\mathrm{dt} / \mathrm{dul}_{\max } \sim((2-\phi) / 200) * 1000 \mathrm{ps}\right]$, $\phi \sim 1.5-2 \mathrm{eV}$. Could be a problem for $\lambda<300 \mathrm{~nm}$!!

A single MCP resolution $=\mathbf{f}(\mathbf{N p e})_{\text {MCP-to-anode field }}$

Comparison of two resistor chains:

- Two Burle/Photonis MCP-PMTs with $10 \mu \mathrm{~m}$ MCP holes operating at $2.27 \& 1.88 \mathrm{kV}$.
- Ortec 9327Amp/CFD (two) with a -10 mV threshold and a walk threshold of +5 mV \& TAC566 \& 14 bit ADC114
- Some improvement when running a high MCP-to-anode field.
- Not worth the risks of a possible damage and reduction of the operating range for the magnetic field application.

The best result with two TOF counters in tandem

Two detector resolution (resistor chain \#2):

Each detector has Npe ~ 115-120 pe:
$\sigma_{\text {single detector }} \sim(1 / \sqrt{2}) \sigma_{\text {double detector }}$ $\sim 5.0 \mathrm{ps}$

Running conditions:

1) Low MCP gain operation $\left(<10^{5}\right)$
2) Linear operation
3) CED discriminator
4) No additional ADC correction

Contribution of the MCP-PMT itself to the above single detector resolution:

Lessons from the test beam

Beam test - problem with the radiators

To make these pictures possible, send monitor signals over a long delay cable $=>$ rise time is degraded:

10/18/07

- A poor reflectivity of radiator's Al coating created a non-uniform number of photoelectrons. The 2-nd radiator's yield is worse than the 1 -st one.
- One could still correct it if we would have a fast ADC !!
(Ortec 9327 Amp/CFD provides a fast bipolar monitor of the amplifier. However, an ordinary ADC, such as LeCroy, would integrate it to a fixed constant. We did not have a better ADC available, which could be used to correct for the pulse height variation. If we would have it, we would get a better result.)
- $\sigma_{\text {single detector }} \sim(1 / \sqrt{ } 2) \sigma_{\text {double detector }} \sim 22.6 \mathrm{ps}$

Towards a final design

My initial thoughts:

U. of Chicago solution:

Equal-time trace PC board \& new ground layout:

- Starting parameters, which Burle/Photonis is willing to try:
- 5 mm quartz window \& radiator $=>\sim 25 \mathrm{pe}^{-}$
- 0.07" cathode-to-MCP distance (this still allows a placement of the getter)
- 0.02" MCP-to-anode distance
- 64 pads, 6×6 mm initially

Time-walk in a double threshold method using a 1GHz BW scope

- Burle/Photonis MCP-PMTs with $10 \mu \mathrm{~m}$ MCP holes operating at 2.80 kV ; no amplifier; red laser (635 nm).
- Tektronix TDS 5104 scope with 1 GHz BW; trigger: PiLas trigger; thresholds 5 \& 20 mV ; scope: $200 \mathrm{ps} / \mathrm{div}$ \& $10 \mathrm{mV} / \mathrm{div}$.
- A double-threshold method does not lead to a single intersect point, probably due to a nonlinearity in the amplification process, if one accepts a large variation in Npe ! It may work only over a very small range of variation in Npe.
- May have to digitize pulses with 2-4 sampling points on both leading \& trailing edges to get best timing and amplitude.

Conclusions

- Our present best laser diode results:
- $\quad \sigma_{\text {single } M C P} \sim 7.2 \mathrm{ps}$ for $\mathrm{Npe} \sim 50$, expected from a 1 cm thick radiator.
- $\quad \sigma_{\text {TTS }} \sim 27$ ps for Npe ~ 1.
- Electronics contribution (Amp, CFD, TAC, ADC): $\sigma_{\text {Total_electronics }} \sim 3.4$ ps.
- Upper limit on the MCP-PMT resolution: $\sigma_{\text {MCP-PMT }} \sim 4.5 \mathrm{ps}$, obtained for a modified resistor chain and Npe ~ 120.
- Our present best test beam results:
- $\quad \sigma_{\text {single MCP }} \sim 22.5 \mathrm{ps}$ (believed to be due to a poor radiator Al-coating, and due to not having a fast ADC to correct PH variation).

Backup slides

New laser-based testing methods

PiLas laser head:

Calibration of a fast detector:

Single-photon timing resolution - $\sigma_{\text {TTS }}$

Burle/Photonis MCP-PMT 85012-501 (64 pixels, ground all pads except one)

- $10 \mu \mathrm{~m}$ MCP hole diameter
- Phillip CFD
- PiLas red laser diode (635 nm):

$$
\sigma_{\text {TTS }}<\sqrt{ }\left(32^{2}-13^{2}-11^{2}\right) \sim 27 \mathrm{ps}
$$

Ortec VT120A amplifier
$\sim 0.4 \mathrm{GHz}$ BW, 200x gain +6 dB

Super-B Belle: Status of Japanese competition

K.Inami et al., Nagoya Univ., Japan - SNIC conference, SLAC, April 2006

MCP-PMT:

Use two identical TOF detectors in the beam (Start \& Stop):

Amp/CFD/TDC:

Electronics resolution:

Beam resolution with qtz . radiator $\left(\mathrm{N}_{\mathrm{pe}} \sim 50\right)$:

Systematic errors

(They will ultimately decide what will be a final performance)

Systematic errors when doing timing at a level of o~10-20ps

- Laser diode start up instability
- Laser diode temperature stability
- Noise
- TDC linearity stability
- "Sleep-wake up" ADC effect
- Non-uniform MCP gain response
- Deflection of MCP front window
- Cross-talk, ringing
- Vertexing, track length
- START time
- Aging
- Magnetic field

