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Anomalous Gray Matter Structural Networks in Major
Depressive Disorder

Manpreet K. Singh, Shelli R. Kesler, S.M. Hadi Hosseini, Ryan G. Kelley, Debha Amatya,
J. Paul Hamilton, Michael C. Chen, and Ian H. Gotlib
Background: Major depressive disorder (MDD) is characterized by abnormalities in structure, function, and connectivity in several brain
regions. Few studies have examined how these regions are organized in the brain or investigated network-level structural aberrations
that might be associated with depression.

Methods: We used graph analysis to examine the gray matter structural networks of individuals diagnosed with MDD (n ¼ 93) and a
demographically similar healthy comparison group (n ¼ 151) with no history of psychopathology. The efficiency of structural networks
for processing information was determined by quantifying local interconnectivity (clustering) and global integration (path length). We
also compared the groups on the contributions of high-degree nodes (i.e., hubs) and regional network measures, including degree
(number of connections in a node) and betweenness (fraction of short path connections in a node).

Results: Depressed participants had significantly decreased clustering in their brain networks across a range of network densities.
Compared with control subjects, depressed participants had fewer hubs primarily in medial frontal and medial temporal areas, had
higher degree in the left supramarginal gyrus and right gyrus rectus, and had higher betweenness in the right amygdala and left medial
orbitofrontal gyrus.

Conclusions: Networks of depressed individuals are characterized by a less efficient organization involving decreased regional
connectivity compared with control subjects. Regional connections in the amygdala and medial prefrontal cortex may play a role in
maintaining or adapting to depressive pathology. This is the first report of anomalous large-scale gray matter structural networks in
MDD and provides new insights concerning the neurobiological mechanisms associated with this disorder.
Key Words: Connectivity, depression, graph analysis, gray matter,
small world, structural network

M
ajor depressive disorder (MDD) is among the most
prevalent and costly of all psychiatric disorders (1).
Investigators have documented impairments in MDD in

executive function, memory, and emotional processing (2), as
well as anomalies in both neural structure and function (3),
particularly in the subgenual anterior cingulate cortex (sgACC),
dorsolateral prefrontal cortex (DLPFC), ventral striatum, amyg-
dala, and hippocampus (4,5). Importantly, however, findings from
these studies of MDD have been equivocal, likely limited by
approaches that fail to capture the multivariate structure of
abnormalities associated with this complex disorder. Indeed,
several lines of evidence suggest that depression is associated
with widespread neurobiological difficulties, including atrophy in
gray and white matter tissue in areas distributed throughout the
brain (6–9), leading investigators to posit that MDD involves
alterations in large-scale structural brain networks (10).

In this context, researchers have recently begun to use graph
theory to examine brain network organization. Graph theory
provides a powerful method for quantifying the organization of
brain connectivity, allowing the brain to be depicted as graphs
composed of nodes, representing regions or voxels, and edges,
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representing structural or functional connectivity among the
nodes. Graph-theoretical studies have assessed structurally
defined networks based on such features as gray matter volume,
cortical thickness, surface area, and white matter connections
between gray matter regions (11–15). To construct gray matter
networks based on structural magnetic resonance imaging (MRI)
data, the edges between nodes are defined by the strength of
correlation between regional volume measurements (16). Mor-
phometric correlations likely reflect anatomical connectivity (17)
and may be influenced by functional connectivity; that is, func-
tional specialization, increased through practice, skill acquisition,
and training, can change underlying anatomy (experience-related
plasticity). Watts and Strogatz (18) described the concept of
small-world networks that have an optimal balance between
local specialization and global integration for information proc-
essing. Optimal small-world networks have a high level of local
clustering (i.e., nodes are often connected to their neighbors),
combined with short path lengths (i.e., it takes few steps from
any node to any other node in the network), at low network cost
(i.e., the mean physical distance between connected nodes is
considerably less than is the case in a random network). These
and other related metrics can be used to quantify the local
density of connections within regions (clustering), the functional
integration between regions (path length) (19), and the contri-
bution of strong nodes (hubs) to facilitate global integrative
processes.

Three studies using graph analyses with depressed individuals
have found aberrations in path length (20,21) and number of
connections (degree) (21,22) during sleep and at rest. These
studies were limited, however, in examining small samples of
participants in their early stages of illness and in assessing
disruptions only in functional networks. In the present study,
we used graph-theoretical analyses to examine, for the first time,
global and regional MRI-derived structural gray matter networks
BIOL PSYCHIATRY 2013;]:]]]–]]]
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in a large sample of adults diagnosed with MDD. Given previous
evidence of a diffuse distribution of gray matter atrophy in
depression, combined with findings of reductions in small-world
characteristics and increased disorganization of functional
networks in depressed individuals, we hypothesized that similar
anomalies would also characterize structural gray matter net-
works in MDD. We also examined depression-associated differ-
ences in such regional network measures as betweenness (the
fraction of short path connections that pass through a particular
node), degree, and the contribution of high-degree nodes (i.e.,
hubs) to the network. Based on previous findings, we hypothe-
sized that, compared with healthy control subjects (HCs), MDD
participants would show 1) abnormal network topology, includ-
ing significant anomalies in clustering and path lengths; 2) lower
betweenness and degree; and 3) different hubs from those of
HCs and hubs that are centered in key brain regions, including
the sgACC, DLPFC, amygdala, and hippocampus.
Methods and Materials

Participants
Ninety-three adults aged 18 to 60 years diagnosed with MDD

and 151 age- and gender-comparable HCs were recruited from
outpatient psychiatry clinics and through media advertisements.
Trained interviewers administered the Structured Clinical Inter-
view for DSM-IV (23), with high interrater reliability (k ¼ .96).
Participants were included in the MDD group if they met the
DSM-IV criteria for MDD. The HC group consisted of individuals
with no current or past Axis I disorder. All participants had 1) no
Figure 1. Association matrices. Association matrices for healthy control (HC
strength of the connections. These matrices represent the maps thresholded
groups are not fragmented and paths exist between each node and every ot
clarity, only the regions in the left hemisphere are labeled. ACC, anterior cing
caudate nucleus; CUN, cuneus; FG, fusiform gyrus; HIPP, hippocampus; HSHL
frontal gyrus, orbital part; IFTr, inferior frontal gyrus, triangular part; INS, ins
temporal gyrus; L, left hemisphere; LNG, lingual gyrus; MCC, mid-cingulate; M
medial part; MFG, middle frontal gyrus; MFOr, middle frontal gyrus, orbital par
temporal pole; OFB, olfactory cortex; PCC, posterior cingulate; PCL, paracentr
nucleus, pallidum; PoCG, postcentral gyrus; PrCG, precentral gyrus; PUT, putam
SFOr, superior frontal gyrus, orbital part; SMA, supplementary motor area; SMG
lobule; STG, superior temporal gyrus; STP, superior temporal pole; THL, thalam
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neurologic, psychiatric, or medical conditions known to affect
cognitive function (e.g., learning disability, brain injury, psychotic
symptoms, bipolar disorder, alcohol or substance abuse); and
2) no physical contraindications for MRI. Fifty-one percent of the
MDD participants were taking psychotropic medications at the
time of the scan. Finally, participants completed the Beck
Depression Inventory-II (24), a self-report measure of depressive
symptom severity. This study was approved by the Stanford
University Institutional Review Board and all participants pro-
vided informed consent.

MRI Data Acquisition and Preprocessing
Magnetic resonance images used in this analysis were aggre-

gated from three scanners (1.5T GE Signa, 3T GE Signa, and 3T GE
Discovery; GE Medical Systems, Milwaukee, Wisconsin), all located
at the Stanford University Lucas Center for Medical Imaging.
Equal proportions of HC and MDD participants with similar
demographic characteristics were scanned concurrently at each
scanner (76 HC/48 MDD at 1.5T, 60 HC/31 MDD at 3T Signa, 15
HC/14 MDD at 3T Discovery). Spoiled gradient recall pulse
sequences had repetition time ¼ 5.9 to 9.6; echo time ¼ 1.1 to
3.4; flip angle ¼ 11, 15, or 17; matrix ¼ 256 � 256; field of view ¼
220 mm or 250 mm; voxel dimensions ¼ .859 mm � .859 mm;
and slice thickness ¼ 1 mm to 1.8 mm. Although investigators
have documented reliable voxel-based morphometry data from
multiple scanners at various field strengths and pulse sequences
at different sites (25), we nevertheless used field strength as a
covariate in our analyses.

Image preprocessing was performed using the Statistical
Parametric Mapping 8 (SPM; Wellcome Department of Cognitive
) and major depressive disorder (MDD) groups; the color-bar shows the
at the minimum network density (10%) in which the networks of both

her node. Correlations below this specified threshold are set to zero. For
ulate; AMYG, amygdala; ANG, angular gyrus; CALC, calcarine fissure; CN,

, Heschl’s gyrus; IFOp, inferior frontal gyrus, opercular part; IFOr, inferior
ula; IOG, inferior occipital gyrus; IPL, inferior parietal lobule; ITG, inferior

edFOr, medial frontal gyrus, orbital part; MedSF, superior frontal gyrus,
t; MOG, middle occipital gyrus; MTG, middle temporal gyrus; MTP, middle
al lobule; PCUN, precuneus; PHIP, parahippocampal gyrus; PLD, lenticular
en; REC, gyrus rectus; RLN, rolandic operculum; SFG, superior frontal gyrus;
, supramarginal gyrus; SOG, superior occipital gyrus; SPL, superior parietal

us.



Table 1. Participant Demographics and Clinical Characteristics

Group

Variable MDD HC

Female (n) 64 96

Male (n) 29 55

Mean Age (SD)a 38.59 (11.71) 33.08 (10.53)

Mean BDI-II Score (SD)a 30.28 (10.17) 2.07 (2.94)

Severity of Current Episode, n (%) 85 NA

Mild-moderate 49 (57.6)

Severe 36 (42.4)

Mean Age of Onset in Years (SD) 18.26 (10.31) NA

Number of Depression Recurrences, n (%) 74 NA

Single episode – 0 recurrences 4 (5.5)

One recurrence 10 (13.5)

Two recurrences 7 (9.4)

3� recurrences 53 (71.6)

Comorbidities, n (%)

Dysthymia (double depression) 7 (7.5) 0 (0)

Panic disorder 6 (6.4) 0 (0)

Social phobia 11 (11.8) 0 (0)

Obsessive-compulsive disorder 3 (3.2) 0 (0)

Posttraumatic stress disorder 9 (9.6) 0 (0)

Current Medications, n (%) 91 0 (0)

0 medications 45 (49) 0 (0)

1 medication 24 (26) 0 (0)

2 medications 11 (12) 0 (0)

3� medications 11 (12) 0 (0)

Number of Weeks Exposed to Medications,

Mean (SD)

13.6 (29) 0 (0)

BDI-II, Beck Depression Inventory-II; HC, healthy control; MDD, major
depressive disorder; NA, not applicable.

ap ¼ .001.
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Neurology, London, United Kingdom) VBM8 toolbox. The images
were segmented into gray matter (GM), white matter, and
cerebrospinal fluid segments. The GM images were nonlinearly
normalized into standard Montreal Neurological Institute space
using an age- and gender-adjusted GM study-specific custom-
ized template created by the Template-O-Matic (TOM8) toolbox
(26,27). Images were then modulated to ensure that relative
volumes of GM were preserved following spatial normalization.
Sample homogeneity was visually assessed to identify any
outliers who were two or more standard deviations of GM
volume outside of the sample distributions. Seventeen partic-
ipants (9 HC, 8 MDD) were excluded for motion artifacts that
distorted the boundary between segmented gray and white
tissue images.

Region of Interest Extraction
We generated 90 cortical and subcortical regions of interest

(ROIs), excluding the cerebellum, from the Automated Anatom-
ical Labeling atlas using the WFU PickAtlas Toolbox (28). The ROIs
were identical to those used in previous graph analysis studies
of structural correlation networks (12,29). These Automated
Anatomical Labeling ROIs were resliced to the same dimension
as that of tissue segmented images obtained from the voxel-
based morphometry preprocessing step and were subsequently
used to mask the individual modulated, normalized GM images
and extract the average volume within each ROI using the REX
toolbox (http://web.mit.edu/swg/software.htm). A linear regres-
sion analysis was conducted at every ROI to control for the effects
of age, gender, total brain volume (sum of gray matter, white
matter, and cerebral spinal fluid volumes), and scanner field
strength. The residuals of this regression were then substituted
for the raw ROI volume values and are described as corrected
gray matter volumes (15,29,30).

Construction of Structural Correlation Network
The corrected gray matter volumes of all 90 anatomical ROIs

were used to construct structural correlation networks. To compute
a structural correlation network for each group, a 90 � 90
association matrix, R, was generated (Figure 1) with each entry,
rij, defined as the Pearson correlation coefficient between corrected
gray matter volume measures of regions i and j, across participants
(29–31) [partial correlation analysis has been found to under-
estimate the extent of small-world organization (32)]. From each
association matrix, a binary adjacency matrix, A, was derived where
aij was considered 1 if rij was greater than a specific threshold and
zero otherwise. The diagonal elements of the constructed associ-
ation matrix were also set to zero. The resultant adjacency matrix
represented a binary undirected graph, G, in which regions i and j
were connected if gij was unity. Because of methodological
challenges in analyzing and comparing weighted networks (33), a
graph was constructed with n ¼ 90 nodes (anatomical ROIs), with a
network degree of E equal to number of edges (links) and a
network density (cost) representing the fraction of present con-
nections to all possible connections. Because thresholding the
association matrices of different groups at an absolute threshold
may yield networks with a different number of nodes and degrees
(34), we thresholded the constructed association matrices at a
range of network densities (Dmin: .1: .02: .5) and compared the
network topologies across that range (12,29,34). The lower bound
of the range was the minimum density in which the networks of
both groups were not fragmented (here Dmin ¼ .1). For densities
above .5, the graphs became increasingly random (small-world
index close to 1).
Network Analyses
Global Network Analyses. We conducted analyses of the

constructed structural networks to identify within-group and
between-group differences in global network measures such as
small-worldness, clustering, and path length. The small-worldness
of a complex network has two key metrics: clustering coefficient
(C) and characteristic path length (L). The C of a node is a measure
of the number of edges between its nearest neighbors, and
indexes network segregation. The L of a network is the average
shortest path length between all pairs of nodes in the network and
is the most commonly used measure of network integration (19).
To evaluate the small-world topology of the brain networks, these
topological parameters must be benchmarked against correspond-
ing mean values of a null random graph (29,32,33). Thus, the small-
world index (SW) of a network is computed as SW ¼ (C/Cnull)/
(L/Lnull), where Cnull and Lnull are the mean C and L, respectively, of
the m (here, m ¼ 20) null random networks (18). Clustering
coefficient is significantly higher in a small-world network than in
random networks (C/Cnull ratio greater than 1); L is comparable to
random networks (L/Lnull ratio close to 1), resulting in SW � 1.

The null networks are typically constructed using rewiring
algorithms that preserve the topology of the graphs, i.e., random
graphs with the same number of nodes, total edges, and degree
distribution as the network of interest (35,36). However, recent
evidence suggests that networks constructed from correlations
are inherently more clustered than are random networks and that
correlation introduces an additive small-world organization to
the network (32). To overcome this limitation, we generated null
www.sobp.org/journal
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Figure 2. Changes in global network measures as a function of network
density. Normalized clustering (A), normalized path length (B), and small-
world index (C) of the major depressive disorder (MDD) and healthy
control (HC) networks.
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networks from covariance matrices that were matched to the
distributional properties of the observed covariance matrix using
the Hirschberger-Qi-Steuer algorithm (32,37). In addition, we
compared the MDD and HC groups on nonnormalized measures
of clustering and path length.

Regional Network Analyses. We examined the nodal char-
acteristics of the constructed structural networks to identify
group differences in regional network measures. Nodal betwe-
enness and degree were calculated for each of the anatomical
ROIs. Nodal betweenness is defined as the fraction of all shortest
paths in the network that pass through a given node and is used
to detect important anatomical or functional connections. Nodes
that bridge disparate parts of the network have a high betwe-
enness (38). In contrast, nodal degree is defined as the number of
connections that a node has with the rest of the network and is
considered a measure of interaction of a node, structurally or
functionally, with the network (39). The quantified nodal betwe-
enness and degree were normalized by the mean network
betweenness and degree, respectively, and were then compared
between groups (29,30,40).

Hubs are crucial components for efficient communication in a
network, providing regulation of information flow and play a key
role in network resilience to insult (19). We considered a node to
be a hub if its degree was at least one standard deviation higher
than the mean network degree (19,29). The regional network and
hub analyses were conducted on networks thresholded at the
minimum density of full connectivity.

Comparing Network Measures between Groups. A non-
parametric permutation test with 1000 repetitions was con-
ducted to test the statistical significance of depression-
associated differences in global and regional network topologies
(41,42). In each repetition, the corrected regional GM volumes of
each participant were randomly reassigned to one of the two
new groups with the same number of participants as were in the
original diagnostic groups. Then, an association matrix was
obtained for each randomized group. The binary adjacency
matrices were then estimated by thresholding the association
matrices at a range of network densities. The network measures
were then calculated for all the networks at each density, and
differences between the new randomized groups (at each net-
work density) were computed, resulting in a permutation
distribution of difference under the null hypothesis. Differences
in network measures between MDD and HC groups were then
placed in the corresponding permutation distribution and p
values were calculated based on their percentile positions
(30,41). The nonparametric permutation test inherently accounts
for multiple comparisons (p � .05) (43,44).

Each network metric extracted across the specified density
range (.1: .02: .5) is represented by a curve that depicts the
changes in network metric as a function of network density
(threshold). We used functional data analysis (FDA) (29,45,46) to
examine depression-associated differences in these curves.
In FDA, each network measure curve is treated as a function
(y ¼ f(x)), and the sum of differences between groups in y-values
is calculated at a range of density. Functional data analysis
is more sensitive to differences in the shape of the curves than is
an area under the curve analysis (45,46). The permutation ana-
lysis was conducted on the FDA results to test the significance of
the group differences. We used the Brain Connectivity Toolbox
(42) to quantify network measures, the Graph Analysis Toolbox
www.sobp.org/journal
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(29) to compare the structural networks of depressed and
nondepressed participants, and the Brain Net Viewer (http://
www.nitrc.org/projects/bnv/) for network visualization.
Figure 3. Differences between major depressive disorder (MDD) and
Results

Participant characteristics are summarized in Table 1. Dep-
ressed individuals were significantly older and had a higher
mean Beck Depression Inventory-II score than HCs (p � .001).
There were no differences in age among participants run on the
three scanners within either the MDD (F2 ¼ 1.30, p ¼ .28) or the
HC (F2 ¼ .56, p ¼ .57) groups.

Global Network Analyses
Structural connectivity matrices computed for each partici-

pant were compared both within and between groups to
examine differences in global structural network measures of
integration (characteristic path length, L), local interconnectivity
(clustering coefficient, C), and the balance of integration and
interconnectivity (small-world index, SW). Within each group, the
minimum network density in which all nodes became connected
in the networks was .1. The networks in both the MDD and HC
groups followed a small-world organization across the range of
densities; that is, L of the networks was close to 1, while C was
higher than 1. This pattern resulted in SW � 1 across the range of
network densities in both groups (Figure 2).

We examined group differences in global network measures
thresholded at a range of densities (.1: .02: .5). The MDD and HC
groups differed in global network properties across a range of
network densities (Figure 3). Specifically, the networks of the
MDD participants had significantly smaller clustering across a
number of density thresholds. In addition, MDD participants had
significantly smaller small-worldness and longer path lengths
than did HCs at densities between .2 and .3 (all p � .05).

The FDA analysis ensured that MDD-HC differences in global
network measures were not driven by differences in correlation
strengths in regional gray matter volumes that would make the
analysis less sensitive to thresholding. The results confirmed that
MDD participants had significantly smaller normalized clustering
(p ¼ .01); the two groups did not differ significantly in small-
worldness (p ¼ .1) or path length p ¼ .26). Analyses of
nonnormalized network measures also indicated that clustering
was significantly smaller in MDD than in HC participants (p ¼ .04);
the two groups did not differ significantly in path length
(p ¼ .18).

Regional Network Analyses
Figure 4 presents MDD and HC group hub network layouts

mapped on ICBM152 surface templates. Whereas the 20 network
hubs identified in the HC group were in frontal executive control
and motor regions, the 16 hubs identified in the MDD group
were primarily in medial frontal and medial temporal areas. Major
depressive disorder participants had higher nodal betweenness
than did HCs in the right amygdala and left medial orbitofrontal
gyrus and higher nodal degree in the left supramarginal gyrus
and right gyrus rectus (Figure 5).
healthy control (HC) participants in global network measures as a function
of network density. The 95% confidence intervals (CI) and group differences
in normalized clustering (A), normalized path length (B), and small-world
index (C). The � marker shows the difference between the MDD and HC
groups; the � signs falling outside of the confidence intervals indicate the
densities in which the difference is significant at p � .05. The positive
values show MDD � HC and negative values show MDD � HC.
Discussion

This is the first study to use graph analyses to compare gray
matter volume correlation networks of depressed and nonde-
pressed adults. Although the networks in both groups followed a
www.sobp.org/journal
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Figure 4. Network hubs. Constructed networks and corresponding hubs
for major depressive disorder (MDD) (top) and healthy control (HC)
(middle) groups. Nodes that are labeled represent network hubs. The
volume of the spheres represents the degree of the corresponding brain
region. The bottom panel shows the hubs that are specific to each group.
Hubs that were common in the networks of the MDD and HC groups
included bilateral medial and inferior orbitofrontal gyrus, left (L) superior
frontal gyrus, bilateral superior medial frontal gyrus, right (R) anterior
cingulate, and bilateral insula. Hubs present only in the MDD network
included the L middle orbitofrontal gyrus, bilateral fusiform, bilateral
gyrus rectus, and L middle temporal gyrus. Hubs that were specific to the
HC network included R middle cingulate, bilateral inferior frontal
triangular gyrus, bilateral middle frontal gyrus, bilateral superior orbito-
frontal gyrus, R superior frontal gyrus, R supplemental motor area, and L
superior temporal pole. Green color highlights hubs specific to HC
network and blue color represents hubs specific to MDD network.

6 BIOL PSYCHIATRY 2013;]:]]]–]]] M.K. Singh et al.
small-world organization across a range of densities, we found
alterations of large-scale brain network organization in MDD,
even after controlling for total brain volume, gender, age, and
scanner field strength. Specifically, we found that, in contrast to
healthy control subjects, depressed individuals were character-
ized by less specialized or segregated network organization,
indexed by significantly lower clustering, such that regions were
not joining other regions to form a clique of densely intercon-
nected neighbors (16). Importantly, reduced clustering was found
in regions that have been implicated in dysfunction of emotion
regulation and cognition in MDD (3–5). Our findings suggest that
MDD is associated with reduced capacity for subregions of the
prefrontal cortex, striatum, and medial temporal cortex to form
cliques with other brain regions that are likely to be associated
with the generation of such symptoms of depression as persis-
tent sadness, guilt, worthlessness, and recurrent reflective self-
focus (16,47). Thus, the network-level aberrations identified in the
present study may have important neurobiological implications
for the pathophysiology of MDD.

Depression-Associated Anomalies in Global Network
Topology

Given our finding of decreased clustering coefficients in MDD,
it appears that structural correlation networks in depressed adults
www.sobp.org/journal
are characterized by weaker regional connectivity than is the case
in HCs (38). Several investigators have demonstrated that
depressed individuals exhibit anomalous patterns of neural con-
nectivity as they engage in cognitive (48) and affective (49) tasks.
Most current analytic procedures, however, are limited in their
ability to examine relations among regions in whole-brain net-
works, focusing instead on single regions or on task- or function-
specific findings. In the case of MDD, normative function appears
to be perturbed by altered network configuration; this anomaly
may be a stable characteristic of depression or an adaptation to
depressive symptomatology. Decreased clustering in MDD sug-
gests anomalies in coordinated patterns of brain morphology that
make up the structural network of depressed individuals.

Morphometric correlations demonstrated by graph analysis
reflect connectivity between gray matter regions (17). Importantly,
gray matter regions are connected by white matter axons, and
both are believed to be influenced by common developmental,
trophic, and maturational effects (17,30,50). Cortical dysfunction in
one region may result in distant cortical deficits due to primary
and/or secondary hodological mechanisms that reflect integrity of
underlying white matter pathways (51,52). Thus, the observed
differences between depressed and healthy participants in
network-level gray matter may be due to neighboring white matter
damage in MDD. Indeed, microstructural white matter damage
has been documented in MDD (53,54). Interestingly, most of
these studies—even those that take a whole-brain statistical
approach—identify focal rather than diffuse white matter deficits,
particularly in frontosubcortical tracts that are involved in emotion
regulation. Inconsistencies in the results of studies have been
attributed to disease severity (53) or possible comorbidities of other
disorders with depression, such as anxiety (54). One recent study
examined white matter structural networks in remitted geriatric
depression (55). The investigators found that older individuals with
remitted depression had disrupted global network properties,
including significantly reduced network strength, decreased global
efficiency, and increased absolute path length compared with
control subjects. These findings suggest that depressed individuals
have sparse connectivity, reduced white matter integrity, and
reduced global integration of whole-brain white matter networks
due to disconnections between brain regions. Our data also
suggest that depression adversely affects global network organ-
ization, perhaps explaining why structural anomalies in MDD are
more subtle than are conventional radiologically defined abnor-
malities but are still detectable at a group level (56). Moreover, the
wide distribution of structural abnormalities found in MDD sug-
gests that depression affects functionally integrated circuits rather
than one or more discrete brain regions (57).

Depression-Associated Anomalies in Regional Network
Measures

We used regional network measures, including betweenness
and degree, to help localize global network differences between
the MDD and HC groups. Nodes with high structural degree and
betweenness suggest regions that are highly interactive and that
have the potential to participate in a large number of functional
interactions (58). In this context, the present findings indicate
that there are fewer highly interactive nodes in networks of
depressed than of control participants and further that the
regions that have high betweenness in MDD (the amygdala,
orbital, and medial prefrontal cortical regions) may play a role in
maintaining or adapting to depressive pathology.

Other researchers have implicated the amygdala and ventral
prefrontal regions in the pathophysiology of depression (59,60).



Figure 5. Differences between major depressive disorder (MDD) and healthy control (HC) participants in regional network topology. Regions that
showed significant differences between MDD and HC participants in regional betweenness (left panel) and regional degree (right panel) for networks
thresholded at minimum density of full connectivity mapped on ICBM152 surface template. The color bar represents log(1/p value). Hot colors in the color
bar represent regions that have significantly higher nodal betweenness or degree in the HC than in the MDD, while cold colors denote regions with
significantly higher nodal betweenness or degree in the MDD than in the HC. The MDD group showed significantly higher betweenness in the right (R)
amygdala, R inferior frontal operculum, left (L) medial orbitofrontal gyrus, and L middle temporal gyrus and higher nodal degree in the L supramarginal
gyrus and R gyrus rectus. The HC group had higher betweenness in the L anterior cingulate, L superior orbitofrontal gyrus, L superior temporal gyrus, L
superior temporal pole, L lingual gyrus, L fusiform gyrus, and R calcarine fissure and higher nodal degree in the L posterior cingulate, L middle frontal, R
superior frontal, L superior temporal pole, L putamen, and bilateral thalamus.
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In fact, investigators have documented dysfunction in the
prefrontal-limbic neural circuit in MDD, especially during emo-
tional processing. This aberrant functioning may be due to
impaired top-down connectivity between the DLPFC and the
amygdala and increased bottom-up endogenous effective con-
nectivity from the amygdala to the anterior cingulate cortex (61).
The sgACC has been a target for deep brain stimulation treatment
in refractory cases of MDD (62). Importantly, and consistent with
the present findings, modulating sgACC activity by deep brain
stimulation affects a constellation of limbic, paralimbic, and dorsal
cortical structures that have also been implicated in MDD (63).
Differential interactions between ventral prefrontal and limbic
regions based on treatment response (64), as well as results from
numerous functional neuroimaging studies (65,66), have contrib-
uted to the development of neural models of MDD that posit
reciprocal interactions between cortical structures that mediate
cognition (e.g., DLPFC and inferior parietal cortex) and cortical and
subcortical structures that support emotional functions (e.g.,
anterior insular cortex, amygdala, and hippocampus) (67). These
relations among regions also have implications for efficient
information processing and suggest that individuals with MDD
rely on more distributed and randomized neural resources (20–22)
that are inefficient and maladaptive for mood and cognitive
functioning.

The MDD and HC participants also differed in the number and
distribution of network hubs. Whereas the 20 network hubs

found in the HC group were primarily in frontal executive control

and motor regions, the 16 hubs identified in the MDD group

were primarily in frontal and temporal areas. Similar to the

regional network findings described above, this hub analysis

supports formulations that intrinsic functional connectivity orig-

inating in the inferior orbitofrontal and medial temporal default

mode regions is critical for emotional functioning and is

frequently found to be aberrant in MDD (68,69). Previous studies

have used task-dependent and resting-state neuroimaging data
to examine functional relations between regions that were found

to be hubs in our structural analysis. Although neural structure
and function are not necessarily isomorphic, there is now clear
evidence linking indices of functional connectivity with structural
connectivity, suggesting that anomalies in the organization of
structural brain networks identified in this study have important
implications for neural function in MDD (70).

We should note two limitations of this study. First, the cross-
sectional nature of this investigation prevented us from directly
testing the temporal relation between network anomalies and
the severity or course of MDD. Future studies should include
longitudinal and functional evaluations of network measures in
depressed patients. Second, to maximize power, we included
data from individuals who were scanned at three different MRI
scanners. Although this may have introduced some variability in
our data, it is important to note that equal proportions of MDD
and HC data were acquired on each of the three scanners, that
we included field strength as a covariate in our analysis, and that
there were no significant group differences in gray matter
volumes as a function of scanner.

Despite these limitations, the present findings increase our
understanding of the neural bases of MDD by demonstrating
aberrations in specific network properties in this disorder.
Individuals with MDD were characterized by decreased regional
connectivity. Preferential sites for regional connectivity within the
MDD group coincide with well-established medial prefrontal and
medial temporal regions that have been implicated in this
disorder. These results contribute new and important insights
concerning the neurobiological mechanisms that might underlie
deficits in neural functioning in MDD and highlight critical areas
for future research concerning the pervasiveness and effects of
structural neural anomalies in this debilitating disorder.
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