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Solving Random Quadratic Systems of Equations
Is Nearly as Easy as Solving Linear Systems

Yuxin Chen ∗ Emmanuel J. Candès ∗†

May 2015

Abstract

We consider the fundamental problem of solving quadratic systems of equations in n variables, where
yi = |〈ai,x〉|2, i = 1, . . . ,m and x ∈ Rn is unknown. We propose a novel method, which starting with an
initial guess computed by means of a spectral method, proceeds by minimizing a nonconvex functional as
in the Wirtinger flow approach [11]. There are several key distinguishing features, most notably, a distinct
objective functional and novel update rules, which operate in an adaptive fashion and drop terms bearing
too much influence on the search direction. These careful selection rules provide a tighter initial guess,
better descent directions, and thus enhanced practical performance. On the theoretical side, we prove
that for certain unstructured models of quadratic systems, our algorithms return the correct solution in
linear time, i.e. in time proportional to reading the data {ai} and {yi} as soon as the ratio m/n between
the number of equations and unknowns exceeds a fixed numerical constant. We extend the theory to
deal with noisy systems in which we only have yi ≈ |〈ai,x〉|2 and prove that our algorithms achieve a
statistical accuracy, which is nearly un-improvable. We complement our theoretical study with numerical
examples showing that solving random quadratic systems is both computationally and statistically not
much harder than solving linear systems of the same size—hence the title of this paper. For instance, we
demonstrate empirically that the computational cost of our algorithm is about four times that of solving
a least-squares problem of the same size.

1 Introduction

1.1 Problem formulation
Imagine we are given a set of m quadratic equations taking the form

yi = |〈ai,x〉|2 , i = 1, · · · ,m, (1)

where the data y = [yi]1≤i≤m and design vectors ai ∈ Rn/Cn are known whereas x ∈ Rn/Cn is unknown.
Having information about |〈ai,x〉|2—or, equivalently, |〈ai,x〉|—means that we a priori know nothing about
the phases or signs of the linear products 〈ai,x〉. The problem is this: can we hope to identify a solution, if
any, compatible with this nonlinear system of equations?

This problem is combinatorial in nature as one can alternatively pose it as recovering the missing signs
of 〈ai,x〉 from magnitude-only observations. As is well known, many classical combinatorial problems with
Boolean variables may be cast as special instances of (1). As an example, consider the NP-complete stone
problem in which we have n stones each of weight wi > 0 (1 ≤ i ≤ n), which we would like to divide into two
groups of equal sum weight. Letting xi ∈ {−1, 1} indicate which of the two groups the ith stone belongs to,
one can formulate this problem as solving the quadratic system{

x2
i = 1, i = 1, · · · , n,

(w1x1 + · · ·+ wnxn)2 = 0.
(2)
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However simple this formulation may seem, even checking whether a solution to (2) exists or not is known
to be NP complete [7].

Moving from combinatorial optimization to the physical sciences, one application of paramount im-
portance is the phase retrieval [20, 21] problem, which permeates through a wide spectrum of techniques
including X-ray crystallography, diffraction imaging, and microscopy. In a nutshell, the problem of phase
retrieval arises due to the physical limitation of optical sensors, which are often only able to record the
intensities of the diffracted waves scattered by an object under study. Notably, upon illuminating an object
x, the diffraction pattern is of the form of Ax; however, it is only possible to obtain intensity measurements
y = |Ax|2 leading to the quadratic system (1).1 In the Fraunhofer regime where data is collected in the
far-field zone, A is given by the spatial Fourier transform. We refer to [37] for in-depth reviews of this
subject.

Continuing this motivating line of thought, in any real-world application recorded intensities are always
corrupted by at least a small amount of noise so that observed data are only about |〈ai,x〉|2; i.e.

yi ≈ |〈ai,x〉|2 , i = 1, · · · ,m. (3)

Although we present results for arbitrary noise distributions—even for non-stochastic noise—we shall pay a
particular attention to the Poisson data model, which assumes

yi
ind.∼ Poisson

(
|〈ai,x〉|2

)
, i = 1, · · · ,m. (4)

The reason why this statistical model is of special interest is that it naturally describes the variation in the
number of photons detected by an optical sensor in various imaging applications.

1.2 Nonconvex optimization
Under a stochastic noise model with independent samples, a first impulse for solving (3) is to seek the
maximum likelihood estimate (MLE), namely,

minimizez −
∑m

i=1
` (z; yi) , (5)

where ` (z; yi) denotes the log-likelihood of a candidate solution z given the outcome yi. For instance, under
the Poisson noise model (4) one can write

`(z; yi) = yi log(|a∗i z|2)− |a∗i z|2 (6)

modulo some constant offset. Unfortunately, the log-likelihood is usually not concave, thus making the
problem of finding an MLE NP complete in general.

To alleviate this computational intractability, several convex surrogates have been proposed that work
particularly well when the design vectors ai are chosen at random [8, 9, 12, 14, 16, 17, 22, 23, 26, 29, 38, 43].
The basic idea is to introduce a rank-one matrix X = xx∗ to linearize the quadratic constraints, and then
relax the rank-one constraint. Suppose we have Poisson data, then this strategy converts the problem into
a convenient convex program:

minimizeX
∑m
i=1(µ2

i − yi logµi) + λTr(X)
subject to µi = a>i Xai, 1 ≤ i ≤ m,

X � 0.

Note that the likelihood function is augmented by the trace functional whose role is to promote low-rank
solutions. While such convex relaxation schemes enjoy intriguing performance guarantees in many aspects
in the sense that they require near-optimal sample complexity and achieve near-optimal error bounds for
certain noise models, the computational cost typically far exceeds the order of n3. This limits applicability
to large-dimensional data.

This paper follows another route: rather than lifting the problem into higher dimensions by introducing
matrix variables, this paradigm maintains its iterates within the vector domain and optimize the nonconvex

1Here and below, for z ∈ Cn, |z| (resp. |z|2) is the vector of magnitudes (resp. squared magnitudes).
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objective directly (e.g. [11, 19, 21, 30, 32, 35, 36]). One promising approach along this line is the recently
proposed two-stage algorithm called Wirtinger Flow (WF) [11]. Simply put, WF starts by computing a
suitable initial guess z(0) using a spectral method, and then successively refines the estimate via an update
rule that bears a strong resemblance to a gradient descent scheme, namely,

z(t+1) = z(t) +
µt
m

∑m

i=1
∇`(z(t); yi),

where z(t) denotes the tth iterate of the algorithm, and µt is the step size (or learning rate). Here, ∇`(z; yi)
stands for the Wirtinger derivative w.r.t. z, which in the real-valued case reduces to the ordinary gradient.
The main results of [11] demonstrate that WF is surprisingly accurate in the Gaussian sampling model.
Specifically, when ai ∼ N (0, I) and there is no noise:

1. WF achieves exact recovery from m = O (n log n) quadratic equations;2

2. WF attains ε-accuracy—in a relative sense—within O(mn2 log 1/ε) time (or flops).

While these results formalize the advantages of WF, the statistical guarantee in terms of the sample com-
plexity is weaker than that achievable by convex relaxations. Moreover, the provable computational cost is
still larger than the best one can hope for.

1.3 This paper: Truncated Wirtinger Flow
This paper develops a novel linear-time algorithm, which also enjoys near-perfect statistical guarantees.
Following the spirit of WF, we propose a novel procedure called Truncated Wirtinger Flow (TWF) adopting
a more subtle gradient flow. Informally, TWF proceeds in two stages:

1. Initialization: compute an initial guess z(0) by means of a spectral method applied to a subset T0 of
the observations {yi};

2. Loop: for 0 ≤ t < T ,
z(t+1) = z(t) +

µt
m

∑
i∈Tt+1

∇`(z(t); yi) (7)

for some index set Tt+1 ⊆ {1, · · · ,m} determined by z(t).

Three remarks are in order.

• Firstly, the index set Tt+1 is data-dependent and iteration-varying, which is a distinguishing feature of
TWF in comparison to WF. In words, Tt+1 corresponds to those equations whose resulting gradient
components (i.e. ∇`(zt; yi)) are in some sense not excessively large; see Sections 2 and 3. As we shall
see later, the main point is that this truncation gives us a better search direction.

• Secondly, we recommend that the step size µt is either taken as some appropriate constant or determined
by a backtracking line search. For instance, under appropriate conditions, we can take µt = 0.2.

• Finally, the most expensive part of the gradient stage consists in computing ∇`(z; yi), 1 ≤ i ≤ m,
which can often be performed in an efficient manner. More concretely, under the real-valued Poisson
data model (4) one has

∇`(z; yi) = 2

{
yi

|a>i z|2
aia

>
i z − aia>i z

}
= 2

(
yi − |a>i z|2

a>i z

)
ai, 1 ≤ i ≤ m.

Thus, calculating {∇`(z; yi)} essentially amounts to two matrix-vector products. LettingA := [a1, · · · ,am]>

as before, we have

∑
i∈Tt+1

∇`(z(t); yi) = A>v, vi =

{
2
yi−|a>i z|

2

a>i z
, i ∈ Tt+1,

0, otherwise.

2 The standard notation f(n) = O (g(n)) or f(n) . g(n) (resp. f(n) = Ω (g(n)) or f(n) & g(n)) means that there exists a
constant c > 0 such that |f(n)| ≤ c|g(n)| (resp. |f(n)| ≥ c |g(n)|). f(n) � g(n) means that there exist constants c1, c2 > 0 such
that c1|g(n)| ≤ |f(n)| ≤ c2|g(n)|.
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Hence, Az gives v and A>v the desired truncated gradient.

A detailed specification of the algorithm is deferred to Section 2.

1.4 Numerical surprises
To give the readers a sense of the practical power of TWF, we present here three illustrative numerical
examples. Since it is impossible to recover the global sign—i.e. we cannot distinguish x from −x—we will
evaluate our solutions to the quadratic equations through the distance measure put forth in [11] representing
the Euclidean distance modulo a global sign: for complex signals,

dist (z,x) := minϕ:∈[0,2π) ‖e−jϕz − x‖. (8)

while it is simply min ‖z±x‖ in the real case. We shall use dist(x̂,x)/‖x‖ throughout to denote the relative
erorr of an estimate x̂. In the sequel, TWF proceeds assuming a Poisson log-likelihood (6). Standalone
Matlab implementations of TWF are available at http://web.stanford.edu/~yxchen/TWF/.

The first numerical example concerns the following two problems under noise-free real-valued data:

(a) find x ∈ Rn s.t. bi = a>i x, 1 ≤ i ≤ m;

(b) find x ∈ Rn s.t. bi = |a>i x|, 1 ≤ i ≤ m.

Apparently, (a) is tantamount to solving a linear least-squares problem, while (b) involves solving a set
of quadratic equations. Arguably the most popular method for solving large-scale least squares problems
is the conjugate gradient (CG) method [34] applied to the normal equations. We are going to compare
the computational efficiency between CG (for solving least squares) and TWF with a step size µt ≡ 0.2
(for solving a quadratic system). Set m = 8n and generate x ∼ N (0, I) and ai ∼ N (0, I), 1 ≤ i ≤ m,
independently. This gives a matrix A>A with clustered eigenvalues and a low condition number equal to
about (1 +

√
1/8)2/(1−

√
1/8)2 ≈ 4.38 by the Marchenko-Pastur law. Therefore, this is an ideal setting for

CG as it converges extremely rapidly [40, Theorem 38.5]. Fig. 1 shows the relative estimation error of each
method as a function of the iteration count, where TWF is seeded through 10 power iterations. For ease of
comparison, we illustrate the iteration counts in different scales so that 4 TWF iterations are equivalent to
1 CG iteration.

Recognizing that each iteration of CG and TWF involves two matrix vector products Az and A>v, for
such a design we reach a suprising observation:

Even when all phase information is missing, TWF is capable of solving a quadratic system of
equations only about 4 times slower than solving a least squares problem of the same size!

To illustrate the applicability of TWF on real images, we turn to testing our algorithm on a 320× 1280
digital photograph of Stanford main quad. We consider a type of measurements that falls under the category
of coded diffraction patterns (CDP) [10] and set

y(l) = |FD(l)x|2, 1 ≤ l ≤ L. (9)

Here, F stands for a discrete Fourier transform (DFT) matrix, and D(l) is a diagonal matrix whose diagonal
entries are independently and uniformly drawn from {1,−1, j,−j} (phase delays). In phase retrieval, each
D(l) represents a random mask placed after the object so as to modulate the illumination patterns. When
L masks are employed, the total number of quadratic measurements is m = nL. In this example, L = 12
random coded patterns are generated to measure each color band (i.e. red, green, or blue) separately. The
experiment is carried out on a MacBook Pro equipped with a 3 GHz Intel Core i7 and 16GB of memory. We
run 50 iterations of the truncated power method for initialization, and 50 truncated gradient iterations, which
in total costs 43.9 seconds or 2400 FFTs for each color band. The relative errors after spectral initialization
and after 50 TWF iterations are 0.4773 and 2.16×10−5, respectively, with the recovered images displayed in
Fig. 2. In comparison, WF with 50 power iterations and 100 gradient iterations (which takes 54.5 seconds
or 3600 FFTs) returns an image of relative error 1.309, still extremely far from the truth.

While the above experiments concern noiseless data, the numerical surprise extends to the noisy realm.
Suppose the data are drawn according to the Poisson noise model (4), with ai ∼ N (0, I) independently
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Figure 1: Relative errors of CG and TWF vs. iteration count. Here, n = 1000, m = 8n, and TWF is seeded
using just 10 power iterations.

generated. Fig. 3 displays the empirical relative mean-square error (MSE) of TWF as a function of the
signal-to-noise ratio (SNR), where the relative MSE for an estimate x̂ and the SNR are defined as3

MSE :=
dist2(x̂,x)

‖x‖2 , and SNR := 3‖x‖2. (10)

Both SNR and MSE are displayed on a dB scale (i.e. the values of 10 log10(SNR) and 10 log10(rel. MSE) are
plotted). To evaluate the accuracy of the TWF solutions, we consider the performance achieved by MLE
applied to an ideal problem in which the true phases are revealed. In this ideal scenario, in addition to the
data {yi} we are further given exact phase information {ϕi = sign(a>i x)}. Such precious information gives
away the phase retrieval problem and makes the MLE efficiently solvable since the MLE problem with side
information

minimizez∈Rn −∑m
i=1 yi log

(
|a>i z|2

)
+ (a>i z)2

subject to ϕi = sign(a>i z)

can be cast as a convex program

minimizez∈Rn −
∑m

i=1
2yi log

(
ϕia

>
i z
)

+ (a>i z)2.

Fig. 3 illustrates the empirical performance for this ideal problem. The plots demonstrate that even when all
phases are erased, TWF yields a solution of nearly the best possible quality, since it only incurs an extra 1.5
dB loss compared to ideal MLE computed with all true phases revealed. This phenomenon arises regardless
of the SNR!

1.5 Main results
The preceding numerical discoveries unveil promising features of TWF in three aspects: (1) exponentially
fast convergence; (2) exact recovery from noiseless data with sample complexity O (n); (3) nearly minimal
mean-square loss in the presence of noise. This paper offers a formal substantiation of all these findings. To
this end, we assume a tractable model in which the design vectors ai’s are independent Gaussian:

ai ∼ N (0, In) . (11)
3To justify the definition of SNR, note that the signals and noise are captured by µi = (a>i x)2 and yi − µi (1 ≤ i ≤ m),

respectively. The ratio of the signal power to the noise power is therefore
∑m
i=1 µ

2
i∑m

i=1 Var[yi]
=
∑m
i=1 |a

>
i x|4∑m

i=1 |a
>
i x|2 ≈

3m‖x‖4
m‖x‖2 = 3‖x‖2.
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(a)

(b)

(c)

Figure 2: The recovered images after (a) spectral initialization without truncation; (b) truncated spectral
initialization; and (c) 50 TWF gradient iterations following truncated spectral initiliazation.

For concreteness, our results are concerned with TWF based on the Poisson log-likelihood function

`i(z) := ` (z; yi) = yi log
(
|a>i z|2

)
− |a>i z|2, (12)

where we shall use `i(z) as a shorthand for `(z; yi) from now on. We begin with the performance guarantees
of TWF in the absence of noise.

Theorem 1 (Exact recovery). Consider the noiseless case (1) with an arbitrary signal x ∈ Rn. Suppose
that the step size µt is either taken to be a positive constant µt ≡ µ or chosen via a backtracking line search.
Then there exist some universal constants 0 < ρ, ν < 1 and µ0, c0, c1, c2 > 0 such that with probability
exceeding 1− c1 exp (−c2m), the truncated Wirtinger Flow estimates (Algorithm 1 with parameters specified
in Table 1) obey

dist(z(t),x) ≤ ν(1− ρ)t‖x‖, ∀t ∈ N, (13)

provided that
m ≥ c0n and µ ≤ µ0.

As explained below, we can often take µ0 ≈ 0.3.
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Figure 3: Relative MSE vs. SNR in dB. The curves are shown for two settings: TWF for solving quadratic
equations (blue), and MLE had we observed additional phase information (green). The results are shown
for n = 100, and each point is averaged over 50 Monte Carlo trials.

Remark 1. As will be made precise in Section 5 (and in particular Proposition 1), one can take

µ0 =
0.994− ζ1 − ζ2 −

√
2/(9π)α−1

h

2 (1.02 + 0.665/αh)

for some small quantities ζ1, ζ2 and some truncation threshold αh that is usually taken to be αh ≥ 5. Under
appropriate conditions, one can treat µ0 as

µ0 ≈ 0.3. (14)

Theorem 1 justifies at least two appealing features of TWF: (i) minimal sample complexity and (ii)
linear-time complexity. Specifically, TWF allows exact recovery from O(n) quadratic equations, which is
optimal since one needs at least n measurements to have a well posed problem. Also, because of the
geometric convergence rate, TWF achieves ε-accuracy (i.e. dist(z(t),x) ≤ ε ‖x‖) within at most O (log 1/ε)
iterations. The total computational cost is therefore O (mn log 1/ε), which is linear in the problem size.
These outperform the provable guarantees of WF [11], which requires O(n log n) sample complexity and
runs in O(mn2 log 1/ε) time.

We emphasize that enhanced performance vis-à-vis WF is not the result of a sharper analysis, but
rather, the result of key algorithmic changes. In both the initialization and iterative refinement stages, TWF
proceeds in a more prudent manner by means of proper truncation. In a nutshell, TWF operates only upon a
subset of data whose contributions can be well controlled, thus guaranteeing better initial guess and descent
directions. With these in place, we take the step size in a far more liberal fashion—which is bounded away
from 0—compared to a step size which is inversely propotional to n as explained in [11]. In fact, what
enables the movement to be more aggressive is exactly the cautious choice of Tt, which precludes adverse
effects from atypical samples.

To be broadly applicable, the proposed algorithm must guarantee reasonably faithful estimates in the
presence of noise. Suppose that

yi = |〈ai,x〉|2 + ηi, 1 ≤ i ≤ m, (15)

where ηi represents an error term. We claim that TWF is stable against additive noise, as demonstrated in
the theorem below.

Theorem 2 (Stability). Consider the noisy case (15). Suppose that the step size µt is either taken to be
a positive constant µt ≡ µ or chosen via a backtracking line search. If

m ≥ c0n, µ ≤ µ0, and ‖η‖∞ ≤ c1 ‖x‖
2
, (16)
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then with probability at least 1 − c2 exp (−c3m), the truncated Wirtinger Flow estimates (Algorithm 1 with
parameters specified in Table 1) satisfy

dist(z(t),x) .
‖η‖√
m‖x‖ + (1− ρ)t‖x‖, ∀t ∈ N (17)

simultanesouly for all x ∈ Rn. Here, 0 < ρ < 1 and µ0, c0, c1, c2, c3 > 0 are some universal constants.
Under the Poisson noise model (4), there exists an an event of probability at least 1 − c2 exp(−c3m) on

which

P
{

dist(z(t),x) . 1 + (1− ρ)t‖x‖, ∀t ∈ N
∣∣∣ {ai}1≤i≤m}→ 1. (18)

holds for all x ∈ Rn satisfying ‖x‖ ≥ log1.5m.

Remark 2. In the main text, we will prove Theorem 2 only for the case where x is fixed and independent
of the design vectors {ai}. Interested readers are referred to the supplemental materials [13] for the proof
of the universal theory (i.e. the case simultaneously accommodating all x ∈ Rn). Note that when there is
no noise (η = 0), this stronger result guarantees the universality of the noiseless recovery.

Theorem 2 essentially reveals that the estimation error of TWF rapidly shrinks to O
(
‖η‖/

√
m

‖x‖

)
within

logarithmic iterations. Put another way, since the SNR for the model (15) is captured by

SNR :=

∑m
i=1 |〈ai,x〉|4
‖η‖2 ≈ 3m‖x‖4

‖η‖2 , (19)

we immediately arrive at an alternative form of performance guarantee:

dist(z(t),x) .
1√
SNR

‖x‖+ (1− ρ)t‖x‖, ∀t ∈ N, (20)

revealing the stability of TWF as a function of SNR. We emphasize that this estimate holds for any error term
η—i.e. any noise structure, even deterministic. This being said, specializing this estimate to the Poisson
noise model (4) with ‖x‖ & log1.5m gives an estimation error that will eventually approach a numerical
constant, independent of n and m.

Encouragingly, this is already the best statistical guarantee any algorithm can achieve. We formalize this
claim by deriving a fundamental lower bound on the minimax estimation error.

Theorem 3 (Lower bound on the minimax risk). Suppose that ai ∼ N (0, I), m = κn for some fixed
κ independent of n, and n is sufficiently large. For any K ≥ log1.5m, define4

Υ(K) := {x ∈ Rn | ‖x‖ ∈ (1± 0.1)K}.

With probability approaching one, the minimax risk under the Poisson model (4) obeys

inf
x̂

sup
x∈Υ(K)

E
[
dist (x̂,x)

∣∣ {ai}1≤i≤m] ≥ ε1√
κ
, (21)

where the infimum is over all estimator x̂. Here, ε1 > 0 is a numerical constant independent of n and m.

When the number m of measurements is proportional to n and the energy of the planted solution exceeds
log3m, Theorem 3 asserts that there exists absolutely no estimator that can achieve an estimation error
that vanishes as n increases. This lower limit matches the estimation error of TWF, which corroborates the
optimality of TWF under noisy data.

Careful readers will naturally wonder whether the regime ‖x‖ ≥ log1.5m—or ‖x‖ ≥ √n log1.5m if we
normalize ai so that ‖ai‖ ≈ 1—is of practical importance. Note that in the optical imaging applications,
the Poisson noise model employs x and y to describe the numbers of photons diffracted by the specimen and
detected by the optical sensor, respectively. Each specimen under study needs to be sufficiently illuminated

4Here, 0.1 can be replaced by any positive constant within (0, 1/2).

8



in order for the receiver to sense the diffracted light; this means that the number of photons hitting each
pixel must be large on the average (typically much larger than log3m). The regime ‖x‖ ≤ log1.5m is thus
of little practical interest as it basically corresponds to a black object.

It is worth noting that apart from WF, various other nonconvex procedures have been proposed as well for
phase retrieval, including the error reduction schemes dating back to Gerchberg-Saxton and Fienup [20,21],
iterated projections [19], alternating minimization [32], generalized approximate message passing [35], and
greedy methods that exploit additional sparsity constraint [36], to name just a few. While these paradigms
enjoy favorable empirical behavior, most of them fall short of theoretical support, except for a version
of alternating minimization (called AltMinPhase) [32] that requires fresh samples for each iteration. In
comparison, AltMinPhase attains ε-accuracy only when the sample complexity exceeds the order of n log3 n+
n log2 n log 1/ε, which is at least a factor of log3 n from optimal. Furthermore, none of these algorithms come
with provable stability guarantees, which are particularly important in most realistic scenarios. Interesting
readers are referred to [11] for a comparison of these non-convex schemes, and [10] for a discussion of
other alternative approaches (e.g. [1, 4]) and performance lower bounds (e.g. [5, 18]). On the other hand,
the family of two-stage nonconvex procedures—spectral initialization followed by iterative refinement—has
proved efficient for other problems that involve latent variables, which leads to theoretical guarantees for
general EM algorithms [3] and sparse coding schemes [2]. The truncation idea proposed herein might promise
improved performance for these problems as well.

2 Algorithm: Truncated Wirtinger Flow
This section describes the two stages of truncated Wirtinger flow in details, presented in a reverse order. For
each stage, we start with some algorithmic issues encountered by WF, which is then used to motivate and
explain the basic principles of TWF. Here and throughout, we let A : Rn×n 7→ Rm be the linear map

M ∈ Rn×n 7→ A (M) :=
{
a>i Mai

}
1≤i≤m

and A the design matrix
A := [a1, · · · ,am]>.

2.1 Truncated gradient stage
For independent samples, the gradient of the Poisson log-likelihood for any z ∈ Rn with a>i z 6= 0 for all i,
obeys

m∑
i=1

∇`i(z) =

m∑
i=1

2
yi − |a>i z|2

a>i z︸ ︷︷ ︸
:=νi

ai, (22)

where νi represents the weight assigned to each ai. This forms the descent direction of WF updates.
Unfortunately, WF moving along the preceding direction does not come close to a meaningful solution

under real-valued Poisson data. To see this, it is helpful to consider any fixed vector z ∈ Rn independent
of the design vectors. The typical size of min1≤i≤m |a>i z| is about on the order of 1

m‖z‖, introducing
some unreasonably large weights νi, which can be as large as m‖x‖2/‖z‖. (For complex-valued data where
ai ∼ N (0, I) + jN (0, I), this issue is less severe since min1≤i≤m |a>i z| � 1√

m
‖z‖.) Consequently, the

iterative updates based on (1.2) often overshoot, and this arises starting from the very initial stage.
Fig. 4 illustrates this phenomenon by showing the locus of −∇`i (z) when ai varies. Examination of the

figure seems to suggest that most of the gradient components ∇`i (z) are more or less pointing towards the
ground-truth solution x and forming reasonable descent directions. Hence, to remedy the aforementioned
stability issue, it suffices to separate the small fraction of abnormal gradient components by regularizing the
weights νi, possibly via appropriate truncation. This gives rise to the update rule of TWF:

z(t+1) = z(t) +
µt
m
∇`tr(z(t)), ∀t ∈ N, (23)
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z

x

Figure 4: The locus of − 1
2∇`i (z) =

|a>i z|2−|a>i x|2
a>i z

ai for all unit vectors ai, where x = (2.7, 8) and z = (3, 6).
In particular, the red arrows depict those directions that have been assigned large weights.

where ∇`tr (·) denotes the truncated gradient given by 5

∇`tr (z) :=

m∑
i=1

2
yi − |a>i z|2

a>i z
ai1Ei1(z)∩Ei2(z). (24)

for some truncation criteria specified by E i1 (·) and E i2 (·). In our algorithm, we take E i1 (z) and E i2 (z) to be
two collections of events given by

E i1(z) :=

{
αlb
z ≤

∣∣a>i z∣∣
‖z‖ ≤ α

ub
z

}
; (25)

E i2(z) :=

{
|yi − |a>i z|2| ≤

αh
m

∥∥y −A (zz>)∥∥
1

∣∣a>i z∣∣
‖z‖

}
, (26)

where αlb
z , αub

z , αz are predetermined truncation thresholds. To keep notation light, we shall use E i1 and E i2
rather than E i1 (z) and E i2 (z) whenever it is clear from context.

We emphasize that the above truncation simply throws away those weights νi’s that fall outside some
confidence range as to remove the contribution of abnormal components. To achieve this, we regularize both
the numerator and denominator of νi by enforcing separate truncation rules. Recognize that for any fixed
z, the denominator obeys

E
[∣∣a>i z∣∣] =

√
2/π‖z‖,

which leads up to the rule (25). Regarding the numerator, by the law of large numbers one would expect

E
[∣∣yi − |a>i z|2∣∣] ≈ 1

m

∥∥y −A (zz>)∥∥
1
,

and hence it is natural to regularize the numerator by ensuring∣∣yi − |a>i z|2∣∣ . 1

m

∥∥y −A (zz>)∥∥
1
.

As a remark, we include an extra term |a>i z|
‖z‖ in (26) to sharpen the theory, but all our results continue

to hold (up to some modification of constants) if we drop this term in the truncation rule (26). Detailed
procedures are summarized in Algorithm 1 6.

5 In the complex-valued case, the truncation is enforced upon the Wirtinger derivative, which reads ∇`tr (z) :=∑m
i=1 2

yi−|z∗ai|2
z∗ai

ai1Ei1(z)∩E
i
2(z)

.

6Careful readers might note that we include some extra factor
√
n

‖ai‖
(which is approximately 1 in the Gaussian model) in

Algorithm 1. This occurs since we present Algorithm 1 in a more general fashion that applies beyond the model ai ∼ N (0, I),
but all results / proofs continue to hold in the presence of this extra term.
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Algorithm 1 Truncated Wirtinger Flow.
Input: Measurements {yi | 1 ≤ i ≤ m} and sampling vectors {ai | 1 ≤ i ≤ m}; truncation thresholds αlb

z ,
αub
z , αh, and αy (see default values in Table 1).

Initialize z(0) to be
√

mn∑m
i=1‖ai‖

2λ0z̃, where λ0 =
√

1
m

∑m
i=1 yi and z̃ is the leading eigenvector of

Y =
1

m

m∑
i=1

yiaia
∗
i 1{|yi|≤α2

yλ
2
0}. (27)

Loop: for t = 0 : T do

z(t+1) = z(t) +
2µt
m

m∑
i=1

yi −
∣∣a∗i z(t)

∣∣2
z(t)∗ai

ai1Ei1∩Ei2 , (28)

where

E i1 :=

{
αlb
z ≤

√
n

‖ai‖
|a∗i z(t)|
‖z(t)‖ ≤ α

ub
z

}
, E i2 :=

{
|yi − |a∗i z(t)|2| ≤ αhKt

√
n

‖ai‖
|a∗i z(t)|
‖z(t)‖

}
, (29)

and Kt :=
1

m

m∑
l=1

∣∣yl − |a∗l z(t)|2
∣∣.

Output zT .

2.2 Truncated spectral initialization
In order for the truncated gradient stage to converge rapidly, we need to seed it with a suitable initialization.
One natural alternative is the spectral method adopted in [11,32], which amounts to computing the leading
eigenvector of Ỹ := 1

m

∑m
i=1 yiaia

>
i . This arises from the observation that when ai ∼ N (0, I) and ‖x‖ = 1,

E[Ỹ ] = I + 2xx>,

whose leading eigenvector is exactly x with an eigenvalue of 3.
Unfortunately, this spectral technique converges to a good initial point only when m & n log n, due to

the fact that (a>i x)2aia
>
i is heavy-tailed, a random quantity which does not have a moment generating

function. To be more precise, consider the noiseless case yi = |a>i x|2 and recall that maxi yi ≈ 2 logm.
Letting k = arg maxi yi, one can calculate(

ak
‖ak‖

)>
Ỹ

ak
‖ak‖

≥
(
ak
‖ak‖

)>(
1

m
aka

>
k

)(
a>k x

)2( ak
‖ak‖

)
≈ 2n logm

m
,

which is much larger than x>Ỹ x = 3 unless m/n is very large. This tells us that in the regime where
m � n, there exists some unit vector ak/‖ak‖ that is closer to the leading eigenvector of Ỹ than x. This
phenomenon prevents the spectral method from returning a meaningful initial guess.

To address this issue, we propose to discard those observations yi that are several times larger than the
mean during spectral initialization. Specifically, the initial estimate is obtained by computing the leading
eigenvector z̃ of

Y :=
1

m

m∑
i=1

yiaia
>
i 1{|yi|≤α2

y( 1
m

∑m
l=1 yl)} (30)

for some truncation threshold αy, and then rescaling z̃ so as to have roughly the same norm as x (which is
estimated to be 1

m

∑m
l=1 yl); see Algorithm 1 for the detailed procedure.

The above drawback of the spectral method is not merely a theoretical concern but rather a substantial
practical issue. We have seen this in Fig. 2 (main quad example) showing the enormous advantage of the
truncation scheme. This is also further illustrated in Fig. 5, which compares the empirical efficiency of both
methods with αy = 3 set to be the truncation threshold. For both Gaussian designs and CDP models, the

11



Table 1: Range of algorithmic parameters

(a) When a fixed step size µt ≡ µ is employed: (αlb
z , α

ub
z , αh, αy) obeys

ζ1 := max
{
E
[
ξ21{|ξ|≤√1.01αlb

z or |ξ|≥
√

0.99αub
z }
]
,P
(
|ξ| ≤

√
1.01αlb

z or |ξ| ≥
√

0.99αub
z

)}
ζ2 := E

[
ξ21{|ξ|>0.473αh}

]
,

2(ζ1 + ζ2) +
√

8/(9π)α−1
h < 1.99,

αy ≥ 3,

(31)

where ξ ∼ N (0, 1). By default, αlb
z = 0.3, αub

z = αh = 5, and αy = 3.

(b) When µt is chosen by a backtracking line search: (αlb
z , α

ub
z , αh, αy, αp) obeys

0 < αlb
z ≤ 0.1, αub

z ≥ 5, αh ≥ 6, αy ≥ 3, and αp ≥ 5. (32)

By default, αlb
z = 0.1, αub

z = 5, αh = 6, αy = 3, and αp = 5.

empirical loss incurred by the original spectral method increases as n grows, which is in stark constrast to
the truncated spectral method that achieves almost identical accuracy over the same range of n.

n: signal dimension
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Figure 5: The empirical relative error for both the spectral and the truncated spectral methods. The
results are averaged over 50 Monte Carlo runs, and are shown for: (a) 1-D Gaussian measurement where
ai ∼ N (0, I) and m = 6n; (b) 2-D CDP model (9) where the diagonal entries of D(l) are uniformly drawn
from {1,−1, j,−j}, n = n1 × n2 with n1 = 300 and n2 ranging from 64 to 1280, and m = 12n.

2.3 Choice of algorithmic parameters
One implementation detail to specify is the step size µt at each iteration t. There are two alternatives that
work well in both theory and practice:

1. Fixed step size. Take µt ≡ µ (∀t ∈ N) for some constant µ > 0. As long as µ is not too large,
our main results state that this strategy always works—although the convergence rate depends on µ.
Under appropriate conditions, our theorems hold for any constant 0 < µ < 0.28.

12



2. Backtracking line search with truncated objective. This strategy performs a line search along
the descent direction

pt :=
1

m
∇`tr(zt)

and determines an appropriate step size that guarantees a sufficient improvement. In contrast to the
conventional search strategy that determines the sufficient progress with respect to the true objective
function, we propose to evaluate instead a truncated version of the objective function. Specifically, put

̂̀(z) :=
∑

i∈T̂ (z)

{
yi log(|a>i z|2)− |a>i z|2

}
, (33)

where
T̂ (z) :=

{
i |
∣∣a>i z∣∣ ≥ αlb

z ‖z‖ and
∣∣a>i p∣∣ ≤ αp‖p‖} .

Then the backtracking line search proceeds as

(a) Start with τ = 1;

(b) Repeat τ ← βτ until
1

m
̂̀(z(t) + τp(t)

)
≥ 1

m
̂̀(z(t)

)
+

1

2
τ
∥∥p(t)

∥∥2
, (34)

where β ∈ (0, 1) is some pre-determined constant;

(c) Set µt = τ .

By definition (33), evaluating ̂̀(z(t) + τp(t)) mainly consists in calculating the matrix-vector product
A(z(t) + τp(t)). In total, we are going to evaluate ̂̀(z(t) + τp(t)) for O

(
log 1/β

)
different τ ’s, and

hence the total cost amounts to computing Az(t), Ap(t) as well as O(m log 1/β) additional flops.
Note that the matrix-vector products Az(t) and Ap(t) need to be computed even when one adopts
a pre-determined step size. Hence, the extra cost incurred by a backtracking line search, which is
O(m log 1/β) flops, is negligible compared to that of computing the gradient even once.

Another set of important algorithmic parameters to determine is the truncation thresholds αh, αlb
z , αub

z ,
αy, and αp (for a backtracking line search only). The present paper isolates the set of (αh, α

lb
z , α

ub
z , αy)

obeying (31) as given in Table 1 when a fixed step size is employed. More concretely, this range subsumes
as special cases all parameters obeying the following constraints:

0 < αlb
z ≤ 0.5, αub

z ≥ 5, αh ≥ 5, and αy ≥ 3. (35)

When a backtracking line search is adopted, an extra parameter αp is needed, which we take to be αp ≥ 5.
In all theory presented herein, we assume that the parameters fall within the range singled out in Table 1.

3 Why TWF works?
Before proceeding, it is best to develop an intuitive understanding of the TWF iterations. We start with a
notation representing the (unrecoverable) global phase [11] for real-valued data

φ (z) :=

{
0, if ‖z − x‖ ≤ ‖z + x‖ ,
π, else.

(36)

It is self-evident that
(−z) +

µ

m
∇tr`

(
− z

)
= −

{
z +

µ

m
∇tr`(z)

}
,

and hence (cf. Definition (8))

dist
(

(−z) +
µ

m
∇tr`(−z),x

)
= dist

(
z +

µ

m
∇tr` (z) ,x

)

13



despite the global phase uncertainty. For simplicity of presentation, we shall drop the phase term by letting
z be e−jφ(z)z and setting h = z − x, whenever it is clear from context.

The first object to consider is the descent direction. To this end, we find it convenient to work with
a fixed z independent of the design vectors ai, which is of course heuristic but helpful in developing some
intuition. Rewrite

∇`i(z) = 2
(a>i x)2 − (a>i z)2

a>i z
ai

(i)
= − 2

(a>i h)(2a>i z − a>i h)

a>i z
ai

= −4(a>i h)ai + 2
(a>i h)2

a>i z
ai︸ ︷︷ ︸

:=ri

, (37)

where (i) follows from the identity a2 − b2 = (a+ b)(a− b). The first component of (37), which on average
gives −4h, makes a good search direction when averaged over all the observations i = 1, . . . ,m. The issue is
that the other term ri—which is in general non-integrable—could be devastating. The reason is that a>i z
could be arbitrarily small, thus resulting in an unbounded ri. As a consequence, a non-negligible portion of
the ri’s may exert a very strong influence on the descent direction in an undesired manner.

Such an issue can be prevented if one can detect and separate those gradient components bearing abnormal
ri’s. Since we cannot observe the individual components of the decomposition (37), we cannot reject indices
with large values of ri directly. Instead, we examine each gradient component as a whole and discard it
if its size is not absolutely controlled. Fortunately, such a strategy is sufficient to ensure that most of the
contribution from the truncated gradient comes from the first component of (37), namely, −4(a>i h)ai. As
will be made precise in Proposition 2 and Lemma 7, the truncated gradient obeys

−
〈 1

m
∇`tr(z),h

〉
≥ (4− ε)‖h‖2 −O

(‖h‖3
‖z‖

)
(38)

and
∥∥∥ 1

m
∇`tr(z)

∥∥∥ . ‖h‖. (39)

Here, one has (4− ε)‖h‖2 in (38) instead of 4‖h‖2 to account for the bias introduced by truncation, where
ε is small as long as we only throw away a small fraction of data. Looking at (38) and (39) we see that the
search direction is sufficiently aligned with the deviation −h = x− z of the current iterate; i.e. they form a
reasonably good angle that is bounded away from 90◦. Consequently, z is expected to be dragged towards
x provided that the step size is appropriately chosen.

The observations (38) and (39) are reminiscent of a (local) regularity condition given in [11], which has
been shown to be a fundamental criterion that dictates rapid convergence of iterative procedures (including
WF and other gradient descent schemes). When specialized to TWF, we say that − 1

m∇`tr (·) satisfies the
regularity condition, denoted by RC (µ, λ, ε), if〈

h,− 1

m
∇`tr(z)

〉
≥ µ

2

∥∥∥ 1

m
∇`tr (z)

∥∥∥2

+
λ

2
‖h‖2 (40)

holds for all z obeying ‖z − x‖ ≤ ε‖x‖, where 0 < ε < 1 is some constant. Such an ε-ball around x is
sometimes referred to as a basin of attraction. Formally, under RC (µ, λ, ε), a little algebra gives

dist2
(
z +

µ

m
∇`tr (z) ,x

)
≤

∥∥∥z +
µ

m
∇`tr (z)− x

∥∥∥2

= ‖h‖2 +
∥∥∥ µ
m
∇`tr (z)

∥∥∥2

+ 2µ

〈
h,

1

m
∇`tr (z)

〉
≤ ‖h‖2 +

∥∥∥ µ
m
∇`tr (z)

∥∥∥2

− µ2

∥∥∥∥ 1

m
∇`tr (z)

∥∥∥∥2

− µλ ‖h‖2

= (1− µλ) dist2 (z,x) (41)

for any z with ‖z − x‖ ≤ ε. In words, the TWF update rule is locally contractive around the planted
solution, provided that RC (µ, λ, ε) holds for some nonzero µ and λ. Apparently, Conditions (38) and (39)
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Figure 6: A function −`(z) satisfying RC: −`(z) = z2 for any z ∈ [−6, 6], and −`(z) = z2 +
1.5|z| (cos(|z| − 6)− 1) otherwise.

already imply the validity of RC for some constants µ, λ � 1 when ‖h‖/‖z‖ is reasonably small, which in
turn allows us to take a constant step size µ and enables a constant contraction rate 1− µλ.

Finally, caution must be exercised when connecting RC with strong convexity, since the former does not
necessarily guarantee the latter within the basin of attraction. As an illustration, Fig. 6 plots the graph of a
non-convex function obeying RC. The distinction stems from the fact that RC is stated only for those pairs
z and h = z−x with x being a fixed component, rather than simultaneously accommodating all possible z
and h = z − z̃ with z̃ being an arbitrary vector. In contrast, RC says that the only stationary point of the
truncated objective in a neighborhood of x is x, which often suffices for a gradient-descent type scheme to
succeed.

4 Numerical experiments
In this section, we report additional numerical results to verify the practical applicability of TWF. In all
numerical experiments conducted in the current paper, we set

αlb
z = 0.3, αub

z = 5, αh = 5, and αy = 3. (42)

This is a concrete combination of parameters satisfying our condition (31). Unless otherwise noted, we
employ 50 power iterations for initialization, adopt a fixed step size µt ≡ 0.2 when updating TWF iterates,
and set the maximum number of iterations to be T = 1000 for the iterative refinement stage.

The first series of experiments concerns exact recovery from noise-free data. Set n = 1000 and generate
a real-valued signal x at random. Then for m varying between 2n and 6n, generate m design vectors ai
independently drawn from N (0, I). An experiment is claimed to succeed if the returned estimate x̂ satisfies
dist (x̂,x) / ‖x‖ ≤ 10−5. Fig. 7 illustrates the empirical success rate of TWF (over 100 Monte Carlo trials
for each m) revealing that exact recovery is practially guaranteed from fewer than 1000 iterations when the
number of quadratic constraints is about 5 times the ambient dimension.

To see how special the real-valued Gaussian designs are to our theoretical finding, we perform experiments
on two other types of measurement models. In the first, TWF is applied to complex-valued data by generating
ai ∼ N

(
0, 1

2I
)

+ jN
(
0, 1

2I
)
. The other is the model of coded diffraction patterns described in (9). Fig. 8

depicts the average success rate for both types of measurements over 100 Monte Carlo trials, indicating that
m > 4.5n and m ≥ 6n are often sufficient under complex-valued Gaussian and CDP models, respectively.

For the sake of comparison, we also report the empirical performance of WF in all the above settings,
where the step size is set to be the default choice of [11], that is, µt = min{1− e−t/330, 0.2}. As can be seen,
the empirical success rates of TWF outperform WF when T = 1000 under Gaussian models, suggesting that
TWF either converges faster or exhibits better phase transition behavior.

Another series of experiments has been carried out to demonstrate the stability of TWF when the number
m of quadratic equations varies. We consider the case where n = 1000, and vary the SNR (cf. (10)) from 15
dB to 55dB. The design vectors are real-valued independent Gaussian ai ∼ N (0, I), while the measurements

15



m: number of measurements (n =1000)
 2n              3n              4n              5n              6n 

Em
pir

ica
l s

uc
ce

ss
 ra

te

   

 0 

   

   

   

   

0.5

   

   

   

   

 1 

   
 TWF (Poisson likelihood)
 WF  (Gaussian likelihood)

Figure 7: Empirical success rate under real-valued Gaussian sampling ai ∼ N (0, In).

yi are generated according to the Poisson noise model (4). Fig. 9 shows the relative mean square error—
in the dB scale—as a function of SNR, when averaged over 100 independent runs. For all choices of m,
the numerical experiments demonstrate that the relative MSE scales inversely proportional to SNR, which
matches our stability guarantees in Theorem 2 (since we observe that on the dB scale, the slope is about -1
as predicted by the theory (20)).

5 Exact recovery from noiseless data
This section proves the theoretical guarantees of TWF in the absence of noise (i.e. Theorem 1). We separate
the noiseless case mainly out of pedagogical reasons, as most of the steps carry over to the noisy case with
slight modification.

The analysis for the truncated spectral method follows similar argument as in [11, Section 7.8], which
we defer to Appendix C. In short, for any fixed δ > 0 and x ∈ Rn, the initial point z(0) returned by the
truncated spectral method obeys

dist(z(0),x) ≤ δ‖x‖
with high probability, provided that m/n exceeds some large constant. With this in place, it suffices to show
that the TWF update rule is locally contractive, as stated in the following proposition.

Proposition 1 (Local error contraction). Consider the noiseless case (1). Under the condition (31),
there exist some universal constants 0 < ρ0 < 1 and c0, c1, c2 > 0 such that with probability exceeding
1− c1 exp (−c2m),

dist2
(
z +

µ

m
∇`tr (z) ,x

)
≤ (1− ρ0) dist2 (z,x) (43)

holds simultaneously for all x, z ∈ Rn obeying

dist (z,x)

‖z‖ ≤ min

{
1

11
,
αlb
z

3αh
,
αlb
z

6
,

5.7
(
αlb
z

)2
2αub

z + αlb
z

}
, (44)

provided that m ≥ c0n and that µ is some constant obeying 0 < µ ≤ µ0 :=
0.994−ζ1−ζ2−

√
2/(9π)α−1

h

2(1.02+0.665/αh) .

Proposition 1 reveals the monotonicity of the estimation error: once entering a neighborhood around x
of a reasonably small size, the iterative updates will remain within this neighborhood all the time and be
attracted towards x at a geometric rate.
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m: number of measurements (n =1024)
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Figure 8: Empirical success rate for exact recovery using TWF. The results are shown for (a) complex-
valued Gaussian sampling ai ∼ N (0, 1

2In) + jN (0, 1
2In), and (b) CDP with masks uniformly drawn from

{1,−1, j,−j}.

As shown in Section 3, under the hypothesis RC (µ, λ, ε) one can conclude

dist2
(
z +

µ

m
∇`tr(z),x

)
≤ (1− µλ)dist2(z,x), ∀(z,x) with dist(z,x) ≤ ε. (45)

Thus, everything now boils down to showing RC (µ, λ, ε) for some constants µ, λ, ε > 0. This occupies the
rest of this section.

5.1 Preliminary facts about {E i1} and {E i2}
Before proceeding, we gather a few properties of the events E i1 and E i2, which will prove crucial in establishing
RC (µ, λ, ε). To begin with, recall that the truncation level given in E i2 depends on 1

m

∥∥A (xx> − zz>)∥∥
1
.

Instead of working with this random variable directly, we use deterministic quantities that are more amenable
to analysis. Specifically, we claim that 1

m

∥∥A (xx> − zz>)∥∥
1
offers a uniform and orderwise tight estimate

on ‖h‖ ‖z‖, which can be seen from the following two facts.

Lemma 1. Fix ζ ∈ (0, 1). If m > c0nζ
−2 log 1

ζ , then with probability at least 1− C exp(−c1ζ2m),

0.9 (1− ζ) ‖M‖F ≤
1

m
‖A (M)‖1 ≤ (1 + ζ)

√
2 ‖M‖F (46)

holds for all symmetric rank-2 matrices M ∈ Rn×n. Here, c0, c1, C > 0 are some universal constants.

Proof. Since [12, Lemma 3.1] already establishes the upper bound, it suffices to prove the lower tail bound.
Consider all symmetric rank-2 matrices M with eigenvalues 1 and −t for some −1 ≤ t ≤ 1. When t ∈ [0, 1],
it has been shown in the proof of [12, Lemma 3.2] that with high probability,

1

m
‖A (M)‖1 ≥ (1− ζ) f (t) , (47)

for all such rank-2 matrices M , where f (t) := 2
π

{
2
√
t+ (1− t)

(
π/2− 2arc tan(

√
t)
)}

. The lower bound
in this case can then be justified by recognizing that f (t) /

√
1 + t2 ≥ 0.9 for all t ∈ [0, 1], as illustrated in

Fig. 10. The case where t ∈ [−1, 0] is an immediate consequence from [12, Lemma 3.1].
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Figure 9: Relative MSE vs. SNR when the yi’s follow the Poisson model.
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Lemma 2. Consider any x, z ∈ Rn obeying ‖z − x‖ ≤ δ ‖z‖ for some δ < 1
2 . Then one has

√
2− 4δ ‖z − x‖ ‖z‖ ≤

∥∥xx> − zz>∥∥
F
≤ (2 + δ) ‖z − x‖ ‖z‖ . (48)

Proof. Take h = z − x and write∥∥xx> − zz>∥∥2

F
=

∥∥− hz> − zh> + hh>
∥∥2

F

=
∥∥hz> + zh>

∥∥2

F
+ ‖h‖4 − 2〈hz> + zh>,hh>〉

= 2 ‖z‖2 ‖h‖2 + 2|h>z|2 + ‖h‖4 − 2‖h‖2(h>z + z>h).

When ‖h‖ < 1
2‖z‖, the Cauchy–Schwartz inequality gives

2 ‖z‖2 ‖h‖2 − 4 ‖z‖ ‖h‖3 ≤
∥∥xx> − zz>∥∥2

F
≤ 4 ‖z‖2 ‖h‖2 + 4 ‖h‖3 ‖z‖+ ‖h‖4 , (49)

⇒
√

(2 ‖z‖ − 4 ‖h‖) ‖z‖ · ‖h‖ ≤
∥∥xx> − zz>∥∥

F
≤ (2 ‖z‖+ ‖h‖) · ‖h‖ (50)

as claimed.

Taken together the above two facts demonstrate that with probability 1− exp (−Ω (m)),

1.15 ‖z − x‖ ‖z‖ ≤ 1

m

∥∥A (xx> − zz>)∥∥
1
≤ 3 ‖z − x‖ ‖z‖ (51)
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holds simultaneously for all z and x satisfying ‖h‖ ≤ 1
11 ‖z‖. Conditional on (51), the inclusion

E i3 ⊆ E i2 ⊆ E i4 (52)

holds with respect to the following events

E i3 : =
{∣∣|a>i x|2 − |a>i z|2∣∣ ≤ 1.15αh ‖h‖ ·

∣∣a>i z∣∣} , (53)

E i4 : =
{∣∣|a>i x|2 − |a>i z|2∣∣ ≤ 3αh ‖h‖ ·

∣∣a>i z∣∣} . (54)

The point of introducing these new events is that E i3’s (resp. E i4’s) are statistically independent for any fixed
x and z and are, therefore, easier to work with.

Note that each E i3 (resp. E i4) is specified by a quadratic inequality. A closer inspection reveals that in
order to satisfy these quadratic inequalities, the quantity a>i h must fall within two intervals centered around
0 and 2a>i z, respectively. One can thus facilitate analysis by decoupling each quadratic inequality of interest
into two simple linear inequalities, as stated in the following lemma.

Lemma 3. For any γ > 0, define

Diγ :=
{∣∣|a>i x|2 − |a>i z|2∣∣ ≤ γ ‖h‖ ∣∣a>i z∣∣} , (55)

Di,1γ :=

{ |a>i h|
‖h‖ ≤ γ

}
, (56)

and Di,2γ :=

{∣∣∣∣a>i h‖h‖ − 2a>i z

‖h‖

∣∣∣∣ ≤ γ} . (57)

Thus, Di,1γ and Di,2γ represent the two intervals on a>i h centered around 0 and 2a>i z. If
‖h‖
‖z‖ ≤

αlb
z

γ , then the
following inclusion holds(

Di,1γ
1+
√

2

∩ E i1
)
∪
(
Di,2γ

1+
√

2

∩ E i1
)
⊆ Diγ ∩ E i1 ⊆

(
Di,1γ ∩ E i1

)
∪
(
Di,2γ ∩ E i1

)
. (58)

5.2 Proof of the regularity condition
By definition, one step towards proving the regularity condition (40) is to control the norm of the truncated
gradient. In fact, a crude argument already reveals that ‖ 1

m∇`tr(z)‖ . ‖h‖. To see this, introduce v =

[vi]1≤i≤m with vi := 2
|a>i x|2−|a>i z|2

a>i z
1Ei1∩Ei2 . It comes from the truncation rule E i1 as well as the inclusion

property (52) that∣∣a>i z∣∣ & ‖z‖ and
∣∣∣yi − ∣∣a>i z∣∣2∣∣∣ . 1

m
‖A(xx> − zz>)‖1 � ‖h‖ ‖z‖ ,

implying |vi| . ‖h‖ and hence ‖v‖ . √m‖h‖. The Marchenko–Pastur law gives ‖A‖ . √m, whence

1

m
‖∇`tr(z)‖ =

1

m
‖A>v‖ ≤ 1

m
‖A‖ · ‖v‖ . ‖h‖. (59)

A more refined estimate will be provided in Lemma 7.
The above argument essentially tells us that to establish RC, it suffices to verify a uniform lower bound

of the form
−
〈
h,

1

m
∇`tr (z)

〉
& ‖h‖2 , (60)

as formally derived in the following proposition.

Proposition 2. Consider the noise-free measurements yi = |a>i x|2 and any fixed constant ε > 0. Under
the condition (31), if m > c1n, then with probability exceeding 1− C exp (−c0m),

−
〈
h,

1

m
∇`tr (z)

〉
≥ 2

{
1.99− 2 (ζ1 + ζ2)−

√
8/(9π)α−1

h − ε
}
‖h‖2 (61)
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holds uniformly over all x, z ∈ Rn obeying

‖h‖
‖z‖ ≤ min

{
1

11
,
αlb
z

3αh
,
αlb
z

6
,

5.7
(
αlb
z

)2
2αub

z + αlb
z

}
. (62)

Here, c0, c1, C > 0 are some universal constants, and ζ1 and ζ2 are defined in (31).

The basic starting point is the observation that (a>i z)− (a>i x)2 = (a>i h)(2a>i z − a>i h) and hence

− 1

2m
∇`tr (z) =

1

m

m∑
i=1

(a>i z)2 − (a>i x)2

a>i z
ai1Ei1∩Ei2

=
1

m

m∑
i=1

2(a>i h)ai1Ei1∩Ei2 −
1

m

m∑
i=1

(a>i h)2

a>i z
ai1Ei1∩Ei2 . (63)

One would expect the contribution of the second term of (63) (which is a second-order quantity) to be small
as ‖h‖ / ‖z‖ decreases.

To facilitate analysis, we rewrite (63) in terms of the more convenient events Di,1γ and Di,2γ . Specifically,
the inclusion property (52) together with Lemma 3 reveals that

Di,1γ3 ∩ E i1 ⊆ E i3 ∩ E i1 ⊆ E i2 ∩ E i1 ⊆ E i4 ∩ E i1 ⊆
(
Di,1γ4 ∪ Di,2γ4

)
∩ E i1, (64)

where the parameters γ3, γ4 are given by

γ3 := 0.476αh, and γ4 := 3αh. (65)

This taken collectively with the identity (63) leads to a lower estimate

−
〈 1

2m
∇`tr(z),h

〉
≥ 2

m

m∑
i=1

(
a>i h

)2
1Ei1∩D

i,1
γ3
− 1

m

m∑
i=1

∣∣a>i h∣∣3∣∣a>i z∣∣ 1Ei1∩Di,1γ4 − 1

m

m∑
i=1

∣∣a>i h∣∣3∣∣a>i z∣∣ 1Ei1∩Di,2γ4 , (66)

leaving us with three quantities in the right-hand side to deal with. We pause here to explain and compare
the influences of these three terms.

To begin with, as long as the truncation step does not discard too many samples, the first term should
be close to 2

m

∑
i |a>i h|2, which approximately gives 2‖h‖2 from the law of large numbers. This term turns

out to be dominant in the right-hand side of (66) as long as ‖h‖/‖z‖ is reasonably small. To see this,
please recognize that the second term in the right-hand side is O(‖h‖3/‖z‖), simply because both a>i h and
a>i z are absolutely controlled on Di,1γ4 ∩ E i1. However, Di,2γ4 does not share such a desired feature. By the
very definition of Di,2γ4 , each nonzero summand of the last term of (66) must obey

∣∣a>i h∣∣ ≈ 2
∣∣a>i z∣∣ and,

therefore, |a
>
i h|3
|a>i z| 1Ei1∩Di,2γ4 is roughly of the order of ‖z‖2; this could be much larger than our target level

‖h‖2. Fortunately, Di,2γ4 is a rare event, thus precluding a noticable influence upon the descent direction.
All of this is made rigorous in Lemma 4 (first term), Lemma 5 (second term) and Lemma 6 (third term)
together with subsequent analysis.

Lemma 4. Fix γ > 0, and let E i1 and Di,1γ be defined in (25) and (56), respectively. Set

ζ1 := 1−min
{
E
[
ξ21{√1.01αlb

z ≤|ξ|≤
√

0.99αub
z }
]
,E
[
1{√1.01αlb

z ≤|ξ|≤
√

0.99αub
z }
]}

(67)

and ζ2 := E
[
ξ21{|ξ|>√0.99γ}

]
, (68)

where ξ ∼ N (0, 1). For any ε > 0, if m > c1nε
−2 log ε−1, then with probability at least 1− C exp(−c0ε2m),

1

m

m∑
i=1

∣∣a>i h∣∣2 1Ei1∩Di,1γ ≥ (1− ζ1 − ζ2 − ε) ‖h‖2 (69)

holds for all non-zero vectors h, z ∈ Rn. Here, c0, c1, C > 0 are some universal constants.
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We now move on to the second term in the right-hand side of (66). For any fixed γ > 0, the definition of
E i1 gives rise to an upper estimate

1

m

m∑
i=1

∣∣a>i h∣∣3∣∣a>i z∣∣ 1Ei1∩Di,1γ ≤ 1

αlb
z ‖z‖

· 1

m

m∑
i=1

∣∣a>i h∣∣3 1Di,1γ ≤ (1 + ε)
√

8/π ‖h‖3
αlb
z ‖z‖

, (70)

where
√

8/π ‖h‖3 is exactly the untruncated moment E[|a>i h|3]. The second inequality is a consequence of
the lemma below, which arises by observing that the summands |a>i h|31Di,1γ are independent sub-Gaussian
random variables.

Lemma 5. For any constant γ > 0, if m/n ≥ c0 · ε−2 log ε−1, then

1

m

m∑
i=1

∣∣a>i h∣∣3 1Di,1γ ≤ (1 + ε)
√

8/π ‖h‖3 , ∀h ∈ Rn (71)

with probability at least 1− C exp(−c1ε2m) for some universal constants c0, c1, C > 0.

It remains to control the last term of (66). As mentioned above, the influence of this term is small since
the set of ai’s satisfying Di,2γ accounts for a small fraction of measurements. Put formally, the number of
equations satisfying

∣∣a>i h∣∣ ≥ γ ‖h‖ decays rapidly for large γ (at least at a quadratic rate), as stated below.

Lemma 6. For any 0 < ε < 1, there exist some universal constants c0, c1, C > 0 such that

1

m

m∑
i=1

1{|a>i h|≥ γ‖h‖} ≤
1

0.49γ
exp

(
−0.485γ2

)
+

ε

γ2
, ∀h ∈ Rn\{0} and γ ≥ 2 (72)

with probability at least 1− C exp
(
−c0ε2m

)
. This holds with the proviso m/n ≥ c1 · ε−2 log ε−1.

To connect this lemma with the last term of (66), we recognize that when γ ≤ αlb
z ‖z‖
‖h‖ , one has

1Ei1∩D
i,2
γ
≤ 1{|a>i h|≥αlb

z ‖z‖}. (73)

The constraint
∣∣∣a>i h‖h‖ − 2a>i z

‖h‖

∣∣∣ ≤ γ of Di,2γ necessarily requires∣∣a>i h∣∣
‖h‖ ≥

2
∣∣a>i z∣∣
‖h‖ − γ ≥ 2αlb

z ‖z‖
‖h‖ − γ ≥ αlb

z ‖z‖
‖h‖ , (74)

where the last inequality comes from our assumption on γ. With Lemma 6 in place, (73) immediately gives

m∑
i=1

1Ei1∩D
i,2
γ
≤ ‖h‖

0.49αlb
z ‖z‖

exp

(
−0.485

(
αlb
z ‖z‖
‖h‖

)2
)

+
ε ‖h‖2

(αlb
z )

2 ‖z‖2

≤ 1

9800

( ‖h‖
αlb
z ‖z‖

)4

+
ε

(αlb
z )

2

(‖h‖
‖z‖

)2

(75)

as long as ‖h‖‖z‖ ≤
αlb
z

6 , where the last inequality uses the majorization 1
20000x4 ≥ 1

x exp
(
−0.485x2

)
holding for

any x ≥ 6.
In addition, on E i1 ∩ Di,2γ , the amplitude of each summand can be bounded in such a way that∣∣a>i h∣∣3∣∣a>i z∣∣ ≤

∣∣2a>i z∣∣+ γ ‖h‖∣∣a>i z∣∣ (
2αub

z ‖z‖+ γ ‖h‖
)2

(76)

≤
(

2 +
γ

αlb
z

‖h‖
‖z‖

)(
2αub

z + γ
‖h‖
‖z‖

)2

‖z‖2 , (77)
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where both inequalities are immediate consequences from the definitions of Di,2γ and E i1 (see (57) and (25)).
Taking this together with the cardinality bound (75) and picking ε appropriately, we get

1

m

m∑
i=1

∣∣a>i h∣∣3∣∣a>i z∣∣ 1Ei1∩Di,2γ ≤


(

2 + γ
αlb
z

‖h‖
‖z‖

)(
2αub

z + γ ‖h‖‖z‖

)2

9800 (αlb
z )

4︸ ︷︷ ︸
ϑ1

‖h‖2

‖z‖2
+ ε

 ‖h‖
2
. (78)

Furthermore, under the condition that

γ ≤ αlb
z

‖z‖
‖h‖ and

‖h‖
‖z‖ ≤

√
98
(
αlb
z

)2
√

3 (2αub
z + αlb

z )
,

one can simplify (78) by observing that ϑ1 ≤ 1
100 , which results in

1

m

m∑
i=1

∣∣a>i h∣∣3∣∣a>i z∣∣ 1Ei1∩Di,2γ ≤
(

1

100
+ ε

)
‖h‖2 . (79)

Putting all preceding results in this subsection together reveals that with probability exceeding 1 −
exp (−Ω (m)),

−
〈
h,

1

2m
∇`tr (z)

〉
≥

{
1.99− 2 (ζ1 + ζ2)−

√
8/π

‖h‖
αlb
z ‖z‖

− 3ε

}
‖h‖2

≥
{

1.99− 2 (ζ1 + ζ2)−
√

8/π(3αh)−1 − 3ε
}
‖h‖2 (80)

holds simultaneously over all x and z satisfying

‖h‖
‖z‖ ≤ min

{
αlb
z

3αh
,
αlb
z

6
,

√
98/3

(
αlb
z

)2
2αub

z + αlb
z

,
1

11

}
(81)

as claimed in Proposition 2.
To conclude this section, we provide a tighter estimate about the norm of the truncated gradient.

Lemma 7. Fix δ > 0, and assume that yi = (a>i x)2. Suppose that m ≥ c0n for some large constant c0 > 0.
There exist some universal constants c, C > 0 such that with probability at least 1− C exp (−cm),

1

m

∥∥∇`tr (z)
∥∥ ≤ (1 + δ) · 4

√
1.02 + 0.665/αh ‖h‖ (82)

holds simultaneously for all x, z ∈ Rn satisfying ‖h‖‖z‖ ≤ min
{
αlb
z

3αh
,
αlb
z

6 ,

√
98/3(αlb

z )
2

2αub
z +αlb

z
, 1

11

}
.

Lemma 7 complements the preceding arguments by allowing us to identify a concrete plausible range for
the step size. Specifically, putting Lemma 7 and Proposition 2 together suggests that

−
〈
h,

1

m
∇`tr (z)

〉
≥

2
{

1.99− 2 (ζ1 + ζ2)−
√

8/(9π)α−1
h − ε

}
(1 + δ)

2 · 16 (1.02 + 0.665/αh)

∥∥∥∥ 1

m
∇`tr (z)

∥∥∥∥2

. (83)

Taking ε and δ to be sufficiently small we arrive at a feasible range (cf. Definition (40))

µ ≤ 0.994− ζ1 − ζ2 −
√

2/(9π)α−1
h

2 (1.02 + 0.665/αh)
:= µ0. (84)

This establishes Proposition 1 and in turn Theorem 1 when µt is taken to be a fixed constant.
To justify the contraction under backtracking line search, it suffices to prove that the resulting step size

falls within this range (84), which we defer to Appendix D.
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6 Stability
This section goes in the direction of establishing stability guarantees of TWF. We concentrate on the iterative
gradient stage, and defer the analysis for the initialization stage to Appendix C.

Before continuing, we collect two bounds that we shall use several times. The first is the observation that

1

m
‖y −A(zz>)‖1 ≤

1

m
‖A(xx> − zz>)‖1 +

1

m
‖η‖1 . ‖h‖‖z‖+

1

m
‖η‖1 . ‖h‖‖z‖+

1√
m
‖η‖, (85)

where the last inequality follows from Cauchy-Schwarz. Setting

vi := 2
yi − |a>i z|2

a>i z
1Ei1∩Ei2

as usual, this inequality together with the truncation rules E i1 and E2
1 give

|vi| . ‖h‖+ ‖η‖√
m‖z‖

=⇒
∥∥ 1
m∇`tr(z)

∥∥ = 1
m‖A

>v‖ ≤
∥∥∥ 1√

m
A
∥∥∥ 1√

m
‖v‖

(i)
. 1√

m
‖v‖ . ‖h‖+ ‖η‖√

m‖z‖ ,
(86)

where (i) arises from [42, Corollary 5.35].
As discussed in Section 3, the estimation error is contractive if − 1

m∇`tr (z) satisfies the regularity con-
dition. With (86) in place, RC reduces to

− 1

m
〈∇`tr (z) ,h〉 & ‖h‖2. (87)

Unfortunately, (87) does not hold for all z within the neighborhood of x due to the existence of noise.
Instead we establish the following:

• The condition (87) holds for all h obeying

c3
‖η‖ /√m
‖z‖ ≤ ‖h‖ ≤ c4‖x‖ (88)

for some constants c3, c4 > 0 (we shall call it Regime 1); this will be proved later. In this regime, the
reasoning in Section 3 gives

dist
(
z +

µ

m
∇`tr(z), x

)
≤ (1− ρ)dist(z,x) (89)

for some appropriate constants µ, ρ > 0 and, hence, error contraction occurs as in the noiseless setting.

• However, once the iterate enters Regime 2 where

‖h‖ ≤ c3 ‖η‖√
m ‖z‖ (90)

the estimation error might no longer be contractive. Fortunately, in this regime each move by µ
m∇`tr (z)

is of size at most O( ‖η‖√
m‖z‖ ), compare (86). As a result, at each iteration the estimation error cannot

increase by more than a numerical constant times ‖η‖√
m‖z‖ before possibly jumping out (of this regime).

Therefore,

dist
(
z +

µ

m
∇`tr(z), x

)
≤ c5

‖η‖√
m‖x‖ (91)

for some constant c5 > 0. Moreover, as long as ‖η‖∞/‖x‖2 is sufficiently small, one can guarantee
that c5

‖η‖√
m‖x‖ ≤ c5

‖η‖∞
‖x‖ ≤ c4‖x‖. In other words, if the iterate jumps out of Regime 2, it will still fall

within Regime 1.
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To summarize, suppose the initial guess z(0) obeys dist(z(0),x) ≤ c4‖x‖. Then the estimation error will
shrink at a geometric rate 1 − ρ before it enters Regime 2. Afterwards, z(t) will either stay within Regime
2 or jump back and forth between Regimes 1 and 2. Because of the bounds (91) and (89), the estimation
errors will never exceed the order of ‖η‖√

m‖x‖ from then on. Putting these together establishes (17), namely,
the first part of the theorem.

Below we justify the condition (87) for Regime 1, for which we start by gathering additional properties
of the truncation rules. By Cauchy-Schwartz, 1

m ‖η‖1 ≤ 1√
m
‖η‖ ≤ 1

c3
‖h‖ ‖z‖. When c3 is sufficiently large,

applying Lemmas 1 and 2 gives

1
m

∑m
l=1

∣∣∣yl − ∣∣a>l z∣∣2∣∣∣ ≤ 1
m

∥∥A (xx> − zz>)∥∥
1

+ 1
m ‖η‖1 ≤ 2.98‖h‖‖z‖;

1
m

∑m
l=1

∣∣∣yl − ∣∣a>l z∣∣2∣∣∣ ≥ 1
m

∥∥A (xx> − zz>)∥∥
1
− 1

m ‖η‖1 ≥ 1.151‖h‖‖z‖.
(92)

From now on, we shall denote Ẽ i2 :=
{ ∣∣|a>i x|2 − |a>i z|2∣∣ ≤ αh

m

∥∥y −A (zz>)∥∥
1

|a>i z|
‖z‖

}
to differentiate from

E i2. For any small constant ε > 0, we introduce the index set G := {i : |ηi| ≤ Cε ‖η‖ /
√
m} that satisfies

|G| = (1− ε)m. Note that Cε must be bounded as n scales, since

‖η‖2 ≥
∑

i/∈G
η2
i ≥ (m− |G|) · C2

ε ‖η‖2/m ≥ εC2
ε ‖η‖2 ⇒ Cε ≤ 1/

√
ε. (93)

We are now ready to analyze the truncated gradient, which we separate into several components as follows

∇tr` (z) = 2
∑
i∈G

∣∣a>i x∣∣2 − ∣∣a>i z∣∣2
a>i z

ai1Ei1∩Ei2 + 2
∑
i/∈G

∣∣a>i x∣∣2 − ∣∣a>i z∣∣2
a>i z

ai1Ei1∩Ẽi2︸ ︷︷ ︸
:=∇clean

tr `(z)

+ 2
∑
i∈G

ηi
a>i z

ai1Ei1∩Ei2︸ ︷︷ ︸
:=∇noise

tr `(z)

+ 2
∑
i/∈G

(
yi −

∣∣a>i z∣∣2
a>i z

1Ei1∩Ei2 −
∣∣a>i x∣∣2 − ∣∣a>i z∣∣2

a>i z
1Ei1∩Ẽi2

)
ai︸ ︷︷ ︸

:=∇extra
tr `(z)

. (94)

• For each index i ∈ G, the inclusion property (52) (i.e. E i3 ⊆ E i2 ⊆ E i4) holds. To see this, observe that∣∣yi − |a>i z|2∣∣ ∈ ∣∣|a>i x|2 − |a>i z|2∣∣± |ηi|.
Since |ηi| ≤ Cε‖η‖/

√
m � ‖h‖‖z‖ when c3 is sufficiently large, one can derive the inclusion (52)

immediately from (92). As a result, all the proof arguments for Proposition 2 carry over to ∇clean
tr ` (z),

suggesting that

−
〈
h,

1

m
∇clean

tr ` (z)
〉
≥ 2

{
1.99− 2 (ζ1 + ζ2)−

√
8/(9π)α−1

h − ε
}
‖h‖2. (95)

• Next, letting wi = 2ηi
a>i z

1Ei1∩Ei21{i∈G}, we see that for any constant δ > 0, the noise component obeys∥∥∥∥ 1

m
∇noise

tr `(z)

∥∥∥∥ =

∥∥∥∥ 1

m
A>w

∥∥∥∥ ≤ ∥∥∥∥ 1√
m
A

∥∥∥∥∥∥∥∥ 1√
m
w

∥∥∥∥ (ii)
≤ 1 + δ√

m
‖w‖ ≤ (1 + δ)

2‖η‖/√m
αlb
z ‖z‖

, (96)

when m/n is sufficiently large. Here, (ii) arises from [42, Corollary 5.35], and the last inequality is a
consequence of the upper estimate

‖w‖2 ≤ 4

m∑
i=1

|ηi|2
(a>i z)2

1Ei1∩Ei2 ≤ 4

m∑
i=1

|ηi|2
(αlb
z ‖z‖)2

=
4 ‖η‖2

(αlb
z ‖z‖)2

. (97)

In turn, this immediately gives∣∣∣∣〈h, 1

m
∇noise

tr ` (z)
〉∣∣∣∣ ≤ ‖h‖

∥∥∥∥ 1

m
∇noise

tr ` (z)

∥∥∥∥ ≤ 2 (1 + δ)

αlb
z

‖η‖√
m‖z‖‖h‖. (98)
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• We now turn to the last term∇extra
tr ` (z). According to the definition of E i2 and Ẽ i2 as well as the property

(92), the weight qi := 2
(
yi−|a>i z|2
a>i z

1Ei1∩Ei2 −
|a>i x|2−|a>i z|2

a>i z
1Ei1∩Ẽi2

)
1{i/∈G} is bounded in magnitude by

6‖h‖. This gives
‖q‖ ≤

√
m− |G| · 6‖h‖ ≤ 6

√
εm‖h‖,

⇒
∣∣∣〈 1

m
∇extra

tr ` (z) ,h
〉∣∣∣ ≤ ‖h‖ · ∥∥ 1

m
∇extra

tr ` (z)
∥∥ =

1

m
‖h‖ ·

∥∥A>q∥∥ ≤ 6 (1 + δ)
√
ε‖h‖2. (99)

Taking the above bounds together yields

− 1

m
〈∇`tr (z) ,h〉 ≥ 2

{
1.99− 2 (ζ1 + ζ2)−

√
8

9π

1

αh
− 6(1 + δ)

√
ε− ε

}
‖h‖2 − 2 (1 + δ)

αlb
z

‖η‖√
m ‖z‖‖h‖.

Since ‖h‖ ≥ c3 ‖η‖√
m‖z‖ for some large constant c3 > 0, setting ε to be small one obtains

− 1

m
〈∇`tr (z) ,h〉 ≥ 2

{
1.95− 2 (ζ1 + ζ2)−

√
8/(9π)α−1

h

}
‖h‖2 (100)

for all h obeying

c3‖η‖/
√
m

‖z‖ ≤ ‖h‖ ≤ min

{
1

11
,
αlb
z

3αh
,
αlb
z

6
,

√
98/3

(
αlb
z

)2
2αub

z + αlb
z

}
‖z‖,

which finishes the proof of Theorem 2 for general η.
Up until now, we have established the theorem for general η, and it remains to specialize it to the Poisson

model. Standard concentration results, which we omit, give

1

m
‖η‖2 ≈ 1

m

m∑
i=1

E
[
η2
i

]
=

1

m

m∑
i=1

(
a>i x

)2 ≈ ‖x‖2. (101)

Substitution into (17) completes the proof.

7 Minimax lower bound
The goal of this section is to establish the minimax lower bound given in Theorem 3. For notational simplicity,
we denote by P (y | w) the likelihood of yi

ind.∼ Poisson(|a>i w|2), 1 ≤ i ≤ m conditional on {ai}. For any
two probability measures P and Q, we denote by KL (P‖Q) the Kullback–Leibler (KL) divergence between
them:

KL (P‖Q) :=

ˆ
log

(
dP

dQ

)
dP, (102)

The basic idea is to adopt the general reduction scheme discussed in [41, Section 2.2], which amounts to
finding a finite collection of hypotheses that are minimally separated. Below we gather one result useful for
constructing and analyzing such hypotheses.

Lemma 8. Suppose that ai ∼ N (0, In), n is sufficiently large, and m = κn for some sufficiently large
constant κ > 0. Consider any x ∈ Rn\{0}. On an event B of probability approaching one, there exists a
collectionM of M = exp (n/30) distinct vectors obeying the following properties:

(i) x ∈M;

(ii) for all w(l),w(j) ∈M,

1/
√

8− (2n)−1/2 ≤
∥∥w(l) −w(j)

∥∥ ≤ 3/2 + n−1/2; (103)
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(iii) for all w ∈M,
|a>i (w − x) |2
|a>i x|2

≤ ‖w − x‖
2

‖x‖2 {2 + 17 log3m}, 1 ≤ i ≤ m. (104)

In words, Lemma 8 constructs a set M of exponentially many vectors/hypotheses scattered around x
and yet well separated. From (ii) we see that each pair of hypotheses in M is separated by a distance
roughly on the order of 1, and all hypotheses reside within a spherical ball centered at x of radius 3/2+o(1).
When ‖x‖ ≥ log1.5m, every hypothesis w ∈ M satisfies ‖w‖ ≈ ‖x‖ � 1. In addition, (iii) says that the
quantities |a>i (w − x) |/|a>i x| are all very well controlled (modulo some logarithmic factor). In particular,
when ‖x‖ ≥ log1.5m, one must have

|a>i (w − x) |2
|a>i x|2

.
‖w − x‖2
‖x‖2 log3m .

1

log3m
log3m . 1. (105)

In the Poisson model, such a quantity turns out to be crucial in controlling the information divergence
between two hypotheses, as demonstrated in the following lemma.

Lemma 9. Fix a family of design vectors {ai}. Then for any w and r ∈ Rn,

KL
(
P (y | w + r) ‖ P (y | w)

)
≤
∑m

i=1
|a>i r|2

(
8 +

2|a>i r|2
|a>i w|2

)
. (106)

Lemma 9 and (105) taken collectively suggest that on the event B∩C (B is in Lemma 8 and C := {‖A‖ ≤√
2m}), the conditional KL divergence (we condition on the ai’s) obeys

KL
(
P (y | w) ‖ P (y | x)

)
≤ c3

∑m

i=1

∣∣a>i (w − x)
∣∣2 ≤ 2c3m ‖w − x‖2 , ∀w ∈M; (107)

here, the inequality holds for some constant c3 > 0 provided that ‖x‖ ≥ log1.5m, and the last inequality is
a result of C (which occurs with high probability). We now use hypotheses as in Lemma 8 but rescaled in
such a way that

‖w − x‖ � δ, and ‖w − w̃‖ � δ, ∀w, w̃ ∈M with w 6= w̃. (108)

for some 0 < δ < 1. This is achieved via the substitution w ←− x+δ(w−x); with a slight abuse of notation,
M denotes the new set.

The hardness of a minimax estimation problem is known to be dictated by information divergence in-
equalities such as (107). Indeed, suppose that

1

M − 1

∑
w∈M\{x}

KL
(
P (y | w) ‖ P (y | x)

)
≤ 1

10
log (M − 1) (109)

holds, then the Fano-type minimax lower bound [41, Theorem 2.7] asserts that

inf
x̂

sup
x∈M

E
[
‖x̂− x‖

∣∣ {ai}] & min
w,w̃∈M,w 6=w̃

‖w − w̃‖. (110)

Since M = exp(n/30), (109) would follow from

2c3‖w − x‖2 ≤ n/(300m). w ∈M. (111)

Hence, we just need to select δ to be a small multiple of
√
n/m. This in turn gives

inf
x̂

sup
x∈M

E
[
‖x̂− x‖

∣∣ {ai}] & min
w,w̃∈M,w 6=w̃

‖w − w̃‖ &
√
n/m. (112)

Finally, it remains to connect ‖x̂ − x‖ with dist (x̂,x). Since all the w ∈ M are clustered around x
and are at a mutual distance about δ that is much smaller than ‖x‖, we can see that for any reasonable
estimator, dist(x̂,x) = ‖x̂− x‖. This finishes the proof.
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8 Discussion
To keep our treatment concise, this paper does not strive to explore all possible generalizations of the theory.
There are nevertheless a few extensions worth pointing out.

• More general objective functions. For concreteness, we restrict our analysis to the Poisson log-
likelihood function, but the analysis framework we laid out easily carries over to a broad class of
(nonconvex) objective functions. For instance, all results continue to hold if we replace the Poisson
likelihood by the Gaussian likelihood; that is, the polynomial function −∑m

i=1(yi − |a>i z|2)2 studied
in [11]. A general guideline is to first check whether the expected regularity condition

E
[
−
〈

1
m∇`tr (z) ,h

〉]
& ‖h‖2

holds for any fixed z within a neighborhood around x. If so, then often times RC holds uniformly
within this neighborhood due to sharp concentration of measure ensured by the truncation procedure.

• Sub-Gaussian measurements. The theory extends to the situation where the ai’s are i.i.d. sub-
Gaussian random vectors, although the truncation threshold might need to be tweaked based on the
sub-Gaussian norm of ai. A more challenging scenario, however, is the case where the ai’s are generated
according to the CDP model, since there is much less randomness to exploit in the mathematical
analysis. We leave this to future research.

Having demonstrated the power of TWF in recovering a rank-one matrix xx∗ from quadratic equations,
we remark on the potential of TWF towards recovering low-rank matrices from rank-one measurements.
Imagine that we wish to estimate a rank-r matrix X � 0 and that all we know about X is

yi = a>i Xai, 1 ≤ i ≤ m.

It is known that this problem can be efficiently solved by using more computational-intensive semidefinite
programs [8,14]. With the hope of developing a linear-time algorithm, one might consider a modified TWF
scheme, which would maintain a rank-r matrix variable and operate as follows: perform truncated spectral
initialization, and then successively update the current guess via a truncated gradient descent rule applied
to a presumed log-likelihood function.

Moving away from i.i.d. sub-Gaussian measurements, there is a proliferation of problems that involve
completion of a low-rank matrix X from partial entries, where the rank is known a priori. It is self-
evident that such entry-wise observations can also be cast as rank-one measurements of X. Therefore, the
preceding modified TWF may add to recent literature in applying non-convex schemes for low-rank matrix
completion [24,27,28,39] or even robust PCA [33]. A concrete application of this flavor is a simple form of the
fundamental alignment/matching problem [6, 15, 25]. Imagine a collection of n instances, each representing
an image of the same physical object but with different shift ri ∈ {0, · · · ,M − 1}. The goal is to align all
these instances from observations on the relative shift between pairs of them. Denoting by Xi the cyclic
shift by an amount ri of IM , one sees that the collection matrix X := [X>i Xj ]1≤i,j≤k is a rank-M matrix,
and the relative shift observations can be treated as rank-one measurements of X. Running TWF over this
problem instance might result in a statistically and computationally efficient solution. This would be of
great practical interest.

A Proofs for Section 5

A.1 Proof of Lemma 3
First, we make the observation that (a>i z)2− (a>i x)2 =

(
2a>i z − a>i h

)
a>i h is a quadratic function in a>i h.

If we assume γ ≤ αlb
z ‖z‖
‖h‖ , then on the event E i1 one has

(a>i z)2 ≥ αlb
z ‖z‖ · |a>i z| ≥ γ ‖h‖

∣∣a>i z∣∣ . (113)
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Solving the quadratic inequality that specifies Diγ gives

a>i h ∈
[
a>i z −

√(
a>i z

)2
+ γ ‖h‖

∣∣a>i z∣∣, a>i z −
√(
a>i z

)2 − γ ‖h‖ ∣∣a>i z∣∣] ,
or a>i h ∈

[
a>i z +

√(
a>i z

)2 − γ ‖h‖ ∣∣a>i z∣∣, a>i z +

√(
a>i z

)2
+ γ ‖h‖

∣∣a>i z∣∣] ,
which we will simplify in the sequel.

Suppose for the moment that a>i z ≥ 0, then the preceding two intervals are respectively equivalent to

a>i h ∈

 − γ ‖h‖
∣∣a>i z∣∣

a>i z +

√(
a>i z

)2
+ γ ‖h‖

∣∣a>i z∣∣ ,
γ ‖h‖

∣∣a>i z∣∣
a>i z +

√(
a>i z

)2 − γ ‖h‖ ∣∣a>i z∣∣
 := I1;

a>i h− 2a>i z ∈

 − γ ‖h‖
∣∣a>i z∣∣

a>i z +

√(
a>i z

)2 − γ ‖h‖ ∣∣a>i z∣∣ ,
γ ‖h‖

∣∣a>i z∣∣
a>i z +

√(
a>i z

)2
+ γ ‖h‖

∣∣a>i z∣∣
 := I2.

Assuming (113) and making use of the observations

γ ‖h‖
∣∣a>i z∣∣

a>i z +

√(
a>i z

)2 − γ ‖h‖ ∣∣a>i z∣∣ ≤ γ ‖h‖
∣∣a>i z∣∣

a>i z
= γ ‖h‖

and
γ ‖h‖

∣∣a>i z∣∣
a>i z +

√(
a>i z

)2
+ γ ‖h‖

∣∣a>i z∣∣ ≥ γ ‖h‖
∣∣a>i z∣∣(

1 +
√

2
) ∣∣a>i z∣∣ =

γ

1 +
√

2
‖h‖ ,

we obtain the inner and outer bounds[
±
(
1 +
√

2
)−1

γ ‖h‖
]
⊆ I1, I2 ⊆

[
± γ ‖h‖

]
.

Setting γ1 := γ

1+
√

2
gives(

Di,1γ1 ∩ Ei,1
)
∪
(
Di,2γ1 ∩ Ei,1

)
⊆ Dγ ∩ Ei,1 ⊆

(
Di,1γ ∩ Ei,1

)
∪
(
Di,2γ ∩ Ei,1

)
.

Proceeding with the same argument, we can derive exactly the same inner and outer bounds in the regime
where a>i z < 0, concluding the proof.

A.2 Proof of Lemma 4
By homogeneity, it suffices to establish the claim for the case where both h and z are unit vectors.

Suppose for the moment that h and z are statistically independent from {ai}. We introduce two auxiliary
Lipschitz functions approximating indicator functions:

χz (τ) :=


1, if |τ | ∈

[√
1.01αlb

z ,
√

0.99αub
z

]
;

−100
(
αub
z

)−2
τ2 + 100, if |τ | ∈

[√
0.99αub

z , α
ub
z

]
;

100
(
αlb
z

)−2
τ2 − 100, if |τ | ∈

[
αlb
z ,
√

1.01αlb
z

]
;

0, else.

(114)

χh (τ) :=


1, if |τ | ∈

[
0,
√

0.99γ
]

;

− 100
γ2 τ

2 + 100, if |τ | ∈
[√

0.99γ, γ
]

;

0, else.
(115)

Since h and z are assumed to be unit vectors, these two functions obey

0 ≤ χz
(
a>i z

)
≤ 1Ei1 , and 0 ≤ χh

(
a>i h

)
≤ 1Di,1γ (116)
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and thus,

1

m

m∑
i=1

(
a>i h

)2
1Ei1∩D

i,1
γ
≥ 1

m

m∑
i=1

(a>i h)2χz(a
>
i z)χh(a>i h). (117)

We proceed to lower bound 1
m

∑m
i=1

(
a>i h

)2
χz
(
a>i z

)
χh
(
a>i h

)
.

Firstly, to compute the mean of (a>i h)2χz(a
>
i z)χh(a>i h), we introduce an auxiliary orthonormal matrix

Uz =

[
z>/ ‖z‖

...

]
(118)

whose first row is along the direction of z, and set

h̃ := Uzh, and ãi := Uzai. (119)

Also, denote by ãi,1 (resp. h̃1) the first entry of ãi (resp. h̃), and ãi,\1 (resp. h̃\1) the remaining entries of
ãi (resp. h̃), and let ξ ∼ N (0, 1). We have

E
[ (
a>i h

)2
χz
(
a>i z

)
χh
(
a>i h

) ]
≥ E

[
(a>i h)2χz

(
a>i z

) ]
− E

[(
a>i h

)2 (
1− χh

(
a>i h

))]
≥ E

[(
ãi,1h̃1

)2
χz
(
a>i z

)]
+ E

[(
ã>i,\1h̃\1

)2]E [χz (a>i z)]− ‖h‖2 E [ξ21{|ξ|>√0.99γ}
]

≥ |h̃1|2(1− ζ1) + ‖h̃\1‖2(1− ζ1)− ζ2‖h‖2 (120)

≥ (1− ζ1 − ζ2) ‖h‖2 ,

where the identity (120) arises from (67) and (68). Since
(
a>i h

)2
χz
(
a>i z

)
χh
(
a>i h

)
is bounded in magnitude

by γ2 ‖h‖2, it is a sub-Gaussian random variable with sub-Gaussian norm O(γ2 ‖h‖2). Apply the Hoeffding-
type inequality [42, Proposition 5.10] to deduce that for any ε > 0,

1

m

m∑
i=1

(
a>i h

)2
χz
(
a>i z

)
χh
(
a>i h

)
≥ E

[(
a>i h

)2
χz
(
a>i z

)
χh
(
a>i h

)]
− ε ‖h‖2 (121)

≥ (1− ζ1 − ζ2 − ε) ‖h‖2 (122)

with probability at least 1− exp(−Ω(ε2m)).
The next step is to obtain uniform control over all unit vectors, for which we adopt a basic version of an

ε-net argument. Specifically, we construct an ε-net Nε with cardinality |Nε| ≤ (1 + 2/ε)
2n (cf. [42]) such that

for any (h, z) with ‖h‖ = ‖z‖ = 1, there exists a pair h0, z0 ∈ Nε satisfying ‖h− h0‖ ≤ ε and ‖z − z0‖ ≤ ε.
Now that we have discretized the unit spheres using a finite set, taking the union bound gives

1

m

m∑
i=1

(
a>i h0

)2
χz
(
a>i z0

)
χh
(
a>i h0

)
≥ (1− ζ1 − ζ2 − ε) ‖h0‖2 , ∀h0, z0 ∈ Nε (123)

with probability at least 1− (1 + 2/ε)2n exp(−Ω(ε2m)).
Define f1(·) and f2(·) such that f1(τ) := τχh(

√
τ) and f2(τ) := χz(

√
τ), which are both bounded functions

with Lipschitz constant O(1). This guarantees that for each unit vector pair h and z,∣∣∣(a>i h)2 χz (a>i z)χh (a>i h)− (a>i h0

)2
χz
(
a>i z0

)
χh
(
a>i h0

)∣∣∣
≤ |χh

(
a>i z

)
| · |
(
a>i h

)2
χh
(
a>i h

)
−
(
a>i h0

)2
χh
(
a>i h0

)
|+ |(a>i h0)2χh

(
a>i h0

)
| · |χh

(
a>i z

)
− χh

(
a>i z0

)
|

≤ |χh
(
a>i z

)
| ·
∣∣f1

(
|a>i h|2

)
− f1

(
|a>i h0|2

)∣∣+
∣∣(a>i h0)2χh

(
a>i h0

) ∣∣ · ∣∣f2

(
|a>i z|2

)
− f2

(
|a>i z0|2

) ∣∣
.
∣∣(a>i h)2 − (a>i h0)2

∣∣+
(
a>i z)2 − (a>i z0)2

∣∣.
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Consequently, there exists some universal constant c3 > 0 such that∣∣∣ 1

m

m∑
i=1

(
a>i h

)2
χz
(
a>i z

)
χh
(
a>i h

)
− 1

m

m∑
i=1

(
a>i h0

)2
χz
(
a>i z0

)
χh
(
a>i h0

) ∣∣∣
.

1

m

∥∥∥A(hh> − h0h
>
0

)∥∥∥
1

+
1

m

∥∥A(zz> − z0z
>
0

)∥∥
1

(i)
≤ c3

{∥∥hh> − h0h
>
0

∥∥
F

+
∥∥zz> − z0z

>
0

∥∥
F

}
(ii)
≤ 2.5c3

{∥∥h− h0

∥∥ · ∥∥h∥∥+
∥∥z − z0

∥∥ · ∥∥z∥∥} ≤ 5c3ε,

where (i) results from Lemma 1, and (ii) arises from Lemma 2 whenever ε < 1/2.
With the assertion (123) in place, we see that with high probability,

1

m

m∑
i=1

(
a>i h

)2
χz
(
a>i z

)
χh
(
a>i h

)
≥ (1− ζ1 − ζ2 − (5c3 + 1) ε) ‖h‖2

for all unit vectors h and z. Since ε can be arbitrary, putting this and (117) together completes the proof.

A.3 Proof of Lemma 5
The proof makes use of standard concentration of measure and covering arguments, and it suffices to restrict
our attention to unit vectors h. We find it convenient to work with an auxiliary function

χ2 (τ) =


|τ | 32 , if |τ | ≤ γ2,

−γ
(
|τ | − γ2

)
+ γ3, if γ2 < |τ | ≤ 2γ2,

0, else.

Apparently, χ2 (τ) is a Lipschitz function of τ with Lipschitz norm O (γ). Recalling the definition of Di,1γ ,
we see that each summand is bounded above by

|a>i h|3 1Di,1γ ≤ χ2

(
|a>i h|2

)
.

For each fixed h and ε > 0, applying the Bernstein inequality [42, Proposition 5.16] gives

1

m

m∑
i=1

∣∣a>i h∣∣3 1Di,1γ ≤ 1

m

m∑
i=1

χ2

(∣∣a>i h∣∣2) ≤ E
[
χ2

(∣∣a>i h∣∣2)]+ ε

≤ E
[ ∣∣a>i h∣∣3 ]+ ε =

√
8/π + ε

with probability exceeding 1− exp
(
−Ω

(
ε2m

))
.

From [42, Lemma 5.2], there exists an ε-net Nε of the unit sphere with cardinality |Nε| ≤
(
1 + 2

ε

)n. For
each h, suppose that ‖h0 − h‖ ≤ ε for some h0 ∈ Nε. The Lipschitz property of χ2 implies

1

m

m∑
i=1

{
χ2

(∣∣a>i h∣∣2)− χ2

(∣∣a>i h0

∣∣2)} .
1

m

m∑
i=1

∣∣∣∣∣a>i h∣∣2 − ∣∣a>i h0

∣∣2∣∣∣ (i)� ‖h− h0‖ ‖h‖ � ε,

where (i) arises by combining Lemmas 1 and 2. This demonstrates that with high probability,

1

m

m∑
i=1

∣∣a>i h∣∣3 1Di,1γ ≤ 1

m

m∑
i=1

χ2

(
|a>i h|2

)
≤
√

8/π +O (ε)

for all unit vectors h, as claimed.
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A.4 Proof of Lemma 6
Without loss of generality, the proof focuses on the case where ‖h‖ = 1. Fix an arbitrary small constant
δ > 0. One can eliminate the difficulty of handling the discontinuous indicator functions by working with
the following auxiliary function

χ3 (τ, γ) :=


1, if

√
τ ≥ ψlb (γ) ;

100τ
ψ2

lb(γ)
− 99, if

√
τ ∈

[√
0.99ψlb (γ) , ψlb (γ)

]
;

0, else.
(124)

Here, ψlb (·) is a piecewise constant function defined as

ψlb (γ) := (1 + δ)b
log γ

log(1+δ)c ,

which clearly satisfy γ
1+δ ≤ ψlb (γ) ≤ γ. Such a function is useful for our purpose since for any 0 < δ ≤ 0.005,

1{|a>i h|≥γ} ≤ χ3

( ∣∣a>i h∣∣2 , γ) ≤ 1{|a>i h|≥
√

0.99ψlb(γ)} ≤ 1{|a>i h|≥0.99γ}. (125)

For any fixed unit vector h, the above argument leads to an upper tail estimate: for any 0 < t ≤ 1,

P
{
χ3

( ∣∣a>i h∣∣2 , γ) ≥ t} ≤ P
{
1{|a>i h|≥0.99γ} ≥ t

}
= P

{
1{|a>i h|≥0.99γ} = 1

}
= 2

ˆ ∞
0.99γ

φ (x) dx ≤ 2

0.99γ
φ (0.99γ) , (126)

where φ(x) is the density of a standard normal, and (126) follows from the tail bound
´∞
x
φ(x)dx ≤ 1

xφ (x)

for all x > 0. This implies that when γ ≥ 2, both χ3

(
|a>i h|2, γ

)
and 1{|a>i h|≥0.99γ} are sub-exponential with

sub-exponential norm O(γ−2) (cf. [42, Definition 5.13]). We apply the Bernstein-type inequality for the sum
of sub-exponential random variables [42, Corollary 5.17], which indicates that for any fixed h and γ as well
as any sufficiently small ε ∈ (0, 1),

1

m

m∑
i=1

χ3

( ∣∣a>i h∣∣2 , γ) ≤ 1

m

m∑
i=1

1{|a>i h|≥0.99γ} ≤ E
[
1{|a>i h|≥0.99γ}

]
+ ε

1

γ2

≤ 2

0.99γ
exp

(
−0.49γ2

)
+ ε

1

γ2

holds with probability exceeding 1− exp
(
−Ω(ε2m)

)
.

We now proceed to obtain uniform control over all h and 2 ≤ γ ≤ 2n. To begin with, we consider all
2 ≤ γ ≤ m and construct an ε-net Nε over the unit sphere such that: (i) |Nε| ≤

(
1 + 2

ε

)n; (ii) for any h
with ‖h‖ = 1, there exists a unit vector h0 ∈ Nε obeying ‖h− h0‖ ≤ ε. Taking the union bound gives the
following: with probability at least 1− logm

log(1+δ)

(
1 + 2

ε

)n
exp(−Ω(ε2m)),

1

m

m∑
i=1

χ3

( ∣∣a>i h0

∣∣2 , γ0

)
≤ (0.495γ0)−1 exp

(
−0.49γ2

0

)
+ εγ−2

0

holds simultaneously for all h0 ∈ Nε and γ0 ∈
{

(1 + δ)
k | 1 ≤ k ≤ logm

log(1+δ)

}
.

Note that χ3 (τ, γ0) is a Lipschitz function in τ with the Lipschitz constant bounded above by 100
ψ2

lb(γ0)
.

With this in mind, for any (h, γ) with ‖h‖ = 1 and γ0 := (1 + δ)
k ≤ γ < (1 + δ)

k+1, one has∣∣∣χ3

( ∣∣a>i h0

∣∣2 , γ0

)
− χ3

( ∣∣a>i h∣∣2 , γ)∣∣∣ =
∣∣∣χ3

( ∣∣a>i h0

∣∣2 , γ0

)
− χ3

( ∣∣a>i h∣∣2 , γ0

)∣∣∣
≤ 100

ψ2
lb (γ0)

∣∣∣∣∣a>i h∣∣2 − ∣∣a>i h0

∣∣2∣∣∣ .
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It then follows from Lemmas 1-2 that

1

m

∣∣∣∣∣
m∑
i=1

χ3

(∣∣a>i h0

∣∣2 , γ0

)
−

m∑
i=1

χ3

(∣∣a>i h∣∣2 , γ)
∣∣∣∣∣ ≤ 100

ψ2
lb (γ0)

1

m

∥∥∥A(hh> − h0h
>
0

)∥∥∥
1

≤ 250 (1 + δ)
2

γ2
‖h− h0‖‖h‖ ≤

250(1 + δ)2ε

γ2
.

Putting the above results together gives that for all 2 ≤ γ ≤ (1 + δ)
logm

log(1+δ) = m,

1

m

m∑
i=1

χ3

(∣∣a>i h∣∣2 , γ) ≤ 1

m

m∑
i=1

χ3

(∣∣a>i h0

∣∣2 , γ0

)
+

250 (1 + δ)
2

γ2
ε

≤ 1

0.495γ0
exp

(
−0.49γ2

0

)
+ 251 (1 + δ)

2 ε

γ2

≤ 1

0.49γ
exp

(
−0.485γ2

)
+ 251 (1 + δ)

2 ε

γ2

with probability exceeding 1− logm
log(1+δ)

(
1 + 2

ε

)n
exp

(
−cε2m

)
. This establishes (72) for all 2 ≤ γ ≤ m.

It remains to deal with the case where γ > m. To this end, we rely on the following observation:

1

m

m∑
i=1

1{|a>i h|≥m} ≤
1

m

m∑
i=1

∣∣a>i h∣∣2
m2

(i)
≤ 1 + δ

m2
‖h‖2 � 1

m
, ∀h with ‖h‖ = 1,

where (i) comes from [12, Lemmas 3.1]. This basically tells us that with high probability, none of the
indicator variables can be equal to 1. Consequently, 1

m

∑m
i=1 1{|a>i h|≥m} = 0, which proves the claim.

A.5 Proof of Lemma 7

Fix δ > 0. Recalling the notation vi := 2
{

2a>i h−
|a>i h|2
a>i z

}
1Ei1∩Ei2 , we see from the expansion (63) that∥∥∥ 1

m
∇tr`(z)

∥∥∥ =
∥∥∥ 1

m
A>v

∥∥∥ ≤ 1

m
‖A‖ · ‖v‖ ≤ (1 + δ)

‖v‖√
m

(127)

as soon as m ≥ c1n for some sufficiently large c1 > 0. Here, the norm estimate ‖A‖ ≤ √m (1 + δ) arises
from standard random matrix results [42, Corollary 5.35].

Everything then comes down to controlling ‖v‖. To this end, making use of the inclusion (64) yields

1

4m
‖v‖2 =

1

m

m∑
i=1

(
2a>i h−

|a>i h|2
a>i z

)2

1Ei1∩Ei2 ≤
1

m

m∑
i=1

(
2
∣∣a>i h∣∣+

|a>i h|2
|a>i z|

)2

1Ei1∩(D
i,1
γ4
∪Di,2γ4 )

≤ 1

m

m∑
i=1

{
4(a>i h)2 +

(
4|a>i h|3
|a>i z|

+
|a>i h|4
|a>i z|2

)
1Ei1∩(D

i,1
γ4
∪Di,2γ4 )

}

=
1

m

m∑
i=1

{
4
(
a>i h

)2
+

(
4 +
|a>i h|
|a>i z|

) |a>i h|3
|a>i z|

(
1Ei1∩D

i,1
γ4

+ 1Ei1∩D
i,2
γ4

)}
.

The first term is controlled by [12, Lemma 3.1] in such a way that with probability 1− exp(−Ω(m)),

1

m

m∑
i=1

4
(
a>i h

)2 ≤ 4 (1 + δ) ‖h‖2 .

Turning to the remaining terms, we see from the definition of Di,1γ and Di,2γ that∣∣a>i h∣∣∣∣a>i z∣∣ ≤
{

γ‖h‖
αlb
z ‖z‖

, on E i1 ∩ Di,1γ
2 + γ‖h‖

αlb
z ‖z‖

, on E i1 ∩ Di,2γ
≤
{

1, on E i1 ∩ Di,1γ
3, on E i1 ∩ Di,2γ
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as long as γ ≤ αlb
z ‖z‖
‖h‖ . Consequently, one can bound

1

m

m∑
i=1

(
4 +
|a>i h|
|a>i z|

) |a>i h|3
|a>i z|

(
1Ei1∩D

i,1
γ

+ 1Ei1∩D
i,2
γ

)
≤ 5

m

m∑
i=1

|a>i h|3
|a>i z|

1Ei1∩D
i,1
γ

+
7

m

m∑
i=1

|a>i h|3
|a>i z|

1Ei1∩D
i,2
γ

≤ 5 (1 + δ)
√

8/π‖h‖3
αlb
z ‖z‖

+
7

100
(1 + δ) ‖h‖2 ,

where the last inequality follows from (70) and (79).
Recall that γ4 = 3αh. Taken together all these bounds lead to the upper bound

1

4m
‖v‖2 ≤ (1 + δ)

{
4 +

5
√

8/π ‖h‖
αlb
z ‖z‖

+
7

100

}
‖h‖2 ≤ (1 + δ)

{
4 +

5
√

8/π

3αh
+

7

100

}
‖h‖2

whenever ‖h‖‖z‖ ≤ min

{
αlb
z

3αh
,
αlb
z

6 ,

√
98/3(αlb

z )
2

2αub
z +αlb

z
, 1

11

}
. Substituting this into (127) completes the proof.

B Proofs for Section 7

B.1 Proof of Lemma 8
Firstly, we collect a few results on the magnitudes of a>i x (1 ≤ i ≤ m) that will be useful in constructing
the hypotheses. Observe that for any given x and any sufficiently large m,

P
{

min
1≤i≤m

∣∣a>i x∣∣ ≥ 1

m logm
‖x‖

}
=

(
P
{
|a>i x| ≥

1

m logm
‖x‖

})m
≥
(

1− 2√
2π

1

m logm

)m
≥ 1− o(1).

Besides, since E
[
1{|a>i x|≤ ‖x‖

5 logm}
]
≤ 1√

2π
2

5 logm ≤ 1
5 logm , applying Hoeffding’s inequality yields

P
{∑m

i=1
1{|a>i x|≤ ‖x‖

5 logm} >
m

4 logm

}
= P

{
1

m

∑m

i=1

(
1{|a>i x|≤ ‖x‖

5 logm} − E
[
1{|a>i x|≤ ‖x‖

5 logm}
])

>
1

20 logm

}
≤ exp

(
−Ω
( m

log2m

))
.

To summarize, with probability 1− o(1), one has

min1≤i≤m
∣∣a>i x∣∣ ≥ 1

m logm
‖x‖; (128)∑m

i=1
1{|a>i x|≤ ‖x‖logm} ≤ m

4 logm
:= k. (129)

In the sequel, we will first produce a setM1 of exponentially many vectors surrounding x in such a way
that every pair is separated by about the same distance, and then verify that a non-trivial fraction of M1

obeys (104). Without loss of generality, we assume that x takes the form x = [b, 0, · · · , 0]
> for some b > 0.

The construction of M1 follows a standard random packing argument. Let w = [w1, · · · , wn]
> be a

random vector with
wi = xi +

1√
2n
zi, 1 ≤ i ≤ n,

where zi
ind.∼ N (0, 1). The collectionM1 is then obtained by generating M1 = exp

(
n
20

)
independent copies

w(l) (1 ≤ l < M1) of w. For any w(l),w(j) ∈M1, the concentration inequality [42, Corollary 5.35] gives

P
{

0.5
√
n− 1 ≤ √n

∥∥w(l) −w(j)
∥∥ ≤ 1.5

√
n+ 1

}
≥ 1− 2 exp (−n/8) ;

P
{

0.5
√
n− 1 ≤

√
2n
∥∥w(l) − x

∥∥ ≤ 1.5
√
n+ 1

}
≥ 1− 2 exp (−n/8) .
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Taking the union bound over all
(
M1

2

)
pairs we obtain

0.5− n−1/2 ≤
∥∥w(l) −w(j)

∥∥ ≤ 1.5 + n−1/2, ∀l 6= j

1/
√

8− (2n)−1/2 ≤
∥∥w(l) − x

∥∥ ≤
√

9/8 + (2n)−1/2, 1 ≤ l ≤M1
(130)

with probability exceeding 1− 2M2
1 exp

(
−n8
)
≥ 1− 2 exp

(
− n

40

)
.

The next step is to show that many vectors inM1 satisfy (104). For any given w with r := w − x, by
letting ai,⊥ := [ai,2, · · · , ai,n]

>, r‖ := r1, and r⊥ := [r2, · · · , rn]
>, we derive

|a>i r|2
|a>i x|2

≤
2|ai,1r‖|2 + 2|a>i,⊥r⊥|2

|ai,1|2 ‖x‖2
≤ 2|r‖|2

‖x‖2
+

2|a>i,⊥r⊥|2

|ai,1|2 ‖x‖2
≤ 2‖r‖2
‖x‖2

+
2|a>i,⊥r⊥|2

|ai,1|2 ‖x‖2
. (131)

It then boils down to developing an upper bound on |a
>
i,⊥r⊥|2
|ai,1|2

. This ratio is convenient to work with since
the numerator and denominator are stochastically independent. To simplify presentation, we reorder {ai}
in a way that

(m logm)−1 ‖x‖ ≤
∣∣a>1 x∣∣ ≤ ∣∣a>2 x∣∣ ≤ · · · ≤ ∣∣a>mx∣∣ ;

this will not affect our subsequent analysis concerning a>i,⊥r⊥ since it is independent of a>i x.
To proceed, we let r(l)

⊥ consist of all but the first entry of w(l) −x, and introduce the indicator variables

ξli :=


1{∣∣∣a>i,⊥r(l)⊥ ∣∣∣≤ 1

m

√
n−1
2n

}, 1 ≤ i ≤ k,
1{∣∣∣a>i,⊥r(l)⊥ ∣∣∣≤√ 2(n−1) logn

n

}, i > k,
(132)

where k = m
4 logm as before. In words, we divide a>i,⊥r

(l)
⊥ , 1 ≤ i ≤ m into two groups, with the first group

enforcing far more stringent control than the second group. These indicator variables are useful since any
w(l) obeying

∏m
i=1 ξ

l
i = 1 will satisfy (104) when n is sufficiently large. To see this, note that for the first

group of indices, ξli = 1 requires∣∣∣a>i,⊥r(l)
⊥

∣∣∣ ≤ 1

m

√
n− 1

2n
≤ 2

m

√
n− 1√
n− 2

∥∥r(l)
∥∥ ≤ 3

m

∥∥r(l)
∥∥, 1 ≤ i ≤ k, (133)

where the second inequality follows from (130). This taken collectively with (128) and (131) yields∣∣a>i r(l)
∣∣2∣∣a>i x∣∣2 ≤ 2‖r(l)‖2

‖x‖2
+

9
m2

∥∥r(l)
∥∥2

1
m2 log2m

‖x‖2 ≤
(2 + 9 log2m)

∥∥r(l)
∥∥2

‖x‖2 , 1 ≤ i ≤ k.

Regarding the second group of indices, ξli = 1 gives∣∣∣a>i,⊥r(l)
⊥

∣∣∣ ≤√2 (n− 1) log n

n
≤
√

17 log n
∥∥r(l)

∥∥, i = k + 1, · · · ,m, (134)

where the last inequality again follows from (130). Plugging (134) and (129) into (131) gives∣∣a>i r(l)
∣∣2∣∣a>i x∣∣2 ≤ 2‖r(l)‖2

‖x‖2
+

17
∥∥r(l)

∥∥2
log n

‖x‖2 / log2m
≤ (2 + 17 log3m)

∥∥r(l)
∥∥2

‖x‖2
, i ≥ k + 1.

Consequently, (104) is satified for all 1 ≤ i ≤ m. It then suffices to guarantee the existence of exponentially
many vectors obeying

∏m
i=1 ξ

l
i = 1.

Note that the first group of indicator variables are quite stringent, namely, for each i only a fraction
O(1/m) of the equations could satisfy ξli = 1. Fortunately, M1 is exponentially large, and hence even
M1/m

k is exponentially large. Put formally, we claim that the first group satisfies

M1∑
l=1

k∏
i=1

ξli ≥
1

2

M1

(2π)
k/2

(1 + 4
√
k/n)k/2

(
1√

2πm

)k
:= M̃1 (135)
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with probability exceeding 1− exp (−Ω (k))− exp(−M̃1/4). With this claim in place (which will be proved
later), one has

M1∑
l=1

k∏
i=1

ξli ≥
1

2
M1

1

(e2m)
k

=
1

2
exp

((
1

20
− k (2 + logm)

n

)
n

)
≥ 1

2
exp

(
1

25
n

)
when n and m/n are sufficiently large. In light of this, we will let M2 be a collection comprising all w(l)

obeying
∏k
i=1 ξ

l
i = 1, which has size M2 ≥ 1

2 exp
(

1
25n
)
based on the preceding argument. For notational

simplicity, it will be assumed that the vectors inM2 are exactly w(j) (1 ≤ j ≤M2).
We now move on to the second group by examining how many vectors w(j) in M2 further satisfy∏m

i=k+1 ξ
j
i = 1. Notably, the above construction of M2 relies only on {ai}1≤i≤k and is independent of

the remaining vectors {ai}i>k. In what follows the argument proceeds conditional on M2 and {ai}1≤i≤k.
Applying the union bound gives

E
[∑M2

j=1

(
1−

∏m

i=k+1
ξji

)]
=
∑M2

j=1
P
{
∃i (k < i ≤ m) :

∣∣∣a>i,⊥r(l)
⊥

∣∣∣ >√2 (n− 1) log n

n

}
≤

M2∑
j=1

m∑
i=k+1

P

{∣∣∣a>i,⊥r(l)
⊥

∣∣∣ >√2 (n− 1) log n

n

}
≤ M2m

1

n2
.

This combined with Markov’s inequality gives∑M2

j=1

(
1−

∏m

i=k+1
ξji

)
≤ m logm

n2
·M2

with probability 1 − o(1). Putting the above inequalities together suggests that with probability 1 − o(1),
there exist at least (

1− m logm

n2

)
M2 ≥

1

2

(
1− m logm

n2

)
exp

(
1

25
n

)
≥ exp

( n
30

)
vectors in M2 satisfying

∏m
l=k+1 ξ

l
i = 1. We then choose M to be the set consisting of all these vectors,

which forms a valid collection satisfying the properties of Lemma 8.
Finally, the only remaining step is to establish the claim (135). To start with, consider an n× k matrix

B := [b1, · · · , bk] of i.i.d. standard normal entries, and let u ∼ N
(
0, 1

nIn
)
. Conditional on the {bi’s,

bu =

 b1,u
...

bk,u

 :=

 b>1 u
...

b>k u

 ∼ N (0, 1

n
B>B

)
.

For sufficiently large m, one has k = m
4 logm ≤ 1

4n. Using [42, Corollary 5.35] we get∥∥∥ 1

n
B>B − I

∥∥∥ ≤ 4
√
k/n (136)

with probability 1−exp (−Ω(k)). Thus, for any constant 0 < ε < 1
2 , conditional on {bi} and (136) we obtain

P

{
k⋂
i=1

{
|b>i u| ≤

1

m

}}
≥ (2π)

− k2 det−
1
2

( 1

n
B>B

)ˆ
bu∈Υ

exp
(
− 1

2
b>u

( 1

n
B>B

)−1

bu

)
dbu

≥ (2π)
− k2
(

1 + 4
√
k/n

)− k2 ˆ
bu∈Υ

exp
(
− 1

2

(
1− 4

√
k/n

)−1 k∑
i=1

b2i,u

)
dbu (137)

≥ (2π)
− k2
(
1 + 4

√
k/n

)− k2 (√2πm
)−k

, (138)

where Υ := {b̃ | |b̃i| ≤ m−1, 1 ≤ i ≤ k} and (137) is a direct consequence from (136).
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When it comes to our quantity of interest, the above lower bound (138) indicates that on an event (defined
via {ai}) of probability approaching 1, we have

E
[∑M1

l=1

∏k

i=1
ξli

]
≥ M1 (2π)

− k2
(

1 + 4
√
k/n

)− k2 (√
2πm

)−k
. (139)

Since conditional on {ai},
∏k
i=1 ξ

l
i are independent across l, applying the Chernoff-type bound [31, Theorem

4.5] gives ∑M1

l=1

∏k

i=1
ξli ≥

M1

2
(2π)

− k2
(

1 + 4
√
k/n

)− k2 (√
2πm

)−k
with probability exceeding 1− exp

(
− 1

8
M1

(2π)k/2(1+4
√
k/n)k/2

(
1√

2πm

)k )
. This concludes the proof.

B.2 Proof of Lemma 9
Before proceeding, we introduce the χ2-divergence between two probability measures P and Q as

χ2 (P‖Q) :=

ˆ (
dP

dQ

)2

dQ− 1. (140)

It is well known (e.g. [41, Lemma 2.7]) that

KL (P‖Q) ≤ log(1 + χ2 (P‖Q)), (141)

and hence it suffices to develop an upper bound on the χ2 divergence.
Under independence, for any w0,w1 ∈ Rn, the decoupling identity of the χ2 divergence [41, Page 96]

gives

χ2 (P (y | w1) ‖ P (y | w0)) =
∏m

i=1

(
1 + χ2 (P (yi | w1) ‖ P (yi | w0))

)
− 1

= exp

(∑m

i=1

(
|a>i w1|2 − |a>i w0|2

)2
|a>i w0|2

)
− 1. (142)

The preceding identity (142) arises from the following computation: by definition of χ2(·‖·),

χ2 (Poisson (λ1) ‖ Poisson (λ0)) =

{∑∞

k=0

(
λk1 exp (−λ1)

)2
λk0 exp (−λ0) k!

}
− 1

= exp
(
λ0 − 2λ1 +

λ2
1

λ0

){∑∞

k=0

(
λ2

1/λ0

)k
k!

exp
(
− λ2

1

λ0

)}
− 1 = exp

( (λ1 − λ0)
2

λ0

)
− 1.

Set r := w1 −w0. To summarize,

KL (P (y | w1) ‖ P (y | w0)) ≤
m∑
i=1

(
|a>i w1|2 − |a>i w0|2

)2
|a>i w0|2

(143)

≤
m∑
i=1

∣∣a>i r∣∣2 (2 ∣∣a>i w0

∣∣+
∣∣a>i r∣∣)2

|a>i w0|2

=

m∑
i=1

|a>i r|2
(

8|a>i w0|2 + 2|a>i r|2
|a>i w0|2

)
. (144)

C Initialization via truncated spectral Method
This section demonstrates that the truncated spectral method works whenm � n, as stated in the proposition
below.
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Proposition 3. Fix δ > 0 and x ∈ Rn. Consider the model where yi = a>i x+ηi and ai
ind.∼ N (0, I). Suppose

that ‖η‖∞ ≤ ε ‖x‖
2 for some sufficiently small constant ε > 0. With probability exceeding 1− exp (−Ω (m)),

the solution z(0) returned by the truncated spectral method obeys

dist(z(0),x) ≤ δ‖x‖, (145)

provided that m > c0n for some constant c0 > 0.

Proof. By homogeneity, it suffices to consider the case where ‖x‖ = 1. Recall from [12, Lemma 3.1] that
1
m

∑m
i=1(a>i x)2 ∈ [1± ε]‖x‖2. Under the hypothesis ‖η‖∞ ≤ ε‖x‖2, one has 1

m ‖η‖1 ≤ ε‖x‖2, which yields

1

m

m∑
l=1

yl =
1

m

m∑
l=1

(
a>l x

)2
+

1

m

m∑
l=1

ηl ∈ [1± 2ε]‖x‖2

with probability 1− exp(−Ω(m)). This in turn implies that

1{|(a>i x)2+ηi|≤α2
y( 1
m

∑
l yl)} ≤ 1{|a>i x|2≤α2

y( 1
m

∑
l yl)+|ηi|} ≤ 1{|a>i x|2≤(1+2ε)α2

y+ε}
1{|(a>i x)2+ηi|≤α2

y( 1
m

∑
l yl)} ≥ 1{|a>i x|2≤α2

y( 1
m

∑
l yl)−|ηi|} ≥ 1{|a>i x|2≤(1−2ε)α2

y−ε}

and, hence,

1

m

m∑
i=1

aia
>
i

(
a>i x

)2
1{|a>i x|≤

√
(1−2ε)α2

y−ε}︸ ︷︷ ︸
:=Y 2

� Y � 1

m

m∑
i=1

aia
>
i

(
a>i x

)2
1{|a>i x|≤

√
(1+2ε)α2

y+ε}︸ ︷︷ ︸
:=Y 1

. (146)

Letting ξ ∼ N (0, 1), one can compute

E [Y 1] = β1xx
> + β2I, and E [Y 2] = β3xx

> + β4I, (147)

where β1 := E
[
ξ41{|ξ|≤

√
(1+2ε)α2

y+ε}
]
− E

[
ξ21{|ξ|≤

√
(1+2ε)α2

y+ε}
]
, β2 := E

[
ξ21{|ξ|≤

√
(1+2ε)α2

y+ε}
]
, β3 :=

E
[
ξ41{|ξ|≤

√
(1−2ε)α2

y−ε}
]
− E

[
ξ21{|ξ|≤

√
(1−2ε)α2

y−ε}
]
and β4 := E

[
ξ21{|ξ|≤

√
(1−2ε)α2

y−ε}
]
. Recognizing that

aia
>
i

(
a>i x

)2
1{|a>i x)|≤c} can be rewritten as bib>i for some sub-Gaussian vector bi := ai

(
a>i x

)
1{|a>i x)|≤c},

we apply standard results on random matrices with non-isotropic sub-Gaussian rows [42, Equation (5.26)]
to deduce

‖Y 1 − E [Y 1]‖ ≤ δ, ‖Y 2 − E [Y 2]‖ ≤ δ (148)

with probability 1 − exp (−Ω (m)), provided that m/n exceeds some large constant. Besides, when ε is
sufficiently small, one further has ‖E [Y 1]− E [Y 2] ‖ ≤ δ. These taken together with (146) give

‖Y − β1xx
> − β2I‖ ≤ 3δ. (149)

Fix δ̃ > 0. With (149) in place, repeating the same proof arguments as in [11, Section 7.8] (which we
omit in the current paper) and taking δ, ε to be sufficiently small, we obtain

dist(z(0),x) ≤ δ̃ (150)

as long as m/n is sufficiently large, as claimed.

We now justify that the Poisson model (4) satisfies the condition ‖η‖ ≤ ε‖x‖2 whenever ‖x‖ ≥ log1.5m.
Suppose that µi = (a>i x)2 and hence yi ∼ Poisson(µi). It follows from the Chernoff bound that

P (yi − µi ≥ τ) ≤ E [etyi ]

exp (t(µi + τ))
=

exp (µi (et − 1))

exp (t(µi + τ))
= exp

(
µi
(
et − t− 1

)
− tτ

)
, ∀t ≥ 0.
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Taking τ = 2ε̃µi and t = ε̃ for any 0 ≤ ε̃ ≤ 1 gives

P (yi − µi ≥ 2ε̃µi) ≤ exp
(
µi
(
et − t− 1− 2ε̃t

)) (i)
≤ exp

(
µi
(
t2 − 2ε̃t

))
= exp

(
−µiε̃2

)
,

where (i) follows since et ≤ 1 + t+ t2 (0 ≤ t ≤ 1). Letting κi = µi/‖x‖2 and setting ε̃ = ε/2κi, we obtain

P
(
yi − µi ≥ ε‖x‖2

)
= P (yi − µi ≥ 2ε̃µi) ≤ exp

(
−κi‖x‖2ε̃2

)
= exp

(
− ε2‖x‖2

4κi

)
.

In addition, standard results on Gaussian measures indicate that max1≤i≤m κi . log n. As a consequence, if
‖x‖2 & log3m, then ‖x‖

2

κi
& log2m (1 ≤ i ≤ m), which further gives

P
(
∀i : ηi ≥ ε‖x‖2

)
= P

(
∀i : yi − µi ≥ ε‖x‖2

)
≤ m exp

(
− Ω

(
ε2 log2m

) )
from the union bound. Similarly, applying the same argument on −yi we get ηi ≥ −ε‖x‖2 for all i, which
together with (151) establish that

‖η‖∞ ≤ ε‖x‖2 (151)
with high probability. In conclusion, the claim (145) applies to the Poisson model.

D Local error contraction with backtracking line search
In this section, we verify the effectiveness of a backtracking line search strategy by showing local error
contraction. To keep it concise, we only sketch the proof for the noiseless case, but the proof extends to the
noisy case without much difficulty. Also we do not strive to obtain an optimized constant. For concreteness,
we prove the following proposition.

Proposition 4. The claim in Proposition 1 continues to hold if αh ≥ 6, αub
z ≥ 5, αlb

z ≤ 0.1, αp ≥ 5, and

‖h‖/‖z‖ ≤ εtr (152)

for some constant εtr > 0 independent of n and m.

Note that if αh ≥ 6, αub
z ≥ 5 and αlb

z ≤ 0.1, then the boundary step size µ0 given in Proposition 1
satisfies

0.994− ζ1 − ζ2 −
√

2/(9π)α−1
h

2
(
1.02 + 0.665α−1

h

) ≥ 0.384.

Thus, it suffices to show that the step size obtained by a backtracking line search lies within (0,0.384). For
notational convenience, we will set

p := m−1∇`tr (z) and E i3 :=
{∣∣a>i z∣∣ ≥ αlb

z ‖z‖ and
∣∣a>i p∣∣ ≤ αp ‖p‖}

throughout the rest of the proof. We also impose the assumption

‖p‖ / ‖z‖ ≤ ε (153)

for some sufficiently small constant ε > 0, so that
∣∣a>i p∣∣ / ∣∣a>i z∣∣ is small for all non-truncated terms. It is

self-evident from (80) that in the regime under study, one has

‖p‖ ≥ 2
{

1.99− 2 (ζ1 + ζ2)−
√

8/π(3αh)−1 − o (1)
}
‖h‖ ≥ 3.64 ‖h‖ . (154)

To start with, consider three scalars h, b, and δ. Setting bδ := (b+δ)2−b2
b2 , we get

(b+ h)
2

log
(b+ δ)

2

b2
− (b+ δ)

2
+ b2 = (b+ h)2 log (1 + bδ)− b2bδ

(i)
≤ (b+ h)

2 {
bδ − 0.4875b2δ

}
− b2bδ = ((b+ h)

2 − b2)bδ − 0.4875 (b+ h)
2
b2δ

= hδ (2 + h/b) (2 + δ/b)− 0.4875 (1 + h/b)
2 |δ (2 + δ/b)|2

= 4hδ +
2h2δ

b
+

2hδ2

b
+
h2δ2

b2
− 0.4875δ2

(
1 +

h

b

)2(
2 +

δ

b

)2

, (155)
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where (i) follows from the inequality log (1 + x) ≤ x− 0.4875x2 for sufficiently small x. To further simplify
the bound, observe that

δ2

(
1 +

h

b

)2(
2 +

δ

b

)2

≥ 4δ2

(
1 +

h

b

)2

+ δ2

(
1 +

h

b

)2
4δ

b
and

2hδ2

b
+
h2δ2

b2
=

((
1 +

h

b

)2

− 1

)
δ2.

Plugging these two identities into (155) yields

(155) ≤ 4hδ +
2h2δ

b
−
(

0.95

(
1 +

h

b

)2

+ 1

)
δ2 − 0.4875δ2

(
1 +

h

b

)2
4δ

b

≤ 4hδ − 1.95δ2 +
2h2 |δ|
|b| +

1.9|h|
|b| δ2 +

1.95
∣∣δ3
∣∣

|b|

(
1 +

h

b

)2

.

Replacing respectively b, δ, and h with a>i z, τa>i p, and −a>i h, one sees that the log-likelihood `i (z) =
yi log(|a>i z|2)− |a>i z|2 obeys

`i (z + τp)− `i (z) = yi log

∣∣a>i (z + τp)
∣∣2∣∣a>i z∣∣2 −

∣∣a>i (z + τp)
∣∣2 +

∣∣a>i z∣∣2
≤ −4τ

(
a>i h

) (
a>i p

)︸ ︷︷ ︸
:=I1,i

− 1.95τ2
(
a>i p

)2︸ ︷︷ ︸
:=I2,i

+
2τ
(
a>i h

)2 ∣∣a>i p∣∣∣∣a>i z∣∣︸ ︷︷ ︸
:=I3,i

+
1.9τ2

∣∣a>i h∣∣∣∣a>i z∣∣ (
a>i p

)2
︸ ︷︷ ︸

:=I4,i

+
1.95τ3

∣∣a>i p∣∣3∣∣a>i z∣∣
(

1− a
>
i h

a>i z

)2

︸ ︷︷ ︸
:=I5,i

.

The next step is then to bound each of these terms separately. Most of the following bounds are straight-
forward consequences from [12, Lemma 3.1] combined with the truncation rule. For the first term, applying
the AM-GM inequality we get

1

m

m∑
i=1

I1,i1Ei3 ≤
4τ

3.64m

m∑
i=1

{
3.642

2

(
a>i h

)2
+

1

2

(
a>i p

)2} ≤ 4τ (1 + δ)

3.64

{
3.642

2
‖h‖2 +

1

2
‖p‖2

}
.

Secondly, it follows from Lemma 4 that

1

m

m∑
i=1

I2,i1Ei3 = −1.95τ2 1

m

m∑
i=1

(
a>i p

)2
1Ei3 ≤ −1.95

(
1− ζ̃1 − ζ̃2

)
τ2 ‖p‖2 ,

where ζ̃1 := max{E
[
ξ21{|ξ|≤√1.01αlb

z }
]
,E
[
1{|ξ|≤√1.01αlb

z }
]
} and ζ̃2 := E

[
ξ21{|ξ|>√0.99αh}

]
. The third term is

controlled by
1

m

m∑
i=1

I3,i1Ei3 ≤ 2τ
αp ‖p‖
αlb
z ‖z‖

{
1

m

m∑
i=1

(
a>i h

)2}
. τε ‖h‖2 .

Fourthly, it arises from the AM-GM inequality that

1

m

m∑
i=1

I4,i1Ei3 ≤ 1.9τ2αp ‖p‖
αlb
z ‖z‖

1

m

m∑
i=1

∣∣a>i h∣∣ ∣∣a>i p∣∣ . ετ2 1

m

m∑
i=1

{
2
∣∣a>i h∣∣2 +

1

8

∣∣a>i p∣∣2} . ετ2 ‖p‖2 .

Finally, the last term is bounded by

1

m

m∑
i=1

I5,i1Ei3 ≤ 1

m

m∑
i=1

1.95τ3
∣∣a>i p∣∣3∣∣a>i z∣∣

(
a>i x

a>i z

)2

≤ 1.95τ3α3
p ‖p‖3

(αlb
z )3 ‖z‖3

1

m

m∑
i=1

(
a>i x

)2
. τ3ε

‖x‖2

‖z‖2
‖p‖2 .
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Under the hypothesis (154), we can further derive 1
m

∑m
i=1 I1,i1Ei3 ≤ τ (1.1 + δ) ‖p‖2. Putting all the above

bounds together yields that the truncated objective function is majorized by

1

m

m∑
i=1

{`i (z + τp)− `i (z)}1Ei3 ≤
1

m

m∑
i=1

(I1,i + I2,i + I3,i + I4,i + I5,i)1Ei3

≤ τ (1.1 + δ) ‖p‖2 − 1.95
(

1− ζ̃1 − ζ̃2
)
τ2 ‖p‖2 + τ ε̃ ‖p‖2

=
{
τ (1.1 + δ)− 1.95

(
1− ζ̃1 − ζ̃2

)
τ2 + τ ε̃

}
‖p‖2 (156)

for some constant ε̃ > 0 that is linear in ε.
Note that the backtracking line search seeks a point satisfying 1

m

∑m
i=1 {`i (z + τp)− `i (z)}1Ei3 ≥

1
2τ ‖p‖

2. Given the above majorization (156), this search criterion is satisfied only if

τ/2 ≤ τ (1.1 + δ)− 1.95(1− ζ̃1 − ζ̃2)τ2 + τ ε̃

or, equivalently,

τ ≤ 0.6 + δ + ε̃

1.95(1− ζ̃1 − ζ̃2)
:= τub.

Taking δ and ε̃ to be sufficiently small, we see that τ ≤ τub ≤ 0.384, provided that αlb
z ≤ 0.1, αub

z ≥ 5,
αh ≥ 6, and αp ≥ 5.

Using very similar arguments, one can also show that 1
m

∑m
i=1 {`i (z + τp)− `i (z)}1Ei3 is minorized by a

similar quadratic function, which combined with the stopping criterion 1
m

∑m
i=1 {`i (z + τp)− `i (z)}1Ei3 ≥

1
2τ ‖p‖

2 suggests that τ is bounded away from 0. We omit this part for conciseness.
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