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QCD Lagrangian

LQCD = �1
4
Tr(Gµ⌫Gµ⌫) +

nfX

f=1

i ̄fDµ�µ f +
nfX

f=1

mf  ̄f f

iDµ = i@µ � gAµ Gµ⌫ = @µAµ � @⌫Aµ � g[Aµ, A⌫ ]

Chiral Lagrangian is Conformally Invariant  

Where does the QCD Mass Scale ΛQCD come from?  

How does color confinement arise?

• de Alfaro, Fubini, Furlan: 
Scale can appear in Hamiltonian and EQM 

without affecting conformal invariance of action!

Unique potential!



 
May 21, 2013       LC2013  Stan BrodskyAdS/QCD & LF-Holography

3

Light-Front Holography 
AdS/QCD

Soft-Wall  Model

Conformal 
Symmetry

of the action  
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Light-Front Schrödinger Equation

de Teramond, Dosch, sjb

Semi-Classical Approximation to QCD
Relativistic, frame-independent
Unique color-confining potential

Zero mass pion for massless quarks
Regge trajectories with equal slopes in n and L

Light-Front Wavefunctions



 
May 21, 2013       LC2013  Stan BrodskyAdS/QCD & LF-Holography

4

Light-Front Holography 
AdS/QCD

Soft-Wall  Model

⇥
� d2

d⇣2
+

1� 4L2

4⇣2
+ U(⇣)

⇤
 (⇣) =M2 (⇣)

Conformal Symmetry
of the action  

U(⇣) = 4⇣2 + 22(L + S � 1)
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Confinement scale:    ' 0.5 GeV
1/ ' 0.4 fm

Light-Front Schrödinger Equation

de Teramond, Dosch, sjb

�
� d2

d2�
+ V (�)

⇥
=M2⇥(�)

�
� d2

d�2 + V (�)
⇥
=M2⇥(�)

�2 = x(1� x)b2
⇥.

Jz = Sz
p =

⇤n
i=1 Sz

i +
⇤n�1

i=1 ⌥z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Unique 
Confinement Potential!
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Same slope in n and L!Massless pion in Chiral Limit!

Mass ratio of the ρ and the a1 mesons: coincides with Weinberg sum rules

mq = 0
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⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

(x(1� x)|b⇤|

z

z�

z0 = 1
⇥QCD

�d⇥ np

• Light-Front Holography

General remarks about orbital angular mo-
mentum

�n(xi, k�i,�i)

�n
i=1(xi

 R�+ b�i) =  R�

xi
 R�+ b�i

�n
i
 b�i =  0�

�n
i xi = 1
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• Light Front Wavefunctions:                                   

Schrödinger Wavefunctions
of Hadron Physics
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Prediction from AdS/QCD: Meson LFWF

�(x, k�)
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       “Soft Wall” 
model

�(x, k�)(GeV)

de Teramond, 
sjb
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⇥M(x, Q0) ⇥
�

x(1� x)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ�

q

⇥M(x, Q0) ⇥
�

x(1� x)

⇤M(x, k2
⇤)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ�

massless quarks

Note coupling 

k2
�, x

Provides Connection of Confinement to TMDs

⇤M (x, k⇥) =
4⇥

�
�

x(1� x)
e
� k2

⇥
2�2x(1�x)

x

1� x
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J. R. Forshaw, 
R. Sandapen

�⇤p! ⇢0p0

�L

�T
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Each element of 
flash photograph  

illuminated  
at same LF time

� = t + z/c

Evolve in LF time

P� = i
d

d�

P� =
M2 + ~P 2

?
P+

HQCD
LF |�h >= M2

h|�h >

Eigenvalue

11
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Causal, Frame-independent, Simple Vacuum, 
Current Matrix Elements are overlap of LFWFS

Light-Front Quantization



 

General remarks about orbital angular mo-
mentum

⌃R�

xi
⌃R�+⌃b�i

�n
i
⌃b�i = ⌃0�

�n
i xi = 1

�n
i=1(xi

⌃P�+ ⌃k�i) = ⌃P�

xi
⌃P�+ ⌃k�i

�n
i

⌃k�i = ⌃0�

�n
i xi = 1

General remarks about orbital angular mo-
mentum

�n(xi, k�i,�i)

�n
i=1(xi

 R�+ b�i) =  R�

xi
 R�+ b�i

�n
i
 b�i =  0�

�n
i xi = 1

P+, ↵P+

xiP
+, xi

↵P⇤+ ↵k⇤i

ẑ

↵L = ↵R⇥ ↵P

↵Li = (xi
↵R⇤+↵b⇤i)⇥ ↵P

↵⇧i = ↵b⇤i ⇥ ↵k⇤i

↵⇧i = ↵Li � xi
↵R⇤ ⇥ ↵P = ↵b⇤i ⇥ ↵P

A(⇤,�⇤) = 1
2⇥

�
d�e

i
2⇤�M(�,�⇤)

P+, P⇤

xiP
+, xi

P⇤+ k⇤i

� = Q2

2p·q

ẑ

L = R⇥ P

Li = (xi
R⇤+b⇤i)⇥ P

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u

Invariant under boosts!  Independent of Pμ 

13

Light-Front Wavefunctions:  rigorous representation of 
composite systems in quantum field theory

x =
k+

P+
=

k0 + k3

P 0 + P 3

Bethe-Salpeter WF integrated over k- 
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Braun, Gardi

Lepage, sjb
Efremov, Radyushkin

Sachrajda, Frishman Lepage, sjb

�M (x,Q) =
� Q

d2�k ⇥qq̄(x,�k�)
P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u

x

1� x

k2
� < Q2

�

i

xi = 1

Hadron Distribution Amplitudes

• Fundamental gauge invariant non-perturbative input to hard 
exclusive processes, heavy hadron decays. Defined for 
Mesons, Baryons

• Evolution Equations from PQCD, OPE

• Conformal Expansions

• Compute from valence light-front wavefunction in light-cone 
gauge



 

Light-Front QCD

Eigenvalues and Eigensolutions give Hadronic 
Spectrum and Light-Front wavefunctions

HQCD
LF |�h >= M2

h|�h >

HQCD
LF =

�

i

[
m2 + k2

�
x

]i + Hint
LF

Fig. 6. A few selected matrix elements of the QCD front form Hamiltonian H"P
!

in LB-convention.

10. For the instantaneous fermion lines use the factor ¼
"

in Fig. 5 or Fig. 6, or the corresponding
tables in Section 4. For the instantaneous boson lines use the factor ¼

#
.

The light-cone Fock state representation can thus be used advantageously in perturbation
theory. The sum over intermediate Fock states is equivalent to summing all x!-ordered diagrams
and integrating over the transverse momentum and light-cone fractions x. Because of the restric-
tion to positive x, diagrams corresponding to vacuum fluctuations or those containing backward-
moving lines are eliminated.

3.4. Example 1: ¹he qqN -scattering amplitude

The simplest application of the above rules is the calculation of the electron—muon scattering
amplitude to lowest non-trivial order. But the quark—antiquark scattering is only marginally more
difficult. We thus imagine an initial (q, qN )-pair with different flavors fOfM to be scattered off each
other by exchanging a gluon.

Let us treat this problem as a pedagogical example to demonstrate the rules. Rule 1: There are
two time-ordered diagrams associated with this process. In the first one the gluon is emitted by the
quark and absorbed by the antiquark, and in the second it is emitted by the antiquark and
absorbed by the quark. For the first diagram, we assign the momenta required in rule 2 by giving
explicitly the initial and final Fock states

!q, qN "" 1

!n
$

%$

!
$!"

b!
$"

(k
&
, #

&
)d!

$"M
(k

&N
, #

&N
)!0" , (3.29)

!q$, qN $"" 1

!n
$

%$
!
$!"

b!
$"

(k$
&
, #$

&
)d!

$"M
(k$

&N
, #$

&N
)!0" , (3.30)
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LQCD � HQCD
LF

Hint
LF : Matrix in Fock Space

Physical gauge: A+ = 0

Exact frame-independent formulation of 
nonperturbative QCD!

Hint
LF

LFWFs: Off-shell in P- and invariant mass

|p, Jz >=
X

n=3

 n(xi,
~

k?i,�i)|n;xi,
~

k?i,�i >
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In terms of the hadron four-momentum P =
(P+, P�, ⌦P⇤) with P± = P0 ± P3, the light-
front frame independent Hamiltonian for a
hadronic composite system HQCD

LC = PµPµ =
P�P+� ⌦P2

⇤, has eigenvalues given in terms of
the eigenmass M squared corresponding to
the mass spectrum of the color-singlet states
in QCD,

HQCD
LC |�h⇧ =M2

h |�h⇧
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Fig. 2. The Hamiltonian matrix for a SU(N)-meson. The matrix elements are represented by energy diagrams. Within
each block they are all of the same type: either vertex, fork or seagull diagrams. Zero matrices are denoted by a dot ( ) ).
The single gluon is absent since it cannot be color neutral.

mass or momentum scale Q. The corresponding wavefunction will be indicated by corresponding
upper scripts,

!!""
!#"

(x
#
, k

!
, !

#
) or !!$"

!#"
(x

#
, k

!
, !

#
) . (3.15)

Consider a pion in QCD with momentum P"(P%, P
!
) as an example. It is described by

"# : P$" $
!
!%&
!d[%

!
]"n : x

#
P%, k

!#
#x

#
P
!
, !

#
$!

!#!(x#
, k

!#
, !

#
) , (3.16)

where the sum is over all Fock space sectors of Eq. (3.7). The ability to specify wavefunctions
simultaneously in any frame is a special feature of light-cone quantization. The light-cone
wavefunctions !

!#! do not depend on the total momentum, since x
#
is the longitudinal momentum

fraction carried by the i"# parton and k
!#

is its momentum “transverse” to the direction of the
meson; both of these are frame-independent quantities. They are the probability amplitudes to find
a Fock state of bare particles in the physical pion.

More generally, consider a meson in SU(N). The kernel of the integral equation (3.14) is
illustrated in Fig. 2 in terms of the block matrix &n : x

#
, k

!#
, !

#
"H"n' : x'

#
, k'

!#
, !'

#
$. The structure of this

matrix depends of course on the way one has arranged the Fock space, see Eq. (3.7). Note that most
of the block matrix elements vanish due to the nature of the light-cone interaction as defined in
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Heisenberg Equation

Light-Front QCD

16

DLCQ: Solve QCD(1+1) for 
any  quark mass and flavors

Hornbostel, Pauli, sjb

Minkowski space; frame-independent; no fermion doubling; no ghosts
trivial vacuum
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number of coupled integral eigenvalue equations, 

- - 

where V is the interaction part of HLC. Diagrammatically, V involves completely 

irreducible interactions--i.e. diagrams having no internal propagators-coupling 

Fock states (Fig. 5). These equations determine the hadronic spectrum and 

xJ= 
: 3 II 

- - 
0 
. . . 

. 

I- . 
1 II 

0 l . . f 

- - IL 7 - - . . . . . . 
Figure 5. Coupled eigenvalue equations for the light-cone wa.vefunctious of a 

pion. 

wave functions. Although the potential is essentially trivial, the many channels 

required to describe an hadronic state make these equations very difficult to solve. 

Nevertheless the first attempts at a direct solution have been made. 

The bulk of the probability for a nonrelativistic system is in a single Fock 

state-e.g. (eE> for positronium, or Ibb) for the r meson. For such systems it 

is useful to replace the full set of multi-channel eigenvalue equations by a single 

equation for the dominant wavefunction. To see how this can be done, note that 

the bound state equation, say for positronium, can be rewritten as two equations 

using the projection operator P onto the subspace spanned by eE states, and its 

complement & E 1 - P: 

Hpp IPs)~ + HPQ IPs)~ = h4” IPs)p 

(29) 

H&p [Ps)~ + HQQ jP& = hf” h)g 

where H~Q E PHQ.. ., and lPsjp E P jPs) . . . . Solving the second of these 

equations for IPs)~ and substituting the result into the first equation, we obtain 

a single equation for the ee or valence part of the positronium state: 

Her [Ps)~ = Al2 IPS)P (30) 
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LIGHT-FRONT MATRIX EQUATION

A+ = 0

⇥� ggg � d̄X

⇥� ggg � p̄n̄X

R = �(⇥�d̄X)
�(⇥�p̄n̄X)

R = C

ū(x) ⇥= d̄(x)

s̄(x) ⇥= s(x)

Minkowski space; frame-independent; no fermion doubling; no ghosts

Rigorous Method for Solving Non-Perturbative QCD!

• Light-Front Vacuum = vacuum of free Hamiltonian!
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DLCQ: Solve QCD(1+1) for any  quark mass and flavors

Hornbostel, Pauli, sjb
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FIG. 3: Fourier Transform of the kink form factor at λ=1; (a) results for K = 24,32, and 41 each obtained with DLCQ eigenstates from 11
values of K centered on the designated K value; (b) comparison of DLCQ profile at K=41 with constrained variational result with 〈K〉 = 41.

Kinks in Discrete Light-Cone Quantization

Chakrabarti, Harindranath, Martinovic, Vary





 
May 21, 2013       LC2013  Stan BrodskyAdS/QCD & LF-Holography

21

c

c̄

Fixed LF time
Higher Fock States of the Proton

Wavefunction at fixed LF time:  Arbitrarily Off-Shell in Invariant Mass

Eigenstate: all Fock states contribute



 

|p,Sz>= ∑
n=3

ψn(xi, ~k?i,λi)|n;k?i,λi>|p,Sz>= ∑
n=3

Ψn(xi,~k?i,λi)|n;~k?i,λi>

|p,Sz>= ∑
n=3

Ψn(xi,~k?i,λi)|n;~k?i,λi>

The Light Front Fock State Wavefunctions

Ψn(xi,~k?i,λi)

are boost invariant; they are independent of the hadron’s energy
and momentum Pµ.
The light-cone momentum fraction

xi =
k+
i
p+ =

k0i + kzi
P0+Pz

are boost invariant.
n

∑
i
k+
i = P+,

n

∑
i
xi = 1,

n

∑
i

~k?i =~0?.

sum over states with n=3, 4, ...constituents

Fixed LF time
Intrinsic heavy quarks    s̄(x) ⇤= s(x)

⇥M(x, Q0) ⇥
�

x(1� x)

⇤M(x, k2
⌅)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

ep⇥ e�+n

P�/p ⇤ 30%

Violation of Gottfried sum rule

ū(x) ⌅= d̄(x)

Does not produce (C = �) J/⇥,�

Produces (C = �) J/⇥,�

Same IC mechanism explains A2/3

s(x), c(x), b(x) at high x !
Hidden ColorMueller:  gluon Fock states     BFKL Pomeron
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E866/NuSea (Drell-Yan)

s(x) �= s̄(x)

Intrinsic glue, sea, 
heavy quarks

d̄(x) �= ū(x)



 

p p

Probability (QED) � 1
M4

�

Probability (QCD) � 1
M2

Q

Proton Self Energy 
Intrinsic Heavy Quarks

Collins, Ellis, Gunion, Mueller, sjb
M. Polyakov, et al.

Fixed LF time

xQ � (m2
Q + k2

�)1/2

Q

Q

24



 

p p

Probability (QED) � 1
M4

�

Probability (QCD) � 1
M2

Q

Proton 5-quark Fock State :
Intrinsic Heavy Quarks

Collins, Ellis, Gunion, Mueller, sjb
Polyakov, et al.

Fixed LF time

xQ � (m2
Q + k2

�)1/2

Q

Q

QCD predicts 
Intrinsic Heavy 

Quarks at high x!

Minimal off-shellness

25



 

x

x(
s+

s−
)

BHPS (µ=0.5 GeV)
BHPS (µ=0.3 GeV)

HERMES

0

0.1

0.2

0.3

10
-1

Figure 2: Comparison of the HERMES x(s(x) + s̄(x)) data with the
calculations based on the BHPS model. The solid and dashed curves
are obtained by evolving the BHPS result to Q2 = 2.5 GeV2 using
µ = 0.5 GeV and µ = 0.3 GeV, respectively. The normalizations of
the calculations are adjusted to fit the data at x > 0.1 with statistical
errors only, denoted by solid circles.

their measurement of charged kaon production in SIDIS re-
action [6]. The HERMES data, shown in Fig. 2, exhibits
an intriguing feature. A rapid fall-off of the strange sea
is observed as x increases up to x ∼ 0.1, above which the
data become relatively independent of x. The data suggest
the presence of two different components of the strange
sea, one of which dominates at small x (x < 0.1) and the
other at larger x (x > 0.1). This feature is consistent
with the expectation that the strange-quark sea consists
of both the intrinsic and the extrinsic components hav-
ing dominant contributions at large and small x regions,
respectively. In Fig. 2 we compare the data with calcula-
tions using the BHPS model with ms = 0.5 GeV/c2. The
solid and dashed curves are results of the BHPS model
calculations evolved to Q2 = 2.5 GeV2 using µ = 0.5 GeV
and µ = 0.3 GeV, respectively. The normalizations are
obtained by fitting only data with x > 0.1 (solid circles in
Fig. 2), following the assumption that the extrinsic sea has
negligible contribution relative to the intrinsic sea in the
valence region. Figure 2 shows that the fits to the data are
quite adequate, allowing the extraction of the probability
of the |uudss̄〉 state as

Pss̄
5 = 0.024 (µ = 0.5 GeV);

Pss̄
5 = 0.029 (µ = 0.3 GeV). (4)

We consider next the quantity ū(x) + d̄(x) − s(x) −
s̄(x). Combining the HERMES data on x(s(x)+s̄(x)) with

x

x(
d−

+u−
-s

-s−
)

BHPS (µ=0.5 GeV)
BHPS (µ=0.3 GeV)

HERMES+CTEQ

0

0.1

0.2

0.3

10
-2

10
-1

1

Figure 3: Comparison of the x(d̄(x)+ū(x)−s(x)−s̄(x)) data with the
calculations based on the BHPS model. The values of x(s(x)+ s̄(x))
are from the HERMES experiment [6], and those of x(d̄(x) + ū(x))
are obtained from the PDF set CTEQ6.6 [11]. The solid and dashed
curves are obtained by evolving the BHPS result to Q2 = 2.5 GeV2

using µ = 0.5 GeV and µ = 0.3 GeV, respectively. The normalization
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group (CTEQ6.6) [11], the quantity x(ū(x)+ d̄(x)−s(x)−
s̄(x)) can be obtained and is shown in Fig. 3. This ap-
proach for determining x(ū(x)+ d̄(x)−s(x)− s̄(x)) is iden-
tical to that used by Chen, Cao, and Signal in their recent
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An important property of ū + d̄ − s − s̄ is that the
contribution from the extrinsic sea vanishes, just like the
case for d̄− ū. Therefore, this quantity is only sensitive to
the intrinsic sea and can be compared with the calculation
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It is interesting to note that a better fit to the data can
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We can now compare the x(ū(x) + d̄(x) − s(x) − s̄(x))
data with the calculation using the BHPS model. Since
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tions as follows:

Puū
5 = 0.122; Pdd̄

5 = 0.240; Pss̄
5 = 0.024

(µ = 0.5 GeV) (6)

or

Puū
5 = 0.162; Pdd̄

5 = 0.280; Pss̄
5 = 0.029

(µ = 0.3 GeV) (7)

depending on the value of the initial scale µ. It is re-
markable that the d̄(x) − ū(x), the s(x) + s̄(x), and the
d̄(x) + ū(x) − s(x)− s̄(x) data not only allow us to check
the predicted x-dependence of the five-quark Fock states,
but also provide a determination of the probabilities for
these states.

Equations 6 shows that the combined probability for
proton to be in the |uudQQ̄〉 states is around 40%. It is
worth noting that an earlier analysis of the d̄−ū data in the
meson cloud model concluded that proton has ∼60% prob-
ability to be in the three-quark bare-nucleon state [13], in
qualitative agreement with the finding of this study. A sig-
nificant feature of the present work is the extraction of the
|uudss̄〉 component, which would be related to the kaon-
hyperon states in the meson cloud model. It is also worth
mentioning that in the BHPS model the |uudQQ̄〉 states
have the same contribution to the proton’s magnetic mo-
ment as the |uud〉 three-quark state, since Q and Q̄ in the
|uudQQ̄〉 states have no net magnetic moment. Therefore,
the good description of the nucleon’s magnetic moment
by the constituent quark model is preserved even with the
inclusion of a sizable five-quark components in the BHPS
model.

We note that the probability for the |uudss̄〉 state is
smaller than those of the |uuduū〉 and the |uuddd̄〉 states.
This is consistent with the expectation that the probability
for the |uudQQ̄〉 five-quark state is roughly proportional
to 1/m2

Q [1, 4]. One can then estimate that the probability
for the intrinsic charm from the |uudcc̄〉 Fock state, Pcc̄

5 to
be roughly 0.01. This is also consistent with an estimate
based on the bag model [14], as well as with an analysis
of the EMC charm-production data [15]. Figure 4 shows
the x distribution of intrinsic c̄ calculated with the BHPS
model using 1.5 GeV/c2 for the mass of the charm quark.
Also shown in Fig. 4 is the calculation which evolve the
BHPS calculation from the initial scale, µ = 0.5 GeV, to
Q2 = 75 GeV2, the largest Q2 scale reached by EMC [16].
It is interesting to note that the intrinsic charm contents
at the large x (x > 0.3) region are drastically reduced
when Q2 evolution is taken into account. Figure 4 suggests
that the most promising region to search for evidence of
intrinsic charm could be at the somewhat lower x region
(0.1 < x < 0.4), rather than the largest x region explored
by previous experiments. It is worth noting that we adopt
the simple assumption that the initial scale is the same for
all five-quark states. It is conceivable that the initial scale
for intrinsic charm is significantly higher due to the larger
mass of the charmed quark. The dashed curve shows the x

x
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Figure 4: Calculations of the c̄(x) distributions based on the BHPS
model. The solid curve corresponds to the calculation using Eq. 1
and the dashed and dotted curves are obtained by evolving the BHPS
result to Q2 = 75 GeV2 using µ = 3.0 GeV, and µ = 0.5 GeV,
respectively. The normalization is set at Pcc̄

5
= 0.01.

distribution of intrinsic c̄ at Q2 = 75 GeV2 when the initial
scale is set at µ = 3 GeV, corresponding to the threshold
of producing a pair of charmed quarks. As expected, the
shape of the intrinsic c̄ x distribution becomes similar to
that of the BHPS model.

In conclusion, we have generalized the existing BHPS
model to the light-quark sector and compared the calcu-
lation with the d̄− ū, s+ s̄, and ū + d̄ − s− s̄ data. The
qualitative agreement between the data and the calcula-
tions provides strong support for the existence of the in-
trinsic u, d and s quark sea and the adequacy of the BHPS
model. This analysis also led to the determination of the
probabilities for the five-quark Fock states for the proton
involving light quarks only. This result could guide future
experimental searches for the intrinsic c quark sea or even
the intrinsic b quark sea [17], which could be relevant for
the production of Higgs boson at LHC energies [18].
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Figure 3: The cross section of inclusive Higgs production in fb, coming

from the nonperturbative intrinsic bottom distribution, at both LHC

(
√

s = 14 TeV, solid curve) and Tevatron (
√

s = 2 TeV, dashed curve)

energies.

that the cross section for inclusive Higgs production from intrinsic bottom is much

higher than the one coming from intrinsic charm. Although it is true that the Higgs-

quark coupling, proportional to mQ, cancels in the cross section with PIQ ∝ 1/m2
Q,

the matrix element between IQ and Higgs wave functions has an additional mQ factor.

This is because the Higgs wave function is very narrow and the overlap of the two

wave functions results in ΨQQ(0) ∝ mQ. Thus, the cross section rises as m2
Q, as we

see in the results.

We can compare our predictions for inclusive Higgs production coming from

IB with our previous ansatz for the Higgs production gluon-gluon fusion process

xdN/dx = 6(1 − x)5. At the maximum (xF = 0.9) of the IB curve we get a value of

roughly 50 fb, while there gluon-gluon gives 0.067 fb. Thus this high-xF region is the

ideal place to look for Higgs production coming from intrinsic heavy quarks.

We obtain essentially the same curves for Tevatron energies (
√

s = 2 TeV) , al-

though the rates are reduced by a factor of approximately 3.

We also show in Fig.4 the results for Higgs production coming from the perturba-

tive charm distribution. The magnitude of the production cross section is considerably
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For leptons, such as the electron or neutrino, it is convenient to employ the electron
mass for M , so that the magnetic moment is given in Bohr magnetons.

Now we turn to the evaluation of the helicity-conserving and helicity-flip vector-
current matrix elements in the light-front formalism. In the interaction picture, the
current Jµ(0) is represented as a bilinear product of free fields, so that it has an
elementary coupling to the constituent fields [13, 14, 15]. The Dirac form factor can
then be calculated from the expression

F1(q
2) =
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[dx][d2k⇧]
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whereas the Pauli and electric dipole form factors are given by
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.

The summations are over all contributing Fock states a and struck constituent charges
ej. Here, as earlier, we refrain from including the constituents’ color and flavor
dependence in the arguments of the light-front wave functions. The phase-space
integration is

⌥
[dx] [d2k⇧] ⇤

⇧
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⇤
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, (13)

where n denotes the number of constituents in Fock state a and we sum over the
possible {⇥i}, {ci}, and {fi} in state a. The arguments of the final-state, light-front
wave function di�erentiate between the struck and spectator constituents; namely, we
have [13, 15]

k⌅
⇧j = k⇧j + (1� xj)q⇧ (14)

for the struck constituent j and

k⌅
⇧i = k⇧i � xiq⇧ (15)

for each spectator i, where i ⌅= j. Note that because of the frame choice q+ = 0, only
diagonal (n⌅ = n) overlaps of the light-front Fock states appear [14].
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The summations are over all contributing Fock states a and struck constituent charges
ej. Here, as earlier, we refrain from including the constituents’ color and flavor
dependence in the arguments of the light-front wave functions. The phase-space
integration is
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where n denotes the number of constituents in Fock state a and we sum over the
possible {⇥i}, {ci}, and {fi} in state a. The arguments of the final-state, light-front
wave function di�erentiate between the struck and spectator constituents; namely, we
have [13, 15]

k⌅
⇧j = k⇧j + (1� xj)q⇧ (14)

for the struck constituent j and

k⌅
⇧i = k⇧i � xiq⇧ (15)

for each spectator i, where i ⌅= j. Note that because of the frame choice q+ = 0, only
diagonal (n⌅ = n) overlaps of the light-front Fock states appear [14].

6

For leptons, such as the electron or neutrino, it is convenient to employ the electron
mass for M , so that the magnetic moment is given in Bohr magnetons.

Now we turn to the evaluation of the helicity-conserving and helicity-flip vector-
current matrix elements in the light-front formalism. In the interaction picture, the
current Jµ(0) is represented as a bilinear product of free fields, so that it has an
elementary coupling to the constituent fields [13, 14, 15]. The Dirac form factor can
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possible {⇥i}, {ci}, and {fi} in state a. The arguments of the final-state, light-front
wave function di�erentiate between the struck and spectator constituents; namely, we
have [13, 15]
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⇧j = k⇧j + (1� xj)q⇧ (14)

for the struck constituent j and
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⇧i = k⇧i � xiq⇧ (15)

for each spectator i, where i ⌅= j. Note that because of the frame choice q+ = 0, only
diagonal (n⌅ = n) overlaps of the light-front Fock states appear [14].
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Drell, sjb
A(⇤,�⌅) = 1

2⇥

�
d�e

i
2⇤�M(�,�⌅)

P+, �P⌅

xiP
+, xi

�P⌅+ �k⌅i

� = Q2

2p·q

x̂, ŷ plane

M2(L) ⇤ L

Must have �↵z = ±1 to have nonzero F2(q2)

-

� = 0

B(0) = 0 Fock-state-by-Fock state

qR,L = qx ± iqy

⇤(x, b⌅)

x

b⌅(GeV)�1

Identify z ⇤ ⇥ =
q

x(1� x) b⌅

Nonzero Proton Anomalous Moment -->
Nonzero orbital  quark angular momentum

35

Exact LF Formula for Pauli Form Factor
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-

graviton

Vanishing Anomalous gravitomagnetic moment  B(0)

B(0) = 0 Each Fock State

sum over constituents

36

Hwang, Schmidt, sjb; 
Holstein et al

Terayev, Okun,  et al:  B(0) Must vanish because of 
Equivalence Theorem 
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S.J. Brodsky et al. / Nuclear Physics B 593 (2001) 311–335 331

moment vanishes [22]. The light-cone formalism also properly incorporatesWigner boosts.

Thus this model of composite systems can serve as a useful theoretical laboratory to

interrelate hadronic properties and check the consistency of formulae proposed for the

study of hadron substructure.

7. Spin and orbital angular momentum composition of light-cone wavefunctions

In general the light-cone wavefunctions satisfy conservation of the z projection of

angular momentum:

J z =
n∑

i=1
sz
i +

n−1∑

j=1
lzj . (62)

The sum over sz
i represents the contribution of the intrinsic spins of the n Fock state

constituents. The sum over orbital angular momenta lzj = −i
(
k1j

∂
∂k2j

− k2j
∂

∂k1j

)
derives from

the n−1 relative momenta. This excludes the contribution to the orbital angularmomentum
due to the motion of the center of mass, which is not an intrinsic property of the hadron.

We can see how the angular momentum sum rule Eq. (62) is satisfied for the

wavefunctions Eqs. (20) and (23) of the QED model system of two-particle Fock states.

In Table 1 we list the fermion constituent’s light-cone spin projection sz
f = 1

2
λf, the boson

constituent spin projection sz
b = λb, and the relative orbital angular momentum lz for each

contributing configuration of the QED model system wavefunction.

Table 1 is derived by calculating the matrix elements of the light-cone helicity operator

γ +γ 5 [29] and the relative orbital angular momentum operator−i
(
k1 ∂

∂k2
− k2 ∂

∂k1

)
[16,30,

31] in the light-cone representation. Each configuration satisfies the spin sum rule: J z =
sz
f + sz

b + lz.

For a better understanding of Table 1, we look at the non-relativistic and ultra-relativistic

limits. At the non-relativistic limit, the transversal motions of the constituent can be

neglected and we have only the | + 1
2
〉 → | − 1

2
+ 1〉 configuration which is the non-

relativistic quantum state for the spin-half system composed of a fermion and a spin-1

boson constituents. The fermion constituent has spin projection in the opposite direction

to the spin J z of the whole system. However, for ultra-relativistic binding in which the

transversal motions of the constituents are large compared to the fermion masses, the

Table 1

Spin decomposition of the J z = + 1
2
electron

Configuration Fermion spin sz
f

Boson spin sz
b

Orbital ang. mom. lz

∣∣+ 1
2

〉
→

∣∣+ 1
2

+ 1
〉

+ 1
2

+1 −1
∣∣+ 1

2

〉
→

∣∣− 1
2

+ 1
〉

− 1
2

+1 0
∣∣+ 1

2

〉
→

∣∣+ 1
2

− 1
〉

+ 1
2

−1 +1

Conserved 
LF Fock-State by Fock-State

Every Vertex

S.J. Brodsky et al. / Nuclear Physics B 593 (2001) 311–335 331
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〉 → | − 1

2
+ 1〉 configuration which is the non-

relativistic quantum state for the spin-half system composed of a fermion and a spin-1

boson constituents. The fermion constituent has spin projection in the opposite direction

to the spin J z of the whole system. However, for ultra-relativistic binding in which the
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n-1 orbital angular 
momenta

Angular Momentum on the Light-Front

Nonzero Anomalous Moment <--> Nonzero orbital angular momentum

Parke-Taylor Amplitudes  Stasto

Drell, sjb
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• Measurements are made at fixed τ

• Causality is automatic

• Structure Functions are squares of LFWFs

• Form Factors are overlap of LFWFs

• LFWFs are frame-independent -- no boosts

• No dependence on observer’s frame

• Dual to AdS/QCD

• LF Vacuum trivial -- no condensates

• Implications for Cosmological Constant

Advantages of the Dirac’s Front Form for Hadron Physics
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N-1N+1

N N

NN

Light-Front Wave Function Overlap Representation

See also: Diehl, Feldmann, Jakob, Kroll
DGLAP

region

DGLAP
region

ERBL
region

Diehl, Hwang, sjb,  NPB596, 2001

39

DVCS/GPD

 Bakker & JI
Lorce



PDFs FFs

TMDs

Charges

GTMDs

GPDs

TMSDs

TMFFs

Transverse density in 
momentum space

Transverse density in position 
space

Longitudinal 

Transverse

Momentum space Position space

Lorce, 
Pasquini

General remarks about orbital angular mo-
mentum

�n(xi, k�i,�i)

�n
i=1(xi

 R�+ b�i) =  R�

xi
 R�+ b�i

�n
i
 b�i =  0�

�n
i xi = 1

• Light Front Wavefunctions:                                   

40Sivers, T-odd from lensing
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�⇤ �⇤

Leading-Twist Contribution to Real Part of DVCS

p p

Origin of ‘D-Term’
in QCD

T = �2
X

q

e

2
q

xq
~✏ · ~✏0

LF Instantaneous interaction

s-independent 
‘J=0 fixed pole’T / s0FC=+(t = 0)

Damashek, Gilman
Close, Gunion, sjb

Szczepaniak,                   
Llanes Estrada, sjb
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• Square of Target LFWFs                 Modified by Rescattering: ISI & FSI

• No Wilson Line                             Contains Wilson Line, Phases

• Probability Distributions                 No Probabilistic Interpretation

• Process-Independent                      Process-Dependent - From Collision

• T-even Observables                        T-Odd (Sivers, Boer-Mulders, etc.)

• No Shadowing,  Anti-Shadowing      Shadowing,  Anti-Shadowing, Saturation

• Sum Rules: Momentum and Jz               Sum Rules Not Proven

• DGLAP Evolution; mod. at large x   DGLAP Evolution

• No Diffractive DIS                         Hard Pomeron and Odderon Diffractive DIS

Static                           Dynamic

General remarks about orbital angular mo-
mentum

�n(xi,⇥k�i, �i)

�n
i=1(xi

⇥R�+⇥b�i) = ⇥R�

xi
⇥R�+⇥b�i

�n
i
⇥b�i = ⇥0�

�n
i xi = 1

2

11-2001 
8624A06

S

current 
quark jet

final state 
interaction

spectator 
system

proton

e– 

!*

e– 

quark

Mulders, Boer

Qiu, Sterman

 Pasquini, Xiao, 
Yuan, sjb

Collins, Qiu

Hwang, 
Schmidt, sjb,



May 21, 2013       LC2013  Stan BrodskyAdS/QCD & LF-Holography

• LF wavefunctions play the role of Schrödinger wavefunctions 
in Atomic Physics

• LFWFs=Hadron Eigensolutions: Direct Connection to QCD 
Lagrangian

• Relativistic, frame-independent: no boosts, no disc 
contraction, Melosh built into LF spinors 

• Hadronic observables computed from LFWFs: Form factors, 
Structure Functions, Distribution  Amplitudes, GPDs, TMDs, 
Weak Decays, .... modulo `lensing’ from ISIs, FSIs

• Cannot compute current matrix elements using instant form 
from eigensolutions alone -- need to include vacuum currents!

• Hadron Physics without LFWFs is like Biology without DNA!

General remarks about orbital angular mo-
mentum

�n(xi, k�i,�i)

�n
i=1(xi

 R�+ b�i) =  R�

xi
 R�+ b�i

�n
i
 b�i =  0�

�n
i xi = 1
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•Hadron Physics without LFWFs is like Biology without DNA!

General remarks about orbital angular mo-
mentum

�n(xi, k�i,�i)

�n
i=1(xi

 R�+ b�i) =  R�

xi
 R�+ b�i

�n
i
 b�i =  0�

�n
i xi = 1
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HQCD
LF |ψ >=M2|ψ >

Dirac’s Front Form: Fixed τ = t+ z/c

Light-Front Wavefunctions

xi =
k+
i

P+

0 < xi < 1

n�

i=1
xi = 1

Remarkable new insights from AdS/CFT,              
the duality between conformal field theory       
and Anti-de Sitter Space 

Invariant under boosts.   Independent of Pμ

45

Direct connection to QCD Lagrangian

 (xi,
~

k?i,�i)



 

HQED

[� �2

2mred
+ Ve�(�S,�r)] �(�r) = E �(�r)

[� 1
2mred

d2

dr2
+

1
2mred

⌃(⌃ + 1)
r2

+ Ve�(r, S, ⌃)] �(r) = E �(r)

(H0 + Hint) |� >= E |� > Coupled Fock states

Effective two-particle equation

 Spherical Basis r, �,⇥

Coulomb  potential 

Includes Lamb Shift, quantum corrections

Bohr Spectrum

Veff ⇥ VC(r) = ��

r

QED atoms: positronium and 
muonium

Semiclassical first approximation to QED --> 46



 

HQED

Coupled Fock states

Effective two-particle equation

 Azimuthal  Basis

Confining AdS/QCD  
potential! 

HLF
QCD

(H0
LF + HI

LF )|� >= M2|� >

[
�k2
� + m2

x(1� x)
+ V LF

e� ] �LF (x,�k�) = M2 �LF (x,�k�)

�,⇥

�2 = x(1� x)b2
�

Semiclassical first approximation to QCD 47

4

U(⇣) = 4⇣2 + 22(L + S � 1)

Light-Front QCD
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Light-Front Schrödinger Equation
�
� d2

d2�
+ V (�)

⇥
=M2⇥(�)

�
� d2

d�2 + V (�)
⇥
=M2⇥(�)

�2 = x(1� x)b2
⇥.

Jz = Sz
p =

⇤n
i=1 Sz

i +
⇤n�1

i=1 ⌥z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Relativistic LF single-variable radial 
equation for QCD & QED

G. de Teramond, sjb 

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

Frame Independent!

48

AdS/QCD:

U(⇣) = 4⇣2 + 22(L + S � 1)

4
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Same slope in n and L! Massless pion in Chiral Limit!

Mass ratio of the ρ and the a1 mesons: coincides with Weinberg sum rules

mq = 0
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U is the exact QCD potential 
Conjecture: ‘H’-diagrams generate 

Light-Front Schrödinger Equation
�
� d2

d2�
+ V (�)

⇥
=M2⇥(�)

�
� d2

d�2 + V (�)
⇥
=M2⇥(�)

�2 = x(1� x)b2
⇥.

Jz = Sz
p =

⇤n
i=1 Sz

i +
⇤n�1

i=1 ⌥z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Relativistic LF single-variable radial 
equation for QCD & QED

G. de Teramond, sjb 

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

Frame Independent!

50

AdS/QCD:

U(⇣) = 4⇣2 + 22(L + S � 1)

4
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Remarkable Features of 
Light-Front Schrödinger Equation

• Relativistic, frame-independent

• QCD scale appears spontaneously - unique LF potential

• Reproduces spectroscopy and dynamics of light-quark hadrons with 
one parameter

• Zero-mass pion for zero mass quarks!

• Regge slope same for n and L  -- not usual HO

• Splitting in L persists to high mass   -- contradicts conventional 
wisdom based on breakdown of chiral symmetry

• Phenomenology: LFWFs, Form factors, electroproduction

• Extension to heavy quarks

U(⇣) = 4⇣2 + 22(L + S � 1)
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Light-Front Holography AdS/QCD
Soft-Wall  Model

⇥
� d2

d⇣2
+

1� 4L2

4⇣2
+ U(⇣)

⇤
 (⇣) =M2 (⇣)

Conformal Symmetry
of the action  

U(⇣) = 4⇣2 + 22(L + S � 1)

Exploring QCD, Cambridge, August 20-24, 2007 Page 9

Confinement scale:    ' 0.5 GeV
1/ ' 0.4 fm

Light-Front Schrödinger Equation

de Teramond, Dosch, sjb
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1 The Holographic Correspondence

• In the “ semi-classical” approximation to QCD with massless quarks and no quantum loops the �

function is zero, and the approximate theory is scale and conformal invariant.

• Isomorphism of SO(4, 2) of conformal QCD with the group of isometries of AdS space

ds2 =
R2

z2
(⇥µ⇥dxµdx⇥ � dz2).

• Semi-classical correspondence as a first approximation to QCD (strongly coupled at all scales).

• xµ ⇤ ⇤xµ, z ⇤ ⇤z, maps scale transformations into the holographic coordinate z.

• Different values of z correspond to different scales at which the hadron is examined: AdS boundary at

z ⇤ 0 corresponds to the Q⇤⌅, UV zero separation limit.

• There is a maximum separation of quarks and a maximum value of z at the IR boundary

• Truncated AdS/CFT (Hard-Wall) model: cut-off at z0 = 1/�QCD breaks conformal invariance and

allows the introduction of the QCD scale (Hard-Wall Model) Polchinski and Strassler (2001).

• Smooth cutoff: introduction of a background dilaton field ⌅(z) – usual linear Regge dependence can

be obtained (Soft-Wall Model) Karch, Katz, Son and Stephanov (2006).

Changes in 
physical

length scale 
mapped to 

evolution in the 
5th dimension z 
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AdS/QCD G. F. de Téramond

Scale Transformations

• Isomorphism of SO(4, 2) of conformal QCD with the group of isometries of AdS space

SO(1, 5)

ds2 =
R2

z2
(�µ⇥dxµdx⇥ � dz2),

xµ ⇤ ⇥xµ, z ⇤ ⇥z, maps scale transformations into the holographic coordinate z.

• AdS mode in z is the extension of the hadron wf into the fifth dimension.

• Different values of z correspond to different scales at which the hadron is examined.

x2 ⇤ ⇥2x2, z ⇤ ⇥z.

x2 = xµxµ: invariant separation between quarks

• The AdS boundary at z ⇤ 0 correspond to theQ⇤⌅, UV zero separation limit.

Caltech High Energy Seminar, Feb 6, 2006 Page 1154

invariant measure

AdS/CFT
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2 Bosonic Modes

• Conformal metric: ds2 = g⌅mdx⌅dxm. x⌅ = (xµ, z), g⌅m ⇤
�
R2/z2

⇥
�⌅m .

• Action for massive scalar modes on AdSd+1:

S[⇥] =
1
2

⌥
dd+1x

⇧
g 1

2

�
g⌅m⌃⌅⇥⌃m⇥� µ2⇥2

 
,
⇧

g ⇤ (R/z)d+1.

• Equation of motion
1
⇧

g

⌃

⌃x⌅

�⇧
g g⌅m ⌃

⌃xm
⇥
⇥

+ µ2⇥ = 0.

• Factor out dependence along xµ-coordinates , ⇥P (x, z) = e�iP ·x ⇥(z), PµPµ =M2 :
⇤
z2⌃2

z � (d� 1)z ⌃z + z2M2 � (µR)2
⌅
⇥(z) = 0.

• Solution: ⇥(z)⇤ z� as z ⇤ 0,

⇥(x, z) = Cz
d
2 J�� d

2
(zM) , � = 1

2

⇧
d +

⌦
d2 + 4µ2R2

⌃
.

• Normalization

Rd�1
⌥ ⇥�1

QCD

0

dz

zd�1
⇥2

S=0(z) = 1.

Bosonic Solutions:  Hard Wall Model

� = 2 + L (µR)2 = L2 � 4d = 4

�(z) = Czd/2J��d/2(zM)
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AdS Soft-Wall Schrodinger Equation for 
bound state  of  two scalar constituents:

Derived from variation of Action for Dilaton-Modified AdS5

Identical to Light-Front Bound State Equation! 

U(z) = �4z2 + 2�2(L + S � 1)

• de Teramond, sjbPositive-sign dilaton

⇥
� d2

dz2
� 1� 4L2

4z2
+ U(z)

⇤
�(z) =M2�(z)

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

e'(z) = e+2z2



 

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

(x(1� x)|b⇤|

z

z�

z0 = 1
⇥QCD

�d⇥ np

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

LF(3+1)                AdS5
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Light Front Holography: Unique mapping derived from equality of LF 
and AdS  formula for EM and gravitational current matrix elements 

and identical equations of motion

⇤(x, �) =
�

x(1� x)��1/2⇥(�)

de Teramond, sjb
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Dual QCD Light-Front Wave Equation z ⌃ �, �P (z)⌃ |⇧(P )�
[ GdT and S. J. Brodsky, PRL 102, 081601 (2009)]

• Upon substitution z⇧� and ⌅J(�) ⌅ ��3/2+Je�(z)/2 �J(�) in A dS W E
⇤
�zd�1�2J

e�(z)
�z

�
e�(z)

zd�1�2J
�z

⇥
+

�
µR

z

⇥2
⌅

�J(z) = M2�J(z)

fi nd L F W E (d = 4)
�
� d2

d�2
� 1� 4L2

4�2
+ U(�)

⇥
⌅J(�) = M2⌅J(�)

w ith

U(�) =
1
2
⌃⇥⇥(z) +

1
4
⌃⇥(z)2 +

2J � 3
2z

⌃⇥(z)

and (µR)2 = �(2� J)2 + L2

• A dS Bre ite nl oh ne r- F re e dm an bound (µR)2 ⇤ �4 e q uiv al e nt to L F Q Mstabil ity c ondition L2 ⇤ 0

• Sc al ing dim e nsion ⇤ of A dS m ode �̂J is ⇤ = 2 + L in ag re e m e nt w ith tw ist sc al ing dim e nsion of a

tw o parton bound state in Q C D and de te rm ine d by Q Mstabil ity c ondition

L C 2011 2011, D al l as, May 23 , 2011 Pag e 10

e'(z)

G. de Teramond and sjb, PRL 102 081601 (2009)
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H. G. Dosch, G. de Teramond, sjb   PRD 87 (2013)
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• Obtain spin-J mode �µ1···µJ with all indices along 3+1 coordinates from � by shifting dimensions

�J(z) =
⇧ z

R

⌃�J
�(z)

• Substituting in the AdS scalar wave equation for �
⇤
z2⇧2

z �
�
3�2J � 2⇥2z2

⇥
z ⇧z + z2M2� (µR)2

⌅
�J = 0

• Upon substitution z⌅�

⌅J(�)⇤��3/2+Je⇥2�2/2 �J(�)

we find the LF wave equation

⌥
� d2

d�2
� 1� 4L2

4�2
+ ⇥4�2 + 2⇥2(L + S � 1)

�
⌅µ1···µJ =M2⌅µ1···µJ

with (µR)2 = �(2� J)2 + L2

Hadron 2009, FSU, Tallahassee, December 1, 2009 Page 18

General-Spin Hadrons
de Teramond, Dosch, sjb

e'(z) = e+2z2
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Light-Front Schrödinger Equation
�
� d2

d2�
+ V (�)

⇥
=M2⇥(�)

�
� d2

d�2 + V (�)
⇥
=M2⇥(�)

�2 = x(1� x)b2
⇥.

Jz = Sz
p =

⇤n
i=1 Sz

i +
⇤n�1

i=1 ⌥z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Relativistic LF single-variable radial 
equation for QCD & QED

G. de Teramond, sjb 

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

Frame Independent!

61

AdS/QCD:

Confining AdS/QCD  
potential Semiclassical first approximation to QCD 

U(⇣) = 4⇣2 + 22(L + S � 1)
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G. de Teramond, sjb 

U(⇣2) = 4⇣2 + 22(J � 1)

z ! ⇣
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Φ(z)
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8721A20 z
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2-2007
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Fig: Orbital and radial AdS modes in the soft wall model for � = 0.6 GeV .
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π (1300)

π (1800)

n

Light meson orbital (a) and radial (b) spectrum for � = 0.6 GeV.

Exploring QCD, Cambridge, August 20-24, 2007 Page 26

S = 0 S = 0

Soft Wall 
Model

Pion mass  
automatically zero!

mq = 0

Quark separation 
increases with L

Pion has 
zero mass!
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J=0

J=1

J=2

� = 2
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Prediction from AdS/CFT: Meson LFWF

�(x, k�)
0.20.40.60.8

1.3

1.4

1.5

0

0.05

0.1

0.15

0.2

0

5

       “Soft Wall” 
model

�(x, k�)(GeV)

de Teramond, 
sjb
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⇥M(x, Q0) ⇥
�

x(1� x)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ�

q

⇥M(x, Q0) ⇥
�

x(1� x)

⇤M(x, k2
⇤)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ�

� = 0.375 GeV

massless quarks
Note coupling 

k2
�, x

Provides Connection of Confinement to TMDs

⇤M (x, k⇥) =
4⇥

�
�

x(1� x)
e
� k2

⇥
2�2x(1�x)



 

Q2 FΠ!Q2"

Q2  GeV2

0 1 2 3 4 5 6 7
0.0

0.1

0.2

0.3

0.4

0.5

0.6
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68
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J. R. Forshaw, 
R. Sandapen

�⇤p! ⇢0p0

�L

�T
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Light-Front Holography AdS/QCD
Soft-Wall  Model

⇥
� d2

d⇣2
+

1� 4L2

4⇣2
+ U(⇣)

⇤
 (⇣) =M2 (⇣)

Conformal Symmetry
of the action  

U(⇣) = 4⇣2 + 22(L + S � 1)

Exploring QCD, Cambridge, August 20-24, 2007 Page 9

Confinement scale:    ' 0.5 GeV
1/ ' 0.4 fm

Light-Front Schrödinger Equation
Unique 

Confinement Potential!
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G = uH + vD + wK

G| (⌧) >= i
@

@⌧
| (⌧) >

G = H⌧ =
1
2
�
� d2

dx2
+

g

x2
+

4uw � v2

4
x2

�

Retains conformal invariance of action despite mass scale!

Identical to LF Hamiltonian with unique potential and dilaton!

• de Alfaro, Fubini, Furlan

⇥
� d2

d⇣2
+

1� 4L2

4⇣2
+ U(⇣)

⇤
 (⇣) =M2 (⇣)

U(⇣) = 4⇣2 + 22(L + S � 1)

4uw � v2 = 4 = [M ]4

• Dosch, de Teramond, sjb
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Uniqueness
• ζ2 confinement potential and dilaton profile unique!

• Linear Regge trajectories in n and L: same slope!

• Massless pion in chiral limit!   No vacuum condensate!

• Derive from conformal invariance:  conformally invariant action 

for massless quarks despite mass scale

• Same principle, equation of motion as de Alfaro, Fubini, 

Furlan .

• Conformal Invariance in Quantum Mechanics Nuovo Cim. 
A34 (1976) 569 

de Teramond, Dosch, sjb 

http://inspirehep.net/record/108211
http://inspirehep.net/record/108211
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What determines the QCD mass scale ΛQCD? 

• Mass scale does not appear in the QCD Lagrangian 
(massless quarks)

• Dimensional Transmutation? Requires external constraint 
such as 

• dAFF: Confinement Scale κ appears spontaneously via the 
Hamiltonian:

• The confinement scale regulates infrared divergences,  

connects  ΛQCD   to the confinement scale κ

• Only dimensionless mass ratios (and M times R ) predicted

• Mass and time units [GeV] and [sec] from physics external 
to QCD

• New feature: bounded frame-independent relative time 
between constituents

↵s(MZ)

G = uH + vD + wK 4uw � v2 = 4 = [M ]4
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Excitation energies of quarkonia appear to be flavor-independent  

Quigg and Rosner (1979:

cc̄
bb̄

logarithmic 
potential?

!

!

!

!
!

!

!

!

!

!
!

!

"

"

"

"

"

"

"

"

"

"

"

"
"

0!" 1!! 0"" 1"" 2"" 2!!
0
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E
G

e
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Heavy-Quark Systems and Conformal Invariance

H.G. Dosch, G. de Teramond, sjb 

q !
p

mr, q̇ ! 1p
m

i
d

dr
[q(t), q̇(t)] = i
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! = ⇤ = 0.28 GeV

H.G. Dosch, G. de Teramond, sjb (in progress)
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state

0

0.5

1

E
G
eV

0

0.5

1

0-+ 1-- 0++ 1++ 2++

FIG. 1: Excitation energies of cc̄ (red) and bb̄ (blue) mesons in GeV: M(n, J, P, C)�M(0, 1,�,�).

For cc̄ and bb̄ only states with well defined quantum numbers below open charm and open b

threshold are shown. The data is from Ref. [6].

0 1 2
L

0

0.5

1
E

G
eV

FIG. 2: Excitation energies of cc̄ (red boxes) and bb̄ (blue diamonds) with di↵erent values of

angular momentum `. Only well established states below open flavour threshold are shown. The

linear trajectories are the theoretical predictions from the Hamiltonian (14) with ⇤ = 0.28 GeV.

where the quantum numbers ` and n represent the orbital angular and the radial excitation

(the number of nodes in the wavefunction) respectively, and N`n is a normalization constant.

As can be seen from Fig. 2, the choice ⇤ = 0.28 GeV provides a reasonable fit to the heavy

meson spectrum below the charm and bottom thresholds for the states with well defined

quantum numbers given in Table I and Table II.

Another consequence of the use of (14) as e↵ective Hamiltonian for heavy mesons is the

structural identity of the nonrelativistic Hamiltonian and the LF Hamiltonian. There are

5

and dynamical e↵ects from the mapping of spin-J representations of the equations of mo-

tion in AdS space to light-front QCD [5]. The confining term in the LF potential is thus

fixed to ⇣2 by the requirement to stay within the set of generators of the conformal group,

specifically by the form of the generator K in the operator G [1].

One can introduce a mass scale m corresponding to to the reduced mass in the non-

relativistic bound-state Hamiltonian without destroying the conformal invariance of the

action by noticing that the field operators q(⌧) can be rescaled according to q !
p

m q,

q̇ ! q̇/
p

m. The canonical quantization conditions (7) are maintained. Thus we obtain a

second Schrödinger representation of the quantum field operators q(t)

q =
p

m r, q̇ =
ip
m

d

dr
. (12)

This prescription leads to the Hamiltonian

HU = � 1

2m

d2

dr2
+

g

2m r2
+

u! � v2

8
m r2, (13)

with eigenvalues determined by HUU = E U . In terms of the wave function  (r) = U(r)/r

the Hamiltonian (13) can be brought into the usual form of the Hamiltonian of an isotropic

3-dimensional harmonic oscillator in nonrelativistic quantum mechanics

H = � 1

2m

✓
1

r2

@

@r
r2 @

@r
� l(l + 1)

r2

◆
+

1

2
m ⇤2r2, (14)

where we have identified g with the Casimir operator of the rotation group, g = `(` + 1)

and ⇤2 = (u! � v2)/4 with eigenvalues given by H ` = E`  `. The spectrum of H is thus

the same as that of HU .

The most salient feature of H is the independence of the spectrum from the mass param-

eter m, as can be seen directly from (14) by substituting
p

m r = y. This is indeed fulfilled

to an astonishing degree, as can be seen from Fig. 1. In this figure the experimental results

for the excitation energies, that is the mass di↵erence of the radial and orbital excitations

and the JPC = 1�� ground state are plotted for all quarkonia with well established quantum

numbers below open charm and beauty thresholds.

From the Hamiltonian (14) we obtain the spectrum:

En` =

✓
2 n + `+

3

2

◆
⇤, (15)

and the wave functions:

 n` = Nn` r` L`+1/2
n

�
m⇤r2

�
e�m⇤r2/2, (16)

4

and dynamical e↵ects from the mapping of spin-J representations of the equations of mo-

tion in AdS space to light-front QCD [5]. The confining term in the LF potential is thus

fixed to ⇣2 by the requirement to stay within the set of generators of the conformal group,

specifically by the form of the generator K in the operator G [1].

One can introduce a mass scale m corresponding to to the reduced mass in the non-

relativistic bound-state Hamiltonian without destroying the conformal invariance of the

action by noticing that the field operators q(⌧) can be rescaled according to q !
p

m q,

q̇ ! q̇/
p

m. The canonical quantization conditions (7) are maintained. Thus we obtain a

second Schrödinger representation of the quantum field operators q(t)

q =
p

m r, q̇ =
ip
m

d

dr
. (12)

This prescription leads to the Hamiltonian

HU = � 1

2m

d2

dr2
+

g

2m r2
+

u! � v2

8
m r2, (13)

with eigenvalues determined by HUU = E U . In terms of the wave function  (r) = U(r)/r

the Hamiltonian (13) can be brought into the usual form of the Hamiltonian of an isotropic

3-dimensional harmonic oscillator in nonrelativistic quantum mechanics

H = � 1

2m

✓
1

r2

@

@r
r2 @

@r
� l(l + 1)

r2

◆
+

1

2
m ⇤2r2, (14)

where we have identified g with the Casimir operator of the rotation group, g = `(` + 1)

and ⇤2 = (u! � v2)/4 with eigenvalues given by H ` = E`  `. The spectrum of H is thus

the same as that of HU .

The most salient feature of H is the independence of the spectrum from the mass param-

eter m, as can be seen directly from (14) by substituting
p

m r = y. This is indeed fulfilled

to an astonishing degree, as can be seen from Fig. 1. In this figure the experimental results

for the excitation energies, that is the mass di↵erence of the radial and orbital excitations

and the JPC = 1�� ground state are plotted for all quarkonia with well established quantum

numbers below open charm and beauty thresholds.

From the Hamiltonian (14) we obtain the spectrum:

En` =

✓
2 n + `+

3

2

◆
⇤, (15)

and the wave functions:

 n` = Nn` r` L`+1/2
n

�
m⇤r2

�
e�m⇤r2/2, (16)

4

H.G. Dosch, G. de Teramond, sjb (in progress)

⇤ = 0.28 GeV

Flavor independent

Universal confinement time!
!
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Nearly Conformal QCD and AdS/CFT G. F. de Téramond, UCR

• Propagation of external perturbation suppressed inside AdS.

• At large enoughQ ⇤ r/R2, the interaction occurs in the large-r conformal region. Important

contribution to the FF integral from the boundary near z ⇤ 1/Q.

J(Q, z), �(z)

1 2 3 4 5

0.2

0.4

0.6

0.8

1

z

• Consider a specific AdS mode ⇥(n) dual to an n partonic Fock state |n⇧. At small z, ⇥(n)

scales as ⇥(n) ⇤ z�n . Thus:

F (Q2) ⌅
�

1
Q2

⇥��1

,

where ⇥ = �n � �n, �n =
⇤n

i=1 �i. The twist is equal to the number of partons, ⇥ = n.

Quark-Hadron Duality, Frascati, 6-8 June 2005 Page 22

Dimensional Quark Counting Rules:
General result from 

AdS/CFT and Conformal Invariance

78

Hadron Form Factors from AdS/QCD 

Polchinski, Strassler
de Teramond, sjb

D(z) ⇥ (1� z)2Nspect�1

zD(z) = F (x = 1/z)

zD(z)c⇤pX = Fp⇤cX(x = 1/z)

zi ⌅ m⇧i =
⇥

m2
i + k2

⇧

X = cūd̄ū

F (Q2)I⇤F =
� dz

z3�F (z)J(Q, z)�I(z)

J(Q, z) = zQK1(zQ)

�s(Q2)

⇥(Q2) = d�s(Q2)
d logQ2 � 0

�(Q2)� �
15⇤

Q2

m2

Q2 << 4m2

A

High Q2 
from 

small z  ~ 1/Q

J(Q, z) �(z)

high Q2



 

Holographic Mapping of AdS Modes to QCD LFWFs

• Integrate Soper formula over angles:

F (q2) = 2⇥

⇧ 1

0
dx

(1� x)
x

⇧
�d�J0

⇥
�q

⌥
1� x

x

⇤
⇤̃(x, �),

with ⌃⇤(x, �) QCD effective transverse charge density.

• Transversality variable

� =
⌥

x

1� x

���
n�1⌅

j=1

xjb⇥j

���.

• Compare AdS and QCD expressions of FFs for arbitrary Q using identity:

⇧ 1

0
dxJ0

⇥
�Q

⌥
1� x

x

⇤
= �QK1(�Q),

the solution for J(Q, �) = �QK1(�Q) !

Exploring QCD, Cambridge, August 20-24, 2007 Page 35

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

Drell-Yan-West: Form Factors are 
Convolution of LFWFs

Identical to Polchinski-Strassler Convolution of AdS Amplitudes
79

de Teramond, sjb
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Current Matrix Elements in AdS Space (SW)

• Propagation of external current inside AdS space described by the AdS wave equation
⇤
z2⇧2

z � z
�
1 + 2�2z2

⇥
⇧z �Q2z2

⌅
J�(Q, z) = 0.

• Solution bulk-to-boundary propagator

J�(Q, z) = �
⇧

1 +
Q2

4�2

⌃
U

⇧
Q2

4�2
, 0, �2z2

⌃
,

where U(a, b, c) is the confluent hypergeometric function

�(a)U(a, b, z) =
⌥ ⇥

0
e�ztta�1(1 + t)b�a�1dt.

• Form factor in presence of the dilaton background ⇥ = �2z2

F (Q2) = R3
⌥

dz

z3
e��2z2

⇥(z)J�(Q, z)⇥(z).

• For large Q2 ⇤ 4�2

J�(Q, z)⌅ zQK1(zQ) = J(Q, z),

the external current decouples from the dilaton field.

Exploring QCD, Cambridge, August 20-24, 2007 Page 34

sjb and GdT 
Grigoryan and Radyushkin

Dressed 
Current

 in Soft-Wall 
Model
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Fermionic Modes and Baryon Spectrum
[GdT and S. J. Brodsky, PRL 94, 201601 (2005)]

From Nick Evans

• Action for Dirac field in AdSd+1 in presence of dilaton background ⇧(z) [Abidin and Carlson (2009)]

S =
⇧

dd+1⌃ge⌅(z)
�
i⌅eM

A �ADM⌅ + h.c + ⇧(z)⌅⌅� µ⌅⌅
⇥

• Factor out plane waves along 3+1: ⌅P (xµ, z) = e�iP ·x⌅(z)
⌃
i
⇤
z�⌦m�⌦ m + 2�z

⌅
+ µR + ⇥2z

⌥
⌅(x⌦) = 0.

• Solution (⌅ = µR� 1
2 , ⌅ = L + 1)

⌅+(z) ⇤ z
5
2+⇤e��2z2/2L⇤

n(⇥2z2), ⌅�(z) ⇤ z
7
2+⇤e��2z2/2L⇤+1

n (⇥2z2)

• Eigenvalues (how to fix the overall energy scale, see arXiv:1001.5193)

M2 = 4⇥2(n + L + 1)

• Obtain spin-J mode ⇤µ1···µJ�1/2
, J > 1

2 , with all indices along 3+1 from ⌅ by shifting dimensions

• Large NC : M2 = 4⇥2(NC + n + L� 2) =⌅ M ⇤
⌃

NC ⇥QCD

Escuela de Fı́sica, UCR, December 1, 2010 Page 25

GdT and sjb, PRL 94, 201601 (2005)

positive parity

Yukawa interaction 
in 5 dimensions 

82

e'(z)
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Fermionic Modes and Baryon Spectrum
[Hard wall model: GdT and S. J. Brodsky, PRL 94, 201601 (2005)]

[Soft wall model: GdT and S. J. Brodsky, (2005), arXiv:1001.5193]

From Nick Evans

• Nucleon LF modes

⇤+(�)n,L = ⇥2+L

⌅
2n!

(n + L)!
�3/2+Le�⇥2�2/2LL+1

n

�
⇥2�2

⇥

⇤�(�)n,L = ⇥3+L 1⇤
n + L + 2

⌅
2n!

(n + L)!
�5/2+Le�⇥2�2/2LL+2

n

�
⇥2�2

⇥

• Normalization ⇤
d� ⇤2

+(�) =
⇤

d� ⇤2
�(�) = 1

• Eigenvalues

M2
n,L,S=1/2 = 4⇥2 (n + L + 1)

• “Chiral partners”
MN(1535)

MN(940)
=
⇤

2

LC 2011 2011, Dallas, May 23, 2011 Page 13
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Table 1: SU(6) classification of confirmed baryons listed by the PDG. The labels S, L
and n refer to the internal spin, orbital angular momentum and radial quantum number

respectively. The �

5
2
�
(1930) does not fit the SU(6) classification since its mass is too low

compared to other members 70-multiplet for n = 0, L = 3.

SU(6) S L n Baryon State

56 1
2 0 0 N 1

2
+
(940)

1
2 0 1 N 1

2
+
(1440)

1
2 0 2 N 1

2
+
(1710)

3
2 0 0 �

3
2
+
(1232)

3
2 0 1 �

3
2
+
(1600)

70 1
2 1 0 N 1

2
�
(1535) N 3

2
�
(1520)

3
2 1 0 N 1

2
�
(1650) N 3

2
�
(1700) N 5

2
�
(1675)

3
2 1 1 N 1

2
�

N 3
2
�
(1875) N 5

2
�

1
2 1 0 �

1
2
�
(1620) �

3
2
�
(1700)

56 1
2 2 0 N 3

2
+
(1720) N 5

2
+
(1680)

1
2 2 1 N 3

2
+
(1900) N 5

2
+

3
2 2 0 �

1
2
+
(1910) �

3
2
+
(1920) �

5
2
+
(1905) �

7
2
+
(1950)

70 1
2 3 0 N 5

2
�

N 7
2
�

3
2 3 0 N 3

2
�

N 5
2
�

N 7
2
�
(2190) N 9

2
�
(2250)

1
2 3 0 �

5
2
�

�

7
2
�

56 1
2 4 0 N 7

2
+

N 9
2
+
(2220)

3
2 4 0 �

5
2
+

�

7
2
+

�

9
2
+

�

11
2

+
(2420)

70 1
2 5 0 N 9

2
�

N 11
2
�

3
2 5 0 N 7

2
�

N 9
2
�

N 11
2
�
(2600) N 13

2
�

1

PDG 2012
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Identify L  with ν
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Space-Like Dirac Proton Form Factor

• Consider the spin non-flip form factors

F+(Q2) = g+

⇤
d� J(Q, �)|⇥+(�)|2,

F�(Q2) = g�

⇤
d� J(Q, �)|⇥�(�)|2,

where the effective charges g+ and g� are determined from the spin-flavor structure of the theory.

• Choose the struck quark to have Sz = +1/2. The two AdS solutions ⇥+(�) and ⇥�(�) correspond

to nucleons with Jz = +1/2 and�1/2.

• For SU(6) spin-flavor symmetry

F p
1 (Q2) =

⇤
d� J(Q, �)|⇥+(�)|2,

Fn
1 (Q2) = �1

3

⇤
d� J(Q, �)

�
|⇥+(�)|2 � |⇥�(�)|2

⇥
,

where F p
1 (0) = 1, Fn

1 (0) = 0.

Exploring QCD, Cambridge, August 20-24, 2007 Page 52



 
May 21, 2013       LC2013  Stan BrodskyAdS/QCD & LF-Holography

89

• Compute Dirac proton form factor using SU(6) flavor symmetry

F p
1 (Q2) = R4

⇧
dz

z4
V (Q, z)�2

+(z)

• Nucleon AdS wave function

�+(z) =
�2+L

R2

⌃
2n!

(n + L)!
z7/2+LLL+1

n

�
�2z2

⇥
e��2z2/2

• Normalization (F1
p(0) = 1, V (Q = 0, z) = 1)

R4

⇧
dz

z4
�2

+(z) = 1

• Bulk-to-boundary propagator [Grigoryan and Radyushkin (2007)]

V (Q, z) = �2z2

⇧ 1

0

dx

(1� x)2
x

Q2

42 e��2z2x/(1�x)

• Find

F p
1 (Q2) =

1⇤
1 + Q2

M2
⇢

⌅⇤
1 + Q2

M2
⇢0

⌅

withM⇥
2
n ⇤ 4�2(n + 1/2)

LC 2011 2011, Dallas, May 23, 2011 Page 20
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Using SU(6) flavor symmetry and normalization to static quantities

0

0.4

0.8

1.2

10 20 300

Q2  (GeV2)

Q
4
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p 1

  
(Q

2
) 

 (
G

e
V

4
)

2-2012
8820A18

0

-0.2

10 20 300

Q2  (GeV2)

Q
4

 F
n 1

  
(Q

2
) 

 (
G

e
V

4
)

2-2012
8820A17

0

1

2

0 2 4 6

Q2  (GeV2)

F
np 2
  
(Q

2
)

2-2012
8820A8

-2

-1

0

0 2 4 6

Q2  (GeV2)

F
n 2
  
(Q

2
)

2-2012
8820A7

Niccolò Cabeo 2012, Ferrara, May 25, 2011
Page 42
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Nucleon Transition Form Factors

• Compute spin non-flip EM transition N(940)⇥ N�(1440): �n=0,L=0
+ ⇥ �n=1,L=0

+

• Transition form factor

F1
p
N⇥N�(Q2) = R4

⇧
dz

z4
�n=1,L=0

+ (z)V (Q, z)�n=0,L=0
+ (z)

• Orthonormality of Laguerre functions
�
F1

p
N⇥N�(0) = 0, V (Q = 0, z) = 1

⇥

R4
⇧

dz

z4
�n⇥,L

+ (z)�n,L
+ (z) = �n,n⇥

• Find

F1
p
N⇥N�(Q2) =

2
⌅

2
3

Q2

M2
P⇤

1 + Q2

M2
�

⌅⇤
1 + Q2

M2
�⇥

⌅⇤
1 + Q2

M2

�
⇥⇥

⌅

withM�
2
n ⇥ 4⇥2(n + 1/2)

LC 2011 2011, Dallas, May 23, 2011 Page 21

de Teramond, sjb

Consistent with counting rule, twist 3
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Nucleon Transition Form Factors

F p

1

N!N

⇤(Q
2

) =

p
2

3

Q

2

M2

⇢⇣
1 +

Q

2

M2

⇢

⌘⇣
1 +

Q

2

M2

⇢0

⌘⇣
1 +

Q

2

M2

⇢
00

⌘ .

0.1

0
2 40

Q2  (GeV2)

F
p 1

N
  
 N

* 
 (
Q

2
)

2-2012
8820A16

Proton transition form factor to the first radial excited state. Data from JLab

Niccolò Cabeo 2012, Ferrara, May 25, 2011
Page 43
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e+

e�
��

�+

��

Dressed soft-wall current brings in higher 
Fock states and more vector meson poles

93
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Higher Fock Components in LF Holographic QCD

• Effective interaction leads to qq ! qq, qq ! qq but also to q ! qqq and q ! qqq

• Higher Fock states can have any number of extra qq pairs, but surprisingly no dynamical gluons

• Example of relevance of higher Fock states and the absence of dynamical gluons at the hadronic scale

|⇡ i =  
qq/ ⇡

|qqi
⌧ =2

+  
qqqq

|qqqqi
⌧ =4

+ · · ·

• Modify form factor formula introducing finite width: q2 ! q2

+

p
2iM� (P

qqqq

= 13 %)

0.2

0.4

0.6

0
2 4 60

Q2  (GeV2)

Q
2

 F
π
  
(Q

2
) 

 (
G

e
V

2
)

2-2012
8820A21

2

0

-2

2 40

q2  (GeV2)

L
o

g
 I 

F
π
  
(q

2
) I

2-2012
8820A22

Niccolò Cabeo 2012, Ferrara, May 25, 2011
Page 47
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log FΠ!q2"

Twist 2

Twist 2+4

G. de Teramond & sjb

Timelike Pion Form Factor from AdS/QCD 
          and Light-Front Holography

s(GeV2)

F⇡(s) = (1� �) 1
(1� s
M2

⇢
) + � 1

(1� s
M2

⇢
)(1� s

M2
⇢0

)(1� s
M2

⇢00
)

Prescription for 
Timelike poles :

1
s�M2 + i

p
s�

log |F⇡(s)|
� = 0.17

M2
⇢n

= 42(1/2 + n)

Frascati data
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14% four-quark
 probability
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log!FΠ!q2""
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log |F⇡(s)|
Pion Form Factor from AdS/QCD and Light-Front Holography

Frascati

BaBar ISR

timelike

JLab

G deTeramond, sjb 
Preliminary

Ptwist 2 = 91%, Ptwist 4 = 3%, Ptwist 5 = 6%
 determined by the ⇢ mass, PDG widths. �⇢000 = �⇢00 .

q2(GeV2)



 

Timelike

Spacelike

q2(GeV2)

|q2F⇡(q2)|! (1� �)m2
⇢

log |F⇡(s)|

97



 

98

Meson Transition Form-Factors

[S. J. Brodsky, Fu-Guang Cao and GdT, arXiv:1005.39XX]

• Pion TFF from 5-dim Chern-Simons structure [Hill and Zachos (2005), Grigoryan and Radyushkin (2008)]

⇤
d4x

⇤
dz ⇥LMNPQAL�MAN�P AQ

⇤ (2⌅)4�(4) (p⇧ + q � k) F⇧�(q2)⇥µ⌅⌃⌥⇥µ(q)(p⇧)⌅⇥⌃(k)q⌥

• Take Az ⇧ �⇧(z)/z, �⇧(z) =
⌃

2Pqq ⇤ z2e�⇥2z2/2, ⌥�⇧|�⇧� = Pqq

• Find
�
⇧(x) =

⌦
3f⇧x(1� x), f⇧ =

⌃
Pqq ⇤/

⌦
2⌅

⇥

Q2F⇧�(Q2) =
4⌦
3

⇤ 1

0
dx

⇧(x)
1� x

⌅
1� e�PqqQ2(1�x)/4⇧2f2

� x
⇧

normalized to the asymptotic DA [Pqq = 1 ⌅ Musatov and Radyushkin (1997)]

• Large Q2 TFF is identical to first principles asymptotic QCD result Q2F⇧�(Q2 ⌅⌃) = 2f⇧

• The CS form is local in AdS space and projects out only the asymptotic form of the pion DA

LC 2011 2011, Dallas, May 23, 2011 Page 25
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G. de Teramond, 

sjb

Photon-to-pion transition form factor

qq̄ components.

The simple valence qq̄ model discussed above should thus be modified at small Q2

by introducing the dressed current. In the case of soft-wall potential, the EM bulk-to-

boundary propagator is

V (Q2, z) = �

⇤
1 +

Q2

4�2

⌅
U

⇤
Q2

4�2
, 0, �2z2

⌅
, (17)

where U(a, b, c) is the Tricomi confluent hypergeometric function. The modified current

V (Q2, z), (17), has the same boundary conditions as the free current (9), and reduces to

(9) in the limit Q2 ⇥ ⇤. Eq. (17) can be conveniently written in terms of the integral

representation [33]

V (Q2, z) = �2z2

⇧ 1

0

dx

(1� x)2
x

Q2

4�2 e�⇥2z2x/(1�x). (18)

Inserting the pion wave function (5) for twist ⇤ = 2 and the confined EM current (18)

in the amplitude (3) one finds

F⇤�(Q
2) =

Pqq̄

⇥2f⇤

⇧ 1

0

dx

(1 + x)2
xQ2Pqq̄/(8⇤2f2

⇥). (19)

Eq. (19) gives the same value for F⇤�(0) as (14) which was obtained with the free current.

Thus the anomaly result F⇤�(0) = 1/(4⇥2f⇤) is reproduced if Pqq̄ = 0.5 is also taken in

(19). Upon integration by parts, Eq. (19) can also be written as

Q2F⇤�(Q
2) = 8f⇤

⇧ 1

0

dx
1� x

(1 + x)3

�
1� xQ2Pqq̄/(8⇤2f2

⇥)
⇥

. (20)

Noticing that the second term in Eq. (20) vanishes at the limit Q2 ⇥ ⇤, one recovers

Brodsky-Lepage’s asymptotic prediction for the pion TFF: Q2F⇤�(Q2 ⇥⇤) = 2f⇤. [11]

The results calculated with (19) for Pqq̄ = 0.5 are shown as dashed curves in Figs. 1

and 2. One can see that the calculations with the dressed current are larger as compared

with the results computed with the free current and the experimental data at low- and

medium-Q2 regions (Q2 < 10 GeV2). The new results again disagree with BABAR’s data

at large Q2.

11

Lepage,  sjb



 

5 Non-Perturbative QCD Coupling From LF Holography
With A. Deur and S. J. Brodsky

• Consider five-dim gauge fields propagating in AdS5 space in dilaton background ⇧(z) = ⇤2z2

S = �1
4

�
d4x dz

⇧
g e⇥(z) 1

g2
5

G2

• Flow equation
1

g2
5(z)

= e⇥(z) 1
g2
5(0)

or g2
5(z) = e��2z2

g2
5(0)

where the coupling g5(z) incorporates the non-conformal dynamics of confinement

• YM coupling �s(⇥) = g2
Y M (⇥)/4⌅ is the five dim coupling up to a factor: g5(z)⌅ gY M (⇥)

• Coupling measured at momentum scale Q

�AdS
s (Q) ⇤

� ⇥

0
⇥d⇥J0(⇥Q)�AdS

s (⇥)

• Solution

�AdS
s (Q2) = �AdS

s (0) e�Q2/4�2
.

where the coupling �AdS
s incorporates the non-conformal dynamics of confinement

Hadron 2009, FSU, Tallahassee, December 1, 2009 Page 27

Running Coupling from  Modified AdS/QCD
Deur,  de Teramond, sjb
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Deur, Korsch, et al.
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1

Fig: Infrared conformal window ( from Deur et al., arXiv:0803.4119 )

From String to Things, INT, Seattle, April 10, 2008 Page 8

DSE  gluon  
couplings



 

Running Coupling from Light-Front Holography and AdS/QCD

�AdS
s (Q)/⇥ = e�Q2/4�2

�s(Q)
⇥

Deur,  de Teramond, sjb

 = 0.54 GeV

Analytic, defined at all scales, IR Fixed Point
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Sublimated gluons below 1 GeVAdS/QCD dilaton captures the higher twist corrections to  effective charges for Q < 1 GeV

e' = e+2z2



Chiral Features of Soft-Wall 
AdS/QCD Model

103

Sz = +1/2, Lz = 0;Sz = �1/2, Lz = +1

Jz = +1/2 :< Lz >= 1/2, < Sz
q = 0 >

• Boost Invariant

• Trivial LF vacuum! No condensate, but consistent with GMOR

• Massless Pion

• Hadron Eigenstates have LF Fock components of different Lz

• Proton: equal probability

• Self-Dual Massive Eigenstates: Proton is its own chiral partner.

• Label State by minimum L as in Atomic Physics

• Minimum L dominates at short distances               

• AdS/QCD Dictionary: Match to Interpolating Operator Twist at z=0.
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Gell-Mann Oakes Renner Formula in QCD

current algebra: 
effective pion field

QCD: composite  pion
Bethe-Salpeter Eq.

vacuum condensate actually is normal pion decay matrix element

Maris, Roberts, Tandy⇡� < 0|q̄�5q|⇡ >

m2
⇡ = � (mu + md)

f⇡
< 0|iq̄�5q|⇡ >

m2
⇡ = � (mu + md)

f2
⇡

< 0|q̄q|0 >
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AdS/QCD and Light-Front Holography

• AdS/QCD: Incorporates scale transformations 
characteristic of QCD with a single scale -- RGE

• Light-Front Holography; unique connection of 
AdS5 to Front-Form

• Profound connection between gravity in 5th 
dimension and physical 3+1 space time at fixed LF 
time τ

• Gives unique interpretation of z in AdS to 
physical variable ζ in 3+1 space-time
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In terms of the hadron four-momentum P =
(P+, P�, ⌦P⇤) with P± = P0 ± P3, the light-
front frame independent Hamiltonian for a
hadronic composite system HQCD

LC = PµPµ =
P�P+� ⌦P2

⇤, has eigenvalues given in terms of
the eigenmass M squared corresponding to
the mass spectrum of the color-singlet states
in QCD,

HQCD
LC |�h⇧ =M2

h |�h⇧

Fig. 6. A few selected matrix elements of the QCD front form Hamiltonian H"P
!

in LB-convention.

10. For the instantaneous fermion lines use the factor ¼
"

in Fig. 5 or Fig. 6, or the corresponding
tables in Section 4. For the instantaneous boson lines use the factor ¼

#
.

The light-cone Fock state representation can thus be used advantageously in perturbation
theory. The sum over intermediate Fock states is equivalent to summing all x!-ordered diagrams
and integrating over the transverse momentum and light-cone fractions x. Because of the restric-
tion to positive x, diagrams corresponding to vacuum fluctuations or those containing backward-
moving lines are eliminated.

3.4. Example 1: ¹he qqN -scattering amplitude

The simplest application of the above rules is the calculation of the electron—muon scattering
amplitude to lowest non-trivial order. But the quark—antiquark scattering is only marginally more
difficult. We thus imagine an initial (q, qN )-pair with different flavors fOfM to be scattered off each
other by exchanging a gluon.

Let us treat this problem as a pedagogical example to demonstrate the rules. Rule 1: There are
two time-ordered diagrams associated with this process. In the first one the gluon is emitted by the
quark and absorbed by the antiquark, and in the second it is emitted by the antiquark and
absorbed by the quark. For the first diagram, we assign the momenta required in rule 2 by giving
explicitly the initial and final Fock states

!q, qN "" 1

!n
$

%$

!
$!"

b!
$"

(k
&
, #

&
)d!

$"M
(k

&N
, #

&N
)!0" , (3.29)

!q$, qN $"" 1

!n
$

%$
!
$!"

b!
$"

(k$
&
, #$

&
)d!

$"M
(k$

&N
, #$

&N
)!0" , (3.30)

338 S.J. Brodsky et al. / Physics Reports 301 (1998) 299—486

Fig. 2. The Hamiltonian matrix for a SU(N)-meson. The matrix elements are represented by energy diagrams. Within
each block they are all of the same type: either vertex, fork or seagull diagrams. Zero matrices are denoted by a dot ( ) ).
The single gluon is absent since it cannot be color neutral.

mass or momentum scale Q. The corresponding wavefunction will be indicated by corresponding
upper scripts,

!!""
!#"

(x
#
, k

!
, !

#
) or !!$"

!#"
(x

#
, k

!
, !

#
) . (3.15)

Consider a pion in QCD with momentum P"(P%, P
!
) as an example. It is described by

"# : P$" $
!
!%&
!d[%

!
]"n : x

#
P%, k

!#
#x

#
P
!
, !

#
$!

!#!(x#
, k

!#
, !

#
) , (3.16)

where the sum is over all Fock space sectors of Eq. (3.7). The ability to specify wavefunctions
simultaneously in any frame is a special feature of light-cone quantization. The light-cone
wavefunctions !

!#! do not depend on the total momentum, since x
#
is the longitudinal momentum

fraction carried by the i"# parton and k
!#

is its momentum “transverse” to the direction of the
meson; both of these are frame-independent quantities. They are the probability amplitudes to find
a Fock state of bare particles in the physical pion.

More generally, consider a meson in SU(N). The kernel of the integral equation (3.14) is
illustrated in Fig. 2 in terms of the block matrix &n : x

#
, k

!#
, !

#
"H"n' : x'

#
, k'

!#
, !'

#
$. The structure of this

matrix depends of course on the way one has arranged the Fock space, see Eq. (3.7). Note that most
of the block matrix elements vanish due to the nature of the light-cone interaction as defined in
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Heisenberg Equation

Light-Front QCD

BLFQ: Use AdS/QCD basis functions!
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Basis Light-Front Quantization Approach 
to  Quantum Field Theory

Use AdS/QCD orthonormal Light Front Wavefunctions
as a basis for diagonalizing the QCD LF Hamiltonian

• Good initial approximation

• Better than plane wave basis

• DLCQ discretization -- highly successful 1+1

• Use independent HO LFWFs, remove CM motion

• Similar to Shell Model calculations

• Hamiltonian light-front field theory within an AdS/QCD basis. 

BLFQ • Xingbo Zhao 
• Anton Ilderton, 
• Heli Honkanen
• Pieter Maris, 
• James Vary
• Stan Brodsky



 

Set of transverse 2D HO modes for n = 1
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108



 
May 21, 2013       LC2013  Stan BrodskyAdS/QCD & LF-Holography

109

Hadronization at the Amplitude Level
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Construct helicity amplitude using Light-Front Perturbation 
theory;   coalesce quarks via LFWFs
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Off -Shell  T-Matrix

• Quarks and Gluons Off-Shell

• LFPth:  Minimal Time-Ordering Diagrams-Only positive k+

• Jz Conservation at every vertex 

•  Frame-Independent

• Cluster Decomposition

• “History”-Numerator structure universal

• Renormalization- alternate denominators

• LFWF takes Off-shell to On-shell

• Tested in QED: g-2 to three loops
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Event amplitude generator

Roskies, Suaya, sjb

Chueng Ji, sjb
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• Same principle as antihydrogen production: off-shell coalescence

• coalescence to hadron favored at equal rapidity, small transverse 
momenta

• leading heavy hadron production:  D and B mesons produced at 
large z

• hadron helicity conservation if  hadron LFWF has Lz =0

• Baryon AdS/QCD LFWF has aligned and anti-aligned quark spin

Features of  LF   T-Matrix Formalism
“Event Amplitude Generator”

P+, ↵P+

xiP
+, xi

↵P⇤+ ↵k⇤i

ẑ

↵L = ↵R⇥ ↵P

↵Li = (xi
↵R⇤+↵b⇤i)⇥ ↵P

↵⇧i = ↵b⇤i ⇥ ↵k⇤i

↵⇧i = ↵Li � xi
↵R⇤ ⇥ ↵P = ↵b⇤i ⇥ ↵P

P+ = P0 + Pz

xi = k+

P+ = k0+k3

P0+Pz

⇧(⌅, b⇤)

⇥ = d�s(Q2)
d lnQ2 < 0

u

ū

E⇥ = E � ⇤, q

A(⇤,�⇤) = 1
2⇥

�
d�e

i
2⇤�M(�,�⇤)

P+, P⇤

xiP
+, xi

P⇤+ k⇤i

� = Q2

2p·q

ẑ

L = R⇥ P

Li = (xi
R⇤+b⇤i)⇥ P
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Hadronization at the Amplitude Level
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Construct helicity amplitude using Light-Front Perturbation theory;   
coalesce quarks via LFWFs
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Hadronization at the Amplitude Level
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Construct helicity amplitude using Light-Front Perturbation theory;   
coalesce quarks via LFWFs

No gluons
AdS/QCD 
potential

Only Hadrons can Appear!
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O = C(↵s(Q⇤2)) + D(
m2

q

Q2
) + E(

⇤2
QCD

Q2
) + F (

⇤2
QCD

m2
Q

) + G(
m2

q

m2
Q

)

BLM/PMC: Absorb β-terms into running coupling

QCD Observables

Scale-Free 
Conformal Series

Running Coupling
Effects

O = C(↵s(µ
2
0)) + B(� log

Q2

µ2
0

) + D(
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Intrinsic Heavy 
Quarks

Higher Twist from 
Hadron Dynamics

Light by Light 
Loops

Principle of Maximum Conformality

114



 
May 21, 2013       LC2013  Stan BrodskyAdS/QCD & LF-Holography

115

Principle of Maximum Conformality Xing-Gang Wu, Matin Mojaza 
Leonardo  di Giustino, SJB

Shift scale of αs to µPMC
R to eliminate {βR

i }− terms

Conformal Series

Choose renormalization scheme; e.g. αR
s (µ

init
R )

Choose µinit
R ; arbitrary initial renormalization scale

Identify {βR
i }− terms using nf − terms

through the PMC −BLM correspondence principle

Result is independent of µinit
R and scheme at fixed order

No renormalization scale ambiguity!

Result is independent of 
Renormalization scheme 

and initial scale!

Same as QED Scale Setting

Apply to Evolution kernels, 
hard subprocesses

Eliminates unnecessary systematic uncertainty

PMC/BLM

Set multiple renormalization scales -- 
Lensing, DGLAP, ERBL Evolution ...

�-scheme

automatically identifies

QCD � function terms



 
May 21, 2013       LC2013  Stan BrodskyAdS/QCD & LF-Holography

116

Small value of  renormalization scale  increases asymmetry

g

Xing-Gang Wu, sjb

Interferes with Born term. 

Contributes to the p̄p! ¯ttX asymmetry at the Tevatron

t

t̄



 

Eliminating the Renormalization Scale Ambiguity for Top-Pair Production 
Using the ‘Principle of Maximum Conformality’ (PMC)

Xing-Gang Wu 
 SJB

tt̄ asymmetry predicted by pQCD NNLO within
1 � of CDF/D0 measurements using PMC/BLM scale setting

Conventional: guess for 
renormalization scale and range

Experimental asymmetry

PMC Prediction

117
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An analytic first approximation to QCD

• As Simple as Schrödinger Theory in Atomic Physics

• LF radial variable  ζ conjugate to invariant mass squared

• Relativistic, Frame-Independent, Color-Confining

• Unique confining potential!

• QCD Coupling at all scales: Essential for Gauge Link 
phenomena

• Hadron Spectroscopy and Dynamics from one parameter 

• Wave Functions, Form Factors, Hadronic Observables, 
Constituent Counting Rules

• Insight into QCD Condensates: Zero cosmological constant!

• Systematically improvable with DLCQ-BLFQ Methods

AdS/QCD + Light-Front Holography 
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Light-Front Holography AdS/QCD
Soft-Wall  Model

⇥
� d2

d⇣2
+

1� 4L2

4⇣2
+ U(⇣)

⇤
 (⇣) =M2 (⇣)

Conformal Symmetry
of the action  

U(⇣) = 4⇣2 + 22(L + S � 1)

Exploring QCD, Cambridge, August 20-24, 2007 Page 9

Confinement scale:    ' 0.5 GeV
1/ ' 0.4 fm

Light-Front Schrödinger Equation
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LF(3+1)                AdS5
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Light Front Holography: Unique mapping derived from equality 
of LF and AdS formulae for bound-states and  form factors

⇤(x, �) =
�

x(1� x)��1/2⇥(�)

de Teramond, sjb

Light-Front Holography 
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String Theory

AdS/CFT

Semi-Classical QCD / Wave Equations

Mapping of  Poincare’ and Conformal 
SO(4,2) symmetries of 3+1 space 

to  AdS5 space

Integrable!

Boost Invariant 3+1 Light-Front Wave Equations

Hadron Spectra, Wavefunctions, Dynamics

AdS/QCD

Conformal behavior at short distances
+ Confinement at large distance

Counting rules for Hard Exclusive 
Scattering

Regge Trajectories

Holography

Integrable! J =0,1,1/2,3/2 plus L

Goal: First Approximant to QCD

QCD at the Amplitude Level

121
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Light-Front Schrödinger Equation
�
� d2

d2�
+ V (�)

⇥
=M2⇥(�)

�
� d2

d�2 + V (�)
⇥
=M2⇥(�)

�2 = x(1� x)b2
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i +
⇤n�1

i=1 ⌥z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Relativistic LF single-variable radial 
equation for QCD & QED

G. de Teramond, sjb 
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Frame Independent!

122

U is the exact QCD potential 
Conjecture: ‘H’-diagrams generate 

U(�, S, L) = ⇥2�2 + ⇥2(L + S � 1/2)



 
May 21, 2013       LC2013  Stan BrodskyAdS/QCD & LF-Holography

123

Light-Front Holography AdS/QCD
Soft-Wall  Model

⇥
� d2

d⇣2
+

1� 4L2

4⇣2
+ U(⇣)

⇤
 (⇣) =M2 (⇣)

Conformal Symmetry
of the action  

U(⇣) = 4⇣2 + 22(L + S � 1)

Exploring QCD, Cambridge, August 20-24, 2007 Page 9

Confinement scale:    ' 0.5 GeV
1/ ' 0.4 fm

Light-Front Schrödinger Equation



 

QCD Lagrangian

Hadron  Masses and Observables

Lattice Gauge Theory Light-Front Hamiltonian

DLCQ/ BLFQ

 Predict Hadron Properties from First Principles!

Effective Field Theory 
Methods

SCET, ChPT, ...

PQCD
Evolution Equations

Counting Rules

AdS/QCD!

Bound-State 
Dynamics!

Confinement!

Light-Front 
Holography

Conformal 
Invariance
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Basis Light-Front Quantization Approach 
to  Quantum Field Theory

Use AdS/QCD orthonormal Light Front Wavefunctions
as a basis for diagonalizing the QCD LF Hamiltonian

• Good initial approximation

• Better than plane wave basis

• DLCQ discretization -- highly successful 1+1

• Use independent HO LFWFs, remove CM motion

• Similar to Shell Model calculations

• Hamiltonian light-front field theory within an AdS/QCD basis. 

BLFQ • Xingbo Zhao 
• Anton Ilderton, 
• Heli Honkanen
• Pieter Maris, 
• James Vary
• Stan Brodsky
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Solving nonperturbative QCD using the  Front Form

• Heisenberg: Diagonalize the QCD LF Hamiltonian

• DLCQ: Complete solutions QCD(1+1): any number of colors, flavors, quark masses

• AdS/QCD and Light-Front Holography: Soft-Wall Model predicts light-quark 
spectrum and dynamics     de Teramond, sjb

• BFLQ: Use AdS/QCD orthonormal basis functions

• RGPEP: Systematically reduce off-diagonal elements; RG equations which evolve 
LFQCD in scale

• Reduce QCD to equation for LF valence state with effective potential 

• Reduce QCD to one dimensional LF Schrödinger Equation in radial coordinate 
conjugate to the invariant mass.

• Lippmann-Schwinger expansion in ΔU = UQCD-UAdS  Hiller-sjb

• Cluster expansion methods

Glazek

Vary, Maris. et al 

Hiller-Chabysheva

Hornbostel, Pauli, sjb

de Teramond, sjb

Pauli
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Features of  AdS/QCD LF Holography

• Based on Conformal Scaling of Infrared QCD Fixed Point

• Conformal template: Use isometries of AdS5

• Interpolating operator of hadrons based on twist, superfield 
dimensions

• Finite Nc = 3: Baryons built on q +(qq) -- Large Nc limit not 
required

• Break Conformal symmetry with dilaton

• Dilaton introduces confinement -- positive exponent

• Effective Charge from AdS/QCD at all scales

• Conformal Dimensional Counting Rules for Hard Exclusive 
Processes
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New Directions

• Hadronization at the Amplitude Level

• LF Confinement potential and LFWFs predicted

• Eliminate Factorization Scale: Fracture function determines off-shellness

• Eliminate Renormalization Scale Ambiguity: Principle of Maximal 
Conformality (PMC)

• Exclusive Channels: PQCD Gluon exchange versus Soft Interactions

• Different mechanisms at x \to 1 and high k_\perp

• Massive quark spectroscopy

• Sublimated Gluons: Gluons appear at high virtuality

• Hidden Color of Nuclear Wavefunctions

• Duality: connection to DIS at high x
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c

c

c̄

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0
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