Example: Two-parton Pion LFWF

• Hard-Wall Model (P-S)

$$\tilde{\psi}_{\overline{q}q/\pi}^{HW}(x,\mathbf{b}_{\perp}) = \frac{\Lambda_{\rm QCD}\sqrt{x(1-x)}}{\sqrt{\pi}J_{1+L}(\beta_{L,k})} J_L\left(\sqrt{x(1-x)} \,|\,\mathbf{b}_{\perp}|\beta_{L,k}\Lambda_{\rm QCD}\right) \theta\left(\mathbf{b}_{\perp}^2 \le \frac{\Lambda_{\rm QCD}^{-2}}{x(1-x)}\right)$$

• Soft-Wall Model (K-K-S-S)

$$\tilde{\psi}_{\overline{q}q/\pi}^{SW}(x,\mathbf{b}_{\perp}) = \kappa^{L+1} \sqrt{\frac{2n!}{(n+L)!}} \left[x(1-x) \right]^{\frac{1}{2}+L} |\mathbf{b}_{\perp}|^{L} e^{-\frac{1}{2}\kappa^{2}x(1-x)\mathbf{b}_{\perp}^{2}} L_{n}^{L} \left(\kappa^{2}x(1-x)\mathbf{b}_{\perp}^{2}\right)$$

Fig: Ground state pion LFWF in impact space: (a) HW model $\Lambda_{\rm QCD} = 0.32$ GeV, (b) SW model $\kappa = 0.375$ GeVJTI Workshop ANLAdS/QCD and LF HolographyStan BrodskyApril 16, 200945

Example: Evaluation of QCD Matrix Elements

• Pion decay constant f_{π} defined by the matrix element of EW current J_W^+ :

$$\left\langle 0 \left| \overline{\psi}_u \gamma^+ \frac{1}{2} (1 - \gamma_5) \psi_d \right| \pi^- \right\rangle = i \frac{P^+ f_\pi}{\sqrt{2}}$$

with

$$\left|\pi^{-}\right\rangle = \left|d\overline{u}\right\rangle = \frac{1}{\sqrt{N_{C}}} \frac{1}{\sqrt{2}} \sum_{c=1}^{N_{C}} \left(b_{c\ d\downarrow}^{\dagger} d_{c\ u\uparrow}^{\dagger} - b_{c\ d\uparrow}^{\dagger} d_{c\ u\downarrow}^{\dagger}\right) \left|0\right\rangle.$$

• Find light-front expression (Lepage and Brodsky '80):

$$f_{\pi} = 2\sqrt{N_C} \int_0^1 dx \int \frac{d^2 \vec{k}_{\perp}}{16\pi^3} \,\psi_{\bar{q}q/\pi}(x,k_{\perp}).$$

- Using relation between AdS modes and QCD LFWF in the $\zeta \rightarrow 0$ limit

$$f_{\pi} = \frac{1}{8} \sqrt{\frac{3}{2}} R^{3/2} \lim_{\zeta \to 0} \frac{\Phi(\zeta)}{\zeta^2}$$

• Holographic result ($\Lambda_{\rm QCD} = 0.22$ GeV and $\kappa = 0.375$ GeV from pion FF data): Exp: $f_{\pi} = 92.4$ MeV

$$f_{\pi}^{HW} = \frac{\sqrt{3}}{8J_1(\beta_{0,k})} \Lambda_{\text{QCD}} = 91.7 \text{ MeV}, \ f_{\pi}^{SW} = \frac{\sqrt{3}}{8} \kappa = 81.2 \text{ MeV},$$

JTI Workshop ANL April 16, 2009

AdS/QCD and LF Holography

Stan Brodsky SLAC

Prediction from AdS/CFT: Meson LFWF

$$\psi_M(x,k_\perp) = \frac{4\pi}{\kappa\sqrt{x(1-x)}} e^{-\frac{k_\perp^2}{2\kappa^2 x(1-x)}} \quad \phi_M(x,Q_0) \propto \sqrt{x(1-x)}$$

Connection of Confinement to TMDs

JTI Workshop ANL April 16, 2009

AdS/QCD and LF Holography

Gravitational Form Factor of Composite Hadrons

• Gravitational FF defined by matrix elements of the energy momentum tensor $\Theta^{++}(x)$

$$\left\langle P' \left| \Theta^{++}(0) \right| P \right\rangle = 2 \left(P^{+} \right)^{2} A(Q^{2})$$

• $\Theta^{\mu\nu}$ is computed for each constituent in the hadron from the QCD Lagrangian

$$\mathcal{L}_{\text{QCD}} = \overline{\psi} \left(i \gamma^{\mu} D_{\mu} - m \right) \psi - \frac{1}{4} G^{a}_{\mu\nu} G^{a\,\mu\nu}$$

• Symmetric and gauge invariant $\Theta^{\mu\nu}$ from variation of $S_{\rm QCD} = \int d^4x \sqrt{g} \mathcal{L}_{\rm QCD}$ with respect to four-dim Minkowski metric $g_{\mu\nu}$, $\Theta^{\mu\nu}(x) = -\frac{2}{\sqrt{g}} \frac{\delta S_{\rm QCD}}{\delta g_{\mu\nu}(x)}$:

$$\Theta^{\mu\nu} = \frac{1}{2}\overline{\psi}i(\gamma^{\mu}D^{\nu} + \gamma^{\nu}D^{\mu})\psi - g^{\mu\nu}\overline{\psi}(iD - m)\psi - G^{a\,\mu\lambda}G^{a\,\nu}{}_{\lambda} + \frac{1}{4}g^{\mu\nu}G^{a\,\mu\nu}_{\mu\nu}G^{a\,\mu\nu}$$

• Quark contribution in light front gauge ($A^+ = 0, g^{++} = 0$)

$$\Theta^{++}(x) = \frac{i}{2} \sum_{f} \overline{\psi}^{f}(x) \gamma^{+} \overleftrightarrow{\partial}^{+} \psi^{f}(x)$$

JTI Workshop ANL April 16, 2009

AdS/QCD and LF Holography

Stan Brodsky SLAC

• Particle number representation

$$\Theta^{++} = \frac{1}{2} \sum_{f} \int \frac{dq^{+} d^{2} \mathbf{q}_{\perp}}{(2\pi)^{3}} \int \frac{dq'^{+} d^{2} \mathbf{q}'_{\perp}}{(2\pi)^{3}} \left(q^{+} + q'^{+}\right) \left\{b^{f\dagger}(q)b^{f}(q') + d^{f\dagger}(q)d^{f}(q')\right\}$$

• Gravitational form-factor in momentum space

$$A(q^2) = \sum_{n} \int \left[dx_i \right] \left[d^2 \mathbf{k}_{\perp i} \right] \sum_{f} x_f \, \psi_{n/P'}^*(x_i, \mathbf{k}'_{\perp i}) \psi_{n/P}(x_i, \mathbf{k}_{\perp i}),$$

where $\mathbf{k}'_{\perp i} = \mathbf{k}_{\perp i} + (1 - x_i) \mathbf{q}_{\perp}$ for a struck quark and $\mathbf{k}'_{\perp i} = \mathbf{k}_{\perp i} - x_i \mathbf{q}_{\perp}$ for each spectator

Gravitational form-factor in impact space

$$A(q^2) = \sum_{n} \prod_{j=1}^{n-1} \int dx_j d^2 \mathbf{b}_{\perp j} \sum_{f} x_f \exp\left(i\mathbf{q}_{\perp} \cdot \sum_{j=1}^{n-1} x_j \mathbf{b}_{\perp j}\right) \left|\tilde{\psi}_n(x_j, \mathbf{b}_{\perp j})\right|^2$$

JTI Workshop ANL April 16, 2009

AdS/QCD and LF Holography

Stan Brodsky SLAC

Gravitational Form Factor on the LF

$$A_{\mathbf{f}}(q^2) = \int_0^1 \mathbf{x} dx \int d^2 \vec{\eta}_{\perp} e^{i\vec{\eta}_{\perp} \cdot \vec{q}_{\perp}} \tilde{\rho}(x, \vec{\eta}_{\perp}),$$

where

$$\tilde{\rho}(x, \vec{\eta}_{\perp}) = \int \frac{d^2 \vec{q}_{\perp}}{(2\pi)^2} e^{-i\vec{\eta}_{\perp} \cdot \vec{q}_{\perp}} \rho(x, \vec{q}_{\perp})$$

$$= \sum_{n} \prod_{j=1}^{n-1} \int dx_j \, d^2 \vec{b}_{\perp j} \, \delta \left(1 - x - \sum_{j=1}^{n-1} x_j \right)$$

$$\times \delta^{(2)} \left(\sum_{j=1}^{n-1} x_j \vec{b}_{\perp j} - \vec{\eta}_{\perp} \right) \left| \tilde{\psi}_n(x_j, \vec{b}_{\perp j}) \right|^2.$$

Extra factor of x relativ to charge form factor

For each quark and gluon field x=x_f

Integrate over angle

$$\begin{aligned} A(q^2) &= 2\pi \int_0^1 dx \, (1-x) \int \zeta d\zeta \, J_0 \left(\zeta q \sqrt{\frac{1-x}{x}} \right) \tilde{\rho}(x,\zeta) \\ \zeta &= \sqrt{\frac{x}{1-x}} \left| \sum_{j=1}^{n-1} x_j \mathbf{b}_{\perp j} \right| \end{aligned}$$

JTI Workshop ANL April 16, 2009

AdS/QCD and LF Holography

Gravitational Form Factor in Ads space

• Hadronic gravitational form-factor in AdS space

$$A_{\pi}(Q^{2}) = R^{3} \int \frac{dz}{z^{3}} H(Q^{2}, z) |\Phi_{\pi}(z)|^{2},$$
 Abidin & Carlson

where $H(Q^2,z)=\frac{1}{2}Q^2z^2K_2(zQ)$

• Use integral representation for ${\cal H}(Q^2,z)$

$$H(Q^2, z) = 2\int_0^1 x \, dx \, J_0\left(zQ\sqrt{\frac{1-x}{x}}\right)$$

Write the AdS gravitational form-factor as

$$A_{\pi}(Q^2) = 2R^3 \int_0^1 x \, dx \int \frac{dz}{z^3} \, J_0\left(zQ\sqrt{\frac{1-x}{x}}\right) \, |\Phi_{\pi}(z)|^2$$

Compare with gravitational form-factor in light-front QCD for arbitrary Q

$$\tilde{\psi}_{q\overline{q}/\pi}(x,\zeta)\Big|^2 = \frac{R^3}{2\pi} x(1-x) \frac{|\Phi_{\pi}(\zeta)|^2}{\zeta^4},$$

Identical to LF Holography obtained from electromagnetic current

JTI Workshop ANL April 16, 2009

AdS/QCD and LF Holography

The Ads Gravitational Form Factor

Abidin & Carlson

SLAC

$$ds^{2} = \frac{R^{2}}{z^{2}} \left((\eta_{\mu\nu} + h_{\mu\nu}) dx^{\mu} dx^{\nu} - dz^{2} \right).$$
 linearized metric

$$h_{zz} = h_{z\mu} = 0$$
 gauge choice

 $\int d^4x \, dz \, \sqrt{g} \, h^{\ell m}(x,z) \partial_\ell \Phi^*_{P'}(x,z) \partial_m \Phi_P(x,z) \qquad \text{gravitational coupling}$

$$z^{3}\partial_{z}\left(\frac{1}{z^{3}}\partial_{z}h_{\mu}^{\nu}\right) - \partial_{\rho}\partial^{\rho}h_{\mu}^{\nu} = 0.$$
 eqn. of motion from action

propagation of graviton into AdS from external source

$$\begin{aligned} h^{\nu}_{\mu}(x,z) &= \eta^{\nu}_{\mu} \, e^{-iq \cdot x} H(q^2,z) & H(q^2=0,z) = H(q^2,z=0) = 1. \\ H(Q^2,z) &= \frac{1}{2} Q^2 z^2 K_2(zQ). & \text{solution!} \\ A(Q^2) &= R^3 \int \frac{dz}{z^3} \, \Phi(z) H(Q^2,z) \Phi(z). \\ \text{IWorkshop ANL} & \text{AdS/QCD and LF Holography} & \text{Stan Brodsky} \end{aligned}$$

52

April 16, 2009

Holographic result for LFWF identical for electroweak and gravity couplings! Highly nontrivial consistency test

Ads/QCD can predict

- Momentum fractions for each quark flavor and the gluons $A_f(0) = \langle x_f \rangle, \sum A_f(0) = A(0) = 1$
- Orbital Angular Momentum for each quark flavor and the gluons $B_f(0) = \langle L_f^3 \rangle, \sum B_f(0) = B(0) = 0$
- Vanishing Anomalous Gravitomagnetic Moment
- Shape and Asymptotic Behavior of $A_f(Q^2), B_f(Q^2)$

JTI Workshop ANL April 16, 2009

AdS/QCD and LF Holography

Stan Brodsky SLAC

Momentum Density more Compact than Charge Density

Z. Abidin and C. E. Carlson, "Hadronic Momentum Densities in the Transverse arXiv:0808.3097 [hep-ph].

Immediate property of LF Holography

$$\psi_M(x,k_{\perp}) = \frac{4\pi}{\kappa\sqrt{x(1-x)}} F(\frac{k_{\perp}^2}{2\kappa^2 x(1-x)})$$

Hadron Dístríbutíon Amplítudes

- Fundamental gauge invariant non-perturbative input to hard exclusive processes, heavy hadron decays. Defined for Mesons, Baryons
- Evolution Equations from PQCD, OPE, Conformal Invariance

Lepage, sjb Efremov, Radyushkin. Sachrajda, Frishman Lepage, sjb

Braun, Gardi

• Compute from valence light-front wavefunction in lightcone gauge $\int_{-\infty}^{Q} t^{2} \vec{t} + (t - \vec{t})$

$$\phi_M(x,Q) = \int^Q d^2 \vec{k} \ \psi_{q\bar{q}}(x,\vec{k}_\perp)$$

JTI Workshop ANL April 16, 2009

AdS/QCD and LF Holography

Lepage, sjb

C. Ji, A. Pang, D. Robertson, sjb Choi, Ji

$$F_{\pi}(Q^{2}) = \int_{0}^{1} dx \phi_{\pi}(x) \int_{0}^{1} dy \phi_{\pi}(y) \frac{16\pi C_{F} \alpha_{V}(Q_{V})}{(1-x)(1-y)Q^{2}}$$

AdS/CFT:

Increases PQCD leading twist prediction for $F_{\pi}(Q^2)$ by factor 16/9

JTI Workshop ANL April 16, 2009

AdS/QCD and LF Holography

Stan Brodsky SLAC

Second Moment of Pion Distribution Amplitude

$$<\xi^2>=\int_{-1}^1 d\xi \ \xi^2\phi(\xi)$$

$$\xi = 1 - 2x$$

Lattice (I) $<\xi^2>_{\pi}=0.28\pm0.03$

Lattice (II) $\langle \xi^2 \rangle_{\pi} = 0.269 \pm 0.039$

$$<\xi^2>_{\pi}=1/5=0.20$$
 $\phi_{asympt} \propto x(1-x)$
 $<\xi^2>_{\pi}=1/4=0.25$ $\phi_{AdS/QCD} \propto \sqrt{x(1-x)}$

Donnellan et al.

Stan Brodsky SLAC

JTI Workshop ANL April 16, 2009

AdS/QCD and LF Holography

Diffractive Dissociation of Pion into Quark Jets

E791 Ashery et al.

Measure Light-Front Wavefunction of Pion Minimal momentum transfer to nucleus Nucleus left Intact!

JTI Workshop ANL April 16, 2009

AdS/QCD and LF Holography

Stan Brodsky SLAC

E791 FNAL Diffractive DiJet

Gunion, Frankfurt, Mueller, Strikman, sjb Frankfurt, Miller, Strikman

Two-gluon exchange measures the second derivative of the pion light-front wavefunction

JTI Workshop ANL April 16, 2009

AdS/QCD and LF Holography

Stan Brodsky SLAC

Key Ingredients in E791 Experiment

Brodsky Mueller Frankfurt Miller Strikman

Small color-dípole moment píon not absorbed; interacts with <u>each</u> nucleon coherently <u>QCD COLOR Transparency</u>

JTI Workshop ANL April 16, 2009

AdS/QCD and LF Holography

Stan Brodsky SLAC

Color Transparency

Bertsch, Gunion, Goldhaber, sjb A. H. Mueller, sjb

- Fundamental test of gauge theory in hadron physics
- Small color dipole moments interact weakly in nuclei
- Complete coherence at high energies
- Clear Demonstration of CT from Diffractive Di-Jets

JTI Workshop ANL April 16, 2009

AdS/QCD and LF Holography

- Fully coherent interactions between pion and nucleons.
- Emerging Di-Jets do not interact with nucleus.

JTI Workshop ANL April 16, 2009

AdS/QCD and LF Holography

Stan Brodsky SLAC

E791 Diffractive Di-Jet transverse momentum distribution

JTI Workshop ANL April 16, 2009

AdS/QCD and LF Holography

Stan Brodsky SLAC

Narrowing of x distribution at higher jet transverse momentum

x distribution of diffractive dijets from the platinum target for $1.25 \le k_t \le 1.5 \text{ GeV}/c$ (left) and for $1.5 \le k_t \le 2.5 \text{ GeV}/c$ (right). The solid line is a fit to a combination of the asymptotic and CZ distribution amplitudes. The dashed line shows the contribution from the asymptotic function and the dotted line that of the CZ function.

Possibly two components: Nonperturbative (AdS/CFT) and Perturbative (ERBL) $\phi(x) \propto \sqrt{x(1-x)}$ Evolution to asymptotic distribution

JTI Workshop ANL April 16, 2009

AdS/QCD and LF Holography

Stan Brodsky SLAC

Ashery E791

Possibly two components: Perturbative (ERBL) + Nonperturbative (AdS/CFT)

$$\phi(x) = A_{\text{pert}}(k_{\perp}^2)x(1-x) + B_{\text{nonpert}}(k_{\perp}^2)\sqrt{x(1-x)}$$

Narrowing of x distribution at high jet transverse momentum

JTI Workshop ANL April 16, 2009

AdS/QCD and LF Holography

Stan Brodsky SLAC

Note: Contributions to Mesons Form Factors at Large Q in AdS/QCD

• Write form factor in terms of an effective partonic transverse density in impact space ${f b}_\perp$

$$F_{\pi}(q^2) = \int_0^1 dx \int db^2 \,\widetilde{\rho}(x, b, Q),$$

with $\widetilde{\rho}(x, b, Q) = \pi J_0 \left[b Q(1-x) \right] |\widetilde{\psi}(x, b)|^2$ and $b = |\mathbf{b}_{\perp}|$.

• Contribution from $\rho(x, b, Q)$ is shifted towards small $|\mathbf{b}_{\perp}|$ and large $x \to 1$ as Q increases.

Fig: LF partonic density $\rho(x, b, Q)$: (a) Q = 1 GeV/c, (b) very large Q.

JTI Workshop ANL April 16, 2009

AdS/QCD and LF Holography

Stan Brodsky SLAC

Baryons Spectrum in "bottom-up" holographic QCD
 GdT and Sjb hep-th/0409074, hep-th/0501022.

See also T. Sakai and S. Sugimoto

Baryons ín Ads/CFT

• Action for massive fermionic modes on AdS_{d+1} :

$$S[\overline{\Psi}, \Psi] = \int d^{d+1}x \sqrt{g} \,\overline{\Psi}(x, z) \left(i\Gamma^{\ell}D_{\ell} - \mu\right) \Psi(x, z).$$

• Equation of motion: $\left(i\Gamma^{\ell}D_{\ell}-\mu\right)\Psi(x,z)=0$

$$\left[i\left(z\eta^{\ell m}\Gamma_{\ell}\partial_m + \frac{d}{2}\Gamma_z\right) + \mu R\right]\Psi(x^{\ell}) = 0.$$

JTI Workshop ANL April 16, 2009

AdS/QCD and LF Holography

Stan Brodsky SLAC

Baryons

Holographic Light-Front Integrable Form and Spectrum

• In the conformal limit fermionic spin- $\frac{1}{2}$ modes $\psi(\zeta)$ and spin- $\frac{3}{2}$ modes $\psi_{\mu}(\zeta)$ are two-component spinor solutions of the Dirac light-front equation

$$\alpha \Pi(\zeta) \psi(\zeta) = \mathcal{M} \psi(\zeta),$$

where $H_{LF} = \alpha \Pi$ and the operator

$$\Pi_L(\zeta) = -i\left(\frac{d}{d\zeta} - \frac{L + \frac{1}{2}}{\zeta}\gamma_5\right),\,$$

and its adjoint $\Pi^{\dagger}_{L}(\zeta)$ satisfy the commutation relations

$$\left[\Pi_L(\zeta), \Pi_L^{\dagger}(\zeta)\right] = \frac{2L+1}{\zeta^2} \gamma_5.$$

JTI Workshop ANL April 16, 2009

AdS/QCD and LF Holography

Stan Brodsky SLAC

• Note: in the Weyl representation ($i\alpha = \gamma_5\beta$)

$$i\alpha = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}, \qquad \beta = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}, \qquad \gamma_5 = \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix}.$$

• Baryon: twist-dimension 3 + L ($\nu = L + 1$)

$$\mathcal{O}_{3+L} = \psi D_{\{\ell_1} \dots D_{\ell_q} \psi D_{\ell_{q+1}} \dots D_{\ell_m\}} \psi, \quad L = \sum_{i=1}^m \ell_i.$$

Solution to Dirac eigenvalue equation with UV matching boundary conditions

$$\psi(\zeta) = C\sqrt{\zeta} \left[J_{L+1}(\zeta \mathcal{M})u_+ + J_{L+2}(\zeta \mathcal{M})u_- \right].$$

Baryonic modes propagating in AdS space have two components: orbital L and L + 1.

• Hadronic mass spectrum determined from IR boundary conditions

$$\psi_{\pm} \left(\zeta = 1 / \Lambda_{\rm QCD} \right) = 0,$$

given by

$$\mathcal{M}_{\nu,k}^{+} = \beta_{\nu,k} \Lambda_{\text{QCD}}, \quad \mathcal{M}_{\nu,k}^{-} = \beta_{\nu+1,k} \Lambda_{\text{QCD}},$$

with a scale independent mass ratio.

JTI Workshop ANL April 16, 2009

AdS/QCD and LF Holography

Stan Brodsky SLAC

Fig: Light baryon orbital spectrum for Λ_{QCD} = 0.25 GeV in the HW model. The **56** trajectory corresponds to L even P = + states, and the **70** to L odd P = - states.

JTI Workshop ANL April 16, 2009

AdS/QCD and LF Holography

Stan Brodsky SLAC

7I

SU(6)	S	L	Baryon State
56	$\frac{1}{2}$	0	$N\frac{1}{2}^{+}(939)$
	$\frac{3}{2}$	0	$\Delta \frac{3}{2}^{+}(1232)$
70	$\frac{1}{2}$	1	$N\frac{1}{2}^{-}(1535) N\frac{3}{2}^{-}(1520)$
	$\frac{3}{2}$	1	$N\frac{1}{2}^{-}(1650) N\frac{3}{2}^{-}(1700) N\frac{5}{2}^{-}(1675)$
	$\frac{1}{2}$	1	$\Delta \frac{1}{2}^{-}(1620) \ \Delta \frac{3}{2}^{-}(1700)$
56	$\frac{1}{2}$	2	$N\frac{3}{2}^+(1720) N\frac{5}{2}^+(1680)$
	$\frac{3}{2}$	2	$\Delta_{\frac{1}{2}}^{\pm}(1910) \ \Delta_{\frac{3}{2}}^{\pm}(1920) \ \Delta_{\frac{5}{2}}^{\pm}(1905) \ \Delta_{\frac{7}{2}}^{\mp}(1950)$
70	$\frac{1}{2}$	3	$N\frac{5}{2}^{-}$ $N\frac{7}{2}^{-}$
	$\frac{3}{2}$	3	$N\frac{3}{2}^{-}$ $N\frac{5}{2}^{-}$ $N\frac{7}{2}^{-}(2190)$ $N\frac{9}{2}^{-}(2250)$
	$\frac{1}{2}$	3	$\Delta \frac{5}{2}^{-}(1930) \ \Delta \frac{7}{2}^{-}$
56	$\frac{1}{2}$	4	$N\frac{7}{2}^+ \qquad N\frac{9}{2}^+(2220)$
	$\frac{3}{2}$	4	$\Delta \frac{5}{2}^+ \Delta \frac{7}{2}^+ \Delta \frac{9}{2}^+ \Delta \frac{11}{2}^+ (2420)$
70	$\frac{1}{2}$	5	$N\frac{9}{2}^{-}$ $N\frac{11}{2}^{-}(2600)$
	$\frac{3}{2}$	5	$N\frac{7}{2}^{-}$ $N\frac{9}{2}^{-}$ $N\frac{11}{2}^{-}$ $N\frac{13}{2}^{-}$

JTI Workshop ANL April 16, 2009

AdS/QCD and LF Holography

Non-Conformal Extension of Algebraic Structure (Soft Wall Model)

• We write the Dirac equation

$$(\alpha \Pi(\zeta) - \mathcal{M}) \,\psi(\zeta) = 0,$$

in terms of the matrix-valued operator $\boldsymbol{\Pi}$

$$\Pi_{\nu}(\zeta) = -i\left(\frac{d}{d\zeta} - \frac{\nu + \frac{1}{2}}{\zeta}\gamma_5 - \kappa^2\zeta\gamma_5\right),\,$$

and its adjoint Π^{\dagger} , with commutation relations

$$\left[\Pi_{\nu}(\zeta), \Pi_{\nu}^{\dagger}(\zeta)\right] = \left(\frac{2\nu+1}{\zeta^2} - 2\kappa^2\right)\gamma_5.$$

• Solutions to the Dirac equation

$$\psi_{+}(\zeta) \sim z^{\frac{1}{2}+\nu} e^{-\kappa^{2}\zeta^{2}/2} L_{n}^{\nu}(\kappa^{2}\zeta^{2}),$$

$$\psi_{-}(\zeta) \sim z^{\frac{3}{2}+\nu} e^{-\kappa^{2}\zeta^{2}/2} L_{n}^{\nu+1}(\kappa^{2}\zeta^{2}).$$

• Eigenvalues

$$\mathcal{M}^2 = 4\kappa^2(n+\nu+1)$$

JTI Workshop ANL April 16, 2009

AdS/QCD and LF Holography

Stan Brodsky SLAC

• Baryon: twist-dimension 3 + L ($\nu = L + 1$)

$$\mathcal{O}_{3+L} = \psi D_{\{\ell_1} \dots D_{\ell_q} \psi D_{\ell_{q+1}} \dots D_{\ell_m}\} \psi, \quad L = \sum_{i=1}^m \ell_i.$$

• Define the zero point energy (identical as in the meson case) $\mathcal{M}^2 \to \mathcal{M}^2 - 4\kappa^2$:

$$\mathcal{M}^2 = 4\kappa^2(n+L+1).$$

Proton Regge Trajectory $\kappa = 0.49 \text{GeV}$

JTI Workshop ANL April 16, 2009

AdS/QCD and LF Holography

E. Klempt *et al.*: Δ^* resonances, quark models, chiral symmetry and AdS/QCD

H. Forkel, M. Beyer and T. Frederico, JHEP 0707 (2007) 077.
H. Forkel, M. Beyer and T. Frederico, Int. J. Mod. Phys. E 16 (2007) 2794.

JTI Workshop ANL April 16, 2009

AdS/QCD and LF Holography

Stan Brodsky SLAC

Space-Like Dirac Proton Form Factor

• Consider the spin non-flip form factors

$$F_{+}(Q^{2}) = g_{+} \int d\zeta J(Q,\zeta) |\psi_{+}(\zeta)|^{2},$$

$$F_{-}(Q^{2}) = g_{-} \int d\zeta J(Q,\zeta) |\psi_{-}(\zeta)|^{2},$$

where the effective charges g_+ and g_- are determined from the spin-flavor structure of the theory.

- Choose the struck quark to have $S^z = +1/2$. The two AdS solutions $\psi_+(\zeta)$ and $\psi_-(\zeta)$ correspond to nucleons with $J^z = +1/2$ and -1/2.
- For SU(6) spin-flavor symmetry

$$F_1^p(Q^2) = \int d\zeta J(Q,\zeta) |\psi_+(\zeta)|^2,$$

$$F_1^n(Q^2) = -\frac{1}{3} \int d\zeta J(Q,\zeta) \left[|\psi_+(\zeta)|^2 - |\psi_-(\zeta)|^2 \right],$$

where $F_1^p(0) = 1$, $F_1^n(0) = 0$.

JTI Workshop ANL April 16, 2009

AdS/QCD and LF Holography

Stan Brodsky SLAC

• Scaling behavior for large Q^2 : $Q^4 F_1^p(Q^2) \rightarrow \text{constant}$ Proton $\tau = 3$

SW model predictions for $\kappa = 0.424$ GeV. Data analysis from: M. Diehl *et al.* Eur. Phys. J. C **39**, 1 (2005).

JTI Workshop ANL April 16, 2009

AdS/QCD and LF Holography

Stan Brodsky SLAC

• Scaling behavior for large Q^2 : $Q^4 F_1^n(Q^2) \rightarrow \text{constant}$ Neutron $\tau = 3$

SW model predictions for $\kappa = 0.424$ GeV. Data analysis from M. Diehl *et al.* Eur. Phys. J. C **39**, 1 (2005).

JTI Workshop ANL April 16, 2009

AdS/QCD and LF Holography

Stan Brodsky SLAC

Dirac Neutron Form Factor

Truncated Space Confinement

(Valence Approximation)

Prediction for $Q^4 F_1^n(Q^2)$ for $\Lambda_{QCD} = 0.21$ GeV in the hard wall approximation. Data analysis from Diehl (2005).

JTI Workshop ANL April 16, 2009

AdS/QCD and LF Holography

Stan Brodsky SLAC

Spacelike Pauli Form Factor

Preliminary

From overlap of L = 1 and L = 0 LFWFs

Light-Front Holography: Unique mapping derived from equality of LF and AdS formula for current matrix elements

JTI Workshop ANL April 16, 2009

AdS/QCD and LF Holography

$$\begin{bmatrix} -\frac{d^2}{d\zeta^2} + V(\zeta) \end{bmatrix} \phi(\zeta) = \mathcal{M}^2 \phi(\zeta)$$

de Teramond, sjb
 $\vec{b_\perp}$
 $\vec{b_\perp}$
 $(1-x)$
 $\zeta = \sqrt{x(1-x)}\vec{b_\perp}$
Holographic Variable

$$-rac{d}{d\zeta^2}\equivrac{\kappa_{\perp}}{x(1-x)}$$
 LF Kinetic Energy in momentum space

Assume LFWF is a dynamical function of the quarkantiquark invariant mass squared

$$-\frac{d}{d\zeta^2} \to -\frac{d}{d\zeta^2} + \frac{m_1^2}{x} + \frac{m_2^2}{1-x} \equiv \frac{k_\perp^2 + m_1^2}{x} + \frac{k_\perp^2 + m_2^2}{1-x}$$

JTI Workshop ANL April 16, 2009

AdS/QCD and LF Holography

Stan Brodsky SLAC

Result: Soft-Wall LFWF for massive constituents

$$\psi(x, \mathbf{k}_{\perp}) = \frac{4\pi c}{\kappa \sqrt{x(1-x)}} e^{-\frac{1}{2\kappa^2} \left(\frac{\mathbf{k}_{\perp}^2}{x(1-x)} + \frac{m_1^2}{x} + \frac{m_2^2}{1-x}\right)}$$

LFWF in impact space: soft-wall model with massive quarks

$$\psi(x, \mathbf{b}_{\perp}) = \frac{c \kappa}{\sqrt{\pi}} \sqrt{x(1-x)} e^{-\frac{1}{2}\kappa^2 x(1-x)\mathbf{b}_{\perp}^2 - \frac{1}{2\kappa^2} \left[\frac{m_1^2}{x} + \frac{m_2^2}{1-x}\right]}$$

$$z \to \zeta \to \chi$$

ground state LFWF

JTI Workshop ANL April 16, 2009

AdS/QCD and LF Holography

Stan Brodsky SLAC

 J/ψ

LFWF peaks at

$$x_{i} = \frac{m_{\perp i}}{\sum_{j}^{n} m_{\perp j}}$$

where
$$m_{\perp i} = \sqrt{m^{2} + k_{\perp}^{2}}$$

mínímum of LF energy denomínator

 $\kappa = 0.375 \text{ GeV}$

5 10 15 20 0.2 0.1 0.2 0.6 Х 0.8

 $\psi_{J/\psi}(x,b)$

 $m_a = m_b = 1.25 \text{ GeV}$

JTI Workshop ANL April 16, 2009

AdS/QCD and LF Holography

Stan Brodsky SLAC

 $b[\text{GeV}^{-1}]$

First Moment of Kaon Distribution Amplitude

$$<\xi>= \int_{-1}^{1} d\xi \ \xi \ \phi(\xi)$$

$$\xi = 1 - 2x$$

$$<\xi >_{K} = 0.04 \pm 0.02$$

$$\kappa = 375 \ MeV$$
Range from $m_{s} = 65 \pm 25 \ MeV \ (PDG)$

$$<\xi >_{K} = 0.029 \pm 0.002$$
Donnellan et al.
$$<\xi >_{K} = 0.0272 \pm 0.0005$$
Braun et al.
$$Stan Brodsky$$
SLAC
Stan Brodsky
SLAC

Use AdS/CFT orthonormal LFWFs as a basis for diagonalizing the QCD LF Hamiltonian

- Good initial approximant
- Better than plane wave basis

Pauli, Hornbostel, Hiller, McCartor, sjb

- DLCQ discretization -- highly successful 1+1
- Use independent HO LFWFs, remove CM motion

Vary, Harinandrath, Maris, sjb

• Similar to Shell Model calculations

JTI Workshop ANL April 16, 2009

AdS/QCD and LF Holography

Stan Brodsky SLAC

Light-Front QCD Heisenberg Equation

 $H_{LC}^{QCD} |\Psi_h\rangle = \mathcal{M}_h^2 |\Psi_h\rangle$

	n	Sector	1 qq	2 gg	3 qq g	4 qq qq	5 gg g	6 qq gg	7 qq qq g	8 qq qq qq	99 99 9	10 qq gg g	11 qq qq gg	12 qq qq qq g	13 qqqqqqqq
ζ _{k,λ}	1	qq			-	t v	•		•	•	•	•	•	•	•
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2	<u>g</u> g		X	~~<	•	~~~{`		•	•		•	•	•	•
p,s' p,s	3	qq g	>-	>		~~<	+	~~~{	The second secon	•	•		•	•	•
(a)	4	qq qq	K++	•	>		•		-	X	•	•		•	•
¯p,s' k,λ	5	gg g	•	<u> </u>		•		~~<	•	•	~~~{		•	•	•
wit	6	qā gg	∧+√ + ↓		` <u>}</u> ~~		$\rightarrow$	The second secon	~~<	•		-	The second secon	•	•
k̄,λ΄ p,s	7	qq qq g	•	•	<b>*</b>	>-	•	>		~~<	٠		-	THE REAL	•
(2)	8	ସସି ସସି ସସି	•	•	•		•	•	>		٠	٠		-	M.
p,s′ p,s	9	gg gg	•		•	•	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		•	•		~~<	٠	•	•
	10	qq gg g	•	•		•		>		•	>		~	•	•
	11	qā dā ga	•	•	•		•		>-		٠	>		~~<	•
(c)	12	ବସି ବସି ବସି ପ୍ର	•	•	•	•	•	•	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	>-	٠	٠	>		~~<
	13	ବସି ବସି ବସି ବସି	•	٠	•	•	•	•	•	K	•	•	•	>	

Use AdS/QCD basis functions

JTI Workshop ANL April 16, 2009

AdS/QCD and LF Holography 88