AdS/QCD and Light-Front Holography A New Approximation to QCD

Fifth International Workshop on Quarks and Nuclear Physics (QNP09) *IHEP Beijing, September 21-26 2009 Stan Brodsky, SLAC National Accelerator Laboratory*

Light-Front Holography and Non-Perturbative QCD

Goal:Use AdS/QCD duality to construct a first approximation to QCD

Hadron Spectrum Light-Front Wavefunctions, Form Factors, DVCS, etc

in collaboration with Guy de Teramond

QNP09 IHEP Beijing AdS/QCD $\begin{array}{ccc}\n\text{NPO9 IHEP Beijing} & \text{AdS/QCD} & \text{Stan Brodsky} \\
\text{September 25, 2009} & 2 & \text{SLAC}\n\end{array}$

2

P.A.M Dirac, Rev. Mod. Phys. 21, 392 (1949)

Dirac's Amazing Idea: The Front Form

Each element of flash photograph illuminated at same Light Front time

$$
\tau=t+z/c
$$

Evolve in LF time

$$
P^- = i \frac{d}{d\tau}
$$

DIS, Form Factors, DVCS, etc. measure proton WF at fixed

$$
\tau=t+z/c
$$

Light-Front Wavefunctions: rigorous representation of composite systems in quantum field theory

Light-Front QCD Heisenberg Matrix

$$
L^{QCD} \to H^{QCD}_{LF}
$$

$$
H_{LF}^{QCD} = \sum_{i} \left[\frac{m^2 + k_{\perp}^2}{x}\right]_i + H_{LF}^{int}
$$

 H^{int}_{LF} : Matrix in Fock Space

$$
H_{LF}^{QCD}|\Psi_h>=\mathcal{M}_h^2|\Psi_h>
$$

Eigenvalues and Eigensolutions give Hadron Spectrum and Light-Front wavefunctions

QNP09 IHEP Beijing AdS/QCD Supering
September 25, 2009
September 25, 2009
SLAC

Thursday, September 24, 2009

6

Physical gauge: $A^+ = 0$

Angular Momentum on the Light-Front

$$
J^{z} = \sum_{i=1}^{n} s_{i}^{z} + \sum_{j=1}^{n-1} l_{j}^{z}.
$$

$$
l_j^z = -\mathrm{i} \left(k_j^1 \frac{\partial}{\partial k_j^2} - k_j^2 \frac{\partial}{\partial k_j^1} \right)
$$

QNP09 IHEP Beijing AdS/QCD $\begin{array}{ccc}\n\text{NPO9 IHEP Beijing} & \text{AdS/QCD} & \text{Stan Brodsky} \\
\text{September 25, 2009} & & & 7\n\end{array}$

Angular Momentum on the Light-Front

Conserved LF Fock state by Fock State!

LF Spin Sum Rule

$$
l_j^z = -\mathrm{i} \left(k_j^1 \frac{\partial}{\partial k_j^2} - k_j^2 \frac{\partial}{\partial k_j^1} \right)
$$

n-1 orbital angular momenta

Nonzero Anomalous Moment --> Nonzero orbital angular momentum!

QNP09 IHEP Beijing AdS/QCD $\begin{array}{ccc}\n\text{NPO9 IHEP Beijing} & \text{AdS/QCD} & \text{Stan Brodsky} \\
\text{September 25, 2009} & 8 & \text{SI AC}\n\end{array}$

Calculation of Form Factors in Equal-Time Theory

Need vacuuminduced currents ed

Calculation of Form Factors in Light-Front Theory

$$
\frac{F_2(q^2)}{2M} = \sum_{a} \int [\mathrm{d}x] [\mathrm{d}^2 \mathbf{k}_{\perp}] \sum_{j} e_j \frac{1}{2} \times \text{Drell, sjb}
$$
\n
$$
\left[-\frac{1}{q^L} \psi_a^{\dagger *} (x_i, \mathbf{k}'_{\perp i}, \lambda_i) \psi_a^{\dagger} (x_i, \mathbf{k}_{\perp i}, \lambda_i) + \frac{1}{q^R} \psi_a^{\dagger *} (x_i, \mathbf{k}'_{\perp i}, \lambda_i) \psi_a^{\dagger} (x_i, \mathbf{k}_{\perp i}, \lambda_i) \right]
$$
\n
$$
\mathbf{k}'_{\perp i} = \mathbf{k}_{\perp i} - x_i \mathbf{q}_{\perp} \qquad \mathbf{k}'_{\perp j} = \mathbf{k}_{\perp j} + (1 - x_j) \mathbf{q}_{\perp}
$$

Must have $\Delta \ell_z = \pm 1$ to have nonzero $F_2(q^2)$

Same matrix elements appear in Sivers effect -- connection to quark anomalous moments

QNP09 IHEP Beijing AdS/QCD Supering
September 25, 2009
Stan Brodsky
SLAC

10

Anomalous gravitomagnetic moment B(0)

Terayev, Okun, et al: *B(0) Must vanish because of Equivalence Theorem*

 $|p,S_z\rangle = \sum$ *ⁿ*=3 $\Psi_n(x_i,$ \rightarrow $k_{\perp i}, \lambda_i)|n;$ \rightarrow k_{\perp_i}, λ_i $>$

sum over states with n=3, 4, ...constituents

The Light Front Fock State Wavefunctions

$$
\Psi_n(x_i,\vec{k}_{\perp i},\lambda_i)
$$

are boost invariant; they are independent of the hadron's energy and momentum *Pμ*.

The light-cone momentum fraction

$$
x_i = \frac{k_i^+}{p^+} = \frac{k_i^0 + k_i^z}{P^0 + P^z}
$$

are boost invariant.

$$
\sum_{i}^{n} k_{i}^{+} = P^{+}, \ \sum_{i}^{n} x_{i} = 1, \ \sum_{i}^{n} \vec{k}_{i}^{\perp} = \vec{0}^{\perp}.
$$

Intrinsic heavy quarks $\overline{s}(x) \neq s(x)$ $c(x)$, $b(x)$ at high x $\overline{u}(x) \neq \overline{d}(x)$

QNP09 IHEP Beijing $\begin{array}{ccc}\n\text{NPO9 IHEP Beijing} & \text{AdS/QCD} \\
\text{September 25, 2009} & \text{I2}\n\end{array}$ Stan Brodsky

AdS/QCD 12

Fixed LF time

\mathcal{L} () and \mathcal{L} () and \mathcal{L} () and \mathcal{L} () and \mathcal{L} Example of LFWF representation of GPDs $(n \Rightarrow n)$

Diehl,Hwang, sjb

$$
\frac{1}{\sqrt{1-\xi}}\frac{\Delta^{1}-i\Delta^{2}}{2M}E_{(n\to n)}(x,\zeta,t) \n= (\sqrt{1-\xi})^{2-n}\sum_{n,\lambda_{i}}\int \prod_{i=1}^{n}\frac{dx_{i} d^{2}\vec{k}_{\perp i}}{16\pi^{3}} 16\pi^{3}\delta\left(1-\sum_{j=1}^{n}x_{j}\right)\delta^{(2)}\left(\sum_{j=1}^{n}\vec{k}_{\perp j}\right) \n\times \delta(x-x_{1})\psi_{(n)}^{\uparrow*}(x'_{i},\vec{k}'_{\perp i},\lambda_{i})\psi_{(n)}^{\downarrow}(x_{i},\vec{k}_{\perp i},\lambda_{i}),
$$

where the arguments of the final-state wavefunction are given by

$$
x'_{1} = \frac{x_{1} - \zeta}{1 - \zeta}, \qquad \vec{k}'_{\perp 1} = \vec{k}_{\perp 1} - \frac{1 - x_{1}}{1 - \zeta} \vec{\Delta}_{\perp} \quad \text{for the struck quark},
$$

\n
$$
x'_{i} = \frac{x_{i}}{1 - \zeta}, \qquad \vec{k}'_{\perp i} = \vec{k}_{\perp i} + \frac{x_{i}}{1 - \zeta} \vec{\Delta}_{\perp} \quad \text{for the spectator } i = 2, ..., n.
$$

- 1

an di Kabupatén Ing
Kabupatèn Suma

QNP09 IHEP Beijing AdS/QCD Supering
September 25, 2009

September 25, 2009

13 SLAC

Link to DIS and Elastic Form Factors

$$
H^{q}(x,0,0) = q(x), \quad -\overline{q}(-x)
$$
\n
$$
\overline{H}^{q}(x,0,0) = \Delta q(x), \quad \Delta \overline{q}(-x)
$$
\n
$$
\overline{H}^{q}(x,0,0) = \Delta q(x), \quad \Delta \overline{q}(-x)
$$
\n
$$
\Delta \overline{q}(x)
$$
\n
$$
H^{q}(x,\xi,0) = \Delta q(x), \quad \Delta \overline{q}(-x)
$$
\n
$$
\Delta \overline{q}(x)
$$
\n
$$
\Delta \overline{q}(x
$$

QNP09 IHEP Beijing NPo9 IHEP Beijing

September 25, 2009

SLAC

AdS/QCD 14

Light-Front QCD Features and Phenomenology

- •Hidden color, Intrinsic glue, sea, Color Transparency
- Physics of spin, orbital angular momentum
- • Near Conformal Behavior of LFWFs at Short Distances; PQCD constraints
- Vanishing anomalous gravitomagnetic moment
- •Relation between edm and anomalous magnetic moment
- •Cluster Decomposition Theorem for relativistic systems
- \bullet OPE: DGLAP, ERBL evolution; invariant mass scheme

AdS/QCD

QCD and the LF Hadron Wavefunctions

Final-State Interactions Produce Pseudo T-Odd (Sivers Effect)

- •Leading-Twist Bjorken Scaling!
- •Requires nonzero orbital angular momentum of quark
- • Arises from the interference of Final-State QCD Coulomb phases in S- and P- waves;
- •Wilson line effect -- gauge independent
- • Relate to the quark contribution to the target proton anomalous magnetic moment and final-state QCD phases
- •QCD phase at soft scale!
- •New window to QCD coupling and running gluon mass in the IR
- •QED S and P Coulomb phases infinite -- difference of phases finite!

QNP09 IHEP Beijing AdS/QCD $\begin{array}{ccc}\n\text{NPO9 IHEP Beijing} & \text{AdS/QCD} & \text{Stan Brodsky} \\
\text{September 25, 2009} & \text{I8} & \text{SI AC}\n\end{array}$

18

DY $\cos 2\phi$ correlation at leading twist from double ISI

QNP09 IHEP Beijing AdS/QCD Prop IHEP Beijing and Solution and Solution Stan Brodsky
September 25, 2009 5LAC

f h

19

Factorization is violated in production of high-transverse-momentum particles in hadron-hadron collisions

John Collins, Jian-Wei Qiu. ANL-HEP-PR-07-25, May 2007.

The exchange of two extra gluons, as in this graph, will tend to give non-factorization in unpolarized cross sections.

QNP09 IHEP Beijing AdS/QCD Prop IHEP Beijing

September 25, 2009

20

20

20

20

Diffractive Structure Function F 2D

Diffractive inclusive cross section

$$
\frac{\mathrm{d}^3 \sigma_{NC}^{diff}}{\mathrm{d}x_{I\!\!P} \,\mathrm{d}\beta \,\mathrm{d}Q^2} \propto \frac{2\pi \alpha^2}{xQ^4} F_2^{D(3)}(x_{I\!\!P}, \beta, Q^2)
$$

$$
F_2^D(x_{I\!\!P}, \beta, Q^2) = f(x_{I\!\!P}) \cdot F_2^{I\!\!P}(\beta, Q^2)
$$

extract DPDF and $xg(x)$ from scaling violation Large kinematic domain $-3 < Q^2 < 1600 \ {\rm GeV^2}$ Precise measurements sys 5%, stat 5-20%

Hoyer, Marchal, Peigne, Sannino, sjb

QCD Mechanism for Rapidity Gaps

Reproduces lab-frame color dipole approach

QNP09 IHEP Beijing AdS/QCD Stan Brodsky (NP09 IHEP Beijing and Stan Brodsky and Stan Brodsky Stan Brodsky (NP09 IHEP Beijing and SLAC and SLA

22

Final-State QCD Interaction Produces Diffractive DIS

Low-Nussinov model of Pomeron

QNP09 IHEP Beijing AdS/QCD POS PRESSURING PROVIDENCE Stan Brodsky
September 25, 2009 23
23

Stodolsky Pumplin, sjb Gribov

Nuclear Shadowing in QCD

Destructive Interference

Shadowing depends on understanding leading twist-diffraction in DIS

Nuclear Shadowing not included in nuclear LFWF !

Dynamical effect due to virtual photon interacting in nucleus

QNP09 IHEP Beijing AdS/QCD $\begin{array}{ccc}\n\text{NPO9 IHEP Beijing} & \text{AdS/QCD} & \text{Stan Brodsky} \\
\text{September 25, 2009} & \text{25} & \text{SI AC}\n\end{array}$

Shadowing depends on leading-twist DDIS

Integration over on-shell domain produces phase *i Need Imaginary Phase to Generate Pomero Need Imaginary Phase to Generate T Odd Single-Spin Asymmetry*

Physics of FSI not in Wavefunction of Target

Antishadowing (Reggeon exchange) is not universal!

Schmidt, Yang, sjb

ONP09 IHEP Beijing Postan Brodsky
September 25, 2009 $\overline{3}$ and $\overline{$

AdS/OCD 26

$$
Q^2=5\,\, {\rm GeV}^2
$$

Nuclear Antishadowing not universal !

QNP09 IHEP Beijing AdS/QCD Prop IHEP Beijing

September 25, 2009

SLAC

28

Shadowing and Antishadowing of DIS Structure Functions

S. J. Brodsky, I. Schmidt and J. J. Yang, "Nuclear Antishadowing in Neutrino Deep Inelastic Scattering," Phys. Rev. D 70, 116003 (2004) [arXiv:hep-ph/0409279].

Modifies NuTeV extraction of $\sin^2\theta_W$

Test in flavor-tagged lepton-nucleus collisions

- •
- •
- •
- •
- •
- •
- •Sum Rules: Momentum and $\vert z \vert$ Sum Rules Not Proven
- \bullet DGLAP Evolution; mod. at large $x \mid DGLAP$ Evolution
- •

Static Dynamic

Square of Target LFWFs Modified by Rescattering: ISI & FSI

No Wilson Line **Contains Wilson Line, Phases**

Probability Distributions No Probabilistic Interpretation

Process-Independent **Process-Dependent - From Collision**

T-even Observables T-Odd (Sivers, Boer-Mulders, etc.)

No Shadowing, Anti-Shadowing | Shadowing, Anti-Shadowing, Saturation

No Diffractive DIS **Hard Pomeron and Odderon Diffractive DIS**

QNP09 IHEP Beijing AdS/QCD $2NP$ Og IHEP Beijing
September 25, 2009
30 SLAC

 \bullet

Applications of AdS/CFT to QCD

Changes in physical length scale mapped to evolution in the 5th dimension z

in collaboration with Guy de Teramond

QNP09 IHEP Beijing AdS/QCD Postan Brodsky
September 25, 2009 32
32
SLAC

32

Applications of AdS/CFT to QCD

Goal:

- Use AdS/CFT to provide an approximate, covariant, and analytic model of hadron structure with confinement at large distances, conformal behavior at short distances
- Analogous to the Schrodinger Theory for Atomic Physics
- *AdS/QCD Light-Front Holography*
- \bullet *Hadronic Spectra and Light-Front Wavefunctions*

QNP09 IHEP Beijing AdS/QCD $\begin{array}{ccc}\n\text{NPO9 IHEP Beijing} & \text{AdS/QCD} \\
\text{September 25, 2009} & 34\n\end{array}$ Stan Brodsky

Conformal Theories are invariant under the Poincare and conformal transformations with

 $\mathbf{M}^{\mu\nu}, \mathbf{P}^{\mu}, \mathbf{D}, \mathbf{K}^{\mu},$

the generators of SO(4,2)

 $SO(4,2)$ has a mathematical representation on AdS5

QNP09 IHEP Beijing AdS/QCD Postan Brodsky
September 25, 2009

September 25, 2009

35

Scale Transformations

• Isomorphism of $SO(4,2)$ of conformal QCD with the group of isometries of AdS space

$$
ds^{2} = \frac{R^{2}}{z^{2}}(\eta_{\mu\nu}dx^{\mu}dx^{\nu} - dz^{2}),
$$
 invariant measure

 $x^\mu \rightarrow \lambda x^\mu,~ z \rightarrow \lambda z$, maps scale transformations into the holographic coordinate $z.$

- AdS mode in z is the extension of the hadron wf into the fifth dimension.
- Different values of z correspond to different scales at which the hadron is examined.

$$
x^2 \to \lambda^2 x^2, \quad z \to \lambda z.
$$

 $x^2=x_\mu x^\mu$: invariant separation between quarks

 $\bullet\,$ The AdS boundary at $z\to 0$ correspond to the $Q\to\infty$, UV zero separation limit.

QNP09 IHEP Beijing AdS/QCD $\begin{array}{ccc}\n\text{NPO9 IHEP Beijing} & \text{AdS/QCD} \\
\text{September 25, 2009} & 36\n\end{array}$ Stan Brodsky

36

- $\bullet\,$ Truncated AdS/CFT (Hard-Wall) model: cut-off at $z_0\,=\,1/\Lambda_{\rm QCD}$ breaks conformal invariance and allows the introduction of the QCD scale (Hard-Wall Model) Polchinski and Strassler (2001).
- $\bullet\,$ Smooth cutoff: introduction of a background dilaton field $\varphi(z)$ usual linear Regge dependence can be obtained (Soft-Wall Model) Karch, Katz, Son and Stephanov (2006).

QNP09 IHEP Beijing AdS/QCD Prop IHEP Beijing

September 25, 2009
 $4I$

SLAC

Holography: Unique mapping derived from equality of LF and AdS formula for current matrix elements

QNP09 IHEP Beijing AdS/QCD Prop IHEP Beijing AdS/QCD Stan Brodsky
September 25, 2009 42

42

AdS/CFT: Anti-de Sitter Space / Conformal Field Theory

Maldacena:

Map AdS5 X S5 to conformal N=4 SUSY

- **QCD** is not conformal; however, it has manifestations of a scale-invariant theory: Bjorken scaling, dimensional counting for hard exclusive processes
- $\alpha_s(Q^2) \simeq$ const at small Q^2 • Conformal window: $\alpha_s(Q^2)$
- Use mathematical mapping of the conformal group $SO(4,2)$ to AdS5 space

QNP09 IHEP Beijing AdS/QCD September 25, 2009 43

Conformal QCD Window in Exclusive Processes

- \bullet Does α_s develop an IR fixed point? Dyson–Schwinger Equation Alkofer, Fischer, LLanes-Estrada, Deur . . .
- $\bullet\,$ Recent lattice simulations: evidence that α_s becomes constant and is not small in the infrared Furui and Nakajima, hep-lat/0612009 (Green dashed curve: DSE).

Deur, Korsch, et al.

QNP09 IHEP Beijing AdS/QCD Prop IHEP Beijing AdS/QCD Stan Brodsky
September 25, 2009 45

Deur, Korsch, et al: Effective Charge from Bjorken Sum Rule

