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P+ = P0 + Pz

Fixed τ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz
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β = dαs(Q2)
d lnQ2 < 0

u

AdS/QCD & Light-Front Holography
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QCD Myths
• Anti-Shadowing is Universal

• ISI and FSI are higher twist effects and universal

• High transverse momentum hadrons arise only from 
jet fragmentation  -- baryon anomaly!

• heavy quarks only from gluon splitting

• renormalization scale cannot be fixed

• QCD condensates are vacuum effects

• Infrared Slavery

• Nuclei are composites of nucleons only

• Real part of DVCS arbitrary
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Some Outstanding QCD Problems

• Solving Hadron Spectroscopy and Dynamics Simultaneously   

• Proton Spin

• Anti-Shadowing is Not Universal

• Breakdown of QCD Factorization Theorems

• The Baryon Anomaly at RHIC

• The DZero Anomaly: heavy quarks  at large x 

• Setting the Renormalization Scale

• QCD condensates and Dark Energy 

• Fixing the D Term in DVCS

•                                               puzzle

• Anomalous Physics of Sea Quarks

• Hadronization at the Amplitude Level

• QCD Running Coupling in the Infrared

J/ψ → ρπ
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More Outstanding QCD Problems
• Single inclusive high-pT hadrons -- wrong scaling !

• Quark Interchange dominance in hadron scattering reactions

• Quarkonium nuclear target dependence 

• The Same-Side Ridge at CMS

• How to Find the Odderon?

• Signals of Hidden Color in the Deuteron

• Quark-Gluon Phase of Heavy Ion Collisions

• Quark-Gluon Phase in the Target Frame

• The Top/anti-Top Asymmetry

• Color Transparency and Opaqueness

• BaBar Photon-to-Pion Transition Form Factor

• ...

Studies of QCD just beginning!
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ψ(x,�b⊥) = ψ(ζ)

φ(z)

ζ =
�

(x(1− x)|b⊥|

z

z∆

z0 = 1
ΛQCD

γd→ np

• Light-Front Holography

General remarks about orbital angular mo-
mentum

Ψn(xi,�k⊥i, λi)
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�R⊥+�b⊥i) = �R⊥

xi
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ψ(x, k⊥)(GeV)

ψ(x, k⊥)

• Light Front Wavefunctions:                                   

Schrödinger Wavefunctions

of Hadron Physics
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General remarks about orbital angular mo-
mentum
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ψ(σ, b⊥)

β = dαs(Q2)
d lnQ2 < 0

u

Invariant under boosts!  Independent of Pμ 

6

Light-Front Wavefunctions:  rigorous representation of 
composite systems in quantum field theory

x =
k+

P+
=

k0 + k3

P 0 + P 3

LFWFs: off invariant mass-shell, infinite # components
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QCD and LF Hadron Wavefunctions

DVCS, GPDs. TMDs

Baryon Decay

Distribution amplitude
ERBL Evolution

Heavy Quark Fock States
Intrinsic Charm

Gluonic properties
DGLAP

Quark & Flavor Struct

Coordinate space 
representation

Quark & Flavor Structure

Baryon Excitations

General remarks about orbital angular mo-
mentum

Ψn(xi,�k⊥i, λi)

�n
i=1(xi

�R⊥+�b⊥i) = �R⊥

xi
�R⊥+�b⊥i

�n
i
�b⊥i = �0⊥

�n
i xi = 1

Initial and Final State 
Rescattering

DDIS, DDIS, T-Odd

Non-Universal Antishadowing

Nuclear Modifications
Baryon Anomaly

Color Transparency

Hard Exclusive Amplitudes
Form Factors

Counting Rules

φp(x1, x2, Q
2)

AdS/QCD
Light-Front Holography

LF Schrodinger Eqn.

LF Overlap, incl ERBL

J=0 Fixed Pole

Orbital Angular Momentum
Spin, Chiral Properties

Crewther Relation

Hadronization at 
Amplitude Level

7

Burkardt, Schmidt, sjb
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ψ(x,k⊥)
HQCD
LF |ψ >=M2|ψ >

Dirac’s Front Form: Fixed τ = t+ z/c

Light-Front Wavefunctions

xi =
k+
i

P+

0 < xi < 1

n�

i=1
xi = 1Remarkable new insights from AdS/CFT,              

the duality between conformal field theory       
and Anti-de Sitter Space 

Invariant under boosts.   Independent of Pμ
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Direct connection to QCD Lagrangian



 

Each element of 
flash photograph  

illuminated  
at same LF time

τ = t + z/c

Eigenstate -- independent of τ

Evolve in LF time

P− = i
d

dτ

9
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2 Light Front Dynamics

• Different possibilities to parametrize space-time [Dirac (1949)]

• Parametrizations differ by the hypersurface on which the initial conditions are specified. Each evolve

with different “times” and has its own Hamiltonian, but should give the same physical results

• Forms of Relativistic Dynamics: dynamical vs. kinematical generators [Dirac (1949)]

• Instant form: hypersurface defined by t = 0, the familiar one

H, K dynamical, L, P kinematical

• Point form: hypersurface is an hyperboloid

P
µ dynamical, M

µν kinematical

• Front form: hypersurface is tangent to the light cone at τ = t + z/c = 0

P
−
, L

x
, L

y dynamical, P
+
, P⊥, L

z
, K kinematical

ct

y

z

1-2011
8811A1

ct

y

z

1-2011
8811A2

ctct

y

z

1-2011
8811A3

IUSS, Ferrara, May 27, 2011 Page 12

Light-Front Dynamics



 

|p,Sz>= ∑
n=3

ψn(xi, �k⊥i,λi)|n;k⊥i,λi>|p,Sz>= ∑
n=3

Ψn(xi,�k⊥i,λi)|n;�k⊥i,λi>

|p,Sz>= ∑
n=3

Ψn(xi,�k⊥i,λi)|n;�k⊥i,λi>

The Light Front Fock State Wavefunctions

Ψn(xi,�k⊥i,λi)

are boost invariant; they are independent of the hadron’s energy
and momentum Pµ.
The light-cone momentum fraction

xi =
k+
i
p+ =

k0i + kzi
P0+Pz

are boost invariant.
n

∑
i
k+
i = P+,

n

∑
i
xi = 1,

n

∑
i

�k⊥i =�0⊥.

sum over states with n=3, 4, ...constituents

Fixed LF time
Intrinsic heavy quarks    s̄(x) �= s(x)

φM(x, Q0) ∝
�

x(1− x)

ψM(x, k2
⊥)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

ep→ eπ+n

Pπ/p � 30%

Violation of Gottfried sum rule

ū(x) �= d̄(x)

Does not produce (C = −) J/ψ,Υ

Produces (C = −) J/ψ,Υ

Same IC mechanism explains A2/3

c(x), b(x) at high x !
Deuteron: Hidden ColorMueller:  gluon Fock states     BFKL Pomeron

Coupled. infinite set
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 E866/NuSea (Drell-Yan)

s(x) �= s̄(x)

Intrinsic glue, sea, 
heavy quarks

d̄(x) �= ū(x)
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S.J. Brodsky et al. / Nuclear Physics B 593 (2001) 311–335 331

moment vanishes [22]. The light-cone formalism also properly incorporatesWigner boosts.

Thus this model of composite systems can serve as a useful theoretical laboratory to

interrelate hadronic properties and check the consistency of formulae proposed for the

study of hadron substructure.

7. Spin and orbital angular momentum composition of light-cone wavefunctions

In general the light-cone wavefunctions satisfy conservation of the z projection of

angular momentum:

J z =
n∑

i=1
sz
i +

n−1∑

j=1
lzj . (62)

The sum over sz
i represents the contribution of the intrinsic spins of the n Fock state

constituents. The sum over orbital angular momenta lzj = −i
(
k1j

∂
∂k2j

− k2j
∂

∂k1j

)
derives from

the n−1 relative momenta. This excludes the contribution to the orbital angularmomentum
due to the motion of the center of mass, which is not an intrinsic property of the hadron.

We can see how the angular momentum sum rule Eq. (62) is satisfied for the

wavefunctions Eqs. (20) and (23) of the QED model system of two-particle Fock states.

In Table 1 we list the fermion constituent’s light-cone spin projection sz
f = 1

2
λf, the boson

constituent spin projection sz
b = λb, and the relative orbital angular momentum lz for each

contributing configuration of the QED model system wavefunction.

Table 1 is derived by calculating the matrix elements of the light-cone helicity operator

γ +γ 5 [29] and the relative orbital angular momentum operator−i
(
k1 ∂

∂k2
− k2 ∂

∂k1

)
[16,30,

31] in the light-cone representation. Each configuration satisfies the spin sum rule: J z =
sz
f + sz

b + lz.

For a better understanding of Table 1, we look at the non-relativistic and ultra-relativistic

limits. At the non-relativistic limit, the transversal motions of the constituent can be

neglected and we have only the | + 1
2
〉 → | − 1

2
+ 1〉 configuration which is the non-

relativistic quantum state for the spin-half system composed of a fermion and a spin-1

boson constituents. The fermion constituent has spin projection in the opposite direction

to the spin J z of the whole system. However, for ultra-relativistic binding in which the

transversal motions of the constituents are large compared to the fermion masses, the

Table 1

Spin decomposition of the J z = + 1
2
electron

Configuration Fermion spin sz
f

Boson spin sz
b

Orbital ang. mom. lz

∣∣+ 1
2

〉
→

∣∣+ 1
2

+ 1
〉

+ 1
2

+1 −1
∣∣+ 1

2

〉
→

∣∣− 1
2

+ 1
〉

− 1
2

+1 0
∣∣+ 1

2

〉
→

∣∣+ 1
2

− 1
〉

+ 1
2

−1 +1

Conserved 
LF Fock state by Fock State
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n-1 orbital angular momenta

Angular Momentum on the Light-Front

Nonzero Anomalous Moment -->Nonzero orbital angular momentum



 

III. Light Front Dynamics

• Different possibilities to parametrize space-time [Dirac (1949)]

• Parametrizations differ by the hypersurface on which the initial conditions are specified. Each evolve

with different “times” and has its own Hamiltonian, but should give the same physical results

• Instant form: hypersurface defined by t = 0, the familiar one

• Front form: hypersurface is tangent to the light cone at τ = t + z/c = 0

x+ = x0 + x3 light-front time

x− = x0 − x3 longitudinal space variable

k+ = k0 + k3 longitudinal momentum (k+ > 0)

k− = k0 − k3 light-front energy

k · x = 1
2 (k+x− + k−x+)− k⊥ · x⊥

On shell relation k2 = m2 leads to dispersion relation k− = k2
⊥+m2

k+

KITPC, Beijing, October 19, 2010 Page 12
Quantum chromodynamics and other field theories on the light cone.
Stanley J. Brodsky (SLAC), Hans-Christian Pauli (Heidelberg, Max Planck Inst.), 
Stephen S. Pinsky (Ohio State U.). SLAC-PUB-7484, MPIH-V1-1997. Apr 1997. 203 pp. 
Published in Phys.Rept. 301 (1998) 299-486 
e-Print: hep-ph/9705477 14

http://inspirebeta.net/record/443682
http://inspirebeta.net/record/443682
http://inspirebeta.net/author/Brodsky%2C%20Stanley%20J.?ln=en
http://inspirebeta.net/author/Brodsky%2C%20Stanley%20J.?ln=en
http://www.slac.stanford.edu/spires/find/inst/wwwinspire?icncp=SLAC
http://www.slac.stanford.edu/spires/find/inst/wwwinspire?icncp=SLAC
http://inspirebeta.net/author/Pauli%2C%20Hans-Christian?ln=en
http://inspirebeta.net/author/Pauli%2C%20Hans-Christian?ln=en
http://www.slac.stanford.edu/spires/find/inst/wwwinspire?icncp=Heidelberg,%20Max%20Planck%20Inst.
http://www.slac.stanford.edu/spires/find/inst/wwwinspire?icncp=Heidelberg,%20Max%20Planck%20Inst.
http://inspirebeta.net/author/Pinsky%2C%20Stephen%20S.?ln=en
http://inspirebeta.net/author/Pinsky%2C%20Stephen%20S.?ln=en
http://www.slac.stanford.edu/spires/find/inst/wwwinspire?icncp=Ohio%20State%20U.
http://www.slac.stanford.edu/spires/find/inst/wwwinspire?icncp=Ohio%20State%20U.


 
CP3, September 16, 2011 QCD Myths  Stan Brodsky,  SLAC/CP3

15

x,�k⊥ x,�k⊥ + �q⊥

ψ(xi,�k
�
⊥i)ψ(xi,�k⊥i)

p

γ∗

�k�⊥i = �k⊥i + (1− xi)�q⊥struck
�k�⊥i = �k⊥i − xi�q⊥spectators
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Form Factors are 
Overlaps of LFWFs

Interaction 
picture

Drell &Yan, West
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For leptons, such as the electron or neutrino, it is convenient to employ the electron

mass for M , so that the magnetic moment is given in Bohr magnetons.

Now we turn to the evaluation of the helicity-conserving and helicity-flip vector-

current matrix elements in the light-front formalism. In the interaction picture, the

current Jµ
(0) is represented as a bilinear product of free fields, so that it has an

elementary coupling to the constituent fields [13, 14, 15]. The Dirac form factor can

then be calculated from the expression

F1(q
2
) =

�

a

�
[dx][d

2k⊥]
�

j

ej

�
ψ↑∗

a (xi,k
�
⊥i, λi) ψ↑

a(xi,k⊥i, λi)

�
, (10)

whereas the Pauli and electric dipole form factors are given by

F2(q2
)

2M
=

�

a

�
[dx][d

2k⊥]
�

j

ej
1

2
× (11)

�
− 1

qL
ψ↑∗

a (xi,k
�
⊥i, λi) ψ↓

a(xi,k⊥i, λi) +
1

qR
ψ↓∗

a (xi,k
�
⊥i, λi) ψ↑

a(xi,k⊥i, λi)

�
,

F3(q2
)

2M
=

�

a

�
[dx][d

2k⊥]
�

j

ej
i

2
× (12)

�
− 1

qL
ψ↑∗

a (xi,k
�
⊥i, λi) ψ↓

a(xi,k⊥i, λi)−
1

qR
ψ↓∗

a (xi,k
�
⊥i, λi) ψ↑

a(xi,k⊥i, λi)

�
.

The summations are over all contributing Fock states a and struck constituent charges

ej. Here, as earlier, we refrain from including the constituents’ color and flavor

dependence in the arguments of the light-front wave functions. The phase-space

integration is

�
[dx] [d

2k⊥] ≡
�

λi,ci,fi

�
n�

i=1

�� �
dxi d

2k⊥i

2(2π)3

��

16π3δ

�

1−
n�

i=1

xi

�

δ(2)

�
n�

i=1

k⊥i

�

, (13)

where n denotes the number of constituents in Fock state a and we sum over the

possible {λi}, {ci}, and {fi} in state a. The arguments of the final-state, light-front

wave function differentiate between the struck and spectator constituents; namely, we

have [13, 15]

k�
⊥j = k⊥j + (1− xj)q⊥ (14)

for the struck constituent j and

k�
⊥i = k⊥i − xiq⊥ (15)

for each spectator i, where i �= j. Note that because of the frame choice q+
= 0, only

diagonal (n�
= n) overlaps of the light-front Fock states appear [14].
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a(xi,k⊥i, λi)

�
, (10)

whereas the Pauli and electric dipole form factors are given by

F2(q2
)

2M
=

�

a

�
[dx][d

2k⊥]
�

j

ej
1

2
× (11)

�
− 1

qL
ψ↑∗

a (xi,k
�
⊥i, λi) ψ↓

a(xi,k⊥i, λi) +
1

qR
ψ↓∗

a (xi,k
�
⊥i, λi) ψ↑

a(xi,k⊥i, λi)

�
,

F3(q2
)

2M
=

�

a

�
[dx][d

2k⊥]
�

j

ej
i

2
× (12)

�
− 1

qL
ψ↑∗

a (xi,k
�
⊥i, λi) ψ↓

a(xi,k⊥i, λi)−
1

qR
ψ↓∗

a (xi,k
�
⊥i, λi) ψ↑

a(xi,k⊥i, λi)

�
.

The summations are over all contributing Fock states a and struck constituent charges

ej. Here, as earlier, we refrain from including the constituents’ color and flavor

dependence in the arguments of the light-front wave functions. The phase-space

integration is

�
[dx] [d

2k⊥] ≡
�

λi,ci,fi

�
n�

i=1

�� �
dxi d

2k⊥i

2(2π)3

��

16π3δ

�

1−
n�

i=1

xi

�

δ(2)

�
n�

i=1

k⊥i

�

, (13)

where n denotes the number of constituents in Fock state a and we sum over the

possible {λi}, {ci}, and {fi} in state a. The arguments of the final-state, light-front

wave function differentiate between the struck and spectator constituents; namely, we

have [13, 15]

k�
⊥j = k⊥j + (1− xj)q⊥ (14)

for the struck constituent j and

k�
⊥i = k⊥i − xiq⊥ (15)

for each spectator i, where i �= j. Note that because of the frame choice q+
= 0, only

diagonal (n�
= n) overlaps of the light-front Fock states appear [14].

6

Drell, sjb
A(σ,∆⊥) = 1

2π

�
dζe

i
2σζM(ζ,∆⊥)

P+, �P⊥

xiP
+, xi

�P⊥+ �k⊥i

ζ = Q2

2p·q

x̂, ŷ plane

M2(L) ∝ L

Must have ∆�z = ±1 to have nonzero F2(q2)

-

β = 0

B(0) = 0 Fock-state-by-Fock state

qR,L = qx ± iqy

ψ(x, b⊥)

x

b⊥(GeV)−1

Identify z ↔ ζ =
�

x(1− x) b⊥

Nonzero Proton Anomalous Moment -->
Nonzero orbital  quark angular momentum
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Heisenberg Matrix 
FormulationLight-Front QCD

Eigenvalues and Eigensolutions give Hadron 
Spectrum and Light-Front wavefunctions

H
QCD
LF |Ψh >= M2

h|Ψh >

H
QCD
LF =

�

i

[
m

2 + k
2
⊥

x
]i + H

int
LF

Fig. 6. A few selected matrix elements of the QCD front form Hamiltonian H"P
!

in LB-convention.

10. For the instantaneous fermion lines use the factor ¼
"

in Fig. 5 or Fig. 6, or the corresponding
tables in Section 4. For the instantaneous boson lines use the factor ¼

#
.

The light-cone Fock state representation can thus be used advantageously in perturbation
theory. The sum over intermediate Fock states is equivalent to summing all x!-ordered diagrams
and integrating over the transverse momentum and light-cone fractions x. Because of the restric-
tion to positive x, diagrams corresponding to vacuum fluctuations or those containing backward-
moving lines are eliminated.

3.4. Example 1: ¹he qqN -scattering amplitude

The simplest application of the above rules is the calculation of the electron—muon scattering
amplitude to lowest non-trivial order. But the quark—antiquark scattering is only marginally more
difficult. We thus imagine an initial (q, qN )-pair with different flavors fOfM to be scattered off each
other by exchanging a gluon.

Let us treat this problem as a pedagogical example to demonstrate the rules. Rule 1: There are
two time-ordered diagrams associated with this process. In the first one the gluon is emitted by the
quark and absorbed by the antiquark, and in the second it is emitted by the antiquark and
absorbed by the quark. For the first diagram, we assign the momenta required in rule 2 by giving
explicitly the initial and final Fock states

!q, qN "" 1

!n
$

%$

!
$!"

b!
$"

(k
&
, #

&
)d!

$"M
(k

&N
, #

&N
)!0" , (3.29)

!q$, qN $"" 1

!n
$

%$
!
$!"

b!
$"

(k$
&
, #$

&
)d!

$"M
(k$

&N
, #$

&N
)!0" , (3.30)

338 S.J. Brodsky et al. / Physics Reports 301 (1998) 299—486

L
QCD → H

QCD
LF

H
int
LF : Matrix in Fock Space

Physical gauge: A+ = 0
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In terms of the hadron four-momentum P =

(P
+

, P
−

, �P⊥) with P
±

= P
0 ± P

3
, the light-

front frame independent Hamiltonian for a

hadronic composite system H
QCD

LC
= PµP

µ
=

P
−

P
+− �P

2

⊥, has eigenvalues given in terms of

the eigenmass M squared corresponding to

the mass spectrum of the color-singlet states

in QCD,

H
QCD

LC
|Ψh� =M2

h
|Ψh�

Fig. 6. A few selected matrix elements of the QCD front form Hamiltonian H"P
!

in LB-convention.

10. For the instantaneous fermion lines use the factor ¼
"

in Fig. 5 or Fig. 6, or the corresponding
tables in Section 4. For the instantaneous boson lines use the factor ¼

#
.

The light-cone Fock state representation can thus be used advantageously in perturbation
theory. The sum over intermediate Fock states is equivalent to summing all x!-ordered diagrams
and integrating over the transverse momentum and light-cone fractions x. Because of the restric-
tion to positive x, diagrams corresponding to vacuum fluctuations or those containing backward-
moving lines are eliminated.

3.4. Example 1: ¹he qqN -scattering amplitude

The simplest application of the above rules is the calculation of the electron—muon scattering
amplitude to lowest non-trivial order. But the quark—antiquark scattering is only marginally more
difficult. We thus imagine an initial (q, qN )-pair with different flavors fOfM to be scattered off each
other by exchanging a gluon.

Let us treat this problem as a pedagogical example to demonstrate the rules. Rule 1: There are
two time-ordered diagrams associated with this process. In the first one the gluon is emitted by the
quark and absorbed by the antiquark, and in the second it is emitted by the antiquark and
absorbed by the quark. For the first diagram, we assign the momenta required in rule 2 by giving
explicitly the initial and final Fock states

!q, qN "" 1

!n
$

%$

!
$!"

b!
$"

(k
&
, #

&
)d!

$"M
(k

&N
, #

&N
)!0" , (3.29)

!q$, qN $"" 1

!n
$

%$
!
$!"

b!
$"

(k$
&
, #$

&
)d!

$"M
(k$

&N
, #$

&N
)!0" , (3.30)

338 S.J. Brodsky et al. / Physics Reports 301 (1998) 299—486

Fig. 2. The Hamiltonian matrix for a SU(N)-meson. The matrix elements are represented by energy diagrams. Within
each block they are all of the same type: either vertex, fork or seagull diagrams. Zero matrices are denoted by a dot ( ) ).
The single gluon is absent since it cannot be color neutral.

mass or momentum scale Q. The corresponding wavefunction will be indicated by corresponding
upper scripts,

!!""
!#"

(x
#
, k

!
, !

#
) or !!$"

!#"
(x

#
, k

!
, !

#
) . (3.15)

Consider a pion in QCD with momentum P"(P%, P
!
) as an example. It is described by

"# : P$" $
!
!%&
!d[%

!
]"n : x

#
P%, k

!#
#x

#
P
!
, !

#
$!

!#!(x#
, k

!#
, !

#
) , (3.16)

where the sum is over all Fock space sectors of Eq. (3.7). The ability to specify wavefunctions
simultaneously in any frame is a special feature of light-cone quantization. The light-cone
wavefunctions !

!#! do not depend on the total momentum, since x
#
is the longitudinal momentum

fraction carried by the i"# parton and k
!#

is its momentum “transverse” to the direction of the
meson; both of these are frame-independent quantities. They are the probability amplitudes to find
a Fock state of bare particles in the physical pion.

More generally, consider a meson in SU(N). The kernel of the integral equation (3.14) is
illustrated in Fig. 2 in terms of the block matrix &n : x

#
, k

!#
, !

#
"H"n' : x'

#
, k'

!#
, !'

#
$. The structure of this

matrix depends of course on the way one has arranged the Fock space, see Eq. (3.7). Note that most
of the block matrix elements vanish due to the nature of the light-cone interaction as defined in

S.J. Brodsky et al. / Physics Reports 301 (1998) 299—486 333

Heisenberg Equation

Light-Front QCD
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• As Simple as Schrödinger Theory in Atomic Physics

• Relativistic, Frame-Independent, Color-Confining

• QCD Coupling at all scales

• Hadron Spectroscopy

• Light-Front Wavefunctions

• Form Factors, Hadronic Observables, Constituent 
Counting Rules

• Insight into QCD Condensates

• Systematically improvable

de Teramond, sjb

Goal: an analytic first approximation to QCD
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Applications of AdS/CFT  to QCD 

in collaboration with Guy de Teramond and Fu Guang Cao

Changes in 
physical

length scale 
mapped to 

evolution in the 
5th dimension z 
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AdS/QCD G. F. de Téramond

Scale Transformations

• Isomorphism of SO(4, 2) of conformal QCD with the group of isometries of AdS space

SO(1, 5)

ds
2 =

R2

z2
(ηµνdx

µ
dx

ν − dz
2),

xµ → λxµ, z → λz, maps scale transformations into the holographic coordinate z.

• AdS mode in z is the extension of the hadron wf into the fifth dimension.

• Different values of z correspond to different scales at which the hadron is examined.

x
2 → λ

2
x

2
, z → λz.

x2 = xµxµ: invariant separation between quarks

• The AdS boundary at z → 0 correspond to theQ→∞, UV zero separation limit.

Caltech High Energy Seminar, Feb 6, 2006 Page 1122

invariant measure



 

Soft-Wall Model

• Soft-wall model [Karch, Katz, Son and Stephanov (2006)] retain conformal AdS metrics but introduce

smooth cutoff wich depends on the profile of a dilaton background field ϕ(z) = ±κ2z2

S =
�

d4x dz
√

g eϕ(z)L,

• Equation of motion for scalar field L = 1
2

�
g�m∂�Φ∂mΦ− µ2Φ2

�

�
z2∂2

z −
�
3∓ 2κ2z2

�
z ∂z + z2M2 − (µR)2

�
Φ(z) = 0

with (µR)2 ≥ −4.

• LH holography requires ‘plus dilaton’ ϕ = +κ2z2
. Lowest possible state (µR)2 = −4

M2 = 0, Φ(z) ∼ z2e−κ2z2
, �r2� ∼ 1

κ2

A chiral symmetric bound state of two massless quarks with scaling dimension 2: the pion

Hadron 2009, FSU, Tallahassee, December 1, 2009 Page 17
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Retain conformal AdS metrics but introduce smooth cutoff 
which depends on the profile of a dilaton background field 

Karch, Katz, Son and Stephanov (2006)]

Massless pion

Soft-Wall Model
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A chiral symmetric bound state of two massless quarks with scaling dimension 2: the pion
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Figure 5

can compute other quantities, such as the energy loss that a very energetic quark will suffer as it

propagates through the medium. In some cases the finite-temperature gauge/gravity duality has

motivated the study of new strong-coupling phenomena that may be experimentally observable.

A confining potential-energy well

Gauge/string duality also gives new insights into color confinement, a deep and mysterious aspect of

QCD. Even though QCD is formulated in terms of the fundamental colored particles—quarks and gluons

—nobody has observed a free one; they are always confined inside color-neutral particles such as

protons, neutrons, and pions. The way in which hadrons are made of quarks and gluons is quite different

from the way in which nuclei are made of neutrons and protons. Those nuclear constituents are often

bound together tightly, but hitting the nucleus hard enough will liberate them. No matter how hard one

hits a hadron, though, it will decay only into other hadrons, not into free quarks and gluons. That

phenomenon has numerical support from lattice simulations of gauge theory, but its theoretical proof is

still missing.

Once again, gauge/string duality provides new insights. Admittedly, no simple string theory dual to QCD

has been found, but some confining gauge theories do have tractable dual formulations.4 Those theories

are not scale invariant; they have a preferred length scale that is comparable to the size of the lightest

bound states. For example, in QCD the scale is about that of the proton radius, 10!15 m. When the QFT

is not scale invariant, the dual spacetime has nonconstant curvature and a “warped” metric of the form

In such a spacetime, the gravitational energy of a massive particle is proportional to eA(y). The function

A(y) is such that for large y, the energy approaches the exponential ey found in the AdS metric, but its

form becomes more complicated as y decreases. It attains its absolute minimum, eA(0), at y = 0. Thus

massive objects fall to the bottom of the gravitational well, where they retain a nonzero energy

proportional to eA(0). Note that in QCD most of the proton mass comes from the effects of confinement;

the masses of the quarks make a relatively small contribution.

Theorists have posited that as a heavy quark–antiquark pair separates

in a confining theory, a color electric flux tube forms with constant

energy per unit length and a characteristic thickness. That object, often

called a confining string, has been observed in numerical simulations.

When such a string is spinning, it nicely explains the masses of high-

spin mesons. (For more on how string theory is connected to QCD, see

box 2.) How is the confining flux tube manifested in the dual, string-

theoretic description of the gauge theory? The answer is unexpectedly

simple: It is the fundamental string located at the bottom of the

potential-energy well shown in figure 5. Indeed, the energy per unit

length of a string at fixed y and stretched along one of the spatial directions in the metric of equation 2 is

proportional to Ts e2A(y), where Ts is the fundamental-string tension. Such a string naturally falls to the

bottom of the gravitational potential-energy well, where it retains a nonvanishing tension Ts e2A(0). Since

all confining gauge theories are expected to generate flux tubes, their dual formulations cannot be given

merely in terms of a gravitational field theory—they must involve string theory.

A variety of applications

The gauge/gravity duality has found theoretical applications to physics ranging from the highest to the

lowest conceivable energies. At the high end, theorists are exploring physics at the Planck scale of about

1019 GeV, which necessarily involves quantized fluctuations of spacetime geometry. Gauge theories with

N colors are dual to quantum gravity in curved spacetime, with the effective gravitational coupling being

of order 1/N. Those gauge theories have conventional quantum mechanics, with unitary time evolution of

wavefunctions. Therefore, the duality provides the most solid argument to date for why quantum gravity

in general, and a black hole in particular, does not destroy information.

At the low-energy end, QFTs often arise in the low-temperature domain of condensed-matter physics.

One much-explored class of examples concerns the behavior of systems at quantum critical points.5 The

relevant zero-temperature, scale-invariant theories are analogous to field theories describing second-

order phase transitions, but they are formulated in d spacetime dimensions rather than in just spatial

dimensions. In quantum critical systems, one is interested in computing transport properties at zero or

finite temperatures. The theories with tractable dual gravity descriptions can be viewed as toy models for

which such computations are feasible at strong coupling. So far, those manageable theories don’t

correspond to real-world condensed-matter systems, but they may capture some of those systems’

important features. For a study of transport properties near quantum criticality in that vein, see reference

6.

Now is an exciting time in particle physics—the Large Hadron Collider at CERN will soon reach its peak

collision energy of 14 TeV. We are confident that the current standard model of particle physics is not the

final word about nature at high energies, and the LHC’s experiments may well shed light on the new

layer of physics. Those who build particle models explore many different scenarios, but they are often

limited by difficulties associated with strongly coupled QFT. The gauge/gravity duality enables them to

investigate alternative, strongly coupled theories. And in fact, the warped AdS-like geometries of

equation 2 were also introduced for a number of phenomenological reasons, in particular to explain why

the scale of weak interactions, 250 GeV, is so much smaller than the Planck scale.7

The gauge/gravity duality has enabled field theorists to explore new possibilities away from weak

coupling. Some strongly coupled field theories can now be solved via their dual curved spacetimes and

provide a “hyperbolic cow” approximation to interesting physical systems. We are optimistic that the

future will reveal even closer connections between gauge/gravity duality and nature.

MOVE CLOSE

Figure 5. A string theory of quark confinement. A long fundamental string that has fallen to the bottom of the gravitational potential energy well describes the so-called color flux tube in a confining gauge theory at the boundary of the
extra dimension. Such strings explain why the potential energy between a quark and an antiquark rises linearly with their separation and prevents the two particles from escaping to freedom. The thickness of the string in the gauge

theory is related to the position of the fundamental string in the y direction.

ds2 = eA(y)(−dx2
0 + dx2

1 + dx2
3 + dx2

3) + dy2

ds2 = eκ2z2 R2

z2
(dx2

0 − dx2
1 − dx2

3 − dx2
3 − dz2)

y = R/zz → 0z →∞

Klebanov and Maldacena 
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10/7/09 3:26 PMMicrosoft Outlook Web Access

Page 2 of 2https://www-mail.slac.stanford.edu/exchange/

sjb: Right -- How do we distinguish the physics between the gravitational potential in Eq.
(24) from the new effective potential $\alpha^{eff}_s(q^2)\over q^2$?  

Difficult to say as in position space the effective potential $V(r) = - C_F \alpha^{eff
(Coulomb)}_s(r)\ over r$ is negative and Coulomb-like. On the other hand the gravitational potential
of an object of mass m in the modified AdS gravitational field (KB) is given in the figure attached,
and it is not Coulombic at all.

Best regards,

Guy

Agrees with 
Klebanov and 
Maldacena for 
positive-sign 
exponent of 

dilaton 

ds2 = eκ2z2 R2

z2
(dx2

0 − dx2
1 − dx2

3 − dx2
3 − dz2)
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AdS Soft-Wall Schrodinger Equation for 
bound state  of  two scalar constituents:

Derived from variation of Action  
Dilaton-Modified AdS5

�
− d2

dz2
− 1− 4L2

4z2
+ U(z)

�
φ(z) =M2φ(z)

U(z) = κ4z2 + 2κ2(L + S − 1)

• Erlich, Karch, Katz, Son, Stephanov • de Teramond, sjb

eΦ(z) = e+κ2z2

Positive-sign dilaton
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Fig: Orbital and radial AdS modes in the soft wall model for κ = 0.6 GeV .

0

2

4

(G
eV

2 )

(a)

0 2 4
8-2007
8694A19

π (140)

b1 (1235)

π2 (1670)

L

(b)

0 2 4

π (140)

π (1300)

π (1800)

n

Light meson orbital (a) and radial (b) spectrum for κ = 0.6 GeV.

Exploring QCD, Cambridge, August 20-24, 2007 Page 26

S = 0 S = 0

Soft Wall 
Model

Pion mass  
automatically zero!

mq = 0

Quark separation increases 
with L

Pion has 
zero mass!



 
CP3, September 16, 2011 QCD Myths  Stan Brodsky,  SLAC/CP3

equation is similar to the celebrated Schrödinger radial wave equation at fixed t which

describes the quantum-mechanical structure of atomic systems. Internal orbital angular

momentum L and its effect on quark kinetic energy plays an explicit role. Thus by using

the AdS/CFT correspondence one obtains a relativistic wave equation applicable to hadron

physics, where the light-front coordinate ζ plays the role of the radial variable r of the

nonrelativistic theory. For example, the meson eigenvalue equation is

�
− d2

dζ2
− 1− 4L2

4ζ2
+ U(ζ)

�
φ(ζ) =M2φ(ζ), (1)

where the vast complexity of the QCD interactions among constituents is summed up in

the addition of the effective potential U(ζ), which is then modeled to enforce confinement.

For example, in the soft wall model the potential is U(ζ) = κ4ζ2 + 2κ2(J − 1) where J is

the total angular momentum of the hadron. The corresponding wavefunctions of a pion

describe the probability distribution of its constituents for the different orbital and radial

states. The separation of the constituent quark and antiquark in AdS space get larger as

the orbital angular momentum increases. Orbital excitations are also located deeper inside

AdS space (Fig. ??).
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Figure 2: Meson wavefunctions is AdS space in the soft-wall holographic model of

confinement: (a) orbital modes and (b) radial modes. Constituent quark and antiquark

fly away from each other as the orbital and radial quantum number increases.

Hadronic spectrum. Thus AdS/CFT and light-front holography provide a quantum

mechanical wave equation formalism for hadron physics. The soft-wall model, in particular,

appears to provide a very useful first approximation to QCD. The solutions of the light-

front equation determine the masses of the hadrons, given the total internal spin S, the

orbital angular momenta L of the constituents, and the index n, the number of nodes of

the wavefunction in ζ. For example, if the total quark spin S is zero, the meson bound

7
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Quark separation increases with L

28

S = 1 S = 1
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1−− 2++ 3−− 4++ JPC

M2

L

Parent and daughter Regge trajectories for the I = 1 ρ-meson family (red)

and the I = 0 ω-meson family (black) for κ = 0.54 GeV

Sakharov Conference, Moscow, May 19, 2009 Page 2329
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Bosonic Modes and Meson Spectrum
4κ2

for ∆n = 1
4κ2

for ∆L = 1
2κ2

for ∆S = 1

0

0
6-2010
8796A5

1 2 3 4

2

4

6

M2

L

0-+ 1+- 2-+ 4-+3+-
JPC

n=3

π(1800)
π2(1880)

π2(1670)
π(1300)

π

b(1235)

n=2 n=1 n=0

0
09-2009

8796A1
1 2 3 4

2

4

6

M2

L

1-- 2++ 3-- 4++
JPC

n=3

f2(2300)

f2(1950)

a2(1320)

ρ(1700)

ω(1650)

ρ(1450)
ω(1420)

ρ(770)
ω(782)

f2(1270)

ρ3(1690)
ω3(1670)

a4(2040)
f4(2050)

n=2 n=1 n=0

Regge trajectories for the π (κ = 0.6 GeV) and the I =1 ρ-meson and I =0 ω-meson families (κ = 0.54 GeV)

KITPC, Beijing, October 19, 2010 Page 20

Same slope in n and L

S = 0 S = 1

M2 = 4κ2(n + J/2 + L/2)→ 4κ2(n + L + S/2)
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Nearly Conformal QCD and AdS/CFT G. F. de Téramond, UCR

• Propagation of external perturbation suppressed inside AdS.

• At large enoughQ ∼ r/R2, the interaction occurs in the large-r conformal region. Important

contribution to the FF integral from the boundary near z ∼ 1/Q.

J(Q, z), Φ(z)

1 2 3 4 5

0.2

0.4

0.6

0.8

1

z

• Consider a specific AdS mode Φ(n) dual to an n partonic Fock state |n�. At small z, Φ(n)

scales as Φ(n) ∼ z∆n . Thus:

F (Q2) →
�

1
Q2

�τ−1

,

where τ = ∆n − σn, σn =
�n

i=1 σi. The twist is equal to the number of partons, τ = n.

Quark-Hadron Duality, Frascati, 6-8 June 2005 Page 22

Dimensional Quark Counting Rules:
General result from 

AdS/CFT and Conformal Invariance

31

Hadron Form Factors from AdS/CFT 

Polchinski, Strassler
de Teramond, sjb

D(z) ∼ (1− z)2Nspect−1

zD(z) = F (x = 1/z)

zD(z)c→pX = Fp→cX(x = 1/z)

zi ∝ m⊥i =
�

m2
i + k2

⊥

X = cūd̄ū

F (Q2)I→F =
� dz

z3ΦF (z)J(Q, z)ΦI(z)

J(Q, z) = zQK1(zQ)

αs(Q2)

β(Q2) = dαs(Q2)
d logQ2 → 0

Π(Q2)→ α
15π

Q2

m2

Q2 << 4m2

A

High Q2 
from 

small z  ~ 1/Q

J(Q, z) Φ(z)
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AdS/QCD G. F. de Téramond

Holographic Model for QCD Light-Front Wavefunctions

SJB and GdT in preparation

• Drell-Yan-West form factor in the light-cone (two-parton state)

F (q2) =
�

q

eq

� 1

0
dx

�
d2�k⊥
16π3

ψ∗P �(x,�k⊥ − x�q⊥) ψP (x,�k⊥).

• Fourrier transform to impact parameter space�b⊥

ψ(x,�k⊥) =
√

4π

�
d2�b⊥ ei�b⊥·�k⊥ �ψ(x,�b⊥)

• Find (b = |�b⊥|) :

F (q2) =
� 1

0
dx

�
d2�b⊥ eix�b⊥·�q⊥

�� �ψ(x, b)
��2

= 2π

� 1

0
dx

� ∞

0
b db J0 (bqx)

�� �ψ(x, b)
��2,

Caltech High Energy Seminar, Feb 6, 2006 Page 33

Soper

32

Light-Front Representation 
of Two-Body Meson Form Factor

�q2
⊥ = Q2 = −q2



 

Holographic Mapping of AdS Modes to QCD LFWFs

• Integrate Soper formula over angles:

F (q2) = 2π

� 1

0
dx

(1− x)
x

�
ζdζJ0

�
ζq

�
1− x

x

�
ρ̃(x, ζ),

with �ρ(x, ζ) QCD effective transverse charge density.

• Transversality variable

ζ =
�

x

1− x

���
n−1�

j=1

xjb⊥j

���.

• Compare AdS and QCD expressions of FFs for arbitrary Q using identity:

� 1

0
dxJ0

�
ζQ

�
1− x

x

�
= ζQK1(ζQ),

the solution for J(Q, ζ) = ζQK1(ζQ) !

Exploring QCD, Cambridge, August 20-24, 2007 Page 35

ψ(x,�b⊥) = ψ(ζ)

φ(z)

ζ =
�

x(1− x)�b2⊥

z

z∆

z0 = 1
ΛQCD

γd→ np

33
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-2 -1.5 -1 -0.5 0
0

0.2

0.4

0.6

0.8

1

-10 -8 -6 -4 -2 0
0

0.2

0.4

0.6

0.8

1

Untitled-1 1

Fπ(q2)

q2(GeV 2
)

However J/ψ → ρπ

is largest two-body hadron decay

Small value for ψ� → ρπ

ρ

π

Spacelike pion form factor from AdS/CFT

Fπ(q2)

q2(GeV 2
)

However J/ψ → ρπ

is largest two-body hadron decay

Small value for ψ� → ρπ

ρ

π

Hard Wall: Truncated Space Confinement

Soft Wall: Harmonic Oscillator Confinement

One parameter -  set by pion decay constant

Data Compilation
Baldini, Kloe and Volmer

de Teramond, sjb
See also: Radyushkin 



 
CP3, September 16, 2011 QCD Myths  Stan Brodsky,  SLAC/CP3

35

• Hadronic gravitational form-factor in AdS space

Aπ(Q2) = R
3
�

dz

z3
H(Q2

, z) |Φπ(z)|2 ,

where H(Q2
, z) = 1

2Q
2
z
2
K2(zQ)

• Use integral representation for H(Q2
, z)

H(Q2
, z) = 2

� 1

0
x dxJ0

�
zQ

�
1− x

x

�

• Write the AdS gravitational form-factor as

Aπ(Q2) = 2R
3
� 1

0
x dx

�
dz

z3
J0

�
zQ

�
1− x

x

�
|Φπ(z)|2

• Compare with gravitational form-factor in light-front QCD for arbitrary Q

���ψ̃qq/π(x, ζ)
���
2

=
R

3

2π
x(1− x)

|Φπ(ζ)|2

ζ4
,

which is identical to the result obtained from the EM form-factor

From String to Things, INT, Seattle, April 10, 2008 Page 31

Abidin & Carlson 

Gravitational Form Factor in AdS space

Identical  to LF Holography obtained from electromagnetic current
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ψ(x,�b⊥) = ψ(ζ)

φ(z)

ζ =
�

(x(1− x)|b⊥|

z

z∆

z0 = 1
ΛQCD

γd→ np

ψ(x,�b⊥) = ψ(ζ)

φ(z)

ζ =
�

x(1− x)�b2⊥

z

z∆

z0 = 1
ΛQCD

γd→ np

ψ(x,�b⊥) = ψ(ζ)

φ(z)

ζ =
�

x(1− x)�b2⊥

z

z∆

z0 = 1
ΛQCD

γd→ np

x (1− x) �b⊥

ψ(x,�b⊥) = ψ(ζ)

φ(z)

ζ =
�

x(1− x)�b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) �b⊥

ψ(x,�b⊥) = ψ(ζ)

φ(z)

ζ =
�

x(1− x)�b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) �b⊥

ψ(x,�b⊥) = ψ(ζ)

φ(z)

ζ =
�

x(1− x)�b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) �b⊥

ψ(x,�b⊥) = ψ(ζ)

φ(z)

ζ =
�

x(1− x)�b2⊥

z

z∆

z0 = 1
ΛQCD

LF(3+1)                AdS5

36

Light Front Holography: Unique mapping derived from equality of LF 
and AdS  formula for current matrix elements

ψ(x, ζ) =
�

x(1− x)ζ−1/2φ(ζ)

de Teramond, sjb



 

soft wall
confining potential:

Light-Front Holography: 
Map AdS/CFT  to  3+1 LF Theory

�
− d2

d2ζ
+ V (ζ)

�
=M2φ(ζ)

�
− d2

dζ2 + V (ζ)
�
=M2φ(ζ)

ζ2 = x(1− x)b2
⊥.

Jz = Sz
p =

�n
i=1 Sz

i +
�n−1

i=1 �z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Relativistic LF radial equation

G. de Teramond, sjb 

x (1− x) �b⊥

ψ(x,�b⊥) = ψ(ζ)

φ(z)

ζ =
�

x(1− x)�b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) �b⊥

ψ(x,�b⊥) = ψ(ζ)

φ(z)

ζ =
�

x(1− x)�b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) �b⊥

ψ(x,�b⊥) = ψ(ζ)

φ(z)

ζ =
�

x(1− x)�b2⊥

z

z∆

z0 = 1
ΛQCD

Frame Independent

�
− d2

dζ2
+

1− 4L2

4ζ2
+ U(ζ)

�
φ(ζ) =M2φ(ζ)

37

U(z) = κ4z2 + 2κ2(L + S − 1)
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Prediction from AdS/CFT: Meson LFWF

ψ(x, k⊥)
0.20.40.60.8

1.3

1.4

1.5

0

0.05

0.1

0.15

0.2

0

5

       “Soft Wall” 
model

ψ(x, k⊥)(GeV)

de Teramond, sjb

38

φM(x, Q0) ∝
�

x(1− x)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ−

q

φM(x, Q0) ∝
�

x(1− x)

ψM(x, k2
⊥)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ−

κ = 0.375 GeV

massless quarks
Note coupling 

k2
⊥, x

Connection of Confinement to TMDs

ψM (x, k⊥) =
4π

κ
�

x(1− x)
e
− k2

⊥
2κ2x(1−x)



 

HQED

[− ∆2

2mred
+ Veff(�S,�r)] ψ(�r) = E ψ(�r)

[− 1
2mred

d2

dr2
+

1
2mred

�(� + 1)
r2

+ Veff(r, S, �)] ψ(r) = E ψ(r)

(H0 + Hint) |Ψ >= E |Ψ > Coupled Fock states

Effective two-particle equation

 Spherical Basis r, θ,φ

Coulomb  potential 

Includes Lamb Shift, quantum corrections

Bohr Spectrum
Veff → VC(r) = −α

r

QED atoms: positronium and 
muonium

Semiclassical first approximation to QED 39



 

HQED

Coupled Fock states

Effective two-particle equation

 Azimuthal  Basis

Confining AdS/QCD  
potential 

QCD Meson SpectrumH
LF
QCD

(H0
LF + H

I
LF )|Ψ >= M

2|Ψ >

[
�k2
⊥ + m2

x(1− x)
+ V LF

eff ] ψLF (x,�k⊥) = M2 ψLF (x,�k⊥)

[− d2

dζ2
+
−1 + 4L2

ζ2
+ U(ζ, S, L)] ψLF (ζ) = M2 ψLF (ζ) ζ,φ

U(ζ, S, L) = κ2ζ2 + κ2(L + S − 1/2)

ζ2 = x(1− x)b2
⊥

Semiclassical first approximation to QCD 
40de Teramond, sjb



 

41

Non-Conformal Extension of Algebraic Structure (Soft Wall Model)

• We write the Dirac equation

(αΠ(ζ)−M)ψ(ζ) = 0,

in terms of the matrix-valued operator Π

Πν(ζ) = −i

�
d

dζ
−

ν + 1
2

ζ
γ5 − κ2ζγ5

�
,

and its adjoint Π†, with commutation relations

�
Πν(ζ),Π†

ν(ζ)
�

=
�

2ν + 1
ζ2

− 2κ2

�
γ5.

• Solutions to the Dirac equation

ψ+(ζ) ∼ z
1
2+νe−κ2ζ2/2Lν

n(κ2ζ2),

ψ−(ζ) ∼ z
3
2+νe−κ2ζ2/2Lν+1

n (κ2ζ2).

• Eigenvalues

M2 = 4κ2(n + ν + 1).

Exploring QCD, Cambridge, August 20-24, 2007 Page 49

ν = L + 1
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Glazek and Schaden [Phys. Lett. B 198, 42 (1987)]: (ωB/ωM )2 = 5/8 4κ2 for ∆n = 1
4κ2 for ∆L = 1

2κ2 for ∆S = 1

M2

L

Parent and daughter 56 Regge trajectories for the N and ∆ baryon families for κ = 0.5 GeV

2009 JLab Users Group Meeting, June 8, 2009 Page 2642

• ∆ spectrum identical to Forkel and Klempt, Phys. Lett. B 679, 77 (2009)

Same multiplicity of states for mesons and baryons!
4κ2 for ∆n = 1
4κ2 for ∆L = 1
2κ2 for ∆S = 1

0

2

4

(a) (b)
6

0 1 2 3 4
9-2009
8796A3

M2

L

0 1 2 3 4

L

N(1710)

N(1440)

N(940)

N(1680)

N(2200)

N(1720) Δ(1600)

Δ(1950)

Δ(2420)

Δ(1905)

Δ(1920)

Δ(1910)

Δ(1232)

n=3 n=2 n=1 n=0

n=3 n=2 n=1 n=0

Regge trajectories for positive parity N and ∆ baryon families (κ = 0.5 GeV)

LC 2011 2011, Dallas, May 23, 2011 Page 14
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6 E. Klempt et al.: ∆∗ resonances, quark models, chiral symmetry and AdS/QCD
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Fig. 2. Regge trajectory for ∆∗ resonances as a function of the leading intrinsic orbital angular momentum L and the radial
excitation quantum number N (corresponding to n1 + n2 in quark models). The line represents a prediction of the metric-soft-
wall AdS/QCD model [18,19]. Resonances with N = 0 and N = 1 are listed above or below the trajectory. The mass predictions
are 1.27, 1.64, 1.92, 2.20, 2.43, 2.64, 2.84GeV. The two states reported in [20,21] are indicated by arrows.

In [17], ∆(1930)D35 was interpreted as L = 3, S = 1/2

excitation. The new evidence for ∆(1940)D33 – which

seems to be a natural spin partner of ∆(1930)D35 – sug-

gests L = 1, S = 3/2, N = 1 quantum numbers for both,

and the two-star ∆(1900)S31 to be the natural third part-

ner to complete a spin triplet. In the interpretation of

[17], one could of course also argue that ∆(1900)S31 and

∆(1940)D33 have L = 1, S = 1/2, N = 1, and ∆(1930)D35

and a missing ∆G37 below 2GeV are L = 3, S = 1/2 ex-

citations.

At high masses, some problems remain. In particular

∆(2750)I3 13 is far from the solid line.

In conclusion, there are clear discrepancies between

hard-wall AdS/QCD and data in the 1.7 GeV region. Above

1.8GeV, some inconsistencies with the hard wall solution

exist, in particular the existence of ∆(1940)D33 [20,21]

and the non-observation of a ∆G37 candidate with mass

between 1.9 and 2GeV are difficult to reconcile with hard-

wall AdS/QCD. But overall, the trend of most established

states is reasonably reproduced.

In [18,19], the mass spectrum of light mesons and

baryons was predicted using AdS/QCD in the metric soft-

wall approximation. Relations between ground state masses

and trajectory slopes

M2
= 4λ2

(L + N + 1/2) for mesons

M2
= 4λ2

(L + N + 3/2) for baryons (A)

were derived. Using the slope of the ∆ trajectory, masses

were calculated. They are plotted as a function of L+N in

Fig. 2. The two states indicated by arrows are those found

in [20,21]. While the positive-parity ∆(1920)P33 has three

stars in the PDG rating, the negative-parity ∆(1940)D33

had one star only. Both states were not observed in the

latest analysis of Arndt et al. [3] on elastic πN scattering.

The four positive- and negative-parity states between

1.60 and 1.75 GeV (2,3) are predicted to have the same

mass (1.62 GeV)
1
; the seven states (4,5) should have 1.92

GeV. The predicted masses for L + N = 3 (6,7) and 4

(8,9) are 2.20 and 2.42GeV, respectively. The trajectory

continues with the calculated masses 2.64 for L + N = 5

and 2.84 GeV for L + N = 6. Experimentally, the highest

mass state is ∆(2950)K3 15 which requires L = 6. In this

interpretation, ∆(2750)I3 13 has L = 5, S = 3/2 and N =

1 and should be degenerate in mass with ∆(2950)K3 15.

Both are expected to have a mass of 2.84 GeV which is not

incompatible with the experimental findings even though

the mass difference of 200 MeV between the two states

does not support their expected mass degeneracy.

An early interpretation of strings was proposed by

Nambu [36]. He assumed that the gluon flux between the

two quarks is concentrated in a rotating flux tube or a

rotating string with a homogeneous mass density. Nambu

derived a linear relation between squared mass and or-

bital angular momentum, M2 ∝ L. This mechanical pic-

ture was further developed by Baker and Steinke [37] and

by Baker [38] to a field theoretical approach. For mesons,

the functional dependence (A) was derived.

The relation (A) between ∆∗
masses and L and N has

been derived earlier in a phenomenological analysis of the

baryon mass spectrum [35]. For octet and singlet baryons,

one term ascribed to instanton-induced interactions was

required to reproduce the full mass spectrum of all baryon

resonances having known spin and parity.

The striking agreement between the measured baryon

excitation spectrum and the predictions [18,19] based on

AdS/QCD and the success of the phenomenological mass

formula [35] pose new questions. In both cases, the baryon

masses depend on the number of orbital and radial exci-

tations just as mesons. But baryons have an extra degree

1 The ∆1/2+(1750) is tricky; it has L = 2 but both oscillators
are excited. Since they are orthogonal, the internal separations
increase less than for parallel angular momenta.
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Fig. 2. Regge trajectory for ∆∗ resonances as a function of the leading intrinsic orbital angular momentum L and the radial
excitation quantum number N (corresponding to n1 + n2 in quark models). The line represents a prediction of the metric-soft-
wall AdS/QCD model [18,19]. Resonances with N = 0 and N = 1 are listed above or below the trajectory. The mass predictions
are 1.27, 1.64, 1.92, 2.20, 2.43, 2.64, 2.84GeV. The two states reported in [20,21] are indicated by arrows.

In [17], ∆(1930)D35 was interpreted as L = 3, S = 1/2

excitation. The new evidence for ∆(1940)D33 – which

seems to be a natural spin partner of ∆(1930)D35 – sug-

gests L = 1, S = 3/2, N = 1 quantum numbers for both,

and the two-star ∆(1900)S31 to be the natural third part-

ner to complete a spin triplet. In the interpretation of

[17], one could of course also argue that ∆(1900)S31 and

∆(1940)D33 have L = 1, S = 1/2, N = 1, and ∆(1930)D35

and a missing ∆G37 below 2GeV are L = 3, S = 1/2 ex-

citations.

At high masses, some problems remain. In particular

∆(2750)I3 13 is far from the solid line.

In conclusion, there are clear discrepancies between

hard-wall AdS/QCD and data in the 1.7 GeV region. Above

1.8GeV, some inconsistencies with the hard wall solution

exist, in particular the existence of ∆(1940)D33 [20,21]

and the non-observation of a ∆G37 candidate with mass

between 1.9 and 2GeV are difficult to reconcile with hard-

wall AdS/QCD. But overall, the trend of most established

states is reasonably reproduced.

In [18,19], the mass spectrum of light mesons and

baryons was predicted using AdS/QCD in the metric soft-

wall approximation. Relations between ground state masses

and trajectory slopes

M2
= 4λ2

(L + N + 1/2) for mesons

M2
= 4λ2

(L + N + 3/2) for baryons (A)

were derived. Using the slope of the ∆ trajectory, masses

were calculated. They are plotted as a function of L+N in

Fig. 2. The two states indicated by arrows are those found

in [20,21]. While the positive-parity ∆(1920)P33 has three

stars in the PDG rating, the negative-parity ∆(1940)D33

had one star only. Both states were not observed in the

latest analysis of Arndt et al. [3] on elastic πN scattering.

The four positive- and negative-parity states between

1.60 and 1.75 GeV (2,3) are predicted to have the same

mass (1.62 GeV)
1
; the seven states (4,5) should have 1.92

GeV. The predicted masses for L + N = 3 (6,7) and 4

(8,9) are 2.20 and 2.42GeV, respectively. The trajectory

continues with the calculated masses 2.64 for L + N = 5

and 2.84 GeV for L + N = 6. Experimentally, the highest

mass state is ∆(2950)K3 15 which requires L = 6. In this

interpretation, ∆(2750)I3 13 has L = 5, S = 3/2 and N =

1 and should be degenerate in mass with ∆(2950)K3 15.

Both are expected to have a mass of 2.84 GeV which is not

incompatible with the experimental findings even though

the mass difference of 200 MeV between the two states

does not support their expected mass degeneracy.

An early interpretation of strings was proposed by

Nambu [36]. He assumed that the gluon flux between the

two quarks is concentrated in a rotating flux tube or a

rotating string with a homogeneous mass density. Nambu

derived a linear relation between squared mass and or-

bital angular momentum, M2 ∝ L. This mechanical pic-

ture was further developed by Baker and Steinke [37] and

by Baker [38] to a field theoretical approach. For mesons,

the functional dependence (A) was derived.

The relation (A) between ∆∗
masses and L and N has

been derived earlier in a phenomenological analysis of the

baryon mass spectrum [35]. For octet and singlet baryons,

one term ascribed to instanton-induced interactions was

required to reproduce the full mass spectrum of all baryon

resonances having known spin and parity.

The striking agreement between the measured baryon

excitation spectrum and the predictions [18,19] based on

AdS/QCD and the success of the phenomenological mass

formula [35] pose new questions. In both cases, the baryon

masses depend on the number of orbital and radial exci-

tations just as mesons. But baryons have an extra degree

1 The ∆1/2+(1750) is tricky; it has L = 2 but both oscillators
are excited. Since they are orthogonal, the internal separations
increase less than for parallel angular momenta.
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Fermionic Modes and Baryon Spectrum
[Hard wall model: GdT and S. J. Brodsky, PRL 94, 201601 (2005)]

[Soft wall model: GdT and S. J. Brodsky, (2005), arXiv:1001.5193]

From Nick Evans

• Nucleon LF modes

ψ+(ζ)n,L = κ2+L

�
2n!

(n + L)!
ζ3/2+Le−κ2ζ2/2LL+1

n

�
κ2ζ2

�

ψ−(ζ)n,L = κ3+L 1√
n + L + 2

�
2n!

(n + L)!
ζ5/2+Le−κ2ζ2/2LL+2

n

�
κ2ζ2

�

• Normalization �
dζ ψ2

+(ζ) =
�

dζ ψ2
−(ζ) = 1

• Eigenvalues

M2
n,L,S=1/2 = 4κ2 (n + L + 1)

• “Chiral partners”

MN(1535)

MN(940)
=
√

2
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• Boost Invariant

• Trivial LF vacuum.

• Massless Pion

• Hadron Eigenstates have LF Fock components of different Lz

• Proton: equal probability

• Self-Dual Massive Eigenstates: Proton is its own chiral partner.

• Label State by minimum L as in Atomic Physics

• Minimum L dominates at short distances               

• AdS/QCD Dictionary: Match to Interpolating Operator Twist at z=0.

Chiral Features of Soft-Wall 
AdS/QCD Model

46

Sz = +1/2, Lz = 0;Sz = −1/2, Lz = +1

Jz = +1/2 :< Lz >= 1/2, < Sz
q = 0 >

Proton spin 
carried by quark angular momentum!
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Space-Like Dirac Proton Form Factor

• Consider the spin non-flip form factors

F+(Q2) = g+

�
dζ J(Q, ζ)|ψ+(ζ)|2,

F−(Q2) = g−

�
dζ J(Q, ζ)|ψ−(ζ)|2,

where the effective charges g+ and g− are determined from the spin-flavor structure of the theory.

• Choose the struck quark to have Sz = +1/2. The two AdS solutions ψ+(ζ) and ψ−(ζ) correspond

to nucleons with Jz = +1/2 and−1/2.

• For SU(6) spin-flavor symmetry

F p
1 (Q2) =

�
dζ J(Q, ζ)|ψ+(ζ)|2,

Fn
1 (Q2) = −1

3

�
dζ J(Q, ζ)

�
|ψ+(ζ)|2 − |ψ−(ζ)|2

�
,

where F p
1 (0) = 1, Fn

1 (0) = 0.

Exploring QCD, Cambridge, August 20-24, 2007 Page 52
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Proton Form Factor: N = 3 [Eq. (6)].

FIG. 2. Q4F 1
p (Q2) in a negative (dashed line, κ = 0.3877 GeV) and positive dilaton backgrounds

(continuous line, κ = 0.5484 GeV). The data compilation is from Diehl.

4

Proton Form Factor: N = 3 [Eq. (6)].

FIG. 2. Q4F 1
p (Q2) in a negative (dashed line, κ = 0.3877 GeV) and positive dilaton backgrounds

(continuous line, κ = 0.5484 GeV). The data compilation is from Diehl.

4

Q4F p
1 (Q2)
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• Scaling behavior for large Q2: Q4Fn
1 (Q2)→ constant Neutron τ = 3

0
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4 )

9-2007
8757A1

SW model predictions for κ = 0.424 GeV. Data analysis from M. Diehl et al. Eur. Phys. J. C 39, 1 (2005).

Helmholtz Institut, Bonn, Oct 16, 2007 Page 30
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• Scaling behavior for large Q2: Q4F p
1 (Q2)→ constant Proton τ = 3
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SW model predictions for κ = 0.424 GeV. Data analysis from: M. Diehl et al. Eur. Phys. J. C 39, 1 (2005).
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Space-Like Dirac Proton Form Factor

• Consider the spin non-flip form factors

F+(Q2) = g+

�
dζ J(Q, ζ)|ψ+(ζ)|2,

F−(Q2) = g−

�
dζ J(Q, ζ)|ψ−(ζ)|2,

where the effective charges g+ and g− are determined from the spin-flavor structure of the theory.

• Choose the struck quark to have Sz = +1/2. The two AdS solutions ψ+(ζ) and ψ−(ζ) correspond

to nucleons with Jz = +1/2 and−1/2.

• For SU(6) spin-flavor symmetry

F p
1 (Q2) =

�
dζ J(Q, ζ)|ψ+(ζ)|2,

Fn
1 (Q2) = −1

3

�
dζ J(Q, ζ)

�
|ψ+(ζ)|2 − |ψ−(ζ)|2

�
,

where F p
1 (0) = 1, Fn

1 (0) = 0.
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• Scaling behavior for large Q2: Q4Fn
1 (Q2)→ constant Neutron τ = 3
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Chiral Features of Soft-Wall AdS/
QCD Model

54

Sz = +1/2, Lz = 0;Sz = −1/2, Lz = +1

• Boost Invariant

• Trivial LF vacuum.

• Massless Pion

• Hadron Eigenstates have LF Fock components of different Lz

• Proton: equal probability

• Self-Dual Massive Eigenstates: Proton is its own chiral partner.

• Label State by minimum L as in Atomic Physics

• Minimum L dominates at short distances               

• AdS/QCD Dictionary: Match to Interpolating Operator Twist at z --> 0
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Nucleon Transition Form Factors

• Compute spin non-flip EM transition N(940)→ N∗(1440): Ψn=0,L=0
+ → Ψn=1,L=0

+

• Transition form factor

F1
p
N→N∗(Q2) = R4

�
dz

z4
Ψn=1,L=0

+ (z)V (Q, z)Ψn=0,L=0
+ (z)

• Orthonormality of Laguerre functions

�
F1

p
N→N∗(0) = 0, V (Q = 0, z) = 1

�

R4
�

dz

z4
Ψn�,L

+ (z)Ψn,L
+ (z) = δn,n�

• Find

F1
p
N→N∗(Q2) =

2
√

2
3

Q2

M2
P�

1 + Q2

M2
ρ

��
1 + Q2

M2
ρ�

��
1 + Q2

M2

ρ
��

�

withMρ
2
n → 4κ2(n + 1/2)

LC 2011 2011, Dallas, May 23, 2011 Page 21

de Teramond, sjb

Consistent with counting rule, twist 3
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Data from I. Aznauryan, et al. CLAS (2009)

IUSS, Ferrara, May 27, 2011 Page 31

Nucleon Transition Form Factors

• Compute spin non-flip EM transition N(940)→ N∗(1440): Ψn=0,L=0
+ → Ψn=1,L=0

+

• Transition form factor

F1
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N→N∗(Q2) = R4

�
dz

z4
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+ (z)V (Q, z)Ψn=0,L=0
+ (z)

• Orthonormality of Laguerre functions
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• Exposed by timelike form factor through dressed 
current.

• Created by confining interaction

• Similar to QCD(1+1) in lcg

AdS/QCD predicts Higher Fock States

57

U(ζ2)

5 Confinement Interaction and Higher Fock States

[S. J. Brodsky and GdT (in progress)]

• Is the AdS/QCD confinement interaction responsible for quark pair creation?

• Only interaction in AdS/QCD is the confinement potential

• In QFT the resulting LF interaction is a 4-point effective interaction wich leads to qq → qq, q → qqq,

qq → qq and q → qqq

• Create Fock states with extra quark-antiquark pairs.

• No mixing with qqg Fock states (no dynamical gluons)

• Explain the dominance of quark interchange in large angle elastic scattering

[C. White et al. Phys. Rev D 49, 58 (1994)

• Effective confining potential can be considered as an instantaneous four-point interaction in LF time,

similar to the instantaneous gluon exchange in LC gauge A+ = 0. For example

P−confinement � κ4
�

dx−d2�x⊥
ψγ+T aψ

P+

1
(∂/∂⊥)4

ψγ+T aψ

P+

LC 2011 2011, Dallas, May 23, 2011 Page 23

de Teramond, sjb
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Note: Analytical Form of Hadronic Form Factor for Arbitrary Twist

• Form factor for a string mode with scaling dimension τ , Φτ in the SW model

F (Q2) = Γ(τ)
Γ

�
1+ Q2

4κ2

�

Γ
�
τ + Q2

4κ2

� .

• For τ = N , Γ(N + z) = (N − 1 + z)(N − 2 + z) . . . (1 + z)Γ(1 + z).

• Form factor expressed as N − 1 product of poles

F (Q2) =
1

1 + Q2

4κ2

, N = 2,

F (Q2) =
2�

1 + Q2

4κ2

��
2 + Q2

4κ2

� , N = 3,

· · ·

F (Q2) =
(N − 1)!�

1 + Q2

4κ2

��
2 + Q2

4κ2

�
· · ·

�
N−1+ Q2

4κ2

� , N.

• For large Q2:

F (Q2)→ (N − 1)!
�
4κ2

Q2

�(N−1)

.

Exploring QCD, Cambridge, August 20-24, 2007 Page 43
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Meson Transition Form-Factors

[S. J. Brodsky, Fu-Guang Cao and GdT, arXiv:1005.39XX]

• Pion TFF from 5-dim Chern-Simons structure [Hill and Zachos (2005), Grigoryan and Radyushkin (2008)]

�
d4x

�
dz �LMNPQAL∂MAN∂P AQ

∼ (2π)4δ(4) (pπ + q − k) Fπγ(q2)�µνρσ�µ(q)(pπ)ν�ρ(k)qσ

• Take Az ∝ Φπ(z)/z, Φπ(z) =
�

2Pqq κ z2e−κ2z2/2
, �Φπ|Φπ� = Pqq

• Find

�
φ(x) =

√
3fπx(1− x), fπ =

�
Pqq κ/

√
2π

�

Q2Fπγ(Q2) =
4√
3

� 1

0
dx

φ(x)
1− x

�
1− e−PqqQ2(1−x)/4π2f2

π x
�

normalized to the asymptotic DA [Pqq = 1 → Musatov and Radyushkin (1997)]

• Large Q2
TFF is identical to first principles asymptotic QCD result Q2Fπγ(Q2 →∞) = 2fπ

• The CS form is local in AdS space and projects out only the asymptotic form of the pion DA

LC 2011 2011, Dallas, May 23, 2011 Page 25

G.P. Lepage, sjb
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Photon-to-pion transition form factor

F.-G. Cao, 
G. de Teramond, 

sjb

where α = 1/137. The form factor Fπγ(0) is also well described by the Schwinger, Adler,

Bell and Jackiw anomaly [31] which gives

F SABJ
πγ (0) =

1

4π2fπ
, (16)

in agreement within a few percent of the observed value obtained from the the decay

π0 → γγ.

Taking Pqq̄ = 0.5 in (14) one obtains a result in agreement with (16). Thus (13) repre-

sents a description on the pion TFF which encompasses the low-energy non-perturbative

and the high-energy hard domains, but includes only the asymptotic DA of the qq̄ com-

ponent of the pion wave function at all scales. The results from (13) are shown as dotted

curves in Figs. 1 and 2 for Q2Fπγ(Q2) and Fπγ(Q2) respectively. The calculations agree

reasonably well with the experimental data at low- and medium-Q2 regions (Q2 < 10

GeV2) , but disagree with BABAR’s large Q2 data.
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pion-gamma transition form factor, Q2Fpigamma 
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 Free current; Twist 2 
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 Dressed current; Twist 2+4 

FIG. 1: The γγ∗ → π0 transition form factor shown as Q2Fπγ(Q2) as a function of Q2 = −q2.

The dotted curve is the asymptotic result predicted by the Chern-Simons form. The dashed

and solid curves include the effects of using a confined EM current for twist-two and twist-two

plus twist-four respectively. The data are from [15, 18, 19].

9

qq̄ components.

The simple valence qq̄ model discussed above should thus be modified at small Q2

by introducing the dressed current. In the case of soft-wall potential, the EM bulk-to-

boundary propagator is

V (Q2, z) = Γ

�
1 +

Q2

4κ2

�
U

�
Q2

4κ2
, 0, κ2z2

�
, (17)

where U(a, b, c) is the Tricomi confluent hypergeometric function. The modified current

V (Q2, z), (17), has the same boundary conditions as the free current (9), and reduces to

(9) in the limit Q2 → ∞. Eq. (17) can be conveniently written in terms of the integral

representation [33]

V (Q2, z) = κ2z2

� 1

0

dx

(1− x)2
x

Q2

4κ2 e−κ2z2x/(1−x). (18)

Inserting the pion wave function (5) for twist τ = 2 and the confined EM current (18)

in the amplitude (3) one finds

Fπγ(Q
2
) =

Pqq̄

π2fπ

� 1

0

dx

(1 + x)2
xQ2Pqq̄/(8π2f2

π). (19)

Eq. (19) gives the same value for Fπγ(0) as (14) which was obtained with the free current.

Thus the anomaly result Fπγ(0) = 1/(4π2fπ) is reproduced if Pqq̄ = 0.5 is also taken in

(19). Upon integration by parts, Eq. (19) can also be written as

Q2Fπγ(Q
2
) = 8fπ

� 1

0

dx
1− x

(1 + x)3

�
1− xQ2Pqq̄/(8π2f2

π)
�

. (20)

Noticing that the second term in Eq. (20) vanishes at the limit Q2 → ∞, one recovers

Brodsky-Lepage’s asymptotic prediction for the pion TFF: Q2Fπγ(Q2 →∞) = 2fπ. [11]

The results calculated with (19) for Pqq̄ = 0.5 are shown as dashed curves in Figs. 1

and 2. One can see that the calculations with the dressed current are larger as compared

with the results computed with the free current and the experimental data at low- and

medium-Q2 regions (Q2 < 10 GeV2). The new results again disagree with BABAR’s data

at large Q2.

11

(Chern-Simons)



 

5 Non-Perturbative QCD Coupling From LF Holography

With A. Deur and S. J. Brodsky

• Consider five-dim gauge fields propagating in AdS5 space in dilaton background ϕ(z) = κ2z2

S = −1
4

�
d4x dz

√
g eϕ(z) 1

g2
5

G2

• Flow equation

1
g2
5(z)

= eϕ(z) 1
g2
5(0)

or g2
5(z) = e−κ2z2

g2
5(0)

where the coupling g5(z) incorporates the non-conformal dynamics of confinement

• YM coupling αs(ζ) = g2
Y M (ζ)/4π is the five dim coupling up to a factor: g5(z)→ gY M (ζ)

• Coupling measured at momentum scale Q

αAdS
s (Q) ∼

� ∞

0
ζdζJ0(ζQ)αAdS

s (ζ)

• Solution

αAdS
s (Q2) = αAdS

s (0) e−Q2/4κ2
.

where the coupling αAdS
s incorporates the non-conformal dynamics of confinement

Hadron 2009, FSU, Tallahassee, December 1, 2009 Page 27

Running Coupling from  Modified AdS/QCD
Deur,  de Teramond, sjb
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Running Coupling from Light-Front Holography and AdS/QCD

αAdS
s (Q)/π = e−Q2/4κ2

αs(Q)
π

Deur,  de Teramond, sjb

κ = 0.54 GeV

Analytic, defined at all scales, IR Fixed Point
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Deur,  de Teramond, sjb, (preliminary) 64



 

• β-function

βAdS(Q2) =
d

d log Q2
αAdS

s (Q2) =
πQ2

4κ2
e−Q2/4κ2

.

Q (GeV)

!(
Q

)

"s,g1 (pQCD)

GDH sum rule
constraint on "s,g1

Lattice QCD

"s,g1 Hall A/CLAS

"s,g1 CLAS

"s,F3

AdS/QCD LF
Holography
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Effective coupling from LF holography for κ = 0.54 GeV

PRELIMINARY

Hadron 2009, FSU, Tallahassee, December 1, 2009 Page 29

Deur,  de Teramond, sjb
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Features of  AdS/QCD LF Holography

• Based on Conformal Scaling of Infrared QCD Fixed Point

• Conformal template: Use isometries of AdS5

• Interpolating operator of hadrons based on twist, superfield 
dimensions

• Finite Nc = 3: Baryons built on 3 quarks -- Large Nc limit not 
required

• Break Conformal symmetry with dilaton

• Dilaton introduces confinement -- positive exponent

• Origin of Linear and HO potentials: Stochastic arguments 
(Glazek); General  ‘classical’ potential  for Dirac Equation (Hoyer)

• Effective Charge from AdS/QCD at all scales

• Conformal Dimensional Counting Rules for Hard Exclusive 
Processes
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X. Ji, Phy.Rev.Lett.78,610(1997)  

Nucleon Form Factors

• Light Front Holographic Approach [Brodsky and GdT]

• EM hadronic matrix element in AdS space from non-local coupling of external EM field in AdS with

fermionic mode ΨP (x, z)
�

d4x dz
√

g eϕ(z) ΨP (x, z) eM
A ΓAAM (x, z)ΨP (x, z)

∼ (2π)4δ4
�
P �− P

�
�µ�ψ(P �), σ�|Jµ|ψ(P ), σ�

• Effective AdS/QCD model: additional term in the 5-dim action

[Abidin and Carlson, Phys. Rev. D79, 115003 (2009)]

η

�
d4x dz

√
g eϕ(z) Ψ eM

A eN
B

�
ΓA,ΓB

�
FMNΨ

Couplings η determined by static quantities

• Generalized Parton Distributions in gauge/gravity duals

[Vega, Schmidt, Gutsche and Lyubovitskij, Phys.Rev. D83 (2011) 036001]

[Nishio and Watari, arXiv:1105.290]

LC 2011 2011, Dallas, May 23, 2011 Page 19
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N-1N+1

N N

NN

Light-Front Wave Function Overlap Representation

See also: Diehl, Feldmann, Jakob, Kroll
DGLAP
region

DGLAP
region

ERBL
region

Diehl, Hwang, sjb,  NPB596, 2001

68

DVCS/GPD

 Bakker & JI
Lorce
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S.J. Brodsky et al. / Nuclear Physics B 596 (2001) 99–124 111

encode all of the bound state quark and gluon properties of hadrons, including their

momentum, spin and flavor correlations, in the form of universal process- and frame-

independent amplitudes.

The deeply virtual Compton amplitude can be evaluated explicitly by starting from the

Fock state representation for both the incoming and outgoing proton, using the boost

properties of the light-cone wavefunctions, and evaluating the matrix elements of the

currents for a quark target. One can also directly evaluate the non-local current matrix

elements (16) in the same framework. In the following we will concentrate on the

generalized Compton form factors H and E. Formulae analogous to our results can be

obtained for H̃ and Ẽ.

For the n → n diagonal term (∆n = 0), the relevant current matrix element at quark

level is
∫
dy−

8π
eixP+y−/2

〈
1;x ′

1P
′+, $p′

⊥1,λ
′
1

∣∣ψ̄(0)γ +ψ(y)
∣∣1;x1P

+, $p⊥1,λ1
〉∣∣

y+=0,y⊥=0

=
√

x1x
′
1

√
1− ζδ(x − x1)δλ′

1λ1
, (38)

where for definiteness we have labeled the struck quark with the index i = 1. We thus

obtain formulae for the diagonal (parton-number-conserving) contributions to H and E in

the domain ζ ! x ! 1 [17]:
√
1− ζ

1− ζ
2

H(n→n)(x, ζ, t) − ζ 2

4
(
1− ζ

2

)√
1− ζ

E(n→n)(x, ζ, t)

=
(√
1− ζ

)2−n
∑

n,λi

∫ n∏

i=1

dxi d
2$k⊥i

16π3
16π3δ

(

1−
n∑

j=1
xj

)

δ(2)

(
n∑

j=1
$k⊥j

)

× δ(x − x1)ψ
↑∗
(n)

(
x ′
i ,

$k′
⊥i ,λi

)
ψ

↑
(n)

(
xi, $k⊥i ,λi

)
, (39)

1√
1− ζ

∆1 − i∆2

2M
E(n→n)(x, ζ, t)

= (√
1− ζ

)2−n
∑

n,λi

∫ n∏

i=1

dxi d
2$k⊥i

16π3
16π3δ

(

1−
n∑

j=1
xj

)

δ(2)

(
n∑

j=1
$k⊥j

)

× δ(x − x1)ψ
↑∗
(n)

(
x ′
i ,

$k′
⊥i ,λi

)
ψ

↓
(n)

(
xi, $k⊥i ,λi

)
, (40)

where the arguments of the final-state wavefunction are given by

x ′
1 = x1 − ζ

1− ζ
, $k′

⊥1 = $k⊥1 − 1− x1

1− ζ
$∆⊥ for the struck quark,

x ′
i = xi

1− ζ
, $k′

⊥i = $k⊥i + xi

1− ζ
$∆⊥ for the spectators i = 2, . . . , n.

(41)

One easily checks that
∑n

i=1 x ′
i = 1 and

∑n
i=1 $k′

⊥i = $0⊥. In Eqs. (39) and (40) one has to
sum over all possible combinations of helicities λi and over all parton numbers n in the

Fock states. We also imply a sum over all possible ways of numbering the partons in the

n-particle Fock state so that the struck quark has the index i = 1.
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Example of LFWF representation of 
GPDs  (n => n)

Diehl, Hwang, sjb
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Verified using LFWFs

Diehl, Hwang, sjb
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J=0 Fixed Pole  Contribution to DVCS

p

γ∗ γ

p�

γ∗ γ

p�
p

• J=0 fixed pole -- direct test of QCD locality -- from seagull or 
instantaneous contribution to Feynman propagator

Szczepaniak, Llanes-Estrada, sjb

Real amplitude, independent of Q2 at fixed t

Close, Gunion, sjb



 

Hard Reggeon 
Domain

Deeply Virtual Compton Scattering

p

γ∗

βR(t) ∼ 1
t2

Reflects elementary coupling of two photons to quarks

s >> −t, Q2 >> Λ2
QCD

γ∗p→ γp

p

αR(t)→ 0

T (γ∗(q)p→ γ(k) + p) ∼ � · ��
�

R

sα
R(t)βR(t)

dσ
dt ∼

1
s2

1
t4 ∼

1
s6 at fixed Q2

s , t
s72



 

Hard Reggeon
 Domain

Deeply Virtual Compton Scattering

p

γ∗

βR(t) ∼ 1
t2

Reflects elementary coupling of two photons to quarks

s >> −t, Q2 >> Λ2
QCD

γ∗p→ γp

p

αR(t)→ 0

T (γ∗(q)p→ γ(k) + p) ∼ � · ��
�

R

sα
R(t)βR(t)

Seagu& interaction
(instantaneous quark 
exchange or Z-graph)

dσ
dt ∼

1
s2

1
t4 ∼

1
s6 at fixed Q2

s , t
s 73



 

αR(t)

t

0.5
1.0

-1

T (γ∗p→ π+n) ∼ � · pi

�

R

sα
R(t)βR(t)

βR(t) ∼ 1
t2

Fundamental test of QCD

Regge domain  

s >> −t, Q2

-0.5

αR(t)→ 0 at t→ −∞

αR(t)→ 0 at t→ −∞

Reflects elementary coupling 
of two photons to quarks

dσ
dt (γ∗p→ γp)→ 1

s2 β2
R(t) ∼ 1

s2t4 ∼
1
s6 at fixed t

s , Q2

s

J=0 fixed pole

74
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J=0 Fixed pole in real and virtual Compton scattering

Damashek, Gilman;
Close, Gunion, sjb

Llanes-Estrada, Szczepaniak, 
sjb• Effective two-photon contact term 

•  Seagull for scalar quarks

• Real phase

• Independent of Q2 at fixed t

• <1/x> Moment: Related to Feynman-Hellman Theorem

• Fundamental test of local gauge theory

s2 dσ

dt
(γ∗p→ γp) = F 2(t)

Q2-independent contribution to Real DVCS amplitude

γ

p p

γ∗(q)

M = s0
�

e2
qFq(t)

No ambiguity in D-term
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Iterate kernel of LFWF to expose hard-scattering amplitude

γ∗

Exclusive Electroproduction

n

p

q

π

ep→ e�π+n

+

e

e’

76



 

γ∗

QCD Factorization
Exclusive Electroproduction

n

p

q

π

ep→ e�π+n

+

e

e’

φp(xi,Λ)
k2
⊥ < Λ2 k2

⊥ > Λ2

Universal distribution amplitudes. Renormalization Group Invariance:
The factorization scale Λ is arbitrary.    The renormalization scale is unambiguous

T =
� 1

0
dx

� 1

0
dy

� 1

0
dx φp(x, Λ)TH(x, y, z;Q2, s, t; Λ)φn(y,Λ)φ+

π
(z,Λ)

dσ
dt ∼

1
s7 at fixed Q2/s, t/s

φn(yi,Λ)

φπ(zi,Λ)

TH [γ∗ + (uud)→ (ud̄)(ddu)]
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Exclusive Electroproduction

ep→ e�π+n

p

γ∗
π

n

αR(t)→ −1

T (γ∗p→ π+n) ∼ � · pi

�

R

sα
R(t)βR(t)

βR(t) ∼ 1
t2

Hard Reggeon 
Domain

Reflects elementary exchange of quarks in t-channel

dσ
dt ∼

1
s7 at fixed Q2

s , t
s

s >> −t, Q2 >> Λ2
QCD
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αR(t)

t

0.5
1.0

-1
αR(t)→ −1 dσ

dt
(γ∗p→ π+n)→ 1

s3
β2

R(t)

T (γ∗p→ π+n) ∼ � · pi

�

R

sα
R(t)βR(t)

βR(t) ∼ 1
t2

Fundamental test of QCD

Reflects elementary exchange
 of quarks in t-channel

Regge domain  

s >> −t, Q2

αR(t)→ −1 at t→ −∞

Gunion, Blankenbecler, Savit, sjb

dσ
dt ∼

1
s3

1
t4 ∼

1
s7 at fixed Q2

s , t
s
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Conformal QCD Window in Exclusive Processes

• Does αs develop an IR fixed point? Dyson–Schwinger Equation Alkofer, Fischer, LLanes-Estrada,

Deur . . .

• Recent lattice simulations: evidence that αs becomes constant and is not small in the infrared

Furui and Nakajima, hep-lat/0612009 (Green dashed curve: DSE).

• Phenomenological success of dimensional scaling laws for exclusive processes

dσ/dt ∼ 1/sn−2, n = nA + nB + nC + nD,

implies QCD is a strongly coupled conformal theory at moderate but not asymptotic energies

Farrar and sjb (1973); Matveev et al. (1973).

• Derivation of counting rules for gauge theories with mass gap dual to string theories in warped space

(hard behavior instead of soft behavior characteristic of strings) Polchinski and Strassler (2001).

• Example: Dirac proton form factor: F1(Q2) ∼
�
1/Q2

�n−1
, n = 3
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FH(t) ∝ 1
t
nH−1

MAB→CD(s, t) = F (θcm)
sntot−4

dσ

dt
(s, t) = F (θcm)

s
[2ntot−2]

s = E
2
cm

−t = Q
2

φH(xi, Q)

ψ(x, k⊥)

A

B

C

D

FH(t) ∝ 1
t
nH−1

MAB→CD(s, t) = F (θcm)
sntot−4

dσ

dt
(s, t) = F (θcm)

s
[ntot−2]

s = E
2
cm

−t = Q
2

φH(xi, Q)

ψ(x, k⊥)

[CF =
N

2
C
−1

2NC
]

FH(Q2)× [Q2]nH−1 ∼ constant

[Q2]nH−1
FH(Q2) ∼ constant

FH(Q2) ∼ [ 1
Q2]

nH−1

fd(Q
2) ≡ Fd(Q

2)

Fp(
Q2
4 )Fp(

Q2
4 )

fd(Q
2) ∼ Fπ(Q2)
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QCD predicts  leading-twist scaling 
behavior of  fixed-CM angle 
exclusive amplitudes

Farrar & sjb; 
Matveev, Muradyan, Tavkhelidze

ntot = nA + nB + nC + nD

ν = L

J(Q, z) = zQK1(zQ)

αs(Q2)

β(Q2) = dαs(Q2)
d logQ2 → 0

Π(Q2)→ α
15π

Q2

m2

Fixed t/s or cos θcm

ntot = nA + nB + nC + nD

ν = L

J(Q, z) = zQK1(zQ)

αs(Q2)

β(Q2) = dαs(Q2)
d logQ2 → 0

s,−t >> m2
�

Proof from AdS/QCD: Polchinski and Strassler

Extension to soft pions: Strikman, Pobylitsa, Polyakov D : N + π



 

FIG. 3. The scaled differential cross section s7 dσ
dt versus center-of-mass energy for the

γp → π+n at θcm = 90◦. The data from JLab E94-104 are shown as solid circles. The er-
ror bars for the new data and for the Anderson et al. data [1], include statistical and systematic
uncertainties. Other data sets [26,27] are shown with only statistical errors. The open squares
in the lower plot were averaged from data at θcm = 85◦ and 95◦ [28]. The solid line was obtained
from the recent partial-wave analysis of single-pion photoproduction data [29] up to Eγ=2 GeV,
while the dashed line from the MAID analysis [30] up to Eγ=1.25 GeV.

10

Test of Scaling Laws

PQCD and AdS/CFT:

sntot−2dσdt (A+B→C+D) =
FA+B→C+D(θCM)

s7dσdt (γp→ π+n) = F(θCM)
ntot = 1+3+2+3= 9

s7dσ/dt(γp→ π+n)∼ const
f ixed θCM scaling

Conformal invariance at high  momentum transfers!

Constituent counting rules Brodsky and Farrar, Phys. Rev. Lett. 31 (1973) 1153 
Matveev et al., Lett. Nuovo Cimento, 7 (1973) 719 
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5

netic form factors. Both sets of curves cover a limited
range in −t because the calculations based on the hand-
bag mechanism are valid only for s,−t,−u larger than
approximately 2.5 GeV2. Over that range they are in
good agreement with the data.

 (deg)cm!
60 80 100 120

)
cm!

n 
(

4

5

6

7

8

9

FIG. 5: Scaling of the RCS cross section at fixed θcm. Open
points are results from Cornell experiment [1]. Closed points
are results from the present experiment. The line at n =
6 is the prediction of asymptotic perturbative QCD, while
the shaded area shows the fit range obtained from the cross
sections of GPDs-based handbag calculation [8].

It is interesting to examine the scaling of the cross sec-
tions with s at fixed θcm, where the perturbative QCD
mechanism predicts dσ/dt = f(θcm)/sn with n = 6 [2].
The scaling power n(θcm) was extracted from the present
data by using results from the three largest values of
s = 6.79, 8.90, and 10.92 GeV2. A cubic spline interpo-
lation was applied to the angular distribution for each
s to determine the cross section at fixed angles. The
values of n(θcm) are plotted in Fig. 5 along with points
from the Cornell experiment. The present experimental
points imply a mean value n = 8.0 ± 0.2, unequivocally
demonstrating that the perturbative QCD mechanism is
not dominant in the presently accessible kinematic range.
The power obtained from a fit to GPDs-based handbag
cross sections [8] are shown as the dashed lines for two
different assumptions about the masses in the hard sub-
process [18]. The present data should help refine the
model used for the GPDs.

In summary, the RCS cross section from the proton was
measured in range s = 5 − 11 GeV2 at large momentum
transfer. Calculations based on the handbag diagram
are in good agreement with experimental data, suggest-
ing that the reaction mechanism in the few GeV energy
range is dominantly one in which the external photons

couple to a single quark. The fixed-θcm scaling power is
considerably larger than that predicted by perturbative
QCD.
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Cross-section values for Compton scattering on the proton were measured at 25 kinematic settings
over the range s = 5 – 11 and -t = 2 – 7 GeV2 with statistical accuracy of a few percent. The scaling
power for the s-dependence of the cross section at fixed center of mass angle was found to be 8.0±0.2,
strongly inconsistent with the prediction of perturbative QCD. The observed cross-section values
are in fair agreement with the calculations using the handbag mechanism, in which the external
photons couple to a single quark.

PACS numbers: 13.60.Fz,24.85.+p

Compton scattering in its various forms provides a
unique tool for studying many aspects of hadronic struc-
ture by probing it with two electromagnetic currents. For
real Compton scattering (RCS) in the hard scattering

regime, where all Mandelstam variables s, −t, and −u
are larger than the Λ2

QCD
scale, the short-distance dom-

inance is secured by the presence of a large momentum
transfer. In this regime, RCS probes the fundamental
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B. Reitz,3 R. Roche,26 G. Ron,25 F. Sabatié,18 A. Saha,3 N. Savvinov,10 A. Shahinyan,2 Y. Shestakov,23
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unique tool for studying many aspects of hadronic struc-
ture by probing it with two electromagnetic currents. For
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regime, where all Mandelstam variables s, −t, and −u
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inance is secured by the presence of a large momentum
transfer. In this regime, RCS probes the fundamental
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Deuteron Photodisintegration  and  Dimensional Counting 

PQCD and AdS/CFT:

sntot−2dσdt (A+B→C+D) =
FA+B→C+D(θCM)

s11dσdt (γd→ np) = F(θCM)

ntot−2=
(1 + 6 + 3+ 3 ) - 2 = 11

at s � 9 GeV2

γd→ (uuddducc̄)→ np

at s � 25 GeV2

d

c

c̄

g

at s � 9 GeV2

γd→ (uuddducc̄)→ np

at s � 25 GeV2

d

c

c̄

g

at s � 9 GeV2

γd→ (uuddducc̄)→ np

at s � 25 GeV2

d

c

c̄

g

γ

γd→ pΛcD−

γd→ pΛK0

D−(c̄d)

K0(s̄d)

γd→ np

γd→ (uuddduss̄)→ np

P.Rossi et al, P.R.L. 94, 012301 (2005)



 

Fit of dσ/dt data for 
the central angles and 
PT≥1.1 GeV/c  with 

 A s-11

For all but two of the fits 
  χ2≤  1.34

Data consistent with CCR

P.Rossi et al, P.R.L. 94, 012301 (2005)

•Better χ2 at 55o and 75o if different data 
 sets are renormalized to each other

•No data at PT≥1.1 GeV/c at forward and   
 backward angles

•Clear s-11 behaviour for last 3 points at 35o 

γ

γd→ pΛcD−

γd→ pΛK0

D−(c̄d)

K0(s̄d)

γd→ np

γd→ (uuddduss̄)→ np at s = 9 GeV2

γ

γd→ pΛcD−

γd→ pΛK0

D−(c̄d)

K0(s̄d)

γd→ np

γd→ (uuddduss̄)→ np at s = 9 GeV2
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• Remarkable Test of Quark Counting Rules

• Deuteron Photo-Disintegration γd → np 

•

γd→ np

dσ
dt = F (t/s)

sntot−2

ntot = 1 + 6 + 3 + 3 = 13

γd→ np

dσ
dt = F (t/s)

sntot−2

ntot = 1 + 6 + 3 + 3 = 13

Scaling characteristic of
scale-invariant theory at short distances

Conformal symmetry

Hidden color: dσ

dt
(γd→∆++∆−) �

dσ

dt
(γd→ pn)

at high pT

M =
� �

dxidyiφF (x, Q̃)×TH(xi, yi, Q̃)φI(yi, Q̃)

t = m
2
π

αs →
√

αs

Ratio predicted to approach 2:5

Compare

dp →∆++∆−+ p

dp → p n + p

at high t.

Use deuteron beam

↑ ↑
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Properties of Hard Exclusive Reactions

• Dimensional Counting Rules at fixed CM angle

• Hadron Helicity Conservation

• Color Transparency

• Hidden color

• s >> -t >> ΛQCD: Reggeons have negative-integer intercepts at large 
-t

• J=0 Fixed pole in DVCS

• Quark interchange

• Renormalization group invariance

• No renormalization scale ambiguity

• Exclusive inclusive connection with spectator counting rules

• Diffractive reactions from pomeron, Reggeon, odderon
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General remarks about orbital angular mo-
mentum

�R⊥

xi
�R⊥+�b⊥i

�n
i
�b⊥i = �0⊥

�n
i xi = 1

�n
i=1(xi

�P⊥+ �k⊥i) = �P⊥

xi
�P⊥+ �k⊥i

�n
i

�k⊥i = �0⊥

�n
i xi = 1

P+, �P+

xiP
+, xi

�P⊥+ �k⊥i

ẑ

�L = �R× �P

�Li = (xi
�R⊥+�b⊥i)× �P

��i = �b⊥i × �k⊥i

��i = �Li − xi
�R⊥ × �P = �b⊥i × �P

A(σ,∆⊥) = 1
2π

�
dζe

i
2σζM(ζ,∆⊥)

P+, �P⊥

xiP
+, xi

�P⊥+ �k⊥i

ζ = Q2

2p·q

ẑ

�L = �R× �P

�Li = (xi
�R⊥+�b⊥i)× �P

Deuteron Light-Front Wavefunction

P+ = P0 + Pz

xi = k+

P+ = k0+k3

P0+Pz

ψ(σ, b⊥)

β = dαs(Q2)
d lnQ2 < 0

u

ū

E� = E − ν, �q

P+ = P0 + Pz

Fixed τ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

ψ(σ, b⊥)

β = dαs(Q2)
d lnQ2 < 0

u
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deuteron

Two color-singlet combinations  of  three 3C

n

p

ψd(xi,�k⊥i) = ψbody
d × ψn × ψp

Antiquark interacts with target nucleus at
energy ŝ ∝ 1

xbj

Regge contribution: σq̄N ∼ ŝαR−1 gives F2N ∼
x1−αR

Nonsinglet Kuti-Weisskoff F2p − F2n ∝
√

xbj
at small xbj.

Shadowing of σq̄M produces shadowing of
nuclear structure function.

Weak binding:
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General remarks about orbital angular mo-
mentum

�R⊥

xi
�R⊥+�b⊥i

�n
i
�b⊥i = �0⊥

�n
i xi = 1

�n
i=1(xi

�P⊥+ �k⊥i) = �P⊥

xi
�P⊥+ �k⊥i

�n
i

�k⊥i = �0⊥

�n
i xi = 1

General remarks about orbital angular mo-
mentum

Ψn(xi,�k⊥i, λi)

�n
i=1(xi

�R⊥+�b⊥i) = �R⊥

xi
�R⊥+�b⊥i

�n
i
�b⊥i = �0⊥

�n
i xi = 1
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deuteron

5 X 5  Matrix Evolution Equation  for deuteron 
distribution amplitude

d
Evolution of 5 color-singlet Fock states 

Φn(xi, Q) =
� k2

⊥i<Q2
Π�d2k⊥jψn(xi,�k⊥j)

n = 1 · · ·5

y =
�3

i=1 xi

��⊥ =
�3

i=1
�k⊥i

1
9 np, 4

45 ∆∆, 4
5 hiddencolor

θcm = 90o

ψd(xi,�k⊥i) = ψbody
d × ψn × ψp
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• Deuteron six-quark wavefunction

•  5 color-singlet combinations of 6 color-triplets --      only 
one state  is  | n  p>

• Components evolve towards equality at short distances

• Hidden color states dominate deuteron form factor and 
photodisintegration at high momentum transfer

• Predict 

91

dσ
dt (γd→ Δ++Δ−)� dσ

dt (γd→ pn) at high Q2

dσ
dt (γd→ Δ++Δ−)� dσ

dt (γd→ pn) at high Q2

Lepage, Ji, sjb

    Hidden Color in QCD
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Asymptotic Solution has Expansion

Deuteron six-quark state has five color - singlet configurations, only 
one of which is n-p.

Look for strong transition to Delta-Delta

Hidden Color of Deuteron
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Shadowing of σq̄M produces shadowing of

nuclear structure function.

γ

R =

dσ
dt (γd→∆

++
∆
−−

)

dσ
dt (γd→pn)

should be an increasing function of t.

At small t one can generate ∆
++

∆
−

from

np by final-state π+
exchange. However, the

Compare

dp →∆++∆−+ p

dp → p n + p

at high t.

Use deuteron beam

↑ ↑

• Measure Elastic Proton-Proton Scattering

Compare

dp →∆++∆−+ p

dp → p n + p

at high t.

Use deuteron beam

↑ ↑

• Measure Elastic Proton-Proton Scattering

Test QCD scaling in hard exclusive nuclear

amplitudes

Manifestations of Hidden Color in Deuteron

Wavefunction

pp→ dπ+

pd→ pd

pp→ Λc(cud)D0(cu)p

p

σ(pp→ cX)

Total open charm cross section at threshold

σ(pp→ cX) � 1µb

needed to explain Krisch ANN

Compare with strangeness channels

pp→ Λ(sud)K+(su)p

Compare

dp →∆++∆−+ p

dp → p n + p

at high t.

Use deuteron beam

↑ ↑

• Measure Elastic Proton-Proton Scattering

vs.

Ratio predicted to approach 2:5

Compare

dp →∆++∆−+ p

dp → p n + p

at high t.

Use deuteron beam

↑ ↑
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Test of Hidden Color in Deuteron Photodisintegration

Test QCD scaling in hard exclusive nuclear

amplitudes

Manifestations of Hidden Color in Deuteron

Wavefunction

pp→ dπ+

pd→ pd

Shadowing of σq̄M produces shadowing of

nuclear structure function.

γ

R =

dσ
dt (γd→∆

++
∆
−−

)

dσ
dt (γd→pn)

should be an increasing function of t.

At small t one can generate ∆
++

∆
−

from

np by final-state π+
exchange. However, the

Shadowing of σq̄M produces shadowing of

nuclear structure function.

γ

R =

dσ
dt (γd→∆

++
∆
−−

)

dσ
dt (γd→pn)

should be an increasing function of t.

At small t one can generate ∆
++

∆
−

from

np by final-state π+
exchange. However, the

Ratio should grow with transverse momentum as the hidden color 
component of the deuteron  grows in strength.

Possible contribution from pion charge exchange at small t.
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Conventional wisdom:  
Final-state interactions of struck quark can be neglected
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Final-State QCD 
Interaction
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T-OddPseudo-

11-2001 
8624A06

S

current 
quark jet

final state 
interaction

spectator 
system

proton

e– 

!*

e– 

quark

Single-spin 
asymmetries

Leading Twist 
Sivers Effect

�Sp ·�q×�pq

 Dae Sung 
Hwang,  Ivan 
Schmidt, sjb

Light-Front Wavefunction  
S and P- Waves

QCD S- and P-
Coulomb Phases

--Wilson Line

96

i

Leading-Twist 
Rescattering 
Violates pQCD 
Factorization!
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Final-State Interactions Produce 
Pseudo T-Odd  (Sivers Effect)

• Leading-Twist Bjorken Scaling!

• Requires nonzero orbital angular momentum of quark

• Arises from the interference of Final-State QCD Coulomb phases in S- and P- waves; 

• Wilson line effect  --  gauge independent

• Relate to the quark contribution to the target proton                                                

anomalous magnetic moment and final-state QCD phases

• QCD phase at soft scale!

• New window to QCD coupling and running gluon mass in the IR

• QED S and P Coulomb phases infinite -- difference of phases finite!

• Alternate: Retarded and Advanced Gauge: Augmented LFWFs

�S ·�p jet×�q

�S ·�p jet×�qi

11-2001 
8624A06

S

current 
quark jet

final state 
interaction

spectator 
system

proton

e– 

!*

e– 

quark
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 Pasquini, Xiao, Yuan, sjb

 Hwang, Schmidt, sjb
Collins

Mulders, Boer Qiu, Sterman
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�S ·�p jet×�q

�S ·�p jet×�q

• Bjorken Scaling!

• Arises from Interference of Final-State Coulomb 
Phases in S and P waves

• Relate to the quark contribution to the target proton 
anomalous magnetic moment

• Sum of Sivers Functions for all quarks and gluons 
vanishes. (Zero anomalous gavitomagnetic moment)

Final State Interactions Produce 
T-Odd  (Sivers Effect)

Hwang, Schmidt. sjb

11-2001 
8624A06

S

current 
quark jet

final state 
interaction

spectator 
system

proton

e– 

!*

e– 

quark
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N.C.R. Makins, NNPSS, July 28, 2006
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• First evidence for non-zero 
Sivers function!

• ⇒ presence of non-zero quark

orbital angular momentum!

• Positive for !+... 

Consistent with zero for !"...

• Systematic error bands include 

acceptance and smearing effects, 

and contributions from unpolarized 

<cos(2!)> and    <cos(!)>  moments 

It exists too!
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N.C.R. Makins, NNPSS, July 28, 2006

The Leading-Twist Sivers Function: Can it Exist in DIS?

A T-odd function like f⊥1T must arise from
interference ... but a distribution function

is just a forward scattering amplitude,
how can it contain an interference?

q

P

2

~
q q

P P

Im

Brodsky, Hwang, & Schmidt 2002

can interfere

with

and produce
a T-odd effect!

(also need Lz �= 0)

It looks like higher-twist ... but no , these are soft gluons
= “gauge links” required for color gauge invariance

Such soft-gluon reinteractions with the soft wavefunction are

final (or initial) state interactions ... and may be

process dependent ! new universality issues e.g. Drell-Yan

Gamberg: Hermes
data compatible with BHS 

model

Schmidt, Lu: 
Asymmetry ratios should follow 

quark contributions to anomalous 
moment
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In the context of the quark-parton model, the virtual-photon asymmetry Ah
UT can be

represented in terms of parton distribution and fragmentation functions [7]:

Ah
UT (φ, φS) ∝ sin(φ + φS)

∑

q

e2
q I

[
hq

1T (x, p2
T ) H⊥,q

1 (z, k2
T )

]

+ sin(φ − φS)
∑

q

e2
q I

[
f⊥,q

1T (x, q2
T ) Dq

1(z, k
2
T )

]
+ . . . (3)

Here eq is the charge of the quark species q, f⊥,q
1T (x, q2

T ) the Sivers distribution func-
tion, H⊥,q

1 (z, k2
T ) the Collins fragmentation function, hq

1T (x, p2
T ) a twist-2 relative of the

transversity distribution function [7] and Dq
1(z, k

2
T ) is the usual unpolarized fragmentation

function.
The appearance in Eq. 3 of the convolution integral I[. . .] over initial (pT ) and final

(kT ) quark transverse momenta implies that the different functions involved can not be
readily extracted in a model-independent way from the measured asymmetry. It is under
theoretical debate to what extent weighting of the measured asymmetries makes the
involved distribution and fragmentation functions appear factorized.

The data were taken since 2002 using the Hermes forward spectrometer [10] at Desy
in conjunction with a transversely polarized hydrogen target [11]. All presently available
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final results are summarized in Ref. [9], de-
tails of the analysis can be found in Ref. [12].
The kinematics coverage of the measure-
ment is 0.023 < x < 0.4 and 0.2 < z < 0.7,
and the corresponding average values of the
kinematic parameters are 〈x〉 = 0.09, 〈z〉 =
0.36, 〈y〉 = 0.54, 〈Q2〉 = 2.41 GeV2 and
〈Pπ⊥〉 = 0.41 GeV. The x and z-dependence
of the extracted moments is shown in Fig.2.
The statistical correlation in the fit between
the Collins and Sivers harmonic components
ranges between -0.5 and -0.6.

Figure 2. Top (middle) panel: Fitted
virtual-photon Collins (Sivers) moments for
charged pions, as a function of x (left) and z
(right). The error bars represent the statis-
tical uncertainties, the moments have an 8%
scale uncertainty. The bottom panel shows
the relative contribution to the measured
pion yield from exclusive vector meson pro-
duction, based on a Monte Carlo simulation.
The figure was taken from Ref.[9].

W.-D. Nowak / Nuclear Physics A 755 (2005) 325c–328c 327c

Sivers asymmetry from HERMES

3. INTERPRETATION

The Collins moment for π+, averaged over acceptance, is positive: Aπ+
C = 0.042 ±

0.014stat.. This agrees with expectations for the transversity distributions hq
1(x), derived

from the similarities to the well measured valence helicity distributions g q
1(x) [13], namely

positive hu
1(x) and negative hd

1(x). The acceptance averaged Collins moment for π− is
large and negative, especially at large x: Aπ−

C = −0.076 ± 0.0016stat.. This comes as a
surprise, as neither u nor d flavor dominates π− production and also |hd

1(x)| < |hu
1(x)| is

expected. This observation may be explained if the disfavored Collins function was larger
and opposite in sign, as e.g. suggested by the string fragmentation model of Ref. [14].
Note that little dependence on z is seen for the Collins moments.

The Sivers moments averaged over acceptance are Aπ+
S = 0.034 ± 0.008stat. and Aπ−

S =
−0.004 ± 0.010stat., i.e. positive for π+ and consistent with zero for π−. The former
result is the first indication for the existence of a non-zero Sivers distribution function
f⊥,u

1T . However, this conclusion has to be taken with caution, as presently an unknown
systematic uncertainty has to be attributed to this result, due to the yet unmeasured
asymmetry in the pion yield from exclusive ρ0 production. More data is presently collected
at Hermes, both for semi-inclusive pion and exclusive vector meson production, which
is hoped to allow a firm conclusion on the existence of a non-zero Sivers function.
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In the context of the quark-parton model, the virtual-photon asymmetry Ah
UT can be

represented in terms of parton distribution and fragmentation functions [7]:

Ah
UT (φ, φS) ∝ sin(φ + φS)

∑
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q I

[
hq

1T (x, p2
T ) H⊥,q
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Here eq is the charge of the quark species q, f⊥,q
1T (x, q2

T ) the Sivers distribution func-
tion, H⊥,q

1 (z, k2
T ) the Collins fragmentation function, hq

1T (x, p2
T ) a twist-2 relative of the

transversity distribution function [7] and Dq
1(z, k

2
T ) is the usual unpolarized fragmentation

function.
The appearance in Eq. 3 of the convolution integral I[. . .] over initial (pT ) and final

(kT ) quark transverse momenta implies that the different functions involved can not be
readily extracted in a model-independent way from the measured asymmetry. It is under
theoretical debate to what extent weighting of the measured asymmetries makes the
involved distribution and fragmentation functions appear factorized.

The data were taken since 2002 using the Hermes forward spectrometer [10] at Desy
in conjunction with a transversely polarized hydrogen target [11]. All presently available

-0.1

0

0.1

0.2

-0.2

-0.1

0
2

 !
s

in
("

 +
 "

S
)#

U
T

$

$+

$-

-0.05

0

0.05

0.1

0.15

-0.05

0

0.05

0.1

2
 !

s
in

("
 -

 "
S
)#

U
T

$

$+

$-

0.05

0.1

0.15

0.1 0.2 0.3

x

V
M

 f
ra

c
ti

o
n

$+
$-

z

0.3 0.4 0.5 0.6

final results are summarized in Ref. [9], de-
tails of the analysis can be found in Ref. [12].
The kinematics coverage of the measure-
ment is 0.023 < x < 0.4 and 0.2 < z < 0.7,
and the corresponding average values of the
kinematic parameters are 〈x〉 = 0.09, 〈z〉 =
0.36, 〈y〉 = 0.54, 〈Q2〉 = 2.41 GeV2 and
〈Pπ⊥〉 = 0.41 GeV. The x and z-dependence
of the extracted moments is shown in Fig.2.
The statistical correlation in the fit between
the Collins and Sivers harmonic components
ranges between -0.5 and -0.6.

Figure 2. Top (middle) panel: Fitted
virtual-photon Collins (Sivers) moments for
charged pions, as a function of x (left) and z
(right). The error bars represent the statis-
tical uncertainties, the moments have an 8%
scale uncertainty. The bottom panel shows
the relative contribution to the measured
pion yield from exclusive vector meson pro-
duction, based on a Monte Carlo simulation.
The figure was taken from Ref.[9].
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Connection between the Sivers function and the anomalous magnetic moment

Zhun Lu* and Ivan Schmidt†
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and Center of Subatomic Physics, Valparaı́so, Chile

(Received 8 January 2007; revised manuscript received 14 February 2007; published 9 April 2007)

The same light-front wave functions of the proton are involved in both the anomalous magnetic moment
of the nucleon and the Sivers function. Using the diquark model, we derive a simple relation between the
anomalous magnetic moment and the Sivers function, which should hold in general with good approxi-
mation. This relation can be used to provide constraints on the Sivers single spin asymmetries from the
data on anomalous magnetic moments. Moreover, the relation can be viewed as a direct connection
between the quark orbital angular momentum and the Sivers function.

DOI: 10.1103/PhysRevD.75.073008 PACS numbers: 13.40.Em, 13.60.!r, 13.88.+e

The quark orbital angular momentum [1] (or quark
transverse motion) plays an important role for understand-
ing the spin and quark structure of the nucleon, since as
shown by many studies [2–7], it is the missing block of the
total nucleon spin. Also many interesting phenomena or
observables require the presence of quark orbital motion,
among which the Sivers function [8] has attracted a lot of
interest, since it is an essential piece in our understanding
of the single spin asymmetries (SSA) observed in semi-
inclusive deeply inelastic scattering (SIDIS). These SSAs
have been measured recently by both the HERMES [9,10]
and COMPASS [11,12] Collaborations. Denoted as
f?1T"x;k2

?#, the Sivers function describes the unpolarized
distribution of the quark inside a transversely polarized
nucleon, which comes from a correlation of the nucleon
transverse spin and the quark transverse momentum.
Although this is a T-odd type correlation, it has been found
that final state interaction [13] (FSI) between the struck
quark and the spectator system can produce the necessary
phase for a nonzero Sivers function, and its QCD definition
[14–17] has just been worked out. Besides the single spin
asymmetry, another important feature of the Sivers func-
tion is that it encodes the parton’s orbital angular momen-
tum (Lz) inside the nucleon. This comes from the fact that
the Sivers function requires the nucleon helicity to be
flipped from the initial to the final state, while the quark
helicity remains unchanged. A convenient tool to study this
kind of single spin asymmetry (or the corresponding Sivers
function) is the light-front formalism [18], which can ex-
press the Sivers function as the overlap integration of light-
front wave functions differing by !Lz $ %1 [13,19]. The
same kind of overlap integration [20–22] of light-front
wave functions (with Jz $ %1=2 in the initial and final
states) also appears in the anomalous magnetic moment of
the nucleon, which apparently encodes the quark orbital
angular momentum [21]. Therefore, it is interesting to find
relations between the Sivers function and the anomalous

magnetic moment of the nucleon, which is the main goal of
this work. With such a relation one can constrain the Sivers
function and the related asymmetries from data on nucleon
anomalous magnetic moments, and vice versa. Also, the
relation can be viewed as a direct connection between the
quark orbital angular momentum distribution and the
Sivers function.

The proton state can be expanded in a series of Fock
states jn; xiP&;k?;!ii with coefficients  n=p"xi;k?;!i#,
which are the light-front wave functions of the proton:

 "p"P&; P!; 0?# $
X
n
 n"xi;k?;!i#jn; xiP&;k?;!ii:

(1)

Here xi $ k&i
P& is the light-front momentum fraction of the

quark, !i denotes the helicity, and k? its transverse mo-
mentum. The wave functions are Lorentz-invariant func-
tions of the kinematics of the constituents of nucleon, xi
and k?i, with

Pn
i xi $ 1 and

Pn
i k?i $ 0?.

As pointed out before, the Sivers function requires that
the nucleon wave functions in the initial and final state
differ by one unit of orbital angular momentum, and final
state interactions play a crucial role. It describes the inter-
ference of two amplitudes which have different initial
proton spin Jz $ % 1

2 but couple to the same final state:
Im'M("Jz $ &1=2 ! F#M"Jz $ !1=2 ! F#). This can
be realized by a gluon exchange between the struck quark
and the spectator system. There have been already attempts
[19,23], using the proton light-front wave functions, to find
a formula to calculate the Sivers functions. In those papers
the final state interaction phase needed for Sivers functions
has been incorporated into the wave functions. Another
possibility is to express the Sivers function as the product
of wave functions and the final state interactions term:

 f?1T /
X
n
 "(
n "xi;k?;!i#G"xi; x0i;k?;i;k0

?;i# #
n"x0i;k0

?;!
0
i#;

(2)

whereG"x0i;k0
?;i; xi;k?;i# is the final state interaction term,

and the light-front wave functions in this equation are the
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 !q!x" # Eq!x; 0; 0": (23)

Thus in the scalar diquark model, f?;q
1T !x" is proportional to

Eq!x; 0; 0". According to Ji’s sum rule [4] (Jq is the total
angular momentum carried by quark flavor q):

 

Z
dxx!Hq!x;"; t" $ Eq!x;"; t"" # 1

2Jq!t"; (24)

which also holds in the forward limit. We see that the
Sivers function is related to the angular momentum of
the parton inside the nucleon, and therefore it is in fact
sensitive to the orbital angular momentum of the quark.
There is then the possibility to get information of the quark
orbital angular momentum from the Sivers functions.

Although the relation given in (20) and (21) is a simple
result based on the approximation of the scalar diquark
model, we can still apply the relation to given some pre-
diction on the Sivers asymmetry of the meson production
in SIDIS processes, such as the ratio of the asymmetries
between different final mesons, since in this case the model
dependence is reduced. The Sivers asymmetry is propor-
tional to

 ASiv
UT / hPa e2af?a

1T D
a
1i

hPa e2afa1D
a
1i

; (25)

which can be extracted by the weighting function sin!#%
#S", here # and #S denote, respectively, the azimuthal
angles of the produced hadron and of the nucleon spin
polarization, with respect to the lepton scattering plane, Da

1
is the unpolarized fragmentation function. We will focus
on the large z regime that the valence quark contribution
dominates, and the disfavored fragmentation function can
be ignored.

Since the Sivers function and the anomalous magnetic
moment ‘‘share’’ the same set of the proton wave func-
tions, as shown in Figs. 1 and 2, one can start from the data
of the anomalous magnetic moment to provide constraints
on the proton wave functions, and then on the Sivers
function. Similar methods have been used in Ref. [19],
where a small Sivers asymmetry on a deuteron target has
been predicted, and Ref. [39], where the sign of the Sivers
asymmetries for different hadron targets combining differ-
ent fragmenting hadrons has been classified.

As figured out in Ref. [19], the quark contribution
dominates over the gluon contribution in the case of
Sivers functions [40], which is also the result of an argu-
ment based on large Nc considerations [41]. There are also
phenomenological supports of this conclusion from the
SIDIS experiment from COMPASS of CERN [11], as
pointed out in Ref. [19], and the analysis on hadron pro-
duction of $ given in Ref. [42]. Therefore in this work we
only consider the quark contribution to the Sivers functions
and the corresponding asymmetry.

One can constrain the proton wave functions by normal-
izing each u and d quarks contributions to the anomalous

moments !p # 1:79, !n # %1:91. Isospin symmetry im-
plies

 !d=n # !u=p; (26)

 !u=n # !d=p: (27)

In the valence quark approximation we have

 !p # !2"!2=3"!u=p $ !%1=3"!d=p; (28)

 !n # !2"!%1=3"!u=p $ !2=3"!d=p: (29)

Thus one has !u=p # 0:835, !d=p # %2:03. In the follow-
ing we use !u and !d to represent !u=p and !d=p,
respectively.

Then we can write the ratio of the asymmetries between
$$ and $% at large z:

 

ASiv
UT!$$"

ASiv
UT!$%" & 2e2uf?u

1T D
$$=u
1

e2df
?d
1T D

$%=d
1

& 2e2u!u

e2d!d
# %3:3: (30)

Also we have

 

ASiv
UT!$0"

ASiv
UT!$%" & 2e2uf?u

1T D
$0=u
1 $ e2df

?d
1T D

$0=d
1

e2df
?d
1T D

$%=d
1

& 2e2u!u $ e2d!d

2e2d!d
# %1:15; (31)

 

ASiv
UT!K$"

ASiv
UT!K0" & 2e2uf?u

1T D
K$=u
1

e2df
?d
1T D

K0=d
1

& 4e2u!u

e2d!d
# %6:6: (32)

For the above result we used isospin symmetry for the
quark fragmentation functions:

 D$$=u
1 # D$%=d

1 # 2D$0=u
1 # 2D$0=d

1 ; (33)

 DK$=u
1 # 2DK0=d

1 : (34)

The results show that in the large z region, the Sivers
asymmetry of $$ is 3 times larger than that of $% and with
opposite sign, which is consistent with the recent
HERMES result [10] where at z' 0:6 a 4 times larger
asymmetry of $$ is measured; the asymmetries of $0 and
$% are similar in size; the asymmetry of K$ is much larger
than that of K0, nearly 1 order of magnitude; and
ASiv
UT!K0" ' 0 since !s # 0 in valence approximation.
In summary, both the formula for calculating Sivers

function and that for calculating the anomalous magnetic
moment of the proton, can be expressed in terms of the
same set of the light-front wave functions, with helicity
flipped from initial state to final states. Using the overlap
representations of both Sivers functions as well as the
anomalous magnetic moment, we give a simple relation
between these two observables, in the approximation of the
scalar diquark model. This relation is applied to provide
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Measure single-spin asymmetry AN

in Drell-Yan reactions

�S · �q × �p correlation

pp↑ → �+�−X

Q2 = x1x2s

Q2 = 4 GeV2, s = 80 GeV2

x1x2 = .05, xF = x1 − x2
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Leading-twist Bjorken-scaling AN
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 DY               correlation at leading twist from double ISI

the differential cross section is written as

1

!

d!

d"
!
3

4#

1

$"3

#! 1"$ cos2%"& sin2% cos'"
(

2
sin2% cos 2' " .

)1*

These angular dependencies1 can all be generated by pertur-

bative QCD corrections where, for instance, initial quarks

radiate off high energy gluons into the final state. Such a

perturbative QCD calculation at next-to-leading order leads

to $+1,&+0,(+0 at a very small transverse momentum of

the lepton pair. More generally, the Lam-Tung relation 1

$$$2(!0 ,17- is expected to hold at order .s and the

relation is hardly modified by next-to-leading order (.s
2) per-

turbative QCD corrections ,18-. However, this relation is not
satisfied by the experimental data ,13,14-. The Drell-Yan
data show remarkably large values of ( , reaching values of
about 30% at transverse momenta of the lepton pair between

2 and 3 GeV )for Q2!m/*
2 !(4$12 GeV)2 and extracted in

the Collins-Soper frame ,19- to be discussed below*. These
large values of ( are not compatible with $+1 as also seen
in the data.

A number of explanations have been put forward, such as

a higher twist effect ,20,21-, following the ideas of Berger
and Brodsky ,22-. In Ref. ,20- the higher twist effect is mod-
eled using an asymptotic pion distribution amplitude, and it

appears to fall short in explaining the large values of ( .
In Ref. ,18- factorization-breaking correlations between

the incoming quarks are assumed and modeled in order to

account for the large cos 2' dependence. Here the correla-

tions are both in the transverse momentum and the spin of

the quarks. In Ref. ,6- this idea was applied in a factorized
approach ,23- involving the chiral-odd partner of the Sivers
effect, which is the transverse momentum dependent distri-

bution function called h1
! . From this point of view, the large

cos 2' azimuthal dependence can arise at leading order, i.e.

it is unsuppressed, from a product of two such distribution

functions. It offers a natural explanation for the large cos 2'
azimuthal dependence, but at the same time also for the

small cos' dependence, since chiral-odd functions can only

occur in pairs. The function h1
! is a quark helicity-flip matrix

element and must therefore occur accompanied by another

helicity flip. In the unpolarized Drell-Yan process this can

only be a product of two h1
! functions. Since this implies a

change by two units of angular momentum, it does not con-

tribute to a cos' asymmetry. In the present paper we will

discuss this scenario in terms of initial-state interactions,

which can generate a nonzero function h1
! .

We would also like to point out the experimental obser-

vation that the cos 2' dependence as observed by the NA10

Collaboration does not seem to show a strong dependence on

A, i.e. there was no significant difference between the deute-

rium and tungsten targets. Hence, it is unlikely that the asym-

metry originates from nuclear effects, and we shall assume it

to be associated purely with hadronic effects. We refer to

Ref. ,24- for investigations of nuclear enhancements.
We compute the function h1

!(x ,p!
2 ) and the resulting

cos 2' asymmetry explicitly in a quark-scalar diquark model
for the proton with an initial-state gluon interaction. In this

model h1
!(x ,p!

2 ) equals the T-odd )chiral-even* Sivers effect
function f 1T

! (x ,p!
2 ). Hence, assuming the cos 2' asymmetry

of the unpolarized Drell-Yan process does arise from non-

zero, large h1
! , this asymmetry is expected to be closely

related to the single-spin asymmetries in the SIDIS and the

Drell-Yan process, since each of these effects can arise from

the same underlying mechanism.

The Fermilab Tevatron and BNL Relativistic Heavy Ion

Collider )RHIC* should both be able to investigate azimuthal
asymmetries such as the cos 2' dependence. Since polarized
proton beams are available, RHIC will be able to measure

single-spin asymmetries as well. Unfortunately, one might

expect that the cos 2' dependence in pp→!!̄X )measurable
at RHIC* is smaller than for the process #$N→&"&$X ,

since in the former process there are no valence antiquarks

present. In this sense, the cleanest extraction of h1
! would be

from pp̄→!!̄X .

III. CROSS SECTION CALCULATION

In this section we will assume nonzero h1
! and discuss the

calculation of the leading order unpolarized Drell-Yan cross

section )given in Ref. ,6- with slightly different notation*

d!)h1h2→!!̄X *

d"dx1dx2d
2q!

!
.2

3Q2 0
a , ā

ea
2# A)y *F , f 1 f̄ 1-

"B)y *cos)2'*F $ )2ĥ•p!ĥ•k!

$p!•k!*
h1

!h̄1
!

M 1M 2
% & . )2*

This is expressed in the so-called Collins-Soper frame ,19-,
for which one chooses the following set of normalized vec-

tors )for details see, e.g. ,25-*:

t̂1q/Q , )3*

ẑ1
x1

Q
P̃1$

x2

Q
P̃2, )4*

ĥ1q! /Q!!)q$x1P1$x2P2*/Q! , )5*

where P̃ i1Pi$q/(2xi), Pi are the momenta of the two in-

coming hadrons and q is the four momentum of the virtual

photon or, equivalently, of the lepton pair. This can be related

to standard Sudakov decompositions of these momenta

1We neglect sin' and sin 2' dependencies, since these are of

higher order in .s ,15,16- and are expected to be small.
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We show that initial-state interactions contribute to the cos 2# distribution in unpolarized Drell-Yan lepton

pair production pp and pp̄→!!!"X , without suppression. The asymmetry is expressed as a product of

chiral-odd distributions h1
!(x1 ,p!

2 )# h̄1
!(x2 ,k!

2 ), where the quark-transversity function h1
!(x ,p!

2 ) is the trans-

verse momentum dependent, light-cone momentum distribution of transversely polarized quarks in an unpo-

larized proton. We compute this !naive" T-odd and chiral-odd distribution function and the resulting cos 2#
asymmetry explicitly in a quark-scalar diquark model for the proton with initial-state gluon interaction. In this

model the function h1
!(x ,p!

2 ) equals the T-odd !chiral-even" Sivers effect function f 1T
! (x ,p!

2 ). This suggests

that the single-spin asymmetries in the semi-inclusive deep inelastic scattering and the Drell-Yan process are

closely related to the cos 2# asymmetry of the unpolarized Drell-Yan process, since all can arise from the same
underlying mechanism. This provides new insight regarding the role of the quark and gluon orbital angular

momentum as well as that of initial- and final-state gluon exchange interactions in hard QCD processes.
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I. INTRODUCTION

Single-spin asymmetries in hadronic reactions have been

among the most challenging phenomena to understand from

basic principles in QCD. Several such asymmetries have

been observed experimentally, and a number of theoretical

mechanisms have been suggested $1–6%. Recently, a new
way of producing single-spin asymmetries in semi-inclusive

deep inelastic scattering !SIDIS" and the Drell-Yan process
has been put forward $7,8%. It was shown that the exchange
of a gluon, viewed as initial- or final-state interactions, could

produce the necessary phase leading to a single transverse

spin asymmetry. The main new feature is that, despite the

presence of an additional gluon, this asymmetry occurs with-

out suppression by a large energy scale appearing in the pro-

cess under consideration. It has been recognized since then

$9% that this mechanism can be viewed as the so-called Sivers
effect $1,10%, which was thought to be forbidden by time-
reversal invariance $4%. Apart from generating Sivers effect

asymmetries, the mechanism offers new insight regarding the
role of orbital angular momentum of quarks in a hadron and

their spin-orbit couplings; in fact, the same S•! L! matrix ele-
ments enter the anomalous magnetic moment of the proton
$7%. The new mechanism for single target-spin asymmetries
in SIDIS necessarily requires noncollinear quarks and glu-
ons, and in the Sivers asymmetry the quarks carry no polar-
ization on average. As such it is very different from mecha-

nisms involving transversity !often denoted by h1 or &q),
which correlates the spin of the transversely polarized hadron
with the transverse polarization of its quarks.
In further contrast, the exchange of a gluon can also lead

to transversity of quarks inside an unpolarized hadron. This
chiral-odd partner of the Sivers effect has been discussed in
Refs. $6,11%, and in this paper we will show explicitly how
initial-state interactions generate this effect. Goldstein and

Gamberg reported recently that h1
!(x ,p!

2 ) is proportional to

f 1T
! (x ,p!

2 ) in the quark-scalar diquark model $12%. We con-
firm this and find that these two distribution functions are in
fact equal in this model. Although this property is not ex-
pected to be satisfied in general, nevertheless, one may ex-
pect these functions to be comparable in magnitude, since
both functions can be generated by the same mechanism. We
investigate the consequences of the present model result for
the unpolarized Drell-Yan process. We obtain an expression
for the cos 2# asymmetry in the lepton pair angular distribu-
tion. Here # is the angle between the lepton plane and the
plane of the incident hadrons in the lepton pair center of
mass. This asymmetry was measured a long time ago $13,14%
and was found to be large. Several theoretical explanations
!some of which will be briefly discussed below" have been
put forward, but we will show that a natural explanation can
come from initial-state interactions which are unsuppressed
by the invariant mass of the lepton pair.

II. THE UNPOLARIZED DRELL-YAN PROCESS

The unpolarized Drell-Yan process cross section has been
measured in pion-nucleon scattering: '"N→(!("X , with
N deuterium or tungsten and a '" beam with energy of 140,
194, 286 GeV $13% and 252 GeV $14%. Conventionally

*Email address: dboer@nat.vu.nl
†Email address: sjbth@slac.stanford.edu
‡Email address: dshwang@sejong.ac.kr
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Fig. 4. Fraction r of events with a large rapidity gap, 

qmax < 1.5, as a function of Q2 A for two ranges of XDA. No 
acceptance corrections have been applied. 

small compared to WDA and is typically smaller than 

10 GeV. The events span the range of  WDA from 60 

to 270 GeV. For  WDA > 150 GeV these events are 

well separated from the rest of  the sample. In this 

region, acceptance corrections have little dependence 

on W and the contr ibut ion of  these events to the deep 

inelastic cross section is, within errors, constant with 

WDA, as expected for a diffractive type of  interaction 

(see fig. 3b). At smaller values of  WDA, the acceptance 

for these events decreases since the final state hadronic 

system is boosted in the forward direction. 

In fig. 3c we present the dis tr ibut ion of  Mx for 

events with r/max< 1.5 and WOA > 150 GeV. The dis- 

t r ibution is not corrected for detector or acceptance ef- 

fects. Although this acceptance could be model  depen- 

dent, the three models  we have checked [ 13,14,16 ] 

predict  a flat acceptance with Mx for Mx > 4 GeV. 

We observe a spectrum which, given our resolution, 

the uncertainty about the acceptance and the large sta- 

tistical errors, is compat ible  with a 1/MZx dependence,  

shown as the solid curve. 

The fraction of  events with a large rapidi ty gap, pre- 

sented as a function of  Q~A in fig. 4 for two selected 

bins of  XOA, is, within errors, independent  of  Q2. The 

Q2 dependence is little affected by acceptance correc- 

tions. In QCD terminology, leading twist contribu- 

tions to structure functions show little (at most loga- 

r i thmic)  dependence on Q2 at fixed x, whereas higher 

twist terms fall as a power of  Q2. Since the proton 

structure function determined for our DIS data  sam- 

ple shows a leading twist behavior  [29], the produc- 

t ion mechanism responsible for the large rapidity gap 

events is also likely to be a leading twist effect. The 

decrease with x is partly due to acceptance, since for 

larger values of x the final hadronic state is boosted 

in the direction of  the proton so that such events will 

not be identified as having a large rapidi ty  gap in our 

detector. 

8. Discussion and conclusions 

In a sample of  deep inelastic neutral current scatter- 

ing events, we have observed a class of  events with a 

large rapidi ty gap in the final hadronic state. The flat 

rapidi ty  distr ibution,  the lack of  W dependence and 

the shape of  the Mx distr ibution are suggestive of  a 

diffractive interaction between a highly virtual pho- 

ton and the proton, mediated by the exchange of  the 

pomeron [5 ]. The fact that the percentage of  events 

with a large rapidity gap shows only a weak depen- 

dence on Q2 points to a leading twist contribution to 

the proton structure function. 

For  the hypothesis that events with a large rapidi ty 

gap are produced by a diffractive mechanism, one 

expects such events to be accompanied by a quasi- 

elastically scattered proton. For  this type of  pro- 

cess the gap between the maximum rapidity of  the 

calorimeter  and the rapidi ty of  the scattered proton is 

about three units. The selection criteria, in part icular 

the requirement of  a rapidi ty gap in the detector of  

at least 2.8 units, l imit  the acceptance for diffractive- 

like events. Since we have made no corrections for 

acceptance, the 5.4% for DIS events with a large 

rapidity gap should be considered a lower l imit  for 

diffractively produced events. 
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Inclusive Diffraction at HERA

F.-P. Schillinga∗ (on behalf of the H1 and ZEUS collaborations) †

aDESY, Notkestr. 85, D-22603 Hamburg, Germany

New precision measurements of inclusive diffractive deep-inelastic ep scattering interactions, performed by the
H1 and ZEUS collaborations at the HERA collider, are discussed. A new set of diffractive parton distributions,
determined from recent high precision H1 data, is presented.

1. INTRODUCTION

One of the biggest challenges in our under-
standing of QCD is the nature of colour sin-
glet exchange or diffractive interactions. The
electron-proton collider HERA is an ideal place to
study hard diffractive processes in deep-inelastic
ep scattering (DIS). In such interactions, the
point-like virtual photon probes the structure of
colour singlet exchange, similarly to inclusive DIS
probing proton structure.

2

!

Figure 1: Illustration of
a diffractive DIS event.

At HERA,
around 10% of
low x events
are diffractive
[1]. Experimen-
tally, such events
are identified by
either tagging
the elastically
scattered pro-
ton in Roman
pot spectrometers
60− 100 m down-
stream from the
interaction point
or by asking for

a large rapidity gap without particle production
between the central hadronic system and the
proton beam direction.

A diagram of diffractive DIS is shown in Fig. 1.
A virtual photon coupling to the beam electron

∗e-mail address: fpschill@mail.desy.de
†Talk presented at 31st Intl. Conference on High Energy
Physics ICHEP 2002, Amsterdam

interacts diffractively with the proton through
the exchange of a colour singlet and produces a
hadronic system X with mass MX in the final
state. If the 4-momenta of the incoming (out-
going) electron and proton are labeled l (l′) and
p (p′) respectively, the following kinematic vari-
ables can be defined: Q2 = −q2 = −(l − l′)2, the
photon virtuality; β = Q2/q.(p − p′), the longi-
tudinal momentum fraction of the struck quark
relative to the diffractive exchange; xIP = q.(p −
p′)/q.p, the fractional proton momentum taken
by the diffractive exchange and t = (p− p′)2, the
4-momentum squared transferred at the proton
vertex. Bjorken-x is given by x = xIP β. For the
measurements presented here typical values of xIP

are < 0.05. y = Q2/sx denotes the inelasticity,
where s is the ep CMS energy.

A diffractive reduced cross section σD(4)
r can be

defined via

d4σep→eXp

dxIP dt dβ dQ2
=

4πα2

βQ4

(

1 − y +
y2

2

)

σD(4)
r (xIP , t, β, Q2) , (1)

which is related to the diffractive structure func-
tions FD

2 and the longitudinal FD
L by

σD
r = FD

2 −
y2

2(1 − y + y2

2 )
FD

L . (2)

Except at the highest y, σD
r = FD

2 to a very good
approximation. If the outgoing proton is not de-
tected, the measurements are integrated over t:

σD(3)
r =

∫

dt σD(4)
r .

10% to 15% 
of DIS events 

are 
diffractive !

Remarkable observation at HERA
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QCD Mechanism for Rapidity Gaps

Wilson Line: ψ(y)
Z y

0
dx eiA(x)·dx ψ(0)

P

106

Reproduces lab-frame color dipole approach

Hoyer, Marchal, Peigne, Sannino, sjb



                       

Diffractive Structure Function F2
D  

de Roeck



 
CP3, September 16, 2011 QCD Myths  Stan Brodsky,  SLAC/CP3

108

p

Final-State Interaction 
Produces Diffractive DIS 

Quark Rescattering 

Hoyer, Marchal, Peigne, Sannino, SJB (BHMPS)

Enberg, Hoyer, Ingelman, SJB

Hwang, Schmidt, SJB

Low-Nussinov model of Pomeron
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QCD Mechanism for Rapidity Gaps

Wilson Line: ψ(y)
Z y

0
dx eiA(x)·dx ψ(0)

P

109

Reproduces lab-frame color dipole approach

Hoyer, Marchal, Peigne, Sannino, sjb
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Feynman Gauge Light-Cone Gauge

Result is Gauge Independent

Final State Interactions in QCD 
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Predict: Reduced DDIS/DIS for Heavy Quarks

See also: Bartels et al

Kopeliovitch, Schmidt, sjb

Higher Twist Diffraction 
Fraction

P ’

111

b⊥ = O(1/M)

σ(DDIS)
σ(DIS) �

Λ2
QCD

M2
Q

s̄(x) �= s(x)

φM(x, Q0) ∝
�

x(1− x)

ψM(x, k2
⊥
)

µR

b⊥ = O(1/MQ)

σ(DDIS)
σ(DIS) �

Λ2
QCD

M2
Q

s̄(x) �= s(x)

φM(x, Q0) ∝
�

x(1− x)

ψM(x, k2
⊥
)

µR

Q

Q̄

b⊥ = O(1/MQ)

σ(DDIS)
σ(DIS) �

Λ2
QCD

M2
Q

s̄(x) �= s(x)

φM(x, Q0) ∝
�

x(1− x)

Q

Q̄

b⊥ = O(1/MQ)

σ(DDIS)
σ(DIS) �

Λ2
QCD

M2
Q

s̄(x) �= s(x)

φM(x, Q0) ∝
�

x(1− x)
Reproduces lab-frame color dipole approach
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Physics of Rescattering

• Sivers Asymmetry and Diffractive DIS: New Insights 
into Final State Interactions in QCD

• Origin of Hard Pomeron

• Structure Functions not Probability Distributions!

• T-odd SSAs, Shadowing, Antishadowing

• Diffractive dijets/ trijets, doubly diffractive Higgs

• Novel Effects: Color Transparency, Color 
Opaqueness, Intrinsic Charm, Odderon

112

Not square of LFWFs
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FIG. 8: The exchange of two extra gluons, as in this graph,
will tend to give non-factorization in unpolarized cross sec-
tions.

FIG. 9: In a conventional perturbative QCD calculation for
an unpolarized partonic cross section, non-factorization by
the mechanisms discussed in this paper would first appear in
graphs of this order.

culations. Normally one performs calculations with on-
shell massless quarks and gluons, and extracts collinear
divergences that are grouped with parton densities and
fragmentation functions; any remaining divergences can-
cel between graphs. Non-factorization in the hadronic
cross section corresponds to uncanceled divergences in
quark-gluon calculations. The lowest order in which the
mechanisms we have discussed could possible give an un-
canceled divergence in unpolarized partonic cross sec-
tions is NNNLO, as in Fig. 9. The region for the un-
canceled divergence is where the lower gluon is collinear
to the lower incoming quark, and two of the exchanged
gluons are soft. This graph is at least one order beyond
all standard perturbative QCD calculations.

Because our calculations directly concern cross sec-
tions that use transverse-momentum-dependent parton
densities, a certain amount of care is needed in inter-
preting the results. The natural direction for the Wilson
lines is light-like, as from Eq. (3.8). However light-like
Wilson lines give divergences in transverse-momentum-
dependent densities [7]. These are due to rapidity di-
vergences [20] in integrals over gluon momentum; they
cancel [7] in conventional parton densities only because
of an integral over all transverse momentum in integrated

parton densities. The solution adopted by Collins, Soper
and Sterman [7] (CSS) was to define parton densities
without Wilson lines but in a non-light-like axial gauge.
The gauge-fixing vector introduces a cut-off on gluon ra-
pidity, and then an evolution equation with respect to
the cut-off was derived. The non-perturbative functions
involved in this CSS evolution equation have been mea-
sured (e.g., [21]) in fits to DY cross sections, and would
be an essential ingredient in testing non-factorization.

However, there are some unsatisfactory features of the
use of axial gauges, which are made particularly evident
in polarized cross sections. This includes complications
concerning gauge links at infinity [22], when a Wilson line
formalism is used. A much better definition is to use a
non-light-like Wilson line. This again obeys an equation
of the CSS form. It is also possible to use a subtractive
formalism [20, 23] with light-like Wilson lines but with
generalized renormalization factors involving vacuum ex-
pectation values of Wilson lines, which also implement a
rapidity cutoff, and lead to a CSS equation.

To test the predicted non-factorization, we simply need
predictions of high-pT hadrons in hadron-hadron colli-
sions, made on the basis of fits to parton densities in
DIS and DY and to fragmentation functions in e+e− and
SIDIS [24]. Probing the SSA would be particularly inter-
esting, and such measurements are underway at RHIC
[25, 26]. The same physics is probed in the transverse
shape of jets, and would be worth investigating.

Our counterexample applies in a kinematic region
where the normal intuitive ideas of the parton model
appear quite appropriate, even with a generalization to
kT -factorization. Therefore it forces us to question un-
der what conditions factorization is actually valid and to
what extent it has actually been demonstrated. It cannot
be assumed that naive extensions of apparently estab-
lished results are applicable beyond the cases to which
the actual proofs explicitly apply.

For hadron-hadron collisions, factorization has been
proved [5, 6] for the Drell-Yan process integrated over
transverse momentum or at large transverse momentum
(of order Q). These proofs apply in the presence of gluon
exchanges of the kind that we discuss in the present pa-
per. But these papers do not go beyond this, to the pro-
duction of hadrons. Because factorization is important to
all aspects of hadron-collider phenomenology, it is critical
to solve this problem for the hadroproduction of high-pT

hadrons. Given our counterexample to kT -factorization,
a proof of factorization can only succeed in a situation
where conventional collinear factorization is appropriate.
For dihadron production this is when the hadron-pair has
itself large transverse momentum or when the pair’s out-
of-plane transverse momentum is integrated over a wide
range.

In fact, Nayak, Qiu and Sterman [27] have recently
given strong arguments that collinear factorization does
indeed hold in such a situations. The graphs examined
are similar to ours. They apply Ward identities to prove
an eikonalization generalizing our specific calculations.
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Factorization is violated in production of high-transverse-momentum particles in
hadron-hadron collisions

John Collins∗

Physics Department, Penn State University, 104 Davey Laboratory, University Park PA 16802, U.S.A.

Jian-Wei Qiu†

Department of Physics and Astronomy, Iowa State University, Ames IA 50011, U.S.A. and
High Energy Physics Division, Argonne National Laboratory, Argonne IL 60439, U.S.A.

(Dated: 15 May 2007)

We show that hard-scattering factorization is violated in the production of high-pT hadrons in
hadron-hadron collisions, in the case that the hadrons are back-to-back, so that kT factorization
is to be used. The explicit counterexample that we construct is for the single-spin asymmetry
with one beam transversely polarized. The Sivers function needed here has particular sensitivity
to the Wilson lines in the parton densities. We use a greatly simplified model theory to make the
breakdown of factorization easy to check explicitly. But the counterexample implies that standard
arguments for factorization fail not just for the single-spin asymmetry but for the unpolarized cross
section for back-to-back hadron production in QCD in hadron-hadron collisions. This is unlike
corresponding cases in e+e− annihilation, Drell-Yan, and deeply inelastic scattering. Moreover, the
result endangers factorization for more general hadroproduction processes.

PACS numbers: 12.38.Bx, 12.39.St, 13.85.Ni, 13.87.-a, 13.88.+e

I. INTRODUCTION

The great importance of hard-scattering factorization
in high-energy phenomenology hardly needs emphasis.
Essential to its application and predictiveness is the uni-
versality of parton densities (and fragmentation func-
tions, etc) between different reactions. However, as can
be seen from [1, 2, 3, 4], process-dependent Wilson lines
appear to be needed in the inclusive production of two
high-transverse-momentum particles in hadron-hadron
collisions, i.e., in the process

H1 + H2 → H3 + H4 + X. (1.1)

In this paper we will show that this situation definitively
leads to a breakdown of factorization.

The standard expectation is that the cross section is
a convolution of a hard scattering coefficient dσ̂, par-
ton densities, fragmentation functions and a possible soft
function:

E3E4

dσ

d3p3d3p4

=
∑

∫

dσ̂i+j→k+l+X fi/1 fj/2 d3/k d4/l

+ power-suppressed correction.
(1.2)

Here the sum and integral are over the flavors and mo-
menta of the partons of the hard scattering, fi/H denotes
a parton density, and dH/i a fragmentation function.

It is noteworthy that the classic published proofs for
factorization in hadron-hadron scattering [5, 6] only con-
cerned the Drell-Yan process. There are a number of

∗Electronic address: collins@phys.psu.edu
†Electronic address: jwq@iastate.edu

difficult issues in the proof that are highly non-trivial
to extend to other reactions in hadron-hadron collisions,
even though Eq. (1.2) is a standard expectation.

We will examine the case that the produced hadrons
are almost back-to-back. Then the appropriate factoriza-
tion property is kT -factorization, which entails [7] the use
of transverse-momentum dependent (TMD) parton den-
sities and fragmentation functions. However, the issues
raised by our counterexample to factorization are suffi-
ciently general that they create a need to examine very
carefully the arguments for factorization in hadropro-
duction of hadrons even in situations where ordinary
collinear factorization with integrated densities is appro-
priate. In the case of kT -factorization with TMD den-
sities, the factorization formula needs the insertion of a
soft factor S, not shown in Eq. (1.2).

The problems concern gluon exchanges between differ-
ent kinds of collinear line, as in Fig. 7 below. To obtain
factorization, the gluon attachments must be converted
to Wilson lines in gauge-invariant definitions of the par-
ton densities and fragmentation functions. This relies [6]
on the use of Ward identities applied to approximations
to the amplitudes. But the approximations are only valid
after certain contour deformations on the loop momenta.

Bacchetta, Bomhof, Mulders and Pijlman [1, 2, 3, 4]
argued that because of the complicated combination of
initial- and final-state interactions, the Wilson lines must
be modified. What is not so clear is the interpretation of
their result. So in the present paper we present an argu-
ment to make fully explicit the failure of factorization.

Since the issue is one of factorization in general, and
not just specifically in QCD, we clarify the issue by ex-
amining a particular process in a model field theory. The
process is a transverse single-spin asymmetry of the kind
controlled by a Sivers function. This is a case where prob-

John Collins, Jian-Wei Qiu . ANL-HEP-PR-07-25, May 2007.

e-Print: arXiv:0705.2141 [hep-ph]
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Outlook

E

φ K +K−

γ∗g → ss̄ → φ + X γ∗g → ss̄ → K +K− + X

S. Gardner (Univ. of Kentucky) Spin-Flip Matrix Elements in Light-Front QCD Oberwölz, September, 2006 12

Gardner, sjb

Recent COMPASS data on deuteron: 
small Sivers effect
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functions 
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 DY               correlation at leading twist from double ISI

the differential cross section is written as

1

!

d!

d"
!
3

4#

1

$"3

#! 1"$ cos2%"& sin2% cos'"
(

2
sin2% cos 2' " .

)1*

These angular dependencies1 can all be generated by pertur-

bative QCD corrections where, for instance, initial quarks

radiate off high energy gluons into the final state. Such a

perturbative QCD calculation at next-to-leading order leads

to $+1,&+0,(+0 at a very small transverse momentum of

the lepton pair. More generally, the Lam-Tung relation 1

$$$2(!0 ,17- is expected to hold at order .s and the

relation is hardly modified by next-to-leading order (.s
2) per-

turbative QCD corrections ,18-. However, this relation is not
satisfied by the experimental data ,13,14-. The Drell-Yan
data show remarkably large values of ( , reaching values of
about 30% at transverse momenta of the lepton pair between

2 and 3 GeV )for Q2!m/*
2 !(4$12 GeV)2 and extracted in

the Collins-Soper frame ,19- to be discussed below*. These
large values of ( are not compatible with $+1 as also seen
in the data.

A number of explanations have been put forward, such as

a higher twist effect ,20,21-, following the ideas of Berger
and Brodsky ,22-. In Ref. ,20- the higher twist effect is mod-
eled using an asymptotic pion distribution amplitude, and it

appears to fall short in explaining the large values of ( .
In Ref. ,18- factorization-breaking correlations between

the incoming quarks are assumed and modeled in order to

account for the large cos 2' dependence. Here the correla-

tions are both in the transverse momentum and the spin of

the quarks. In Ref. ,6- this idea was applied in a factorized
approach ,23- involving the chiral-odd partner of the Sivers
effect, which is the transverse momentum dependent distri-

bution function called h1
! . From this point of view, the large

cos 2' azimuthal dependence can arise at leading order, i.e.

it is unsuppressed, from a product of two such distribution

functions. It offers a natural explanation for the large cos 2'
azimuthal dependence, but at the same time also for the

small cos' dependence, since chiral-odd functions can only

occur in pairs. The function h1
! is a quark helicity-flip matrix

element and must therefore occur accompanied by another

helicity flip. In the unpolarized Drell-Yan process this can

only be a product of two h1
! functions. Since this implies a

change by two units of angular momentum, it does not con-

tribute to a cos' asymmetry. In the present paper we will

discuss this scenario in terms of initial-state interactions,

which can generate a nonzero function h1
! .

We would also like to point out the experimental obser-

vation that the cos 2' dependence as observed by the NA10

Collaboration does not seem to show a strong dependence on

A, i.e. there was no significant difference between the deute-

rium and tungsten targets. Hence, it is unlikely that the asym-

metry originates from nuclear effects, and we shall assume it

to be associated purely with hadronic effects. We refer to

Ref. ,24- for investigations of nuclear enhancements.
We compute the function h1

!(x ,p!
2 ) and the resulting

cos 2' asymmetry explicitly in a quark-scalar diquark model
for the proton with an initial-state gluon interaction. In this

model h1
!(x ,p!

2 ) equals the T-odd )chiral-even* Sivers effect
function f 1T

! (x ,p!
2 ). Hence, assuming the cos 2' asymmetry

of the unpolarized Drell-Yan process does arise from non-

zero, large h1
! , this asymmetry is expected to be closely

related to the single-spin asymmetries in the SIDIS and the

Drell-Yan process, since each of these effects can arise from

the same underlying mechanism.

The Fermilab Tevatron and BNL Relativistic Heavy Ion

Collider )RHIC* should both be able to investigate azimuthal
asymmetries such as the cos 2' dependence. Since polarized
proton beams are available, RHIC will be able to measure

single-spin asymmetries as well. Unfortunately, one might

expect that the cos 2' dependence in pp→!!̄X )measurable
at RHIC* is smaller than for the process #$N→&"&$X ,

since in the former process there are no valence antiquarks

present. In this sense, the cleanest extraction of h1
! would be

from pp̄→!!̄X .

III. CROSS SECTION CALCULATION

In this section we will assume nonzero h1
! and discuss the

calculation of the leading order unpolarized Drell-Yan cross

section )given in Ref. ,6- with slightly different notation*

d!)h1h2→!!̄X *

d"dx1dx2d
2q!

!
.2

3Q2 0
a , ā

ea
2# A)y *F , f 1 f̄ 1-

"B)y *cos)2'*F $ )2ĥ•p!ĥ•k!

$p!•k!*
h1

!h̄1
!

M 1M 2
% & . )2*

This is expressed in the so-called Collins-Soper frame ,19-,
for which one chooses the following set of normalized vec-

tors )for details see, e.g. ,25-*:

t̂1q/Q , )3*

ẑ1
x1

Q
P̃1$

x2

Q
P̃2, )4*

ĥ1q! /Q!!)q$x1P1$x2P2*/Q! , )5*

where P̃ i1Pi$q/(2xi), Pi are the momenta of the two in-

coming hadrons and q is the four momentum of the virtual

photon or, equivalently, of the lepton pair. This can be related

to standard Sudakov decompositions of these momenta

1We neglect sin' and sin 2' dependencies, since these are of

higher order in .s ,15,16- and are expected to be small.
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Initial-state interactions in the unpolarized Drell-Yan process
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We show that initial-state interactions contribute to the cos 2# distribution in unpolarized Drell-Yan lepton

pair production pp and pp̄→!!!"X , without suppression. The asymmetry is expressed as a product of

chiral-odd distributions h1
!(x1 ,p!

2 )# h̄1
!(x2 ,k!

2 ), where the quark-transversity function h1
!(x ,p!

2 ) is the trans-

verse momentum dependent, light-cone momentum distribution of transversely polarized quarks in an unpo-

larized proton. We compute this !naive" T-odd and chiral-odd distribution function and the resulting cos 2#
asymmetry explicitly in a quark-scalar diquark model for the proton with initial-state gluon interaction. In this

model the function h1
!(x ,p!

2 ) equals the T-odd !chiral-even" Sivers effect function f 1T
! (x ,p!

2 ). This suggests

that the single-spin asymmetries in the semi-inclusive deep inelastic scattering and the Drell-Yan process are

closely related to the cos 2# asymmetry of the unpolarized Drell-Yan process, since all can arise from the same
underlying mechanism. This provides new insight regarding the role of the quark and gluon orbital angular

momentum as well as that of initial- and final-state gluon exchange interactions in hard QCD processes.

DOI: 10.1103/PhysRevD.67.054003 PACS number!s": 12.38.Bx, 13.85.Qk, 13.88.!e

I. INTRODUCTION

Single-spin asymmetries in hadronic reactions have been

among the most challenging phenomena to understand from

basic principles in QCD. Several such asymmetries have

been observed experimentally, and a number of theoretical

mechanisms have been suggested $1–6%. Recently, a new
way of producing single-spin asymmetries in semi-inclusive

deep inelastic scattering !SIDIS" and the Drell-Yan process
has been put forward $7,8%. It was shown that the exchange
of a gluon, viewed as initial- or final-state interactions, could

produce the necessary phase leading to a single transverse

spin asymmetry. The main new feature is that, despite the

presence of an additional gluon, this asymmetry occurs with-

out suppression by a large energy scale appearing in the pro-

cess under consideration. It has been recognized since then

$9% that this mechanism can be viewed as the so-called Sivers
effect $1,10%, which was thought to be forbidden by time-
reversal invariance $4%. Apart from generating Sivers effect

asymmetries, the mechanism offers new insight regarding the
role of orbital angular momentum of quarks in a hadron and

their spin-orbit couplings; in fact, the same S•! L! matrix ele-
ments enter the anomalous magnetic moment of the proton
$7%. The new mechanism for single target-spin asymmetries
in SIDIS necessarily requires noncollinear quarks and glu-
ons, and in the Sivers asymmetry the quarks carry no polar-
ization on average. As such it is very different from mecha-

nisms involving transversity !often denoted by h1 or &q),
which correlates the spin of the transversely polarized hadron
with the transverse polarization of its quarks.
In further contrast, the exchange of a gluon can also lead

to transversity of quarks inside an unpolarized hadron. This
chiral-odd partner of the Sivers effect has been discussed in
Refs. $6,11%, and in this paper we will show explicitly how
initial-state interactions generate this effect. Goldstein and

Gamberg reported recently that h1
!(x ,p!

2 ) is proportional to

f 1T
! (x ,p!

2 ) in the quark-scalar diquark model $12%. We con-
firm this and find that these two distribution functions are in
fact equal in this model. Although this property is not ex-
pected to be satisfied in general, nevertheless, one may ex-
pect these functions to be comparable in magnitude, since
both functions can be generated by the same mechanism. We
investigate the consequences of the present model result for
the unpolarized Drell-Yan process. We obtain an expression
for the cos 2# asymmetry in the lepton pair angular distribu-
tion. Here # is the angle between the lepton plane and the
plane of the incident hadrons in the lepton pair center of
mass. This asymmetry was measured a long time ago $13,14%
and was found to be large. Several theoretical explanations
!some of which will be briefly discussed below" have been
put forward, but we will show that a natural explanation can
come from initial-state interactions which are unsuppressed
by the invariant mass of the lepton pair.

II. THE UNPOLARIZED DRELL-YAN PROCESS

The unpolarized Drell-Yan process cross section has been
measured in pion-nucleon scattering: '"N→(!("X , with
N deuterium or tungsten and a '" beam with energy of 140,
194, 286 GeV $13% and 252 GeV $14%. Conventionally

*Email address: dboer@nat.vu.nl
†Email address: sjbth@slac.stanford.edu
‡Email address: dshwang@sejong.ac.kr
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Measurement of Angular Distributions of Drell-Yan Dimuons in p + d Interaction at
800 GeV/c
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We report a measurement of the angular distributions of Drell-Yan dimuons produced using an
800 GeV/c proton beam on a deuterium target. The muon angular distributions in polar angle
θ and azimuthal angle φ have been measured over the kinematic range 4.5 < mµµ < 15 GeV/c2,
0 < pT < 4 GeV/c, and 0 < xF < 0.8. No significant cos2φ dependence is found in these proton-
induced Drell-Yan data, in contrast to the situation for pion-induced Drell-Yan. The data are
compared with expectations from models which attribute the cos2φ distribution to a QCD vacuum
effect or to the presence of the transverse-momentum-dependent Boer-Mulders structure function
h⊥

1 . Constraints on the magnitude of the sea-quark h⊥
1 structure functions are obtained.

PACS numbers: 13.85.Qk, 14.20.Dh, 24.85.+p, 13.88.+e

The Drell-Yan process [1], in which a charged lepton
pair is produced in a high-energy hadron-hadron interac-
tion via the qq̄ → l+l− process, has been a testing ground
for perturbative QCD and a unique tool for probing par-
ton distributions of hadrons. The Drell-Yan production
cross sections can be well described by next-to-leading
order QCD calculations [2]. This provides a firm theo-
retical framework for using the Drell-Yan process to de-
termine the antiquark content of nucleons and nuclei [3],
as well as the quark distributions of pions, kaons, and
antiprotons [4].

Despite the success of perturbative QCD in describing
the Drell-Yan cross sections, it remains a challenge to un-
derstand the angular distributions of the Drell-Yan pro-
cess. Assuming dominance of the single-photon process,
a general expression for the Drell-Yan angular distribu-
tion is [5]

dσ

dΩ
∝ 1 + λ cos2 θ + µ sin 2θ cosφ +

ν

2
sin2 θ cos 2φ, (1)

where θ and φ denote the polar and azimuthal angle,
respectively, of the l+ in the dilepton rest frame. In
the “naive” Drell-Yan model, where the transverse mo-

mentum of the quark is ignored and no gluon emission
is considered, λ = 1 and µ = ν = 0 are obtained.
QCD effects [6] and non-zero intrinsic transverse mo-
mentum of the quarks [7] can both lead to λ #= 1 and
µ, ν #= 0. However, λ and ν should still satisfy the rela-
tion 1 − λ = 2ν [5]. This so-called Lam-Tung relation,
obtained as a consequence of the spin-1/2 nature of the
quarks, is analogous to the Callan-Gross relation [8] in
Deep-Inelastic Scattering. While QCD effects can signif-
icantly modify the Callan-Gross relation, the Lam-Tung
relation is predicted to be largely unaffected by QCD
corrections [9].

The first measurement of the Drell-Yan angular dis-
tribution was performed by the NA10 Collaboration for
π− + W at 140, 194, and 286 GeV/c, with the highest
statistics at 194 GeV/c [10]. The cos 2φ angular depen-
dences showed a sizable ν, increasing with dimuon trans-
verse momentum (pT ) and reaching a value of ≈ 0.3 at
pT = 2.5 GeV/c (see Fig. 1). The observed behavior of ν
could not be described by perturbative QCD calculations
which predict much smaller values of ν [6]. The Fermilab
E615 Collaboration subsequently performed a measure-
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We report a measurement of the angular distributions of Drell-Yan dimuons produced using an
800 GeV/c proton beam on a deuterium target. The muon angular distributions in polar angle
θ and azimuthal angle φ have been measured over the kinematic range 4.5 < mµµ < 15 GeV/c2,
0 < pT < 4 GeV/c, and 0 < xF < 0.8. No significant cos2φ dependence is found in these proton-
induced Drell-Yan data, in contrast to the situation for pion-induced Drell-Yan. The data are
compared with expectations from models which attribute the cos2φ distribution to a QCD vacuum
effect or to the presence of the transverse-momentum-dependent Boer-Mulders structure function
h⊥

1 . Constraints on the magnitude of the sea-quark h⊥
1 structure functions are obtained.
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The Drell-Yan process [1], in which a charged lepton
pair is produced in a high-energy hadron-hadron interac-
tion via the qq̄ → l+l− process, has been a testing ground
for perturbative QCD and a unique tool for probing par-
ton distributions of hadrons. The Drell-Yan production
cross sections can be well described by next-to-leading
order QCD calculations [2]. This provides a firm theo-
retical framework for using the Drell-Yan process to de-
termine the antiquark content of nucleons and nuclei [3],
as well as the quark distributions of pions, kaons, and
antiprotons [4].

Despite the success of perturbative QCD in describing
the Drell-Yan cross sections, it remains a challenge to un-
derstand the angular distributions of the Drell-Yan pro-
cess. Assuming dominance of the single-photon process,
a general expression for the Drell-Yan angular distribu-
tion is [5]

dσ

dΩ
∝ 1 + λ cos2 θ + µ sin 2θ cosφ +

ν

2
sin2 θ cos 2φ, (1)

where θ and φ denote the polar and azimuthal angle,
respectively, of the l+ in the dilepton rest frame. In
the “naive” Drell-Yan model, where the transverse mo-

mentum of the quark is ignored and no gluon emission
is considered, λ = 1 and µ = ν = 0 are obtained.
QCD effects [6] and non-zero intrinsic transverse mo-
mentum of the quarks [7] can both lead to λ #= 1 and
µ, ν #= 0. However, λ and ν should still satisfy the rela-
tion 1 − λ = 2ν [5]. This so-called Lam-Tung relation,
obtained as a consequence of the spin-1/2 nature of the
quarks, is analogous to the Callan-Gross relation [8] in
Deep-Inelastic Scattering. While QCD effects can signif-
icantly modify the Callan-Gross relation, the Lam-Tung
relation is predicted to be largely unaffected by QCD
corrections [9].

The first measurement of the Drell-Yan angular dis-
tribution was performed by the NA10 Collaboration for
π− + W at 140, 194, and 286 GeV/c, with the highest
statistics at 194 GeV/c [10]. The cos 2φ angular depen-
dences showed a sizable ν, increasing with dimuon trans-
verse momentum (pT ) and reaching a value of ≈ 0.3 at
pT = 2.5 GeV/c (see Fig. 1). The observed behavior of ν
could not be described by perturbative QCD calculations
which predict much smaller values of ν [6]. The Fermilab
E615 Collaboration subsequently performed a measure-

3

TABLE I: Mean values of the λ, µ, ν parameters and the quan-
tity 2ν − (1 − λ) for three Drell-Yan measurements. The pT

dependence of these quantities is shown in Fig. 1.

p + d π− + W π− + W

800 GeV/c 194 GeV/c 252 GeV/c

(E866) (NA10) (E615)

〈λ〉 1.07 ± 0.07 0.83 ± 0.04 1.17 ± 0.06

〈µ〉 0.003 ± 0.013 0.008 ± 0.010 0.09 ± 0.02

〈ν〉 0.027 ± 0.010 0.091 ± 0.009 0.169 ± 0.019

〈2ν − (1 − λ)〉 0.12 ± 0.07 0.01 ± 0.04 0.51 ± 0.07

Several settings of the currents in the three dipole mag-
nets (SM0, SM12, SM3) were used in order to optimize
acceptance for different dimuon mass regions. Data col-
lected with the “low mass” and “high mass” settings [26]
on liquid deuterium and empty targets were used in this
analysis. The detector system consisted of four track-
ing stations and a momentum analyzing magnet (SM3).
Tracks reconstructed by the drift chambers were extrapo-
lated to the target using the momentum determined from
the bend angle in SM3. The target position was used to
refine the parameters of each muon track.

From the momenta of the µ+ and µ−, kinematic vari-
ables of the dimuons (xF , mµµ, pT ) were readily recon-
structed. The muon angles θ and φ in the Collins-Soper
frame [27] were also calculated. To remove the quarko-
nium background, only events with 4.5 < mµµ < 9
GeV/c2 or mµµ > 10.7 GeV/c2 were analyzed. A total
of 118,000 p + d Drell-Yan events covering the decay an-
gular range −0.5 < cos θ < 0.5 and −π < φ < π remain.
Detailed Monte-Carlo simulations for the experiment us-
ing the MRST98 parton distribution functions [28] for
NLO Drell-Yan cross sections have shown good agree-
ments with the data for a variety of measured quantities.

Figure 1 shows the angular distribution parameters
λ, µ, and ν vs. pT . To extract these parameters, the
Drell-Yan data were grouped into 5 bins in cos θ and 8
bins in φ for each pT bin. A least-squares fit to the data
using Eq. 1 to describe the angular distribution was per-
formed. Only statistical errors are shown in Fig. 1. The
primary contributions to the systematic errors are the
uncertainties of the incident beam angles on target. The
analysis has been performed allowing the beam angles to
vary within their ranges of uncertainty. From this study,
we found that the systematic errors are comparable to the
statistical errors for each individual pT bin. However, the
pT averaged values 〈λ〉, 〈µ〉, and 〈ν〉, are dominatd by the
statistical errors.

For comparison with the p + d Drell-Yan data, the
NA10 π− +W data at 194 GeV/c and the E615 π− +W
data at 252 GeV/c are also shown in Fig. 1. To test the
validity of the Lam-Tung relation, also shown in Fig. 1
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FIG. 2: Parameter ν vs. pT in the Collins-Soper frame for
three Drell-Yan measurements. Fits to the data using Eq. 3
and MC = 2.4 GeV/c2 are also shown.

is the quantity, 2ν − (1 − λ), for all three experiments.
For p + d at 800 GeV/c, Fig. 1 shows that λ is consis-
tent with 1, in agreement with previous studies [3, 25],
while µ and ν deviate only slightly from zero. This is in
contrast to the pion-induced Drell-Yan results, in which
much larger values of ν are found. Table I lists the mean
values of λ, µ, ν and 2ν − (1 − λ) for these three experi-
ments. Again, the qualitatively different behavior of the
azimuthal angular distributions for p + d versus π− + W
is evident. It is also interesting to note that while E615
clearly establishes the violation of the Lam-Tung rela-
tion, the NA10 and the p + d data are largely consistent
with the Lam-Tung relation.

In an attempt to extract information on the magnitude
of the h⊥

1 function from the NA10 data, Boer [17] as-
sumed that h⊥

1 is proportional to the spin-averaged par-
ton distribution function f1:

h⊥
1 (x, k2

T ) = CH
αT

π

MCMH

k2
T + M2

C

e−αT k2

T f1(x), (2)

where kT is the quark transverse momentum, MH is the
mass of the hadron H (pion or nucleon), and MC and
CH are constant fitting parameters. A Gaussian trans-
verse momentum dependence of e−αT k2

T with αT = 1
(GeV/c)−2 was assumed. The cos 2φ dependence then
results from the convolution of the pion h⊥

1 /f1 term with
the nucleon h⊥

1 /f1 term, and the parameter ν is given as

ν = 16κ1

p2
T M2

C

(p2
T + 4M2

C)2
, (3)

where κ1 = CH1
CH2

/2, and H1, H2 denote the two inter-
acting hadrons. As shown in Fig. 2, a good description
of the NA10 data is obtained with κ1 = 0.47 ± 0.14 and
MC = 2.4 ± 0.5 GeV/c2. A fit to the E615 ν data at
252 GeV/c using MC = 2.4 GeV/c2, also shown in Fig.

3

TABLE I: Mean values of the λ, µ, ν parameters and the quan-
tity 2ν − (1 − λ) for three Drell-Yan measurements. The pT

dependence of these quantities is shown in Fig. 1.

p + d π− + W π− + W

800 GeV/c 194 GeV/c 252 GeV/c

(E866) (NA10) (E615)

〈λ〉 1.07 ± 0.07 0.83 ± 0.04 1.17 ± 0.06

〈µ〉 0.003 ± 0.013 0.008 ± 0.010 0.09 ± 0.02

〈ν〉 0.027 ± 0.010 0.091 ± 0.009 0.169 ± 0.019

〈2ν − (1 − λ)〉 0.12 ± 0.07 0.01 ± 0.04 0.51 ± 0.07

Several settings of the currents in the three dipole mag-
nets (SM0, SM12, SM3) were used in order to optimize
acceptance for different dimuon mass regions. Data col-
lected with the “low mass” and “high mass” settings [26]
on liquid deuterium and empty targets were used in this
analysis. The detector system consisted of four track-
ing stations and a momentum analyzing magnet (SM3).
Tracks reconstructed by the drift chambers were extrapo-
lated to the target using the momentum determined from
the bend angle in SM3. The target position was used to
refine the parameters of each muon track.

From the momenta of the µ+ and µ−, kinematic vari-
ables of the dimuons (xF , mµµ, pT ) were readily recon-
structed. The muon angles θ and φ in the Collins-Soper
frame [27] were also calculated. To remove the quarko-
nium background, only events with 4.5 < mµµ < 9
GeV/c2 or mµµ > 10.7 GeV/c2 were analyzed. A total
of 118,000 p + d Drell-Yan events covering the decay an-
gular range −0.5 < cos θ < 0.5 and −π < φ < π remain.
Detailed Monte-Carlo simulations for the experiment us-
ing the MRST98 parton distribution functions [28] for
NLO Drell-Yan cross sections have shown good agree-
ments with the data for a variety of measured quantities.

Figure 1 shows the angular distribution parameters
λ, µ, and ν vs. pT . To extract these parameters, the
Drell-Yan data were grouped into 5 bins in cos θ and 8
bins in φ for each pT bin. A least-squares fit to the data
using Eq. 1 to describe the angular distribution was per-
formed. Only statistical errors are shown in Fig. 1. The
primary contributions to the systematic errors are the
uncertainties of the incident beam angles on target. The
analysis has been performed allowing the beam angles to
vary within their ranges of uncertainty. From this study,
we found that the systematic errors are comparable to the
statistical errors for each individual pT bin. However, the
pT averaged values 〈λ〉, 〈µ〉, and 〈ν〉, are dominatd by the
statistical errors.

For comparison with the p + d Drell-Yan data, the
NA10 π− +W data at 194 GeV/c and the E615 π− +W
data at 252 GeV/c are also shown in Fig. 1. To test the
validity of the Lam-Tung relation, also shown in Fig. 1
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FIG. 2: Parameter ν vs. pT in the Collins-Soper frame for
three Drell-Yan measurements. Fits to the data using Eq. 3
and MC = 2.4 GeV/c2 are also shown.

is the quantity, 2ν − (1 − λ), for all three experiments.
For p + d at 800 GeV/c, Fig. 1 shows that λ is consis-
tent with 1, in agreement with previous studies [3, 25],
while µ and ν deviate only slightly from zero. This is in
contrast to the pion-induced Drell-Yan results, in which
much larger values of ν are found. Table I lists the mean
values of λ, µ, ν and 2ν − (1 − λ) for these three experi-
ments. Again, the qualitatively different behavior of the
azimuthal angular distributions for p + d versus π− + W
is evident. It is also interesting to note that while E615
clearly establishes the violation of the Lam-Tung rela-
tion, the NA10 and the p + d data are largely consistent
with the Lam-Tung relation.

In an attempt to extract information on the magnitude
of the h⊥

1 function from the NA10 data, Boer [17] as-
sumed that h⊥

1 is proportional to the spin-averaged par-
ton distribution function f1:

h⊥
1 (x, k2

T ) = CH
αT

π

MCMH

k2
T + M2

C

e−αT k2

T f1(x), (2)

where kT is the quark transverse momentum, MH is the
mass of the hadron H (pion or nucleon), and MC and
CH are constant fitting parameters. A Gaussian trans-
verse momentum dependence of e−αT k2

T with αT = 1
(GeV/c)−2 was assumed. The cos 2φ dependence then
results from the convolution of the pion h⊥

1 /f1 term with
the nucleon h⊥

1 /f1 term, and the parameter ν is given as

ν = 16κ1

p2
T M2

C

(p2
T + 4M2

C)2
, (3)

where κ1 = CH1
CH2

/2, and H1, H2 denote the two inter-
acting hadrons. As shown in Fig. 2, a good description
of the NA10 data is obtained with κ1 = 0.47 ± 0.14 and
MC = 2.4 ± 0.5 GeV/c2. A fit to the E615 ν data at
252 GeV/c using MC = 2.4 GeV/c2, also shown in Fig.
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ANOMALOUS DRELL-YAN ASYMMETRY FROM

HADRONIC OR QCD VACUUM EFFECTS ∗

DANIËL BOER

Dept. of Physics and Astronomy,
Vrije Universiteit Amsterdam,

De Boelelaan 1081, 1081 HV Amsterdam,
The Netherlands

E-mail: D.Boer@few.vu.nl

The anomalously large cos(2φ) asymmetry measured in the Drell-Yan process is
discussed. Possible origins of this large deviation from the Lam-Tung relation are
considered with emphasis on the comparison of two particular proposals: one that
suggests it arises from a QCD vacuum effect and one that suggests it is a hadronic
effect. Experimental signatures distinguishing these effects are discussed.

1. Introduction

Azimuthal asymmetries in the unpolarized Drell-Yan (DY) process differ-
ential cross section arise only in the following way

1

σ

dσ

dΩ
∝

(

1 + λ cos2 θ + µ sin 2θ cosφ +
ν

2
sin2 θ cos 2φ

)

, (1)

where φ is the angle between the lepton and hadron planes in the lepton
center of mass frame (see Fig. 3 of Ref.1). In the parton model (order α0

s)
quark-antiquark annihilation yields λ = 1, µ = ν = 0. The leading order
(LO) perturbative QCD corrections (order α1

s) lead to µ "= 0, ν "= 0 and
λ "= 1, such that the so-called Lam-Tung relation 1 − λ − 2ν = 0 holds.
Beyond LO, small deviations from the Lam-Tung relation will arise. If one
defines the quantity κ ≡ − 1

4 (1 − λ − 2ν) as a measure of the deviation

from the Lam-Tung relation, it has been calculated2,3 that at order α2
s κ

is small and negative: −κ <
∼ 0.01, for values of the muon pair’s transverse

momentum QT of up to 3 GeV/c.
Surprisingly, the data is incompatible with the Lam-Tung relation and

with its small order-α2
s modification as well3. These data from CERN’s

NA10 Collaboration4,5 and Fermilab’s E615 Collaboration6 are for π−N →
µ+µ−X , with N = D and W . The π−-beam energies range from 140 GeV
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Nachtmann & Mirkes3 demonstrated that the diagonal elements H11 and
H22 can give rise to a deviation from the Lam-Tung relation:

κ ≡ −
1

4
(1 − λ − 2ν) ≈

〈

H22 − H11

1 + H33

〉

. (5)

A simple assumption for the transverse momentum dependence of (H22 −
H11)/(1 + H33) produced a good fit to the data:

κ = κ0
Q4

T

Q4
T + m4

T

, with κ0 = 0.17 and mT = 1.5 GeV. (6)

Note that for this Ansatz κ approaches a constant value (κ0) for large QT .
In other words, the vacuum effect could persist out to large values of QT .
The Q2 dependence of the vacuum effect is not known, but there is also no
reason to assume that the spin correlation due to the QCD vacuum effect
has to decrease with increasing Q2.

3. Explanation as a hadronic effect

Usually if one assumes that factorization of soft and hard energy scales in
a hard scattering process occurs, one implicitly also assumes factorization
of the spin density matrix. In the present section this will indeed be as-
sumed, but another common assumption will be dropped, namely that of
collinear factorization. It will be investigated what happens if one allows for
transverse momentum dependent parton distributions (TMDs). The spin
density matrix of a noncollinear quark inside an unpolarized hadron can
be nontrivial. In other words, the transverse polarization of a noncollinear
quark inside an unpolarized hadron in principle can have a preferred direc-
tion and the TMD describing that situation is called h⊥

1
10. As pointed out

in Ref.1 nonzero h⊥
1 leads to a deviation from Lam-Tung relation. It offers

a parton model explanation of the DY data (i.e. with λ = 1 and µ = 0):
κ = ν

2 ∝ h⊥
1 (π)h⊥

1 (N) . In this way a good fit to data was obtained
by assuming Gaussian transverse momentum dependence. The reason for
this choice of transverse momentum dependence is that in order to be con-
sistent with the factorization of the cross section in terms of TMDs, the
transverse momentum of partons should not introduce another large scale.
Therefore, explaining the Lam-Tung relation within this framework neces-
sarily implies that κ = ν

2 → 0 for large QT . This offers a possible way to
distinguish between the hadronic effect and the QCD vacuum effect.

It may be good to mention that not only a fit of h⊥
1 to data has been

made (under certain assumptions), also several model calculations of h⊥
1

5

and some of its resulting asymmetries have been performed11,12,13, based
on the recent insight that T-odd TMDs like h⊥

1 arise from the gauge link.
In order to see the parton model expectation κ = ν

2 → 0 at large QT in
the data, one has to keep in mind that the pQCD contributions (that grow
as QT increases) will have to be subtracted. For κ perturbative corrections
arise at order α2

s, but for ν already at order αs. To be specific, at large QT

hard gluon radiation (to first order in αs) gives rise to14

ν(QT ) =
Q2

T

Q2 + 3
2Q2

T

. (7)

Due to this growing large-QT perturbative contribution the fall-off of the
h⊥

1 contribution will not be visible directly from the behavior of ν at large
QT . Therefore, in order to use ν as function of QT to differentiate between
effects, it is necessary to subtract the calculable pQCD contributions. In
Fig. 3 an illustration of this point is given. The dashed curve corresponds

0
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0.1
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0.2

0.25

0.3

0.35

0.4

0 1 2 3 4 5 6 7 8
QT

Figure 3. Impression of possible contributions to ν as function of QT compared to DY
data of NA10 (for Q = 8 GeV). Dashed curve: contribution from perturbative one-gluon
radiation. Dotted curve: contribution from a nonzero h⊥

1 . Solid curve: their sum.

to the contribution of Eq. (7) at Q = 8 GeV. The dotted line is a pos-
sible, parton model level, contribution from h⊥

1 with Gaussian transverse
momentum dependence. Together these contributions yield the solid curve
(although strictly speaking it is not the case that one can simply add them,
since one is a noncollinear parton model contribution expected to be valid
for small QT and the other is an order-αs result within collinear factor-
ization expected to be valid at large QT ). The data are from the NA10
Collaboration for a pion beam energy of 194 GeV/c 5.

The Q2 dependence of the h⊥
1 contribution is not known to date. Only

the effect of resummation of soft gluon radiation on the h⊥
1 contribution to

function. Here we do not intend to give a full demonstration

of this in the Drell-Yan process; a generalized factorization

theorem which includes transverse momentum dependent

functions and initial- or final-state interactions remains to be

proven !27". Instead we present how to arrive at an effective
# from initial- and/or final-state interactions and use this

effective # in Fig. 2. Also, for simplicity we will perform

the explicit calculation in QED. Our analysis can be gener-

alized to the corresponding calculation in QCD. The final-

state interaction from gluon exchange has the strength

!e1e2!/4$→CF%s(&
2), where ei are the photon couplings to

the quark and diquark.

The diagram in Fig. 3 coincides with Fig. 6'a( of Ref. !28"
used for the evaluation of a twist-4 contribution ()1/Q2) to

the unpolarized Drell-Yan cross section. The differences

compared to Ref. !28" are that in the present case there is
nonzero transverse momentum of the partons, and the as-

sumption that the matrix elements are nonvanishing in case

the gluon has a vanishing light-cone momentum fraction 'but
nonzero transverse momentum(. This results in an unsup-
pressed asymmetry which is a function of the transverse mo-

mentum Q! of the lepton pair with respect to the initial

hadrons. If this transverse momentum is integrated over, then

the unsuppressed asymmetry will average to zero and the

diagrams will only contribute at order 1/Q2 as in Ref. !28".

First we will calculate the # matrix to lowest order

'called #L
%*) in the quark-scalar diquark model which was

used in Ref. !7". 'Although the model is based on a point-like
coupling of a scalar diquark to elementary fermions, it can be

softened to simulate a hadronic bound state by differentiating

the wave function formally with respect to a parameter such

as the proton mass.( As indicated earlier, no nonzero f 1T
! and

h1
! will arise from #L

%* . Next we will include an additional

gluon exchange to model the initial- and/or final-state inter-

actions 'relevant for timelike or spacelike processes( to cal-
culate # I/F

%* and do obtain nonzero values for f 1T
! and h1

! .

Our results agree with those recently obtained in the same

model by Goldstein and Gamberg !12". We can then obtain
an expression for the cos 2+ asymmetry from Eq. '16( and
perform a numerical estimation of the asymmetry.

A. ! matrix in the lowest order „!
L

"#…
As indicated in Fig. 4 the initial proton has its momentum

given by P&!(P",P#,P!)!(P
",M 2/P" ,0!), and the fi-

nal diquark P!&!(P!",P!#,P!! )!„P"(1#,),(-2

"r!
2 )/P"(1#,),r!…. We use the convention a$!a0$a3,

a•b!1/2 (a"b#"a#b")#a!•b! .
We will first calculate the # matrix to lowest order (#L

%*)

in the quark-scalar diquark model used in Ref. !7". By cal-
culation of Fig. 4 one readily obtains

#L
%*!ag2" ū'P ,S (

r”"m

r2#m2#*" r”"m

r2#m2
u'P ,S (#%

1

P"'1#,(

!ag2! ū'P ,S ('r”"m ("*!'r”"m (u'P ,S ("%
1

P"'1#,(

%$ 1

,$M 2#
m2"r!

2

,
#

-2"r!
2

1#, % % 2

, '17(

with a constant a!1/!2(2$)3" . The normalization is fixed
by the condition

& d,d2r! f 1', ,r!(!1. '18(

In Eq. '17( we used the relation

FIG. 2. The leading-order contribution to the Drell-Yan process.

FIG. 3. The initial-state interaction contribution to the Drell-Yan

process.

FIG. 4. Diagram which gives the lowest order # 'called #L
%*).
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Double Initial-State Interactions 
generate anomalous  

the differential cross section is written as

1

!

d!

d"
!
3

4#

1

$"3

#! 1"$ cos2%"& sin2% cos'"
(

2
sin2% cos 2' " .

)1*

These angular dependencies1 can all be generated by pertur-

bative QCD corrections where, for instance, initial quarks

radiate off high energy gluons into the final state. Such a

perturbative QCD calculation at next-to-leading order leads

to $+1,&+0,(+0 at a very small transverse momentum of

the lepton pair. More generally, the Lam-Tung relation 1

$$$2(!0 ,17- is expected to hold at order .s and the

relation is hardly modified by next-to-leading order (.s
2) per-

turbative QCD corrections ,18-. However, this relation is not
satisfied by the experimental data ,13,14-. The Drell-Yan
data show remarkably large values of ( , reaching values of
about 30% at transverse momenta of the lepton pair between

2 and 3 GeV )for Q2!m/*
2 !(4$12 GeV)2 and extracted in

the Collins-Soper frame ,19- to be discussed below*. These
large values of ( are not compatible with $+1 as also seen
in the data.

A number of explanations have been put forward, such as

a higher twist effect ,20,21-, following the ideas of Berger
and Brodsky ,22-. In Ref. ,20- the higher twist effect is mod-
eled using an asymptotic pion distribution amplitude, and it

appears to fall short in explaining the large values of ( .
In Ref. ,18- factorization-breaking correlations between

the incoming quarks are assumed and modeled in order to

account for the large cos 2' dependence. Here the correla-

tions are both in the transverse momentum and the spin of

the quarks. In Ref. ,6- this idea was applied in a factorized
approach ,23- involving the chiral-odd partner of the Sivers
effect, which is the transverse momentum dependent distri-

bution function called h1
! . From this point of view, the large

cos 2' azimuthal dependence can arise at leading order, i.e.

it is unsuppressed, from a product of two such distribution

functions. It offers a natural explanation for the large cos 2'
azimuthal dependence, but at the same time also for the

small cos' dependence, since chiral-odd functions can only

occur in pairs. The function h1
! is a quark helicity-flip matrix

element and must therefore occur accompanied by another

helicity flip. In the unpolarized Drell-Yan process this can

only be a product of two h1
! functions. Since this implies a

change by two units of angular momentum, it does not con-

tribute to a cos' asymmetry. In the present paper we will

discuss this scenario in terms of initial-state interactions,

which can generate a nonzero function h1
! .

We would also like to point out the experimental obser-

vation that the cos 2' dependence as observed by the NA10

Collaboration does not seem to show a strong dependence on

A, i.e. there was no significant difference between the deute-

rium and tungsten targets. Hence, it is unlikely that the asym-

metry originates from nuclear effects, and we shall assume it

to be associated purely with hadronic effects. We refer to

Ref. ,24- for investigations of nuclear enhancements.
We compute the function h1

!(x ,p!
2 ) and the resulting

cos 2' asymmetry explicitly in a quark-scalar diquark model
for the proton with an initial-state gluon interaction. In this

model h1
!(x ,p!

2 ) equals the T-odd )chiral-even* Sivers effect
function f 1T

! (x ,p!
2 ). Hence, assuming the cos 2' asymmetry

of the unpolarized Drell-Yan process does arise from non-

zero, large h1
! , this asymmetry is expected to be closely

related to the single-spin asymmetries in the SIDIS and the

Drell-Yan process, since each of these effects can arise from

the same underlying mechanism.

The Fermilab Tevatron and BNL Relativistic Heavy Ion

Collider )RHIC* should both be able to investigate azimuthal
asymmetries such as the cos 2' dependence. Since polarized
proton beams are available, RHIC will be able to measure

single-spin asymmetries as well. Unfortunately, one might

expect that the cos 2' dependence in pp→!!̄X )measurable
at RHIC* is smaller than for the process #$N→&"&$X ,

since in the former process there are no valence antiquarks

present. In this sense, the cleanest extraction of h1
! would be

from pp̄→!!̄X .

III. CROSS SECTION CALCULATION

In this section we will assume nonzero h1
! and discuss the

calculation of the leading order unpolarized Drell-Yan cross

section )given in Ref. ,6- with slightly different notation*

d!)h1h2→!!̄X *

d"dx1dx2d
2q!

!
.2

3Q2 0
a , ā

ea
2# A)y *F , f 1 f̄ 1-

"B)y *cos)2'*F $ )2ĥ•p!ĥ•k!

$p!•k!*
h1

!h̄1
!

M 1M 2
% & . )2*

This is expressed in the so-called Collins-Soper frame ,19-,
for which one chooses the following set of normalized vec-

tors )for details see, e.g. ,25-*:

t̂1q/Q , )3*

ẑ1
x1

Q
P̃1$

x2

Q
P̃2, )4*

ĥ1q! /Q!!)q$x1P1$x2P2*/Q! , )5*

where P̃ i1Pi$q/(2xi), Pi are the momenta of the two in-

coming hadrons and q is the four momentum of the virtual

photon or, equivalently, of the lepton pair. This can be related

to standard Sudakov decompositions of these momenta

1We neglect sin' and sin 2' dependencies, since these are of

higher order in .s ,15,16- and are expected to be small.

BOER, BRODSKY, AND HWANG PHYSICAL REVIEW D 67, 054003 )2003*

054003-2

Drell-Yan planar correlations

Double ISI

Hard gluon radiation
ν(QT )

Q = 8GeV

Conformal behavior: Q4F1(Q2)→ const

Conformal behavior: Q2Fπ(Q2)→ const

αs(Q2) � constant at small Q2.

Q4F1(Q2) � constant

If αs(Q∗2) � constant

ν(QT )

Q = 8GeV

Conformal behavior: Q4F1(Q2)→ const

Conformal behavior: Q2Fπ(Q2)→ const

αs(Q2) � constant at small Q2.

Q4F1(Q2) � constant

If αs(Q∗2) � constant

ν(QT )

Q = 8GeV

πN → µ+µ−X NA10

Conformal behavior: Q4F1(Q2)→ const

Conformal behavior: Q2Fπ(Q2)→ const

αs(Q2) � constant at small Q2.

Q4F1(Q2) � constant

Violates Lam-Tung relation!
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ANOMALOUS DRELL-YAN ASYMMETRY FROM

HADRONIC OR QCD VACUUM EFFECTS ∗
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The anomalously large cos(2φ) asymmetry measured in the Drell-Yan process is
discussed. Possible origins of this large deviation from the Lam-Tung relation are
considered with emphasis on the comparison of two particular proposals: one that
suggests it arises from a QCD vacuum effect and one that suggests it is a hadronic
effect. Experimental signatures distinguishing these effects are discussed.

1. Introduction

Azimuthal asymmetries in the unpolarized Drell-Yan (DY) process differ-
ential cross section arise only in the following way

1

σ

dσ

dΩ
∝

(

1 + λ cos2 θ + µ sin 2θ cosφ +
ν

2
sin2 θ cos 2φ

)

, (1)

where φ is the angle between the lepton and hadron planes in the lepton
center of mass frame (see Fig. 3 of Ref.1). In the parton model (order α0

s)
quark-antiquark annihilation yields λ = 1, µ = ν = 0. The leading order
(LO) perturbative QCD corrections (order α1

s) lead to µ "= 0, ν "= 0 and
λ "= 1, such that the so-called Lam-Tung relation 1 − λ − 2ν = 0 holds.
Beyond LO, small deviations from the Lam-Tung relation will arise. If one
defines the quantity κ ≡ − 1

4 (1 − λ − 2ν) as a measure of the deviation

from the Lam-Tung relation, it has been calculated2,3 that at order α2
s κ

is small and negative: −κ <
∼ 0.01, for values of the muon pair’s transverse

momentum QT of up to 3 GeV/c.
Surprisingly, the data is incompatible with the Lam-Tung relation and

with its small order-α2
s modification as well3. These data from CERN’s

NA10 Collaboration4,5 and Fermilab’s E615 Collaboration6 are for π−N →
µ+µ−X , with N = D and W . The π−-beam energies range from 140 GeV
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FIG. 2: (Color online) Comparison with experimental ratios
R = F A

2 /F D
2 . The ordinate indicates the fractional differences

between experimental data and theoretical values: (Rexp −

Rtheo)/Rtheo.
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FIG. 3: (Color online) Comparison with experimental data of
R = F A

2 /F C,Li
2

. The ratios (Rexp − Rtheo)/Rtheo are shown.

ters cannot be determined easily by the present data.
The χ2 analysis results are shown in comparison with

the data. First, χ2 values are listed for each nuclear
data set in Table III. The total χ2 divided by the degree
of freedom is 1.58. Comparison with the actual data is
shown in Figs. 2, 3, and 4 for the FA

2 /FD
2 , FA

2 /FC,Li
2 ,

and Drell-Yan (σpA
DY /σpA′

DY ) data, respectively. These ra-
tios are denoted Rexp for the experimental data and Rtheo

for the parametrization calculations. The deviation ra-
tios (Rexp−Rtheo)/Rtheo are shown in these figures. The
NPDFs are evolved to the experimental Q2 points, then
the ratios (Rexp − Rtheo)/Rtheo are calculated.
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FIG. 5: (Color online) Parametrization results are compared
with the data of F2 ratios F Ca

2 /F D
2 and Drell-Yan ratios

σpCa
DY /σpD

DY . The theoretical curves and uncertainties are cal-
culated at Q2=5 GeV2 for the F2 ratios and at Q2=50 GeV2

for the Drell-Yan ratios.

As examples, actual data are compared with the
parametrization results in Fig. 5 for the ratios FCa

2 /FD
2

and σpCa
DY /σpD

DY . The shaded areas indicate the ranges of
NPDF uncertainties, which are calculated at Q2=5 GeV2

for the F2 ratios and at Q2=50 GeV2 for the Drell-Yan
ratios. The experimental data are well reproduced by the
parametrization, and the the data errors agree roughly
with the uncertainty bands. We should note that the
parametrization curves and the uncertainties are calcu-
lated at at Q2=5 and 50 GeV2, whereas the data are
taken at various Q2 points. In Fig. 5, the smallest-
x data at x=0.0062 for FCa

2 /FD
2 seems to deviate from

the parametrization curve. However, the deviation comes
simply from a Q2 difference. In fact, if the theoretical ra-
tio is estimated at the experimental Q2 point, the data
point agrees with the parametrization as shown in Fig.
2.
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Figure 1: Nuclear correction factor R according to Eq. 1
for the differential cross section d2σ/dx dQ2 in charged
current neutrino-Fe scattering at Q2 = 5 GeV2. Results
are shown for the charged current neutrino (solid lines)
and anti-neutrino (dashed lines) scattering from iron.
The upper (lower) pair of curves shows the result of our
analysis with the Base-2 (Base-1) free-proton PDFs.

Figure 2: Predictions (solid and dashed line) for the
structure function ratio F F e

2 /F D
2 using the iron PDFs

extracted from fits to NuTeV neutrino and anti-neutrino
data. The SLAC/NMC parameterization is shown with
the dot-dashed line. The structure function F D

2 in the
denominator has been computed using either the Base-2
(solid line) or the Base-1 (dashed line) PDFs.

(significant) dependence on the energy scale Q, the atomic number A, or the specific observable.
The increasing precision of both the experimental data and the extracted PDFs demand that the
applied nuclear correction factors be equally precise as these contributions play a crucial role in
determining the PDFs. In this study we reexamine the source and size of the nuclear corrections
that enter the PDF global analysis, and quantify the associated uncertainty. Additionally, we
provide the foundation for including the nuclear correction factors as a dynamic component of
the global analysis so that the full correlations between the heavy and light target data can be
exploited.

A recent study 1 analyzed the impact of new data sets from the NuTeV 3, Chorus, and E-
866 Collaborations on the PDFs. This study found that the NuTeV data set (together with the
model used for the nuclear corrections) pulled against several of the other data sets, notably the
E-866, BCDMS and NMC sets. Reducing the nuclear corrections at large values of x reduced
the severity of this pull and resulted in improved χ2 values. These results suggest on a purely
phenomenological level that the appropriate nuclear corrections for ν-DIS may well be smaller
than assumed.

To investigate this question further, we use the high-statistics ν-DIS experiments to perform
a dedicated PDF fit to neutrino–iron data.2 Our methodology for this fit is parallel to that of
the previous global analysis,1 but with the difference we use only Fe data and that no nuclear
corrections are applied to the analyzed data; hence, the resulting PDFs are for a bound proton
in an iron nucleus. Specifically, we determine iron PDFs using the recent NuTeV differential
neutrino (1371 data points) and anti-neutrino (1146 data points) DIS cross section data,3 and
we include NuTeV/CCFR dimuon data (174 points) which are sensitive to the strange quark
content of the nucleon. We impose kinematic cuts of Q2 > 2 GeV and W > 3.5 GeV, and obtain
a good fit with a χ2 of 1.35 per data point.2

2 Nuclear Correction Factors

We now compare our iron PDFs with the free-proton PDFs (appropriately scaled) to infer the
proper heavy target correction which should be applied to relate these quantities. Within the

Extrapolations from  NuTeV

SLAC/NMC data

Q2 = 5 GeV2

Scheinbein, Yu, Keppel, Morfin, Olness, Owens

120

No anti-shadowing in deep inelastic neutrino scattering !
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Nuclear Shadowing in QCD 

Nuclear  Shadowing not included in nuclear LFWF ! 

 Dynamical effect due to virtual photon interacting in nucleus

Stodolsky
Pumplin, sjb

Gribov

Shadowing depends on understanding leading twist-diffraction in DIS
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Integration over on-shell domain produces phase i

Need Imaginary Phase to Generate Pomeron
Need Imaginary Phase to Generate T-

Odd Single-Spin Asymmetry

Physics of FSI not in Wavefunction of Target

Shadowing depends on leading-
twist DDIS
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Antishadowing (Reggeon exchange) is not universal!

Schmidt, Yang, sjb
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The one-step and two-step processes in DIS
on a nucleus.

Coherence at small Bjorken xB :
1/MxB = 2ν/Q2 ≥ LA.

If the scattering on nucleon N1 is via pomeron
exchange, the one-step and two-step ampli-
tudes are opposite in phase, thus diminishing
the q flux reaching N2.

→ Shadowing of the DIS nuclear structure
functions.

  Observed HERA DDIS produces nuclear shadowing
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The one-step and two-step processes in DIS
on a nucleus.

Coherence at small Bjorken xB :
1/MxB = 2ν/Q2 ≥ LA.

If the scattering on nucleon N1 is via pomeron
exchange, the one-step and two-step ampli-
tudes are opposite in phase, thus diminishing
the q flux reaching N2.

→ Shadowing of the DIS nuclear structure
functions.
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Reggeon

increasing

 Anti-

Schmidt, Yang, sjb
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Origin of Regge Behavior of        
Deep Inelastic Structure Functions

125

Antiquark interacts with target nucleus at
energy ŝ ∝ 1

xbj

Regge contribution: σq̄N ∼ ŝαR−1

Shadowing of σq̄M produces shadowing of
nuclear structure function.

c

c̄

g

Antiquark interacts with target nucleus at
energy ŝ ∝ 1

xbj

Regge contribution: σq̄N ∼ ŝαR−1

Shadowing of σq̄M produces shadowing of
nuclear structure function.

c

c̄

g

Antiquark interacts with target nucleus at
energy ŝ ∝ 1

xbj

Regge contribution: σq̄N ∼ ŝαR−1

Shadowing of σq̄M produces shadowing of
nuclear structure function.

c

c̄

g

Antiquark interacts with target nucleus at
energy ŝ ∝ 1

xbj

Regge contribution: σq̄N ∼ ŝαR−1 gives F2N ∼
x1−αR

Nonsinglet Kuti-Weisskoff F2p − F2n ∝
√

xbj
at small xbj.

Shadowing of σq̄M produces shadowing of
nuclear structure function.

c

Landshoff, 
Polkinghorne, Short

Close, Gunion, sjb

Schmidt, Yang,  Lu, 
sjb

F2p(x)− F2n(x) ∝ x1/2
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Non-singlet 
Reggeon 
Exchange

x0.5

Kuti-Weisskopf 
behavior
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Phase of two-step amplitude relative to one
step:

1√
2
(1− i)× i = 1√

2
(i + 1)

Constructive Interference

Depends on quark flavor!

Thus antishadowing is not universal

Different for couplings of γ∗, Z0, W±

Reggeon 
Exchange

Critical test: Tagged Drell-Yan
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Figure 9: The nuclear shadowing and antishadowing effects at 〈Q2〉 = 1 GeV2. The
experimental data are taken from Refs. [47, 48].

interactions.

3 Nuclear effects on extraction of sin
2 θW

The observables measured in neutrino DIS experiments are the ratios of neutral cur-

rent (NC) to charged current (CC) current events; these are related via Monte Carlo

simulations to sin2 θW . In order to examine the possible impact of nuclear shadowing

and antishadowing corrections on the extraction of sin2 θW , one is usually interested

in the following ratios

Rν
A =

σ(νµ + A → νµ + X)

σ(νµ + A → µ− + X)
, (38)

Rν
A =

σ(νµ + A → νµ + X)

σ(νµ + A → µ+ + X)
(39)

of NC to CC neutrino (anti-neutrino) cross sections for a nuclear target A. As is well

known, if nuclear effects are neglected for an isoscalar target, one can extract the

24

S. J. Brodsky, I. Schmidt and J. J. Yang,
“Nuclear Antishadowing in
Neutrino Deep Inelastic Scattering,”
Phys. Rev. D 70, 116003 (2004)
[arXiv:hep-ph/0409279].

128

Predicted nuclear shadowing and and antishadowing at 

< xF >= 0.33

Q
2 = 1 GeV2

pp → p + H + p

H, Z
0
, ηb

b⊥ ∼ 1/Q

Must have ∆Lz = ±1 to have nonzero F2

Use charge radius R
2 = −6F

�
1(0)
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Nuclear Antishadowing not universal !
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Schmidt, Yang; sjb
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Shadowing and Antishadowing  of DIS 
Structure Functions

S. J. Brodsky, I. Schmidt and J. J. Yang, “Nuclear Antishadowing in
Neutrino Deep Inelastic Scattering,” Phys. Rev. D 70, 116003 (2004)
[arXiv:hep-ph/0409279].

S. J. Brodsky, I. Schmidt and J. J. Yang,
“Nuclear Antishadowing in
Neutrino Deep Inelastic Scattering,”
Phys. Rev. D 70, 116003 (2004)
[arXiv:hep-ph/0409279].
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Modifies
NuTeV extraction of 

sin2 θW

Test in flavor-tagged 
lepton-nucleus collisions
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Figure 1: Nuclear correction factor R according to Eq. 1
for the differential cross section d2σ/dx dQ2 in charged
current neutrino-Fe scattering at Q2 = 5 GeV2. Results
are shown for the charged current neutrino (solid lines)
and anti-neutrino (dashed lines) scattering from iron.
The upper (lower) pair of curves shows the result of our
analysis with the Base-2 (Base-1) free-proton PDFs.

Figure 2: Predictions (solid and dashed line) for the
structure function ratio F F e

2 /F D
2 using the iron PDFs

extracted from fits to NuTeV neutrino and anti-neutrino
data. The SLAC/NMC parameterization is shown with
the dot-dashed line. The structure function F D

2 in the
denominator has been computed using either the Base-2
(solid line) or the Base-1 (dashed line) PDFs.

(significant) dependence on the energy scale Q, the atomic number A, or the specific observable.
The increasing precision of both the experimental data and the extracted PDFs demand that the
applied nuclear correction factors be equally precise as these contributions play a crucial role in
determining the PDFs. In this study we reexamine the source and size of the nuclear corrections
that enter the PDF global analysis, and quantify the associated uncertainty. Additionally, we
provide the foundation for including the nuclear correction factors as a dynamic component of
the global analysis so that the full correlations between the heavy and light target data can be
exploited.

A recent study 1 analyzed the impact of new data sets from the NuTeV 3, Chorus, and E-
866 Collaborations on the PDFs. This study found that the NuTeV data set (together with the
model used for the nuclear corrections) pulled against several of the other data sets, notably the
E-866, BCDMS and NMC sets. Reducing the nuclear corrections at large values of x reduced
the severity of this pull and resulted in improved χ2 values. These results suggest on a purely
phenomenological level that the appropriate nuclear corrections for ν-DIS may well be smaller
than assumed.

To investigate this question further, we use the high-statistics ν-DIS experiments to perform
a dedicated PDF fit to neutrino–iron data.2 Our methodology for this fit is parallel to that of
the previous global analysis,1 but with the difference we use only Fe data and that no nuclear
corrections are applied to the analyzed data; hence, the resulting PDFs are for a bound proton
in an iron nucleus. Specifically, we determine iron PDFs using the recent NuTeV differential
neutrino (1371 data points) and anti-neutrino (1146 data points) DIS cross section data,3 and
we include NuTeV/CCFR dimuon data (174 points) which are sensitive to the strange quark
content of the nucleon. We impose kinematic cuts of Q2 > 2 GeV and W > 3.5 GeV, and obtain
a good fit with a χ2 of 1.35 per data point.2

2 Nuclear Correction Factors

We now compare our iron PDFs with the free-proton PDFs (appropriately scaled) to infer the
proper heavy target correction which should be applied to relate these quantities. Within the

Extrapolations from  NuTeV

SLAC/NMC data

Q2 = 5 GeV2

Scheinbein, Yu, Keppel, Morfin, Olness, Owens
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No anti-shadowing in deep inelastic neutrino scattering !
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Shadowing and Antishadowing in Lepton-Nucleus Scattering

• Shadowing: Destructive Interference

of Two-Step and One-Step Processes

Pomeron Exchange

• Antishadowing: Constructive Interference

of Two-Step and One-Step Processes!

Reggeon and Odderon Exchange

• Antishadowing is Not Universal!

Electromagnetic and weak currents:

different nuclear effects !

Potentially significant for NuTeV Anomaly}

132

Jian-Jun Yang
Ivan Schmidt

Hung Jung Lu
sjb

Can explain NuTeV result!
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Physics of Rescattering

• Sivers Asymmetry and Diffractive DIS: New Insights 
into Final State Interactions in QCD

• Origin of Hard Pomeron

• Structure Functions not Probability Distributions!

• T-odd SSAs, Shadowing, Antishadowing

• Diffractive dijets/ trijets, doubly diffractive Higgs

• Novel Effects: Color Transparency, Color 
Opaqueness, Intrinsic Charm, Odderon

133

Not square of LFWFs
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• Square of Target LFWFs                 Modified by Rescattering: ISI & FSI

• No Wilson Line                             Contains Wilson Line, Phases

• Probability Distributions                 No Probabilistic Interpretation

• Process-Independent                      Process-Dependent - From Collision

• T-even Observables                        T-Odd (Sivers, Boer-Mulders, etc.)

• No Shadowing,  Anti-Shadowing      Shadowing,  Anti-Shadowing, Saturation

• Sum Rules: Momentum and Jz               Sum Rules Not Proven

• DGLAP Evolution; mod. at large x   DGLAP Evolution

• No Diffractive DIS                         Hard Pomeron and Odderon Diffractive DIS

Static                           Dynamic

General remarks about orbital angular mo-
mentum

Ψn(xi,�k⊥i, λi)

�n
i=1(xi

�R⊥+�b⊥i) = �R⊥

xi
�R⊥+�b⊥i

�n
i
�b⊥i = �0⊥

�n
i xi = 1

2

11-2001 
8624A06

S

current 
quark jet

final state 
interaction

spectator 
system

proton

e– 

!*

e– 

quark

Mulders, Boer

Qiu, Sterman

 Pasquini, Xiao, 
Yuan, sjb

Collins, Qiu

Hwang, 
Schmidt, sjb,
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Remarkable Features of 
Hadron Structure

• Valence quark helicity represents less than half of 
the proton’s spin and momentum

• Non-zero quark orbital angular momentum!

• Asymmetric sea:                               relation to meson 
cloud

• Non-symmetric strange and anti-strange sea

• Intrinsic charm and bottom at high x

• Hidden-Color Fock states of the Deuteron

ū(x) �= d̄(x)

s̄(x) �= s(x)

Γp−n
bj (Q2) ≡ gA

6 [1− α
g1
s (Q2)

π ]

Gaussian

k−6.5
T

dσ
dkT

kT (GeV)

ū(x) �= d̄(x)

s̄(x) �= s(x)

Γp−n
bj (Q2) ≡ gA

6 [1− α
g1
s (Q2)

π ]

Gaussian

k−6.5
T

dσ
dkT

kT (GeV)

∆s(x) �= ∆s̄(x)
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 E866/NuSea (Drell-Yan)

s(x) �= s̄(x)

Intrinsic glue, sea, 
heavy quarks

d̄(x) �= ū(x)



|uudss̄ >� |Λ(uds)K+(s̄u) >

k2
F ∝

−k2
⊥

1−x

ξ(Q2, Q2
0) = 1

4π

� Q2

Q2
0

d�2 αs(�2)
�2

ξ(Q2, Q2
0) = 1

4π

� Q2

Q2
0

d�2 αs(�2)

�2+
k2⊥
1−x

γp→ J/ψp

γd→ J/ψnp

ū(x) �= d̄(x)

s̄(x) �= s(x)

Γp−n
bj (Q2) ≡ gA

6 [1− α
g1
s (Q2)

π ]

Gaussian

k−6.5
T

dσ
dkT

kT (GeV)

s

s̄

|uudss̄ >� |Λ(uds)K+(s̄u) >

ep → e�KX

k2
F ∝

−k2
⊥

1−x

ξ(Q2, Q2
0) = 1

4π

� Q2

Q2
0

d�2 αs(�2)
�2

s

s̄

|uudss̄ >� |Λ(uds)K+(s̄u) >

ep → e�KX

k2
F ∝

−k2
⊥

1−x

ξ(Q2, Q2
0) = 1

4π

� Q2

Q2
0

d�2 αs(�2)
�2

Ma, sjb
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Measure strangeness distribution 
from DIS at  EIC

• Non-symmetric strange and antistrange sea

• Non-perturbative input; e.g 

• Crucial for interpreting NuTeV anomaly 
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J. J. Aubert et al. [European Muon Collaboration], “Pro-
duction Of Charmed Particles In 250-Gev Mu+ - Iron In-
teractions,” Nucl. Phys. B 213, 31 (1983).

First Evidence for Intrinsic 
Charm

Measurement of Charm 
Structure  Function 

DGLAP / Photon-Gluon Fusion: factor of 30 too small

138

factor of 30 !



 

p p

Probability (QED) ∝ 1
M4

�

Probability (QCD) ∝ 1
M2

Q

Proton Self Energy 
Intrinsic Heavy Quarks

Collins, Ellis, Gunion, Mueller, sjb
M. Polyakov

Fixed LF time

xQ ∝ (m2
Q + k2

⊥)1/2

Q

Q
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|uudcc̄> Fluctuation in Proton
QCD: Probability ∼Λ

2
QCD

M2
Q

|e+e−�+�− > Fluctuation in Positronium
QED: Probability ∼(meα)4

M4
�

Distribution peaks at equal rapidity (velocity)
Therefore heavy particles carry the largest mo-

mentum fractions

cc̄ in Color Octet

High x charm!

OPE derivation - M.Polyakov et al.

Hoyer, Peterson, Sakai, sjb
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< xF >= 0.33

Minimize LF energy denominator

x̂i = m⊥i�n
j m⊥j

m⊥i =
�

m2
i + k2

⊥i

Same velocity; heavy constituents carry high-
est momentum fraction

Q2 = 1 GeV2

τ = t + z/c

< p|G
3
µν

m
2
Q

|p > vs. < p|F
4
µν

m
4
�

|p >

+κ
4
ζ
2

dσ

dxF
(pp → HX)[fb]

fb

πq → γ
∗
q

Charm at Threshold
Action Principle: Minimum KE, maximal potential 
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• EMC data: c(x, Q2
) > 30×DGLAP

Q2
= 75 GeV

2
, x = 0.42

• High xF pp→ J/ψX

• High xF pp→ J/ψJ/ψX

• High xF pp→ ΛcX

• High xF pp→ ΛbX

• High xF pp→ Ξ(ccd)X (SELEX)

141

IC Structure Function: Critical Measurement for EIC
Many interesting spin, charge asymmetry, spectator effects
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Ratio insensitive 
to gluon PDF, 

scales

∆σ(p̄p→ γcX)
∆σ(p̄p→ γbX)

Signal for 
significant IC 

at x > 0.1 ?

Measurement of !þ bþ X and !þ cþ X Production Cross Sections
in p !p Collisions at

ffiffiffi
s

p ¼ 1:96 TeV
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K. De,78 S. J. de Jong,35 E. De La Cruz-Burelo,33 C. De Oliveira Martins,3 K. DeVaughan,67 F. Déliot,18 M. Demarteau,50

R. Demina,71 D. Denisov,50 S. P. Denisov,39 S. Desai,50 H. T. Diehl,50 M. Diesburg,50 A. Dominguez,67 T. Dorland,82

A. Dubey,28 L. V. Dudko,38 L. Duflot,16 S. R. Dugad,29 D. Duggan,49 A. Duperrin,15 S. Dutt,27 J. Dyer,65 A. Dyshkant,52

M. Eads,67 D. Edmunds,65 J. Ellison,48 V. D. Elvira,50 Y. Enari,77 S. Eno,61 P. Ermolov,38,xx M. Escalier,15 H. Evans,54

A. Evdokimov,73 V.N. Evdokimov,39 A.V. Ferapontov,59 T. Ferbel,61,71 F. Fiedler,24 F. Filthaut,35 W. Fisher,50 H. E. Fisk,50

M. Fortner,52 H. Fox,42 S. Fu,50 S. Fuess,50 T. Gadfort,70 C. F. Galea,35 C. Garcia,71 A. Garcia-Bellido,71 V. Gavrilov,37

P. Gay,13 W. Geist,19 W. Geng,15,65 C. E. Gerber,51 Y. Gershtein,49,† D. Gillberg,6 G. Ginther,71 B. Gómez,8 A. Goussiou,82
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Figure 4: Calculations of the c̄(x) distributions based on the BHPS
model. The solid curve corresponds to the calculation using Eq. 1
and the dashed and dotted curves are obtained by evolving the BHPS
result to Q2 = 10 GeV2 using µ = 0.5 GeV and µ = 0.3 GeV,
respectively. The normalization is set at Pcc̄

5
= 0.01.

depending on the value of the initial scale µ. It is re-
markable that the d̄(x) − ū(x), the s(x) + s̄(x), and the
d̄(x) + ū(x) − s(x)− s̄(x) data not only allow us to check
the predicted x-dependence of the five-quark Fock states,
but also provide a determination of the probabilities for
these states.

We note that the probability for the |uudss̄〉 state is
smaller than those of the |uuduū〉 and the |uuddd̄〉 states.
This is consistent with the expectation that the probability
for the |uudQQ̄〉 five-quark state is roughly proportional
to 1/M2

Q. One can then estimate that the probability for
the intrinsic charm from the |uudcc̄〉 Fock state, Pcc̄

5 to
be roughly 0.01. This is also consistent with an estimate
based on bag model [12]. Figure 4 shows the x distribu-
tion of intrinsic c̄ calculated with the BHPS model using
1.5 GeV/c2 for the mass of the charm quark. Also shown
in Fig. 4 are the calculations which evolve the BHPS cal-
culation from the initial scale, µ, to Q2 = 10 GeV2. It
is interesting to note that the intrinsic charm contents at
the large x (x > 0.3) region are drastically reduced when
Q2 evolution is taken into account. Figure 4 suggests that
the most promising region to search for evidence of in-
trinsic charm could be at the somewhat lower x region
(0.1 < x < 0.4), rather than the largest x region explored
by previous experiments.

In conclusion, we have generalized the existing BHPS
model to the light-quark sector and compared the calcu-
lation with the d̄ − ū, s+ s̄, and ū + d̄− s − s̄ data. The

qualitative agreement between the data and the calcula-
tions provides strong support for the existence of the in-
trinsic u, d and s quark sea and the adequacy of the BHPS
model. This analysis also led to the determination of the
probabilities for the five-quark Fock states for the proton
involving light quarks only. This result could guide future
experimental searches for the intrinsic c quark sea or even
the intrinsic b quark sea [13].
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The origin of sea quarks of the nucleons remains a sub-
ject of intense interest in hadron physics. Brodsky, Hoyer,
Peterson, and Sakai (BHPS) [1] suggested some time ago
that there are two distinct components of the nucleon sea.
The first is called the “extrinsic” sea originating from the
splitting of gluons into QQ̄ pairs. This extrinsic sea can
be well described by quantum chromodynamics (QCD).
Another component of the nucleon sea is the “intrinsic”
sea which has a nonperturbative origin. In particular, the
|uudQQ̄〉 five-quark Fock states can lead to the “valence-
like” intrinsic sea for the Q and Q̄ in the proton. This
intrinsic component is expected to carry a relatively large
momentum fraction x, in contrast to the extrinsic one
peaking at the small-x region. Brodsky et al. [1] proposed
that the |uudcc̄〉 five-quark state can lead to enhanced pro-
duction of charmed hadrons at the forward rapidity region.
Despite extensive experimental search, conclusive evidence
for the intrinsic charm component in the nucleon is still
lacking [2].

In a recent work [3], we generalized the BHPS model of
the five-quark Fock states to the light-quark sector. This
work was motivated by the expectation that the probabil-
ity for the |uudQQ̄〉 Fock state is approximately propor-
tional to 1/m2

Q, where mQ is the mass of the quark Q [1].

Therefore, the light five-quark states |uuduū〉, |uuddd̄〉 and
|uudss̄〉 are likely to have significantly larger probabilities
than the |uudcc̄〉 state, and could be more readily observed
experimentally.

By solving the Bjorken-x distribution of the Q̄ sea
quark for the |uudQQ̄〉 five-quark state in the BHPS model
numerically, it was found [3] that the existing d̄(x)− ū(x)
and ū(x) + d̄(x) − s(x) − s̄(x) data can be well described
by the calculation, provided that the QCD evolution [4]
of these distributions is taken into account. Moreover, the
probabilities for the |uuduū〉 and the |uuddd̄〉 five-quark

states could also be extracted from these data. However,
the extracted values of these two probabilities depend on
the assumption adopted for the probability of the |uudss̄〉
state [3].

In this paper, the previous work is extended further to
determine the probability of the |uudss̄〉 five-quark state
using the recent s(x) + s̄(x) data from the HERMES col-
laboration [5]. We found that the s(x) + s̄(x) data in
the x > 0.1 region are quite well described by the BHPS
model, allowing the extraction of the probability of the
|uudss̄〉 state. Using this probability for the |uudss̄〉 five-
quark component, more precise values for the |uuduū〉 and
the |uuddd̄〉 states could then be obtained from the com-
parison of the BHPS calculations with the d̄(x)− ū(x) and
ū(x) + d̄(x) − s(x) − s̄(x) data. We have also examined
the effect of the QCD evolution on the x distribution of
the intrinsic charm. In particular, we note that the region
most sensitive to intrinsic charm is shifted to lower x as a
result of QCD evolution. This has implication on future
searches for intrinsic charm.

For a |uudQQ̄〉 five-quark Fock state of the proton, the
probability for quark i to carry a momentum fraction xi

is given in the BHPS model [1] as

P (x1, ..., x5) = N5δ(1−
5∑

i=1

xi)[m
2
p −

5∑
i=1

m2
i

xi
]−2, (1)

where the delta function ensures that the proton momen-
tum is shared among the individual constituents. N5 is
the normalization factor for the five-quark Fock state, and
mi is the mass of quark i. Eq. 1 was solved analytically in
Ref. [1] for the limiting case of m4,5 >> mp,m1,2,3, where
mp is the proton mass. For the more general case, Eq. 1
can be solved numerically as discussed in Ref. [3]. In par-
ticular, the x distribution of Q̄ in the |uudQQ̄〉 state, called

Preprint submitted to Physics Letter B June 1, 2011



 

144

ar
X

iv
:1

10
5.

23
81

v2
  [

he
p-

ph
]  

31
 M

ay
 2

01
1

Extraction of Various Five-Quark Components of the Nucleons

Wen-Chen Changa, Jen-Chieh Penga,b

aInstitute of Physics, Academia Sinica, Taipei 11529, Taiwan
bDepartment of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

Abstract

We have generalized the approach of Brodsky et al. for the intrinsic charm quark distribution in the nucleons to the
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The origin of sea quarks of the nucleons remains a sub-
ject of intense interest in hadron physics. Brodsky, Hoyer,
Peterson, and Sakai (BHPS) [1] suggested some time ago
that there are two distinct components of the nucleon sea.
The first is called the “extrinsic” sea originating from the
splitting of gluons into QQ̄ pairs. This extrinsic sea can
be well described by quantum chromodynamics (QCD).
Another component of the nucleon sea is the “intrinsic”
sea which has a nonperturbative origin. In particular, the
|uudQQ̄〉 five-quark Fock states can lead to the “valence-
like” intrinsic sea for the Q and Q̄ in the proton. This
intrinsic component is expected to carry a relatively large
momentum fraction x, in contrast to the extrinsic one
peaking at the small-x region. Brodsky et al. [1] proposed
that the |uudcc̄〉 five-quark state can lead to enhanced pro-
duction of charmed hadrons at the forward rapidity region.
Despite extensive experimental search, conclusive evidence
for the intrinsic charm component in the nucleon is still
lacking [2].

In a recent work [3], we generalized the BHPS model of
the five-quark Fock states to the light-quark sector. This
work was motivated by the expectation that the probabil-
ity for the |uudQQ̄〉 Fock state is approximately propor-
tional to 1/m2

Q, where mQ is the mass of the quark Q [1].

Therefore, the light five-quark states |uuduū〉, |uuddd̄〉 and
|uudss̄〉 are likely to have significantly larger probabilities
than the |uudcc̄〉 state, and could be more readily observed
experimentally.

By solving the Bjorken-x distribution of the Q̄ sea
quark for the |uudQQ̄〉 five-quark state in the BHPS model
numerically, it was found [3] that the existing d̄(x)− ū(x)
and ū(x) + d̄(x) − s(x) − s̄(x) data can be well described
by the calculation, provided that the QCD evolution [4]
of these distributions is taken into account. Moreover, the
probabilities for the |uuduū〉 and the |uuddd̄〉 five-quark

states could also be extracted from these data. However,
the extracted values of these two probabilities depend on
the assumption adopted for the probability of the |uudss̄〉
state [3].

In this paper, the previous work is extended further to
determine the probability of the |uudss̄〉 five-quark state
using the recent s(x) + s̄(x) data from the HERMES col-
laboration [5]. We found that the s(x) + s̄(x) data in
the x > 0.1 region are quite well described by the BHPS
model, allowing the extraction of the probability of the
|uudss̄〉 state. Using this probability for the |uudss̄〉 five-
quark component, more precise values for the |uuduū〉 and
the |uuddd̄〉 states could then be obtained from the com-
parison of the BHPS calculations with the d̄(x)− ū(x) and
ū(x) + d̄(x) − s(x) − s̄(x) data. We have also examined
the effect of the QCD evolution on the x distribution of
the intrinsic charm. In particular, we note that the region
most sensitive to intrinsic charm is shifted to lower x as a
result of QCD evolution. This has implication on future
searches for intrinsic charm.

For a |uudQQ̄〉 five-quark Fock state of the proton, the
probability for quark i to carry a momentum fraction xi

is given in the BHPS model [1] as

P (x1, ..., x5) = N5δ(1−
5∑

i=1

xi)[m
2
p −

5∑
i=1

m2
i

xi
]−2, (1)

where the delta function ensures that the proton momen-
tum is shared among the individual constituents. N5 is
the normalization factor for the five-quark Fock state, and
mi is the mass of quark i. Eq. 1 was solved analytically in
Ref. [1] for the limiting case of m4,5 >> mp,m1,2,3, where
mp is the proton mass. For the more general case, Eq. 1
can be solved numerically as discussed in Ref. [3]. In par-
ticular, the x distribution of Q̄ in the |uudQQ̄〉 state, called
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Figure 1: Comparison of the d̄(x)−ū(x) data from Fermilab E866 and
HERMES with the calculations based on the BHPS model. Eq. 1
and Eq. 3 were used to calculate the d̄(x) − ū(x) distribution at
the initial scale. The distribution was then evolved to the Q2 of
the experiments and shown as various curves. Two different initial
scales, µ = 0.5 and 0.3 GeV, were used for the E866 calculations in
order to illustrate the dependence on the choice of the initial scale.

PQQ̄(xQ̄), can be calculated numerically. The moment of

PQQ̄(xQ̄) is defined as PQQ̄
5 , namely,

PQQ̄
5 =

∫ 1

0

PQQ̄(xQ̄)dxQ̄. (2)

PQQ̄
5 represents the probability of the |uudQQ̄〉 five-quark

Fock state in the proton. In the limit ofm4,5 >> mp,m1,2,3,

one can obtain [1] PQQ̄
5 = N5/(3600m4

4,5). For the more

general case, the relation between PQQ̄
5 and N5 can be

calculated numerically [3].
To compare the experimental data with the prediction

based on the intrinsic five-quark Fock state, it is necessary
to separate the contributions of the intrinsic sea quark and
the extrinsic one. The d̄(x)− ū(x) is an example of quan-
tities which are free from the contributions of the extrinsic
sea quarks, since the perturbative g → QQ̄ processes will
generate uū and dd̄ pairs with equal probabilities and have
no contribution to this quantity. The d̄(x)−ū(x) data from
the Fermilab E866 Drell-Yan experiment at the Q2 scale of
54 GeV2 [6] are shown in Fig. 1. Also shown in Fig. 1 are
the data obtained at a lower scale of Q2 = 2.5 GeV2 by the
HERMES collaboration in a semi-inclusive deep-inelastic
scattering (SIDIS) experiment [7].

The BHPS model has a specific prediction on the shapes
of the x distributions for d̄ and ū, since these anti-quarks
originate from the |uuddd̄〉 and |uuduū〉 configurations and

can be readily calculated. In the BHPS model, the ū and d̄
are predicted to have the same x-dependence if mu = md.
However, the probabilities of the |uuddd̄〉 and |uuduū〉 con-
figurations, Puū

5 and Pdd̄
5 , are not known from the BHPS

model, and remain to be determined by the experiments.
Non-perturbative effects such as Pauli-blocking [8] could
lead to different probabilities for the |uuddd̄〉 and |uuduū〉
configurations. Nevertheless the shape of the d̄(x) − ū(x)
distribution shall be identical to those of d̄(x) and ū(x) in
the BHPS model. Moreover, the normalization of d̄(x) −
ū(x) is known from the measurement of Fermilab E866
Drell-Yan experiment [6] as

∫ 1

0

(d̄(x)− ū(x))dx = Pdd̄
5 −Puū

5 = 0.118± 0.012.(3)

Equation 3 allows us to compare the calculations from the
BHPS model with the d̄(x) − ū(x) data.

The d̄(x) − ū(x) distribution from the BHPS model is
first calculated using Eq. 1 with mu = md = 0.3 GeV/c2,
and mp = 0.938 GeV/c2, and Eq. 3 for the normalization.
Since the E866 and the HERMES data were obtained at
Q2 of 54 GeV2 and 2.5 GeV2, respectively, it is important
to evolve the d̄(x)− ū(x) distribution from the initial scale
µ, expected to be around the confinement scale, to the Q2

corresponding to the data. As d̄(x)− ū(x) is a flavor non-
singlet parton distribution, its evolution from µ to Q only
depends on the values of d̄(x)− ū(x) at the initial scale µ,
and can be readily calculated using the non-singlet evolu-
tion equation [4]. For the initial scale, we adopt the value
of µ = 0.5 GeV, which was chosen by Glück, Reya, and
Vogt [9] in the so-called “dynamical approach” using only
valence-like distributions at the initial µ2 scale and relying
on evolution to generate the quark and gluon distributions
at higher Q2.

The solid and dashed curves in Fig. 1 correspond to
d̄(x) − ū(x) calculated from the BHPS model evolved to
Q2 = 54 GeV2 using µ = 0.5 and 0.3 GeV, respectively.
The x-dependence of the E866 d̄(x)−ū(x) data is quite well
described by the five-quark Fock states in the BHPS model
provided that the Q2-evolution is taken into consideration.
It is interesting to note that an excellent fit to the data
can be obtained if µ = 0.3 GeV is chosen (dashed curve in
Fig. 1) rather than the more conventional value of µ = 0.5
GeV. Also shown in Fig. 1 are the calculations with the
BHPS model evolved to Q2 = 2.5 GeV2 using µ = 0.5 GeV
and µ = 0.3 GeV. The calculations are in agreement with
the HERMES data within the experimental uncertainties.

We now consider the extraction of the |uudss̄〉 five-
quark component from existing data. The HERMES col-
laboration reported the determination of x(s(x) + s̄(x))
over the range of 0.02 < x < 0.5 at Q2 = 2.5 GeV2 from
their measurement of charged kaon production in SIDIS re-
action [5]. The HERMES data, shown in Fig. 2, exhibits
an intriguing feature. A rapid fall-off of the strange sea
is observed as x increases up to x ∼ 0.1, above which the
data become relatively independent of x. The data suggest
the presence of two different components of the strange

2

x

x(
s+

s!
)

BHPS (µ=0.5 GeV)
BHPS (µ=0.3 GeV)

HERMES

0

0.1

0.2

0.3

10
-1

Figure 2: Comparison of the HERMES x(s(x)− s̄(x)) data with the
calculations based on the BHPS model. The solid and dashed curves
are obtained by evolving the BHPS result to Q2 = 2.5 GeV2 using
µ = 0.5 GeV and µ = 0.3 GeV, respectively. The normalizations of
the calculations are adjusted to fit the data at x > 0.1 with statistical
errors only, denoted by solid circles.

sea, one of which dominates at small x (x < 0.1) and the
other at larger x (x > 0.1). This feature is consistent
with the expectation that the strange-quark sea consists
of both the intrinsic and the extrinsic components hav-
ing dominant contributions at large and small x regions,
respectively. In Fig. 2 we compare the data with calcula-
tions using the BHPS model with ms = 0.5 GeV/c2. The
solid and dashed curves are results of the BHPS model
calculations evolved to Q2 = 2.5 GeV2 using µ = 0.5 GeV
and µ = 0.3 GeV, respectively. The normalizations are
obtained by fitting only data with x > 0.1 (solid circles in
Fig. 2), following the assumption that the extrinsic sea has
negligible contribution relative to the intrinsic sea in the
valence region. Figure 2 shows that the fits to the data are
quite adequate, allowing the extraction of the probability
of the |uudss̄〉 state as

Pss̄
5 = 0.024 (µ = 0.5 GeV);

Pss̄
5 = 0.029 (µ = 0.3 GeV). (4)

We consider next the quantity ū(x) + d̄(x) − s(x) −
s̄(x). Combining the HERMES data on x(s(x)+s̄(x)) with
the x(d̄(x)+ ū(x)) distributions determined by the CTEQ
group (CTEQ6.6) [10], the quantity x(ū(x)+ d̄(x)−s(x)−
s̄(x)) can be obtained and is shown in Fig. 3. This ap-
proach for determining x(ū(x)+ d̄(x)−s(x)− s̄(x)) is iden-
tical to that used by Chen, Cao, and Signal in their recent
study of strange quark sea in the meson-cloud model [11].

x
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Figure 3: Comparison of the x(d̄(x)+ū(x)−s(x)−s̄(x)) data with the
calculations based on the BHPS model. The values of x(s(x)+ s̄(x))
are from the HERMES experiment [5], and those of x(d̄(x) + ū(x))
are obtained from the PDF set CTEQ6.6 [10]. The solid and dashed
curves are obtained by evolving the BHPS result to Q2 = 2.5 GeV2

using µ = 0.5 GeV and µ = 0.3 GeV, respectively. The normalization
of the calculations are adjusted to fit the data.

An important property of ū + d̄ − s − s̄ is that the
contribution from the extrinsic sea vanishes, just like the
case for d̄− ū. Therefore, this quantity is only sensitive to
the intrinsic sea and can be compared with the calculation
of the intrinsic sea in the BHPS model. We have

ū(x) + d̄(x) − s(x)− s̄(x) =

Puū(xū) + P dd̄(xd̄)− 2P ss̄(xs̄). (5)

We can now compare the x(ū(x) + d̄(x) − s(x) − s̄(x))
data with the calculation using the BHPS model. Since
ū+ d̄−s− s̄ is a flavor non-singlet quantity, we can readily
evolve the BHPS prediction to Q2 = 2.5 GeV2 using µ =
0.5 GeV and the result is shown as the solid curve in Fig. 3.
It is interesting to note that a better fit to the data can
again be obtained with µ = 0.3 GeV, shown as the dashed
curve in Fig. 3.

From the comparison between the data and the BHPS
calculations shown in Figs. 1-3, we can determine the prob-
abilities for the |uuduū〉, |uuddd̄〉, and |uudss̄〉 configura-
tions as follows:

Puū
5 = 0.122; Pdd̄

5 = 0.240; Pss̄
5 = 0.024

(µ = 0.5 GeV) (6)

or

Puū
5 = 0.162; Pdd̄

5 = 0.280; Pss̄
5 = 0.029

(µ = 0.3 GeV) (7)
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• IC Explains Anomalous α(xF ) not α(x2)

dependence of pA→ J/ψX

(Mueller, Gunion, Tang, SJB)

• Color Octet IC Explains A2/3 behavior at

high xF (NA3, Fermilab)

(Kopeliovitch, Schmidt, Soffer, SJB)

• IC Explains J/ψ → ρπ puzzle

(Karliner, SJB)

• IC leads to new effects in B decay

(Gardner, SJB)

Color Opaqueness

Higgs production at xF = 0.8
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D(c̄u)

Test intrinsic charm
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JLAb 12 
Experiment

Dissociate proton to high xF heavy-quark pair

γ∗p→ Λc(cdd) + D(c̄u)



 

p

ee�

u
dc
c̄

But disfavored since 

u

J/ψ(cc̄)

p�

Dissociate proton to high xF Quarkonium:

γ∗p→ J/ψ + p�

γ∗p→ Υ + p�

|p >� |(uud)8C (cc̄)8C >

Collins, Ellis, Haber, 
Mueller, sjb

M. Polyakov et al.

c
c̄

u
u

d

p

Test intrinsic charm, bottom

Lansberg, sjb

γ∗
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p p�

Ma, sjb

ee�

s̄

s
u

u
d

D+
s (cs̄)

D−s (c̄s)

Look for D−s (c̄s) vs. D+
s (cs̄) asymmetry

Reflects s vs. s̄ asymmetry in proton |uudss̄ > Fock LF state.

Asymmetry natural from |K+Λ > excitation

Assumes symmetric charm and anti-charm distributions

148



 
CP3, September 16, 2011 QCD Myths  Stan Brodsky,  SLAC/CP3

!"!#"$%%& Mike Leitch !$

!"#$%&'()*+,-,#&.,*/(*-(0&'.*/ $%1%$(2.'"#."'%(3(+4/&),#2

!"#$%$&'($")*"%*+',(") -"-.)(/-*
#$0(,$1/($")0*"%*)/&2.")0*.-1.##.#*$)*)/&2.$
5 26&+*7,/8(9 +%0$%.,*/(*-($*7:)*)%/.")(
0&'.*/2 ;8$"*/2<
5 #*6%'%/#%(3(+4/&),#&$(26&+*7,/8(
5 8$"*/(2&."'&.,*/(9 %=8=(#*$*'(8$&22(#*/+%/2&.%>(
&(20%#,-,#?-"/+&)%/.&$()*+%$(*-(8$"*/(
2&."'&.,*/(76,#6(8,1%2(26&+*7,/8(,/(/"#$%,

!""#$%&#'()#*+,)-.###!)#/#!'0)
"

PRL 84, 3256 (2000); PRL 72, 2542 (1994)

1'%2#345678#21#)(9%'

5:#7;9(65';9;:<

!"#
$
%#
&

=#/#>#$%&
?#$%&

@"#$%&

$AB12#C4591D;2E

Gerland, Frankfurt, Strikman,

Stocker & Greiner (hep-ph/9812322)

3/&2.',*.%%.&(0*")*+',(") 4#5)'-$&06
5 %/%'84($*22(*-(0&'.*/2 &2(.6%4(0'*0&8&.%(
.6'*"86(/"#$%,
5 &/+(;&22*#,&.%+@<()"$.,0$%(2#&..%',/8(
%--%#.2(;A'*/,/(%--%#.<
5 &B2*'0.,*/(*-(C?! */(/"#$%*/2(*'(#*:
)*1%'2D(#*)0&'%+(.*(/*:&B2*'0.,*/(-*'(
*0%/(#6&')(0'*+"#.,*/

Remarkably Strong Nuclear 
Dependence for Fast Charmonium

M. Leitch

 Violation of factorization in charm hadroproduction.
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Violation of PQCD Factorization!
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dσ
dxF

(pA→ J/ψX)

dσ
dxF

(πA→ J/ψX)

xF

A2/3 component

A1 component

Fits conventional PQCD subprocesses

IC Explains large excess of quarkonia at large xF,  A-dependence

Huge A2/3
effect at large xF
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J/ψ nuclear dependence vrs rapidity, xAu, xF
PHENIX compared to lower energy measurements
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dxF

(pA→ J/ψX)
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xF

A2/3 component

A1 component

Fits conventional PQCD subprocesses

Violates PQCD 
factorization!

Hoyer, Sukhatme, Vanttinen



 

Scattering on front-face nucleon produces color-singlet     paircc̄

u
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Octet-Octet IC Fock State

Color-Opaque IC Fock state
interacts on nuclear front surface  

dσ
dxF

(pA → J/ψX) = A2/3 × dσ
dxF

(pN → J/ψX)

fb

πq → γ∗q

γ∗

π

p

�

J/ψ

p

c

c̄

No absorption of 
small color-singlet

g

Kopeliovich, 
Schmidt, Soffer, sjb
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Production of a Double-Charm Baryon

X

SELEX  high xF < xF >= 0.33

pp → p + H + p

H, Z
0
, ηb

b⊥ ∼ 1/Q

Must have ∆Lz = ±1 to have nonzero F2

Use charge radius R
2 = −6F

�
1(0)

and anomalous moment κ = F2(0)
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Production of Two Charmonia 
at High xF

X

153

pp→ p + J/ψ + p

pp→ p + H + p

Also:

c

c̄

< xF >= 0.33

Minimize LF energy denominator

pp→ p + J/ψ + p

pp→ p + H + p

Also:

c

c̄

< xF >= 0.33

Minimize LF energy denominator

pp→ p + J/ψ + p

pp→ p + H + p

Also:

c

c̄

< xF >= 0.33

Minimize LF energy denominator

pp→ p + J/ψ + p

pp→ p + H + p

Also:

c

c̄

< xF >= 0.33

Minimize LF energy denominator
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% 

Fig. 3. The fi# pair distributions are shown in (a) and (c) for the 

pion and proton projectiles. Similarly, the distributions of J/$‘s 

from the pairs are shown in (b) and (d). Our calculations are 

compared with the n-N data at 150 and 280 GeV/c [ I]. The 

x++, distributions are normalized to the number of pairs from both 

pion beams (a) and the number of pairs from the 400 GeV proton 

measurement (c) The number of single J/e’s is twice the number 

of pairs. 

x+ = ~it,/pt,~a~ in Fig. 3. The +$ pair distributions 

are shown in Fig. 3(a) and 3(c) and the associated 

the single J/I) distributions in pair events are shown 

in Fig. 3(b) and 3(d) . Both are normalized to the 

data with the single J/r/ normalization twice that of 

the pair. 

4. Other tests of the intrinsic heavy quark 

mechanism 

The intrinsic charm model provides a natural expla- 

nation of double J/e hadroproduction and thus gives 

strong phenomenological support for the presence of 

intrinsic heavy quark states in hadrons. While the gen- 

eral agreement with the intrinsic charm model is quite 

good, the excess events at medium xlfi~l suggests that 

intrinsic charm may not be the only @$ QCD produc- 

tion mechanism present or that the model parameteri- 

zation with a constant vertex function is too oversim- 

plified. The x,++,+ distributions can also be affected by 

the A dependence. Additional mechanisms, including 

an update of previous models [ 3-71, will be presented 

in a separate paper [ 81. 

The intrinsic heavy quark model can also be used to 

predict the features of heavier quarkonium hadropro- 

duction, such as YY, Y$, and (6~) (Eb) pairs. Using 

fib = 4.6 GeV, we find that the single Y and YY pair 

x distributions are similar to the equivalent I,& distri- 

butions. The average mass, (MYY), is 21.4 GeV for 

pion projectiles and 21.7 GeV for a proton, a few GeV 

above threshold, 2my = 18.9 GeV. The xy@ pair distri- 

butions are also similar to the +@ distributions but we 

note that (xy) = 0.44 and (xe) = 0.30 from a l&fcCbb) 

configuration and (xy) = 0.39 and (x$) = 0.27 from 

a luudc&) configuration. Here (MY@) = 14.9 GeV 

with a pion projectile and 15.2 GeV with a proton, 

again a few GeV above threshold, my + rn+ = 12.6 

GeV. 

It is clearly important for the double J/+ measure- 

ments to be repeated with higher statistics and also at 

higher energies. The same intrinsic Fock states will 

also lead to the production of multi-charmed baryons 

in the proton fragmentation region. It is also interesting 

to study the correlations of the heavy quarkonium pairs 

to search for possible new four-quark bound states and 

final state interactions generated by multiple gluon ex- 

change [ 71. It has been suggested that such QCD Van 

der Waals interactions could be anomalously strong at 

low relative rapidity [ 22,231. 

There are many ways in which the intrinsic heavy 

quark content of light hadrons can be tested. More 

measurements of the charm and bottom structure func- 

tions at large XF are needed to confirm the EMC data 

[ 151. Charm production in the proton fragmentation 

region in deep inelastic lepton-proton scattering is sen- 

sitive to the hidden charm in the proton wavefunction. 

The presence of intrinsic heavy quarks in the hadron 

wavefunction also enhances heavy flavor production 

in hadronic interactions near threshold. More gener- 

ally, the intrinsic heavy quark model leads to enhanced 

open and hidden heavy quark production and leading 

particle correlations at high XF in hadron collisions 

with a distinctive strongly-shadowed nuclear depen- 

dence characteristic of soft hadronic collisions. 
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[ 121. For soft interactions at momentum scale CL, the 

intrinsic heavy quark cross section is suppressed by a 

resolving factor cc &2/m; [ 131. 

There is substantial circumstantial evidence for the 

existence of intrinsic CL! states in light hadrons. For ex- 

ample, the charm structure function of the proton mea- 

sured by EMC is significantly larger than predicted by 

photon-gluon fusion at large XBj [ 151. Leading charm 

production in TN and hyperon-N collisions also re- 

quires a charm source beyond leading twist [ 13,161. 

The NA3 experiment has also shown that the single 

J/$ cross section at large XF is greater than expected 

from gg and q?j production [ 171. Additionally, intrin- 

sic charm may account for the anomalous longitudi- 

nal polarization of the J/+4 at large XF [ 181 seen in 

?rN -+ J/+X interactions. 

Over a sufficiently short time, the pion can contain 

Fock states of arbitrary complexity. For example, two 

intrinsic CC pairs may appear simultaneously in the 

quantum fluctuations of the projectile wavefunction 

and then, freed in an energetic interaction, coalesce 

to form a pair of I,!J’s. We shall estimate the creation 
-- 

probability of ~~vcccc) Fock states, where nv = &I for 

7~- and nv = uud for proton projectiles, assuming that 

all of the double J/I,~ events arise from these configu- 

rations. We then examine the x+$ and invariant mass 

distributions of the $$ pairs and the x,,+ distribution 

for the single $‘s arising from these Fock states. 

2. Intrinsic charm Fock states 

The probability distribution for a general n-particle 

intrinsic CC Fock state as a function of x and kr is 

written as 

(1) 

where N,, normalizes the Fock state probability. In 

the model, the vertex function in the intrinsic charm 

wavefunction is assumed to be relatively slowly vary- 

ing; the particle distributions are then controlled by the 

light-cone energy denominator and phase space. This 

form for the higher Fock wavefunctions generalizes 

for an arbitrary number of light and heavy quark com- 

ponents. The Fock states containing charmed quarks 

can be materialized by a soft collision in the target 

which brings the state on shell. The distribution of 

produced open and hidden charm states will reflect the 

underlying shape of the Fock state wavefunction. 

The invariant mass of a c.? pair, M,, from such a 

Fock state is 

(2) 

where n = 4 and 5 is the number of partons in the 

lowest lying meson and baryon intrinsic CC Fock states. 

The probability to produce a J/(/I from an intrinsic 

CT state is proportional to the fraction of intrinsic ci? 

production below the Or, threshold. The fraction of 

CC pairs with 2m, < MC? < 2rno is 

The ratio fc~jr is approximately 15% larger than fc~iP 

for 1.2 < m, < 1.8 GeV. However, not all c?‘s pro- 

duced below the DB threshold will produce a final- 

state J/S. We include two suppression factors to es- 

timate J/q5 production, one reflecting the number of 

quarkonium channels available with McT < 2rno and 

one for the c and C to coalesce with each other rather 

than combine with valence quarks to produce open 

charm states. The “channel” suppression factor, s, z 

0.3, is estimated from direct and indirect J/$ produc- 

tion, including x1 and xz radiative and +’ hadronic 

decays. The combinatoric “flavor” suppression factor, 

of, is l/2 for a IEdcC) state and l/4 for a IuudcC) 

state. In Fig. 1 we show the predicted fraction of $‘s 

produced from intrinsic CC pairs, 

f@lh = s,sf.fE/h ) (4) 

as a function of m,. We take m, = I .5 GeV, suggesting 

f ur  M 0.03 and f e j p M 0.014. 
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Abstract 

Double J/e production has been observed by the NA3 collaboration in n-N and pN collisions with a cross section of 

the order of 20-30 pb. The +@ pairs measured in v- nucleus interactions at 150 and 280 GeV/c are observed to carry an 

anomalously large fraction of the projectile momentum in the laboratory frame, x~ > 0.6 at 150 GeV/c and > 0.4 at 280 

GeV/c. We postulate that these forward +@ pairs are created by the materialization of Fock states in the projectile containing 

two pairs of intrinsic CC quarks. We calculate the overlap of the charmonium states with the 1ii&ET) Fock state as described 

by the intrinsic charm model and find that the T-N -+ $9 longitudinal momentum and invariant mass distributions are both 

well reproduced. We also discuss double J/t,b production in pN interactions and the implications for other heavy quarkonium 

production channels in QCD. 

1. Introduction 

It is quite rare for two charmonium states to be pro- 

duced in the same hadronic collision. However, the 

NA3 collaboration has measured a double .I/$ pro- 

duction rate significantly above background in multi- 

muon events with T- beams at laboratory momentum 

150 and 280 GeV/c [ 11 and a 400 GeV/c proton beam 

[ 21. The integrated T-N ---) ++X production cross 

section, a+*, is 18 f 8 pb at 150 GeV/c and 30 f 10 

pb at 280 GeV/c, and the pN -t I&X cross section is 

*This work was supported in part by the Director, Office of 

Energy Research, Division of Nuclear Physics of the Office of 

High Energy and Nuclear Physics of the U.S. Department of 

Energy under Contract Numbers DE-ACO3-76SFOO98 and DE- 

ACO3-76SFUO515. 

27 f 10 pb. The relative double to single rate, a++ /a~, , 

is (3 f 1) x 10e4 for pion-induced production where 

a+ is the integrated single $ production cross section. 

A particularly surprising feature of the NA3 

T-N + t&X events is that the laboratory fraction 

of the projectile momentum carried by the #+ pair 

is always very large, x++ 2 0.6 at 150 GeV/c and 

xW 2 0.4 at 280 GeV/c. In some events, nearly 

all of the projectile momentum is carried by the I@++ 

system. In contrast, perturbative gg and 44 fusion 

processes are expected to produce central $$ pairs, 

centered around the mean value, (x~) = 0.4-0.5, in 

the laboratory [ 3-61. 

The average invariant mass of the pair, (M+e) = 7.4 

GeV, is well above the 2~9 threshold. In fact, all the 

events have MM > 6.7 GeV. The average transverse 

0370-2693/95/$09.50 @ 1995 Blsevier Science B.V. All rights reserved 
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NA3 Data

πA→ J/ψJ/ψX

µ2
R = CQ2

ρ(Q2) = C0 + C1αs(µR) + C2α2
s(µR) + · · ·

σ = 1
2x−P+

γp→ µ+µ−p

Oberwölz

All events have xF
ψψ > 0.4 !

σ(pp→ cX) ∼ 1µb

154

Excludes `color drag’ model



 

• IC Explains Anomalous α(xF ) not α(x2)

dependence of pA→ J/ψX

(Mueller, Gunion, Tang, SJB)

• Color Octet IC Explains A2/3 behavior at

high xF (NA3, Fermilab)

(Kopeliovitch, Schmidt, Soffer, SJB)

• IC Explains J/ψ → ρπ puzzle

(Karliner, SJB)

• IC leads to new effects in B decay

(Gardner, SJB)

Color Opaqueness

Higgs production at xF = 0.8

155



 
CP3, September 16, 2011 QCD Myths  Stan Brodsky,  SLAC/CP3

156

threshold in σ/v, where it is expected to dominate (here
v = 1/16π(s − m2

p)
2 is the usual phase space factor). It

produces the ηcp, χcp and other C even resonances, but
also J/ψ.

For elastic charm production (when the proton target
remains bound), it is also necessary to take into account
the recombination of the three valence quarks into the
proton via its form factor, as well as the coupling of the
photon to the cc pair. For two gluon exchange the cross
section of the γp → J/ψp takes the form:

dσ

dt
= N2gv

(1 − x)2

R2M2
F 2

2g(t)(s − m2
p)

2 (3)

while for three gluon exchange it takes the form:

dσ

dt
= N3gv

(1 − x)0

R4M4
F 2

3g(t)(s − m2
p)

2 (4)

where F2g(t) and F3g(t) are proton form factors that take
into account the fact that the three target quarks recom-
bine into the final proton after the emission of two or
three gluons. While they are analogous to the proton
elastic form factor F1(t), they are not known. In the
numerical applications, we have parameterized them as
F 2 = exp(1.13t), according to the experimental t de-
pendency of the cross section [11]. The (s − m2

p)
2 term

comes from the coupling of the incoming photon to the
cc pair and the spin-1 nature of gluon exchange (see,
for instance, Ref. [12]). It compensates the same term
in the phase space v. The normalization coefficient N
is determined assuming that each channel saturates the
experimental cross section measured at SLAC [13] and
Cornell [11] around Eγ = 12 GeV.
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FIG. 3. Variation of the J/ψ photoproduction cross sec-
tion near threshold. Solid line: two gluon exchange (Eqs. 3).
Dashed line: three gluon exchange (Eq. 4).

Notice that expressions (3) and (4) are valid in a lim-
ited energy range near threshold, where x ∼ 1. To be

more specific, x = 0.82 at Elab
γ = 10 GeV and x = 0.69

at Elab
γ = 12 GeV. So we expect that our model still

makes sense up to the lowest energy range where exper-
imental data exist. At higher energies one has to rely on
the variation of the gluon distribution in the vicinity of
x ∼ 0 to reproduce the steep rise of charm photoproduc-
tion [16,17] above Elab

γ ≈ 100 GeV (x ≤ 0.082).
As shown in Fig. 3, the threshold dependence of our

conjectured cross sections (3) and (4) is consistent with
the scarce existing data [11,13]. Indeed, there is also
evidence [14] that the energy dependence of the J/ψ
elastic photoproduction cross section at forward angles
is roughly flat up to Eγ ≈ 12 GeV, in contrast to the
steep variation observed at higher energies. More accu-
rate measurements of the J/ψ elastic photoproduction
cross section up to about 20 GeV are clearly needed.

The existence of five-quark resonances near threshold
in the γp → pcc̄ process [15] would modify our picture.
However, the qualitative features of the two- and three-
gluon-exchange cross sections (which differ by orders of
magnitude near threshold) should remain valid.

On few body targets, each exchanged gluon may cou-
ple to a colored quark cluster and reveal the hidden-color
part of the nuclear wave function, a domain of short-
range nuclear physics where nucleons lose their identity.
The existence of such hidden-color configurations is pre-
dicted by QCD evolution equations [3]. It is striking that
in γd → J/ψpn, (Fig. 4), the |B8B8 > hidden-color state
of the deuteron couples so naturally via two gluons to
the J/ψpn final state [18], since the coupling of a single
gluon to a three-quark cluster turns it from a color octet
to a singlet.

γ ψ

FIG. 4. The simplest diagram which reveals a hid-
den-color state in deuterium [18].

When the nucleon is embedded in a nuclear medium,
two mechanisms govern the photo- and electroproduc-
tion of J/ψ mesons. The first, the quasi-free production
mechanism, contributes the following cross section to the
γd → J/ψpn reaction, when integrated over the angles
of the spectator neutron [19]:

dσ

dtd | 'n |
=

dσ

dt

∣

∣

∣

∣

γp→J/ψp

4π'n2ρ(| 'n |) (5)

∫

ρ(| 'n |)d'n = 1 (6)

SLAC

Cornell

two factors: a heavy quark loop diagram connecting the
photons to the exchanged gluons, times the gauge invari-
ant matrix element of a product of gluon field strengths
< p|Gn

µν |p >. Because of the non-Abelian coupling, a sin-
gle field strength can correspond to one or two exchanged
gluons. For heavy quark masses, m2

Q ! Λ2
QCD the heavy

quark loop contracts to an effective local operator, so that
the field strengths in the matrix element are all evaluated
at the same local point. The minimal gluon exchange
contribution (n = 2) gives the leading twist photon-
gluon fusion contribution. Since < p|Gn|p > scales as

(Λ2
QCD)

n−1
, each extra gluon field strength connecting

to the heavy quark loop must give a factor of (1/m2
Q).

(Higher derivatives in the matrix element are further sup-
pressed.) Thus one pays a penalty of a factor (Λ2/m2

Q) as
the number of exchanged gluon fields is increased. How-
ever, as we shall see, the suppression from the multiple
gluon exchange contributions are systematically compen-
sated by fewer powers of energy threshold factors, so that
at threshold multi-gluon contributions will dominate. A
similar effective field theory operator analysis has been
used [4] to estimate the momentum fraction carried by
intrinsic heavy quarks in the proton [5,6].

In this paper, we will use reasonable conjectures for
the short distance behavior of hadronic matter inferred
from properties of perturbative QCD and effective heavy
quark field theory to estimate the behavior of the reaction
cross section.

The effective proton radius in charm photoproduction
near threshold can be determined from the following ar-
gument [7,8]. As indicated in Fig. 2a, most of the pro-
ton momentum may first be transferred to one (valence)
quark, followed by a hard subprocess γq → ccq. If the
photon energy is Eγ = ζEth

γ , where Eth
γ is the energy

at kinematic threshold (ζ ≥ 1), the valence quark must
carry a fraction x = 1/ζ of the proton (light-cone) mo-
mentum. The lifetime of such a Fock state (in the light-
cone or infinite momentum frame) is τ = 1/∆E, where

∆E =
1

2p

[

m2
p −

∑

i

p2
i⊥ + m2

i

xi

]

%
Λ2

QCD

2p(1 − x)
(1)

For x = 1/ζ close to unity such a short lived fluctuation
can be created (as indicated in Fig. 2a) through momen-
tum transfers from valence states (where the momentum
is divided evenly) having commensurate lifetimes τ and
transverse extension

r2
⊥ %

1

p2
⊥

%
ζ − 1

Λ2
QCD

(2)

This effective proton size thus decreases towards thresh-
old (ζ → 1), reaching r2

⊥ % 1/m2
c at threshold (ζ − 1 %

Λ2
QCD/m2

c).
As the lifetimes of the contributing Fock states ap-

proach the time scale of the cc creation process, the time

ordering of the gluon exchanges implied by Fig. 2a ceases
to dominate higher-twist contributions such as that of
Fig. 2b [8]. There are in fact reasons to expect that the
latter diagrams give a dominant contribution to charmo-
nium production near threshold. First, there are many
more such diagrams. Second, they allow the final state
proton to have a small transverse momentum (the glu-
ons need p⊥ % mc to couple effectively to the cc pair, yet
the overall transfer can still be small in Fig. 2b). Third,
with several gluons coupling to the charm quark pair its
quantum numbers can match those of a given charmo-
nium state without extra gluon emission.

c
!

(a)

c
_

p

g

g

g

c

p

!

(b)

c
_

gg

FIG. 2. Two mechanisms for transferring most of the
proton momentum to the charm quark pair in γp → ccp near
threshold. The leading twist contribution (a) dominates at
high energies, but becomes comparable to the higher-twist
contribution (b) close to threshold.

The above discussion is generic, and does not indicate
how close to threshold the new effects actually manifest
themselves. While this question can only be settled by
experiment, we rely on a simple model to get an estimate
of the cross section.

Near-threshold charm production probes the x % 1
configuration in the target, the spectator partons car-
rying a vanishing fraction x % 0 of the target momen-
tum. This implies that the production rate behaves near
x → 1 as (1 − x)2ns where ns is the number of specta-
tors [9]. Perturbative QCD predicts three different glu-
onic components of the photoproduction cross-section:
i) The leading twist (1 − x)4 distribution for the process
γq → ccq, which leaves two quarks spectators (Fig. 2a);
ii) Scattering on two quarks in the proton with a net

distribution (1−x)2

R2M2 , γqq → ccqq, leaving one quark spec-
tator; iii) Scattering on three quark cluster (Fig. 2b) in

the proton with a net distribution (1−x)0

R4M4 , γqqq → ccqqq,
leaving no quark spectators. There is some arbitrariness
in the definition of x close to threshold. We shall use
x = (2mpM + M2)/(s − m2

p), where s = E2
CM and M

is the mass of the cc pair, which has the property x = 1
at threshold. The relative weight of scattering from mul-
tiple quarks is given by the probability 1/R2M2 that a
quark in the proton of radius R % 1 fm is found within
a transverse distance 1/M (see Ref. [10]).

The two-gluon exchange contribution produces odd
C quarkonium γgg → J/ψ, thus permitting exclusive
γp → J/ψp production. The photon three-gluon cou-
pling γggg → cc produces a roughly constant term at

Dominant near 
threshold

Leading twist 
contribution

 Chudakov, Hoyer, Laget, sjbγp→ J/ψp

γd→ J/ψnp

q−(x)
q+(x)

1
(1−x)2 log2(1−x)

∆u(x)
u(x)

∆d(x)
d(x)

d−(x)
d+(x)
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Use extreme caution when using
γg → cc̄ or gg → c̄c
to tag gluon dynamics



• baryon resonances

• 3 jets

• exclusive meson-baryon; baryon-meson-meson

• exclusive charm and bottom pairs; charmed and bottom 
baryons; heavy quarkonium from heavy quark intrinsic 
sea

• “hidden-color states from deuteron such as Δ Δ

Interpret Electroproduction as Coulombic Excitation

p

ee�

Many possible B= 1 final states can reveal 
electric-dipole structure of proton LFWF

T ∝
�

j

ej
d

d�k⊥j

ψn(xi,�k⊥i, λi)
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Color Transparency

• Fundamental test of gauge theory in hadron physics

• Small color dipole moments interact weakly in nuclei

• Complete coherence at high energies

• Clear Demonstration of CT from Diffractive Di-Jets

Bertsch, Gunion, Goldhaber, sjb

A. H. Mueller,  sjb
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Theory: 
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Color Transparency Ratio

J. L. S. Aclander et al.,
“Nuclear transparency in θCM = 90

0

quasielastic A(p,2p) reactions,”

Phys. Rev. C 70, 015208 (2004), [arXiv:nucl-

ex/0405025].

S. J. Brodsky and G. F. de Teramond, “Spin

Correlations, QCD Color Transparency And

Heavy Quark Thresholds In Proton Proton

Scattering,” Phys. Rev. Lett. 60, 1924 (1988).

Quark Interchange + 8-Quark Resonance
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Color Transparency fails 
when Ann is large 

0
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Mardor [1]
Leksanov [2]
Carroll-C [3]
Carroll-Al [3]

1/R(s)
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Eva 
Experiment  

BNL

Rapid Angular Variation!

Bunce, Carroll, 
Heppelman...



 

Odderon  has never been observed!

p
p�

γ∗(q) π0, η, ηc, ηb

164
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Perturbative QCD Analysis of 
Structure Functions at x ~ 1

• Struck quark far off-shell at large x

• Lowest-order connected PQCD diagrams dominate

• Spectator counting rules

• Helicity retention at large x

• Exclusive-Inclusive Connection

(1− x)2ns−1+2∆Sz

k2
F � −

k2
⊥

1− x
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q−(x)
q+(x)

1
(1−x)2 log2(1−x)

u−(x)
u+(x)

d−(x)
d+(x)

q−(x) ∝ (1− x)5 log2(1− x)

q+(x) ∝ (1− x)3

q−(x)
q+(x)

1
(1−x)2 log2(1−x)

u−(x)
u+(x)

d−(x)
d+(x)

q−(x) ∝ (1− x)5 log2(1− x)

q+(x) ∝ (1− x)3

(c)

k1

k2

p1 ↓

p2 ↓

p3 ↑P ↑ P ↑

p′1 ↓

p′2 ↓

p′3 ↑

(a)

k1

k2

p1 ↑

p2 ↑

p3 ↓P ↑ P ↑

p′1 ↑

p′2 ↑

p′3 ↓

(b)

k1

k2

p1 ↓

p2 ↑

p3 ↑P ↑ P ↑

p′1 ↓

p′2 ↑

p′3 ↑

Lz = 0 Lz = 0

Lz = 0Lz = 0

Lz = 1 Lz = 1
Avakian, sjb, Deur, Yuan

From nonzero orbital 
angular momentum
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M =
�

TH ×Πφi

M ∼ f(θCM)
QNtot−4

�
initial λ

H
i

=
�

final λ
H
j

L = 0 dominance

F2
F1
∼ 1

Q2

F (Q2)I→F =
�

dzΦF (z)J(Q, z)ΦI(z)

M =
�

TH ×Πφi

M ∼ f(θCM)
QNtot−4

�
initial λ

H
i

=
�

final λ
H
j

L = 0 dominance

F2
F1
∼ 1

Q2

F (Q2)I→F =
�

dzΦF (z)J(Q, z)ΦI(z)

M =
�

TH ×Πφi

M ∼ f(θCM)
QNtot−4

�
initial λ

H
i

=
�

final λ
H
j

L = 0 dominance

F2
F1
∼ 1

Q2

F (Q2)I→F =
�

dzΦF (z)J(Q, z)ΦI(z)

Lepage, sjb; Efremov, Radyushkin

Lepage, sjb; Duncan, Mueller

Features of  Hard Exclusive 
Processes in PQCD 

• Factorization of  perturbative hard scattering subprocess amplitude 
and nonperturbative distribution amplitudes

• Dimensional counting rules  reflect conformal invariance:

• Hadron helicity conservation:

• Color transparency   Mueller, sjb;

• Hidden color        Ji, Lepage, sjb;

• Evolution of Distribution Amplitudes
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H̄(p̄e
+)

p̄

e
+

e
−

H̄(p̄e
+)

p̄

e
+

e
−

H̄(p̄e
+)

p̄

e
+

e
−

H̄(p̄e
+)

p̄

e
+

e
−

H̄(p̄e
+)

p̄

e
+

e
−

Z

Formation of  Relativistic Anti-Hydrogen

Munger, Schmidt, sjb

Measured at CERN-LEAR and FermiLab 

πq → γ∗q

γ∗

π

p

�

�̄

q

Coulomb  field

Coalescence of  off-shell co-moving  positron and antiproton

“Hadronization” at the Amplitude Level

Wavefunction maximal at small impact separation and equal rapidity

τ = t + z/c

b⊥ ≤ 1
mredα

< p|G
3
µν

m2
Q

|p > vs. < p|F
4
µν

m4
�

|p >

γ

cos 2φ

+κ4ζ2

τ = t + z/c

yp̄ � ye+

b⊥ ≤ 1
mredα

< p|G
3
µν

m2
Q

|p > vs. < p|F
4
µν

m4
�

|p >

γ

cos 2φ
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Hadronization at the Amplitude Level

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

Construct helicity amplitude using Light-Front Perturbation 
theory;   coalesce quarks via LFWFs

ψ(x,�k⊥, λi)

e+

e−

γ∗

g

q̄

q

ψH(x,�k⊥, λi)

pH

x,�k⊥

1− x,−�k⊥

e
+

e
−

γ
∗

ψH(x,�k⊥, λi)

pH

x,�k⊥

1− x,−�k⊥

e
+

e
−

γ
∗

ψH(x,�k⊥, λi)

pH

x,�k⊥

1− x,−�k⊥

e
+

e
−

γ
∗

ψH(x,�k⊥, λi)

pH

x,�k⊥

1− x,−�k⊥

τ = x
+

e
+

e
−

Event amplitude 
generator

Similar method for hadronization in DIS 
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Hadronization at the Amplitude Level

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

Construct helicity amplitude using Light-Front Perturbation 
theory;   coalesce quarks via LFWFs

ψH(x,�k⊥, λi)

pH

x,�k⊥

1− x,−�k⊥

τ = x
+

e
+

e
−

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p
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e−

γ∗

g

q̄

q

pp → p + J/ψ + p
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e−

γ∗

g

q̄

q

pp → p + J/ψ + p
ψ(x,�k⊥, λi)

e+

e−

γ∗

g

q̄

q

ψH(x,�k⊥, λi)
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1− x,−�k⊥

e
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∗
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γ
∗
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−

γ
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Event amplitude 
generator
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Hadronization at the Amplitude Level

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

Construct helicity amplitude using Light-Front 
Perturbation theory;   coalesce quarks via LFWFs

ψH(x,�k⊥, λi)

pH

x,�k⊥

1− x,−�k⊥

τ = x
+

e
+

e
−

H̄(p̄e
+)

p̄

e
+

e
−

Z

u

d

H̄(p̄e
+)

p̄

e
+

e
−

Z

u

d

s

Λ

ψ(x,�k⊥, λi)

e+

e−

γ∗

g

q̄

q

s

Λ
Baryon Production



• Coalesce color-singlet cluster to hadronic state if 

• The coalescence probability amplitude is the LF 
wavefunction

• No IR divergences: Maximal gluon and quark wavelength from confinement

Features of  LF   T-Matrix Formalism
“Event Amplitude Generator”

M2
n =

n�

i=1

k2
⊥i + m2

i

xi
< Λ2

QCD

Ψn(xi,�k⊥i, λi)

P+, �P+

xiP
+, xi

�P⊥+ �k⊥i

ẑ

�L = �R× �P

�Li = (xi
�R⊥+�b⊥i)× �P

��i = �b⊥i × �k⊥i

��i = �Li − xi
�R⊥ × �P = �b⊥i × �P

P+ = P0 + Pz

xi = k+

P+ = k0+k3

P0+Pz

ψ(σ, b⊥)

β = dαs(Q2)
d lnQ2 < 0

u

ū

E� = E − ν, �q

A(σ,∆⊥) = 1
2π

�
dζe

i
2σζM(ζ,∆⊥)

P+, �P⊥

xiP
+, xi

�P⊥+ �k⊥i

ζ = Q2

2p·q

ẑ

�L = �R× �P

�Li = (xi
�R⊥+�b⊥i)× �P
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• Same principle as antihydrogen production: off-shell coalescence

• coalescence to hadron favored at equal rapidity, small transverse 
momenta

• leading heavy hadron production:  D and B mesons produced at 
large z

• hadron helicity conservation if  hadron LFWF has Lz =0

• Baryon AdS/QCD LFWF has aligned and anti-aligned quark spin

Features of  LF   T-Matrix Formalism
“Event Amplitude Generator”

P+, �P+

xiP
+, xi

�P⊥+ �k⊥i

ẑ

�L = �R× �P

�Li = (xi
�R⊥+�b⊥i)× �P

��i = �b⊥i × �k⊥i

��i = �Li − xi
�R⊥ × �P = �b⊥i × �P

P+ = P0 + Pz

xi = k+

P+ = k0+k3

P0+Pz

ψ(σ, b⊥)

β = dαs(Q2)
d lnQ2 < 0

u

ū

E� = E − ν, �q

A(σ,∆⊥) = 1
2π

�
dζe

i
2σζM(ζ,∆⊥)

P+, �P⊥

xiP
+, xi

�P⊥+ �k⊥i

ζ = Q2

2p·q

ẑ

�L = �R× �P

�Li = (xi
�R⊥+�b⊥i)× �P
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Off -Shell  T-Matrix

• Quarks and Gluons Off-Shell

• LFPth:  Minimal Time-Ordering Diagrams-Only positive k+

• Jz Conservation at every vertex 

•  Frame-Independent

• Cluster Decomposition

• “History”-Numerator structure universal

• Renormalization- alternate denominators

• LFWF takes Off-shell to On-shell

• Tested in QED: g-2 to three loops
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Event amplitude generator

Roskies, Suaya, sjb

Chueng Ji, sjb



 
QCD Problem Solved if quark and gluon condensates reside within hadrons, not vacuum!

ΩΛ = 0.76(expt)
(ΩΛ)EW ∼ 1056

(ΩΛ)QCD ∼ 1045

June 10, 2008 12:22 WSPC/Guidelines-MPLA 02770

Modern Physics Letters A
Vol. 23, Nos. 17–20 (2008) 1336–1345
c© World Scientific Publishing Company

DARK ENERGY AND
THE COSMOLOGICAL CONSTANT PARADOX

A. ZEE

Department of Physics, University of California, Santa Barbara, CA 93106, USA
Kavil Institute for Theoretical Physics, University of California,

Santa Barbara, CA 93106, USA
zee@kitp.ucsb.edu

I give a brief and idiosyncratic overview of the cosmological constant paradox.

1.

Gravity knows about everything, whatever its origin, luminous or dark, even the
energy contained in fluctuating quantum fields.

As is well known, this leads us to one of the gravest puzzles of theoretical
physics. Consider the Feynman diagram with the graviton coupling to a matter
field (for example an electron field) loop. If we claim to understand the physics
of the electron field up to an energy scale of M, then the graviton sees an energy
density given schematically by Λ ∼ M 4 + M2m2

elog( M
me

) + m4
elog( M

me
) + · · · . Just

about any reasonable choice of M leads to a humongous energy density!!! In fact,
even if the first two terms were to be mysteriously deleted, there is still an energy
density of order m4

e, that is, an energy density corresponding to one electron mass
in a volume the size of the Compton wavelength of the electron, filling all of space,
which is clearly unacceptable.

Apparently, this disastrous prediction of quantum field theory has nothing to
do with quantum gravity. Indeed, the quantum field theory we need for the matter
field is merely free field theory: we are just adding up zero point energy of harmonic
oscillators.

The cosmological constant paradox may be summarized as follows. In some
suitable units, the cosmological constant was expected to have the value ∼ 10123.
This was so huge that it was decreed to be equal to = 0 identically, while the
measured value turned out to be ∼ 1. I have argued elsewhere that the proton
decay rate might offer an instructive lesson here.

I am presuming that the observed dark energy is the fabled cosmological con-
stant. The evidence seems increasingly to favor this simplest of hypotheses. Even
if this were not the case, much of the paradox still remains.

I define Λ by writing the Einstein-Hilbert action as
∫

d4x
√

g( 1
GR+Λ). It is useful

1336

“One of the gravest puzzles of 
theoretical physics”

175

(ΩΛ)QCD ∝< 0|qq̄|0 >4

Proc.Nat.Acad.Sci. 108 (2011) 45-50 “Condensates in Quantum Chromodynamics and the Cosmological Constant”R. Shrock, sjb

C. Roberts, R. Shrock, P. Tandy, sjb “New Perspectives on the Quark Condensate”Phys.Rev. C82 (2010) 022201
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Dark energy/cosmological constant
 causes accelerating expansion

Rµν −
1
2
gµνR− Λgµν = (8πGN )Tµν

1
a

d2

dt2
a = Λ/3 = (8π)GNρΛ/3

If the vacuum energy ρis due to QCD condensates 

ρQCD
Λ �M4

QCD � 1045ρobs
Λ !

ρc =
3H

2
0

8πGN
ΩΛ =

ρobs
Λ

ρc
� 0.76
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• Loop diagrams of all orders contribute

• Huge vacuum energy

•                                             Cutoff quad div at MPlanck

• :Normal order: prescription

• Divide S-matrix by disconnected vacuum diagrams

• Contrast: Light-Front Vacuum empty since plus momenta are  positive 
and conserved:

k+ = k0 + k3 > 0

E

V
=

�
d3k

2(2π)3

�
�k2 + m2

ΩΛ ∼ 10120

Instant Form Vacuum in QED
e+

e−
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Gell-Mann Oakes Renner Formula in QCD

current algebra: 
effective pion field

QCD: composite  pion
Bethe-Salpeter Eq.

vacuum condensate actually is an “in-hadron condensate”

Maris, Roberts, Tandyπ− < 0|q̄γ5q|π >

m2
π = − (mu + md)

fπ
< 0|iq̄γ5q|π >

m2
π = − (mu + md)

f2
π

< 0|q̄q|0 >
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Ward-Takahashi Identity for axial current

PµΓ5µ(k, P ) + 2imΓ5(k, P ) = S−1(k + P/2)iγ5 + iγ5S
−1(k − P/2)

S−1(�) = iγ · �A(�2) + B(�2) m(�2) =
B(�2)
A(�2)

Pµ γ5γ
µ

=
2imγ5

Pµ < 0|q̄γ5γ
µq|π >= 2m < 0|q̄iγ5q|π >

Identify pion pole at P 2 = m2
π

fπm2
π = −(mu + md)ρπ

plus non-pole
Γ5µ

Γ5
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-

ū

π− d

+

-π− d

+
-

ū

< π|γ̄µqγ5q|0 >

Lz = +1, Sz = −1

Lz = 0, Sz = 0

Running constituent mass at vertex

-

Couples to

Angular 
Momentum 

Conservation

∼ fπ

< π|q̄γ5q|0 > ∼ ρπ

Jz =
n�

i

Sz
i +

n−1�

i

Lz
i

Light-Front Pion Valence Wavefunctions
Sz

ū + Sz
d = +1/2− 1/2 = 0

Sz
ū + Sz

d = −1/2− 1/2 = −1
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ū

Running constituent mass at vertex

LF wavefunction couples to 

< π|q̄γ5q|0 >

m(�2; ζ) = B(�2; ζ)/A(�2; ζ)

Lz = +1, Sz = −1

-

ū
u -+

-
-π− d

+-
-π− d

+
-

running quark mass

ū

Lz = 0, Sz = 0

LF wavefunction couples to 

< π|γ̄µqγ5q|0 >

Lz = +1, Sz = −1
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S−1(p) = iγ · p A(p2) + B(p2) m(p2) =
B(p2)
A(p2)

Running quark mass in QCD

Dyson-Schwinger

No. X Lei Chang et al: Exploring the light-quark interaction 2

0 1 2 3
p [GeV]

0

0.1

0.2

0.3

0.4

M
(p

) [
G

eV
] m = 0 (Chiral limit)

m = 30 MeV
m = 70 MeV

effect of gluon cloud
Rapid acquisition of mass is

Fig. 1. Dressed-quark mass function, M(p):

solid curves – DSE results,[6, 7] “data” – nu-

merical simulations of unquenched lattice-

QCD.[8] In this figure one observes the

current-quark of perturbative QCD evolving

into a constituent-quark as its momentum be-

comes smaller. The constituent-quark mass

arises from a cloud of low-momentum glu-

ons attaching themselves to the current-quark.

This is dynamical chiral symmetry breaking:

an essentially nonperturbative effect that gen-

erates a quark mass from nothing ; namely, it

occurs even in the chiral limit.

tion of the integral, with Λ the regularisation mass-
scale, Dµν is the renormalised dressed-gluon prop-
agator, Γν is the renormalised dressed-quark-gluon
vertex, and mbm is the quark’s Λ-dependent bare
current-mass. The vertex and quark wave-function
renormalisation constants, Z1,2(ζ2,Λ2), depend on
the gauge parameter. The solution to Eq. (1) has the
form

S(p) =
Z(p2,ζ2)

iγ ·p+M(p2)
(2)

and it is important that the mass function, M(p2) =
B(p2,ζ2)/A(p2,ζ2) is independent of the renormalisa-
tion point, ζ. The form this function takes in QCD
is depicted in Fig. 1.

The behaviour of the dressed-quark mass function
is one of the most remarkable features of the Standard
Model. In perturbation theory it is impossible in the
chiral limit to obtain M(p2) != 0: the generation of
mass from nothing is an essentially nonperturbative
phenomenon. On the other hand, it is a longstand-
ing prediction of nonperturbative DSE studies that
DCSB will occur so long as the integrated infrared
strength possessed by the gap equation’s kernel ex-
ceeds some critical value.[2] There are strong indica-
tions that this condition is satisfied in QCD.[6–8]

It follows that the quark-parton of QCD acquires
a momentum-dependent mass, which at infrared mo-

menta is roughly 100-times larger than the light-
quark current-mass. This effect owes primarily to a
dense cloud of gluons that clothes a low-momentum
quark. It means that the Higgs mechanism is largely
irrelevant to the bulk of normal matter in the uni-
verse. Instead, the single most important mass gener-
ating mechanism for light-quark hadrons is the strong
interaction effect of DCSB; e.g., one may identify it
as being responsible for 98% of a proton’s mass.

Confinement can be connected with the analytic
properties of QCD’s Schwinger functions.[2, 4, 5, 9] In-
deed, the presence of an inflexion point in the DSE
prediction for the dressed-quark mass function, which
lattice simulations may be argued to confirm, sig-
nals confinement of the dressed-quark.[4] Kindred be-
haviour is observed in the gluon and ghost self-
energies.[10, 11]

From this standpoint the question of light-quark
confinement can be translated into the challenge of
charting the infrared behavior of QCD’s universal β-
function. (Although this function may depend on the
scheme chosen to renormalise the theory, it is unique
within a given scheme.) This is a well-posed problem
whose solution is an elemental goal of modern hadron
physics and which can be addressed in any framework
enabling the nonperturbative evaluation of renormal-
isation constants.

Through the gap and Bethe-Salpeter equations
(BSEs) the pointwise behaviour of the β-function de-
termines the nature of chiral symmetry breaking; e.g.,
the evolution in Fig. 1. Moreover, the fact that DSEs
connect the β-function to experimental observables
entails that comparison between computations and
observations of hadron properties can be used to chart
the β-function’s long-range behaviour.

2 DSE truncations:

preserving symmetry

In order to realise this goal a nonperturbative
symmetry-preserving DSE truncation is necessary.
Steady quantitative progress continues with a scheme
that is systematically improvable.[12, 13] Indeed, its
mere existence has enabled the proof of exact non-
perturbative results in QCD. Amongst them are ve-
racious statements about the η-η′ complex and π0-
η-η′ mixing, with predictions of θηη′ = −15◦ and
θπ0η = 1◦.[14] Only studies that are demonstrably con-
sistent with the results proved therein can be consid-
ered seriously.

It is also true that significant qualitative ad-
vances can be made with symmetry-preserving kernel

Chang, Cloet, 
El-Bennich

Klahn, Roberts

Consistent with EW input 
at high p2

Survives even at m=0!

Spontaneous Chiral 
Symmetry Breaking!
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New perspectives on the quark condensate
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We show that the chiral-limit vacuum quark condensate is qualitatively equivalent to the pseudoscalar meson
leptonic decay constant in the sense that they are both obtained as the chiral-limit value of well-defined gauge-
invariant hadron-to-vacuum transition amplitudes that possess a spectral representation in terms of the current-
quark mass. Thus, whereas it might sometimes be convenient to imagine otherwise, neither is essentially a constant
mass-scale that fills all spacetime. This means, in particular, that the quark condensate can be understood as a
property of hadrons themselves, which is expressed, for example, in their Bethe-Salpeter or light-front wave
functions.

DOI: 10.1103/PhysRevC.82.022201 PACS number(s): 11.30.Rd, 14.40.Be, 24.85.+p, 11.15.Tk

Nonzero vacuum expectation values of local operators,
i.e., condensates, are introduced as parameters in QCD sum
rules, which are used to estimate essentially nonperturbative
strong-interaction matrix elements. They are also basic to
current algebra analyses. It is widely held that such quark
and gluon condensates have a physical existence, which is
independent of the hadrons that express QCD’s asymptotically
realizable degrees-of-freedom; namely, that these condensates
are not merely mass-dimensioned parameters in a theoretical
truncation scheme, but in fact describe measurable spacetime-
independent configurations of QCD’s elementary degrees-of-
freedom in a hadronless ground state.

We share the view that these condensates are fundamental
dynamically-generated mass-scales in QCD. However, we
shall argue that their measurable impact is entirely expressed
in the properties of QCD’s asymptotically realizable states;
namely hadrons. In taking this position we have assumed
confinement, from which follows quark-hadron duality and
hence that all observable consequences of QCD can, in
principle, be computed using a hadronic basis. Here, the term
“hadron” means any one of the states or resonances in the
complete spectrum of color-singlet bound states generated by
the theory.

We focus herein on 〈0|q̄q|0〉, where |0〉 is viewed as
some hadronless ground state of QCD. This is the vacuum
quark condensate. Its nonzero value is usually held to signal
dynamical chiral symmetry breaking (DCSB), a concept
of critical importance in QCD, whose connection with the
dressed-quark propagator was anticipated [1–5] (see also
references therein). As reviewed elsewhere (most recently,
e.g., Refs. [6–8]), DCSB is a remarkably efficient mass-
generating mechanism, the origin of constituent-quark masses
and intimately connected with confinement. It is also the basis
for the successful application of chiral-effective field theories
(see, e.g., Refs. [9,10] for contemporary perspectives). On the
face of it, this seems far more than can be understood simply
in terms of a nonzero vacuum expectation value 〈0|q̄q|0〉.

The notion that nonzero vacuum condensates exist and
possess a measurable reality has long been recognized as
posing a conundrum for the light-front formulation of QCD.
This formulation follows from Dirac’s front form of relativistic
dynamics [11], and is widely and efficaciously employed
in perturbative and nonperturbative QCD [12,13]. In the
light-front formulation, the ground state is a structureless Fock
space vacuum, in which case it would seem to follow that
DCSB is impossible. In response, it was argued by Casher
and Susskind [14] that, in the light-front framework, DCSB
must be a property of hadron wave functions, not of the
vacuum. This thesis has also been explored in a series of recent
articles [15–17].

A nonzero spacetime-independent QCD vacuum conden-
sate also poses a critical dilemma for gravitational interactions
because it would lead to a cosmological constant some
45 orders of magnitude larger than observation. As noted
elsewhere [15], this conflict is avoided if strong interaction
condensates are properties of rigorously well-defined wave
functions of the hadrons, rather than the hadronless ground
state of QCD.

Given the importance of DCSB and the longstanding
puzzles described above, we will focus our attention on
the vacuum quark condensate. The essential issues become
particularly clear in the context of the Gell-Mann–Oakes–
Renner relation [18,19], which is usually understood as the
statement

f 2
π m2

π = −
(
mu

ζ + md
ζ

)
〈q̄q〉0

ζ , (1)

wherein mπ is the pion’s mass; fπ is its leptonic decay
constant; m

q
ζ , with q = u, d, is the current-quark mass at a

renormalization scale ζ ; and 〈q̄q〉0
ζ is the chiral-limit vacuum

quark condensate, with a precise definition of the chiral limit
given below in Eqs. (8), (9). In arriving at Eq. (1) using
standard methods, one makes truncations; namely, soft-pion
techniques [20] have been used to relate an in-pion matrix

0556-2813/2010/82(2)/022201(5) 022201-1 ©2010 The American Physical Society

183

QCD: Zero Contribution to Dark Energy, Cosmological Constant!



 
QCD Problem Solved if quark and gluon condensates reside within hadrons, not vacuum!

ΩΛ = 0.76(expt)
(ΩΛ)EW ∼ 1056

(ΩΛ)QCD ∼ 1045

June 10, 2008 12:22 WSPC/Guidelines-MPLA 02770

Modern Physics Letters A
Vol. 23, Nos. 17–20 (2008) 1336–1345
c© World Scientific Publishing Company

DARK ENERGY AND
THE COSMOLOGICAL CONSTANT PARADOX

A. ZEE

Department of Physics, University of California, Santa Barbara, CA 93106, USA
Kavil Institute for Theoretical Physics, University of California,

Santa Barbara, CA 93106, USA
zee@kitp.ucsb.edu

I give a brief and idiosyncratic overview of the cosmological constant paradox.

1.

Gravity knows about everything, whatever its origin, luminous or dark, even the
energy contained in fluctuating quantum fields.

As is well known, this leads us to one of the gravest puzzles of theoretical
physics. Consider the Feynman diagram with the graviton coupling to a matter
field (for example an electron field) loop. If we claim to understand the physics
of the electron field up to an energy scale of M, then the graviton sees an energy
density given schematically by Λ ∼ M 4 + M2m2

elog( M
me

) + m4
elog( M

me
) + · · · . Just

about any reasonable choice of M leads to a humongous energy density!!! In fact,
even if the first two terms were to be mysteriously deleted, there is still an energy
density of order m4

e, that is, an energy density corresponding to one electron mass
in a volume the size of the Compton wavelength of the electron, filling all of space,
which is clearly unacceptable.

Apparently, this disastrous prediction of quantum field theory has nothing to
do with quantum gravity. Indeed, the quantum field theory we need for the matter
field is merely free field theory: we are just adding up zero point energy of harmonic
oscillators.

The cosmological constant paradox may be summarized as follows. In some
suitable units, the cosmological constant was expected to have the value ∼ 10123.
This was so huge that it was decreed to be equal to = 0 identically, while the
measured value turned out to be ∼ 1. I have argued elsewhere that the proton
decay rate might offer an instructive lesson here.

I am presuming that the observed dark energy is the fabled cosmological con-
stant. The evidence seems increasingly to favor this simplest of hypotheses. Even
if this were not the case, much of the paradox still remains.

I define Λ by writing the Einstein-Hilbert action as
∫

d4x
√

g( 1
GR+Λ). It is useful

1336

“One of the gravest puzzles of 
theoretical physics”
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(ΩΛ)QCD ∝< 0|qq̄|0 >4

Proc.Nat.Acad.Sci. 108 (2011) 45-50 “Condensates in Quantum Chromodynamics and the Cosmological Constant”R. Shrock, sjb

C. Roberts, R. Shrock, P. Tandy, sjb “New Perspectives on the Quark Condensate”Phys.Rev. C82 (2010) 022201
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• Test QCD to maximum precision

• High precision determination of               at all scales

• Relate observable to observable --no scheme or scale 
ambiguity

• Eliminate renormalization scale ambiguity in a 
scheme-independent manner

• Relate renormalization schemes without ambiguity

• Maximize sensitivity to new physics at the colliders 

αs(Q2)

Goals
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FIG. 9: The ET distribution of the second jet at LO and NLO, for two dynamical scale choices,

µ = EW
T (left plot) and µ = ĤT (right plot). The histograms and bands have the same meaning

as in previous figures. The NLO distribution for µ = EW
T turns negative beyond ET = 475 GeV.

the NLO cross section: too low a scale at NLO will make the total cross section unphysically

negative.

This diagnostic can be applied bin by bin in distributions. For example, in fig. 9 we show

the ET distribution of the second-most energetic jet of the three, at the LHC. In the left plot

we choose the scale to be the W transverse energy EW
T (defined in eq. (3.3)) used earlier in

the Tevatron analysis. Near an ET of 475 GeV, the NLO prediction for the differential cross

section turns negative! This is a sign of a poor scale choice, which has re-introduced large

enough logarithms of scale ratios to overwhelm the LO terms at that jet ET . Its inadequacy

is also indicated by the large ratio of the LO to NLO distributions at lower ET , and in the

rapid growth of the NLO scale-dependence band with ET . In contrast, the right panel of

fig. 9 shows that ĤT (defined in eq. (2.10)) provides a sensible choice of scale: the NLO

cross section stays positive, and the ratio of the LO and NLO distributions, though not

completely flat, is much more stable.

Why is µ = EW
T such a poor choice of scale for the second jet ET distribution, compared

with µ = ĤT ? (For an independent, but related discussion of this question, see ref. [40].)

Consider the two distinct types of W + 3 jet configurations shown in fig. 10. If configuration

(a) dominated, then as the jet ET increased, EW
T would increase along with it, by conser-

32

Next-to-Leading Order QCD Predictions for W + 3-Jet Distributions at Hadron Colliders

C. F. Berger,  Z. Bern, L. J. Dixon, F. Febres Cordero,  D. Forde,  T. Gleisberg,  H. Ita,  D. A. Kosower,  and D. Maıtre

Black Hat 

µR = µF = EW
T µR = µF = ĤT

Negative rate at NLO!
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Electron-Electron Scattering in QED

t u

This is very important!

This is very important!

This is very important!

This is very important!

α(t) = α(0)
1−Π(t)

α(t) = α(t0)
1−Π(t,t0)

Gell-Mann--Low Effective Charge
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This is very important!

This is very important!

This is very important!

This is very important!

α(t) = α(0)
1−Π(t)

α(t) = α(t0)
1−Π(t,t0)

This is very important!

This is very important!

This is very important!

This is very important!

α(t) = α(0)
1−Π(t)

α(t) = α(t0)
1−Π(t,t0)

This is very important!

This is very important!

This is very important!

This is very important!

+

α(t) = α(0)
1−Π(t)

α(t) = α(t0)
1−Π(t,t0)

This is very important!

This is very important!

This is very important!

This is very important!

+

+ · · ·+

α(t) = α(0)
1−Π(t)

α(t) = α(t0)
1−Π(t,t0)

All-orders lepton-loop corrections to dressed photon propagator

This is very important!

This is very important!

This is very important!

This is very important!

+

α(t) = α(0)
1−Π(t)

α(t) = α(t0)
1−Π(t,t0)

�−

α(t) = α(0)
1−Π(t)

α(t) = α(t0)
1−Π(t,t0)

Π(t, t0) = Π(t)−Π(t0)
1−Π(t0)

t = −Q2 < 0

Π(Q2) =

QED Effective Charge
�−

< 0|Gµν(x)Gστ(0)|0 >

Gµν = ∂µAν − ∂νAµ + ig[Aµ, Aν]

Π

α(t) = α(0)
1−Π(t)

α(t) = α(t0)
1−Π(t,t0)

�−

< 0|Gµν(x)Gστ(0)|0 >

Gµν = ∂µAν − ∂νAµ + ig[Aµ, Aν]

Π

α(t) = α(0)
1−Π(t)

α(t) = α(t0)
1−Π(t,t0)

�−

< 0|Gµν(x)Gστ(0)|0 >

Gµν = ∂µAν − ∂νAµ + ig[Aµ, Aν]

Π

α(t) = α(0)
1−Π(t)

α(t) = α(t0)
1−Π(t,t0)

Initial scale  t0  is arbitrary -- Variation gives RGE Equations
Physical renormalization scale  t  not arbitrary! 



• No renormalization scale ambiguity!   

• Two separate physical scales: t, u = photon virtuality  

• Gauge Invariant.  Dressed photon propagator

• Sums all vacuum polarization, non-zero beta terms into running 
coupling.   This is the purpose of the running coupling!

• If one chooses a different initial scale, one must sum an infinite number 
of graphs -- but always recover same result!  

• Number of active leptons correctly set 

• Analytic: reproduces correct behavior at lepton mass thresholds

• No renormalization scale ambiguity!     

189

Electron-Electron Scattering in QED

t u
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Another Example in QED: Muonic Atoms

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ

Z

ψH(x,�k⊥, λi)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ

Z

e+e−

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ−

Z

e+e−

V (q2) = −ZαQED(q2)
q2

αQED = 1
1−Π(Q2)

ψH(x,�k⊥, λi)

pH

x,�k⊥

1− x,−�k⊥

V (q2) = −ZαQED(q2)
q2

αQED(q2) =
αQED(0)
1−Π(q2)

ψH(x,�k⊥, λi)

pH

x,�k⊥

1− x,−�k⊥

Scale is unique:  Tested to ppm

e
+

e
−

V (q2) = −ZαQED(q2)
q2

αQED(q2) =
αQED(0)
1−Π(q2)

µ
2
R
≡ q

2

ψH(x,�k⊥, λi)

pH

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ−

q

Z
This is very important!

This is very important!

This is very important!

This is very important!

Gyulassy: Higher Order VP verified to

0.1% precision in µ Pb

+
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µ2
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Q2
minQ2

med
Q2

max

µ2
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p2
minp2

med
p2
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xµ = µR√
s

e+e− → γ∗ → 4jets

�+

�−

µ2
R �

Q2
minQ2

med
Q2

max

µ2
R �

p2
minp2

med
p2
max

xµ = µR√
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e+e− → γ∗ → 4jets

�+

�−
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med
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med
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e+e− → γ∗ → 4jets
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med
Q2

max
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R �

p2
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med
p2
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s
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Q

Q̄
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R �
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med
Q2
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µ2
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p2
minp2

med
p2
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xµ = µR√
s

e+e− → γ∗ → 4jets

Q

Q̄

Example of Multiple BLM Scales

 Angular distributions of massive quarks close to threshold.

Hoang, Kuhn, Teubner, sjb

Need QCD coupling at small scales at low 
relative velocity v

F1 + F2 =
�
1− 2

αs(se3/4/4)
π

�
×

�
1 +

παs(sv2)
4v

�
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Relation between scales of the
Gell -Mann--Low and  MS schemes

log
µ2

0

m2
�

= 6
� 1

0
x(1− x) log

m2
� + Q2

0x(1− x)
m2

�

log
µ2

0

m2
�

= log
Q2

0

m2
�

− 5/3

µ2
0 = Q2

0 e−5/3 when Q2
0 >> m2

�
D. S. Hwang, sjb

M. Binger

Can use MS scheme in QED; answers are scheme independent
Analytic extension: coupling is complex for timelike argument
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QCD Observables

Scale-Free 
Conformal Series

Running Coupling
Effects

O = C(αs(µ2
0)) + B(β log

Q2

µ2
0

) + D(
m2

q

Q2
) + E(

Λ2
QCD

Q2
) + F (

Λ2
QCD

m2
Q

) + G(
m2

q

m2
Q

)

Intrinsic Heavy 
Quarks

Higher Twist from 
Hadron Dynamics

O = C(αs(Q∗2)) + D(
m2

q

Q2
) + E(

Λ2
QCD

Q2
) + F (

Λ2
QCD

m2
Q

) + G(
m2

q

m2
Q

)

BLM: Absorb β  terms 
into running coupling

Light by Light 
Loops
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The Renormalization Scale Problem

• No renormalization scale ambiguity in QED 

• Gell Mann-Low QED Coupling defined from physical observable 

• Sums all Vacuum Polarization Contributions

• Recover conformal series

• Renormalization Scale in QED scheme: Identical to Photon Virtuality

• Analytic: Reproduces lepton-pair thresholds -- number of active leptons set

• Examples:  muonic atoms, g-2, Lamb Shift

• Time-like and Space-like QED Coupling related by analyticity

• Uses Dressed Skeleton Expansion

• Results are scheme independent!

• Predictions for physical observables 
cannot be scheme dependent
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  On The Elimination Of Scale Ambiguities In Perturbative Quantum Chromodynamics.

Phys.Rev.D28:228,1983 Lepage, Mackenzie, sjb

Features of BLM Scale Setting

• “Principle of Maximum Conformality”

• All terms associated with nonzero beta function summed into 
running coupling

• Standard procedure in QED

• Resulting series identical to conformal series 

• Renormalon n! growth of PQCD coefficients from beta function 
eliminated!

• Scheme Independent!!!

• In general, BLM/PMC scales depend on all invariants

• Single Effective PMC scale at NLO

Di Giustino, sjb
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Relate Observables to Each Other

• Eliminate intermediate scheme

• No scale ambiguity 

• Transitive!

• Commensurate Scale Relations

• Conformal Template

• Example: Generalized Crewther Relation
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Effective Charges: analytic at quark mass thresholds,  finite at small momenta

Define QCD Coupling from Observables

Re+e−→X(s) ≡ 3Σqe2q [1 + αR(s)
π ]

Γ(τ → Xeν)(m2
τ ) ≡ Γ0(τ → ud̄eν)×[1+ατ(m2

τ )
π ]

Re+e−→X(s) ≡ 3Σqe2q [1 + αR(s)
π ]

Γ(τ → Xeν)(m2
τ ) ≡ Γ0(τ → ud̄eν)×[1+ατ(m2

τ )
π ]

Commensurate scale relations: 
Relate observable to observable at commensurate scales

Grunberg

H.Lu, Rathsman, sjb
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 Eliminate MSbar, 
Find Amazing Simplification
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[1 + αR(s∗)
π ][1− αg1(q

2)
π ] = 1

√
s∗ � 0.52Q

[1 + αR(s∗)
π ][1− αg1(q

2)
π ] = 1

√
s∗ � 0.52Q

Generalized Crewther Relation

Conformal relation true to all orders in 
perturbation theory

No radiative corrections to axial anomaly
Nonconformal terms set relative scales (BLM)

Analytic matching at quark thresholds
No renormalization scale ambiguity!

Lu, Kataev, Gabadadze, Sjb
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Relate Observables to Each Other

• Eliminate intermediate scheme

• No scale ambiguity 

• Transitive!

• Commensurate Scale Relations

• Conformal Template

• Example: Generalized Crewther Relation
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 Eliminate MS 
Find Amazing Simplification
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Geometric Series in Conformal QCD

Generalized Crewther Relation

Lu, Kataev, Gabadadze, Sjb
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[1 + αR(s∗)
π ][1− αg1(q

2)
π ] = 1

√
s∗ � 0.52Q

[1 + αR(s∗)
π ][1− αg1(q

2)
π ] = 1

√
s∗ � 0.52Q

Generalized Crewther Relation

Conformal relation true to all orders in 
perturbation theory

No radiative corrections to axial anomaly
Nonconformal terms set relative scales (BLM)

No renormalization scale ambiguity!

Lu, Kataev, Gabadadze, Sjb

Both observables go through new quark thresholds
at commensurate scales!
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Transitivity Property of Renormalization Group

A B

C

A      C C      B A       B identical to 

Relation of observables must be independent of intermediate scheme 

Violated by PMS!



• Renormalization scale “unphysical”:  No optimal physical scale

• Can ignore possibility of multiple physical scales

• Accuracy of PQCD prediction can be judged by taking arbitrary 
guess                 with an arbitrary range  

• Factorization scale should be taken equal to renormalization 
scale

207

Myths concerning scale setting

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

ψH(x,�k⊥, λi)

pH

x,�k⊥

These assumptions are untrue in QED 
and thus they cannot be true for QCD

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

ψH(x,�k⊥, λi)

pH

x,�k⊥

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

ψH(x,�k⊥, λi)

pH

x,�k⊥

Clearly heuristic. Wrong in QED. Scheme dependent!
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Novel JLab-12 Topics

• DVCS, DVMS, Hard Exclusive Processes at the 
Amplitude Level

• J=0 Fixed Pole

• Diffractive DIS

• Hidden Color in Deuteron

• x > 1 in Nuclei

• Nuclear Form Factors, Exclusive Amplitudes at large 
Q2

• Shadowing, antishadowing, EMC

• Jet Energy Loss, LPM Non-Abelian Effect
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Key Experiments at JLab 12 GeV
• Non-Universal Antishadowing

• Charm at High x

• J=0 Fixed Pole in DVCS

• Neutron Form Factors

• Compton Scaling at fixed t/s

• Quarkonium nuclear target dependence 

• Color Transparency in high Q Electroproduction, Quasielastic Processes

• Direct Production of Hadrons at High pT

• Signals of Hidden Color in the Deuteron:  x > 1

• Sivers Effect

• Generalized Crewther Relation

• True Muonium Production

Studies of QCD just beginning! 
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Outstanding QCD Problems

• Solving Hadron Spectroscopy and Dynamics Simultaneously   

• Proton Spin

• Anti-Shadowing is Not Universal

• Breakdown of QCD Factorization Theorems

• The Baryon Anomaly at RHIC

• The DZero Anomaly: heavy quarks  at large x 

• Setting the Renormalization Scale

• QCD condensates and Dark Energy 

• Fixing the D Term in DVCS

•                                               puzzle

• Anomalous Physics of Sea Quarks

• Hadronization at the Amplitude Level

• QCD Running Coupling in the Infrared

J/ψ → ρπ
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More Outstanding QCD Problems
• Single inclusive high-pT hadrons -- wrong scaling !

• Quark Interchange dominance in hadron scattering reactions

• Quarkonium nuclear target dependence 

• The Same-Side Ridge at CMS

• How to Find the Odderon?

• Signals of Hidden Color in the Deuteron

• Quark-Gluon Phase of Heavy Ion Collisions

• Quark-Gluon Phase in the Target Frame

• The Top/anti-Top Asymmetry

• Color Transparency and Opaqueness

• Krisch ANN

• ...
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“ Working with a front is a process that is unfamiliar to physicists.

But still I feel that the mathematical simplification that it introduces

is all-important. I consider the method to be promising and have recently

been making an extensive study of it. It offers new opportunities,

while the familiar instant form seems to be played out ”

P.A.M. Dirac (1977)

IUSS, Ferrara, May 27, 2011 Page 36



Future Directions
• BLFQ -- use AdS/QCD basis to diagonalize HLF

• Lippmann-Schwinger -- perturbatively generate higher Fock States and 
systematically approach QCD   Hiller and Chabysheva

• Transverse Lattice

• Hadronization at the Amplitude Level -- Off-Shell T-matrix convoluted 
with AdS/QCD LFWFs

• Hidden Color  C. Ji , Lepage, sjb

• Intrinsic Heavy Quarks from confinement interaction

• BLM/PMC -- Automatic Scale Setting -- pinch scheme

• Direct Processes at the LHC 

• Dynamic vs. Static Structure Functions

• AdS/QCD for DVCS, Hadrons with Heavy Quarks

• LF Vacuum, In-Hadron Condensates, Zero-Modes, and the Cosmological Constant

Binosi, 
Cornwall,

Popavassiliu
Binger 

di Giustino
sjb

Burkardt 
Dalley
Hiller

Vary 
Honkanen

et al.
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Exploring QCD, Cambridge, August 20-24, 2007 Page 9

c

c

c̄

P+ = P0 + Pz

Fixed τ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

ψ(σ, b⊥)

β = dαs(Q2)
d lnQ2 < 0

u
AdS/QCD & Light-Front Holography

QCD Myths

Stan Brodsky 


