Distinguishing D-Y Resonances @ the LHC
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A Z’-like state at the TeV scale in the Drell-Yan channel
is a very common prediction in many BSM scenarios:

» Extended SUSY-GUT groups

* Sneutrinos in R-Parity violating SUSY

* String constructions/intersecting branes
» Little Higgs models

* Hidden Valley/Sector models

« Extra dimensions: gauge & graviton KK's
 String excitations

* Twin Higgs models

» Unparticles

* Wimponia

The LHC will open up a window to look for such states very
soon... but how do we know what we've found??? 2
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There are many ways to categorize these models but, thinking
about specific signatures, | like to broadly classify them in the

following way: 0901.2125
x10°

120 L =100 fb™'

e ‘canonical’ states i
* ‘weakly-coupled’ states
* ‘wrong-spin’ states i
* ‘wrong resonance profile’ states

0 200 300 350 400

250
M,._-(GeV)
By ‘wrong’ | mean somewhat unusual in comparison to, e.g., a
common, ordinary, ‘run-of-the-mill' GUT-inspired Z’ we've talked
about for many years.

Placing a newly discovered leptonic resonance into one of these
bins is the first step towards identifying the underlying theory. s



As is well-known, the D-Y channel is a particularly clean one.
It is reasonable to expect that enough observables will exist
to allow for some restrictions on the underlying theory once
such new states are discovered and enough statistics are

available.
What so we know so far? The Tevatron has told us that Z'-like

states, if they exist, are either reasonably massive or are
weakly coupled to the SM...
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Z'— leptons is a very clean mode and may provide the first signal
of new physics to be observed at the LHC... even with Vs=10 TeV
and a low integrated luminosity...
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Signal at Different Vs With Low Luminosity
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Eventually the Z' 5¢ reach will extend up to ~4 TeV and beyond
for ‘conventional’ GUT-inspired models once sufficient lumi
Is accumulated....
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Remember:

W'-like states are also important!

While we're discussing Z'-like states, let’s not forget that there
can also be corresponding W’-like states that occur in several of
these same models...due to the missing E; from neutrinos in the
conventional Drell-Yan channel there is generally less information
available to analyze in these cases (un/ess the RH neutrinos are
heavy and their decays are also observed...)

We may further subdivide the Z’ classification above by whether
or not a corresponding charged state exists

The interplay of the measured W’ and Z' properties may provide
critical information about the underlying model 12
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If a resonance, X, is observed in the Drell-Yan channel,
what do we want to know about it? Plenty!!

THE OBVIOUS BASICS

* lineshape: mass (M), cross section (o), width (I'), etc. -
Is it really a Breit-Wigner?? — Detector resolution issues!

* spin = 7?77 Is it a graviton (S=2), a sneutrino (S=0) or a ‘gauge
boson’ (S=1), or ‘'some combination’? — angular distribution
of leptons

» Determine the couplings of X to the fields of the SM. (Note if
X-vythen S # 1). Is there generation dependence?
This is important if we want to access the underlying
fundamental theory.

14



Unparticle Resonances : a non-Breit-Wigner example
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Recall that as d increases the unparticle becomes ‘narrower’
for the same reduced ‘width’ but this effect is washed away to
some extent by the finite detector resolution.



What can we conclude??

With enough luminosity, ~100 fb-1, /fthe unparticle is sufficiently
strongly coupled to SM fields and //the effective dimension, d,
Is sufficiently far from unity, it will be possible to state with some
confidence that the resonance does not have a B-W lineshape.

Due to detector resolution, it is possible that much of this
information will come from the interference regime below the
resonance peak as well as the tail of the distribution above it.

However, to say much more will require a more realistic
detector-level study.

17
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Resonance Spin

qg-X-I*I- angular distributions are

gg contributions may be important too.
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Careful!
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String resonances, e.g., may be a combination of several spin
states being produced simultaneously so that the angular
distribution of the final state leptons may be more complicated....

19



If a spin-1, B-W object is found, what’s next?
COUPLING DETERMINATIONS

How many independent couplings are there?? Even in the
simplest possible scenario, where the Z' couples in a
generation-independent manner and [Q,., SU(2),]=0, there
are 5 coupling constants to determine corresponding to the 5
SM fields Q,L,u¢,d® & e¢. Are there enough observables at the
LHC to uniquely determine these 5 quantities independently??

Unfortunately, it appears the answer is likely ‘No’!!!

Remember also that we want to do this coupling determination
with as few additional assumptions as possible, e.g., allowing

for the possible decay of the Z’ into nhon-SM final states. -



What observables do we have to perform this analysis???

* o & I" independently are sensitive to decay assumptions but
the product oI” ~ is not. This product can be determined at

the ~ 5-10% uncertainty level at the LHC with high lumi for
conventional models....

Table 1.2. Results on o and oy % 'z, for all studied models from ATLAS.
Here one compares the input values from the generator with the reconstructed
values obtained after full detector simulation.

ap (fb) ole°(fh) 1% % yee (fb.GeV)
SSM  78.44£0.8 78.5£1.8 35504137
" 22.6+0.3 22.7+0.6 166+15
M =15TeV X A7.5£0.6 18.4£1.3 S00£47
n 26.2£0.3 21.6£0.6 212£16
LR 50.5840.6 51.1£1.3 1495£72
Mooy OSM o 0.16+0.002  0.1620.004 19+£1
KK 2.240.07 2.240.12 331£35

21



* Agg both on- & off- resonance

Forward backward asymmetry measurement
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ATLAS/CMS simulations indicate these can be reasonably
well measured at the LHC:
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ATLAS

Table 1.3. Measured on-peak Apg for all studied models in the central mass
bin from ATLAS. Here the raw walue obtained before dilution corrections is
labeled as ‘Observed’.

Model | [C(fb~") | Generation | Observed | Corrected
1.5TeV
SS5M 100 +0.058 £ 0013 | +0.060 £ 0,022 | +0.108 £ 0.027
¥ 100 —0.386 £ 0013 [ —0.144 £0.025 [ —0.361 £ 0.030
7 100 —0.112 £ 0019 | —0.067 £ 0,032 | —0.204 £+ 0.030
7 300 —0.000 £ 0011 | —0.050 £0.018 | —0.120 £ 0.022
Ul 100 +0.008 £ 0,020 [ —0.056 £0.033 | —0.070 £ 0.042
s 300 +0.010 £ 0011 | —0.019 £ 0019 [ —0.011 £0.024 On- & Oﬁ-peak
LR 100 +0177 £ 0,016 | +0.100 + 0.026 [ 40185 £ 0.032 .
e simulated
SS5M 10000 +0.057 £ 00023 | —0.001 £0.040 | +0.078 £ 0.051 A ’
KK 500 F0401 T 0.028 | 10180 £ 0.067 | 0457 £0.073 measurements’ of
Az by ATLAS with
FB
large integrated
Table 1.4. Measured off peak, 0.8 < A = 1.4 TeV, Ap g for all studied models . o
from ATLAS using the same nomenclature as above. Iu Mmi nOSItleS
Model | J£(fb~ ") | Generation | Observed |  Corrected
1.5TeV
SSM 100 +0.077 £ 0,025 | +0.086 &£ 0.038 [ +0.171 £ 0.045
X 100 +0.440 = 0.019 | +0.180 £ 0.032 | +0.354 = 0.039
i 100 +0.5093 = 0.016 | +0.257 £ 0.033 | +0.561 = 0.039
LS 100 +0.673 £ 0012 | +0.204 £ 0.033 | +0.568 = 0.039
LA 100 +0.303 = 0.022 | +0.180 £ 0.033 | +0.327 = 0.040

23



- Rapidity distributions

Shape of the different quark fractions

M. Dittmar et al.

Rapidity distribution
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Comparison of Ry values determined at the generator level and after detector

simulation by ATLAS.



To first approximation these observables really on/y probe

the 4 coupling combinations
M 7 Carena et al.
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which can be reasonably well determined in a simultaneous fit
...even including NLO QCD contributions 2



Other Possible Z’ Observables For
Coupling Determinations

« /' »171 polarization measurement

» Associated on-shell Z’ + (W,Z,y) production
» Rare Decays: Z' - ff'V (V= W,Z; f=1,v)
«Z - WW, Zh

« /' -»bb, tt

These have not been studied in full detail for the LHC but

all require quite high luminosity even for a light Z’ -



Generation-Dependent Couplings

* These are common, e.g., for KKs in ED setups (i.e., RS)

* It is very likely that e-u universality will be reasonably well
satisfied by any new resonances but will be easily tested.

* The real issue is with the models which treat the third
generation, i.e., t’s, differently. These are more difficult to
see due to both reduced efficiencies as well as the larger

SM backgrounds

* |t is important to measure how badly universality is violated,
Is it ~10% oris it O(1) as these can possibly point to very

different classes of underlying models. .
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Weakly Coupled (to the SM) Resonances

Lighter DY resonant states may exist with masses below ~1 TeV
that are so weakly coupled that they get missed at the Tevatron
due to poor S/VB but can still can show up at the LHC...
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» Generally weakly coupled — narrow with small cross section,
e.g., 2" KKs in UED, Stueckelberg Z' or Wimponia

* ‘Normally’ coupled to a hidden sector - standard width but
small cross section, e.g., Hidden Valley models

In many cases the SM couplings are induced by either mass
mixing via Higgs fields, in which case the resonance looks like a
SSM Z’ with scaled-down couplings, or via gauge kinetic mixing:

| l - - I SN Y
B o — Hy _I_Fj I_Fj.l"“"' . __l,ul"" _I.ul"".l"“"' _l.ul"" I_Fj.'"“'"

The coupling is then ~ gyY sin v, i.e., weakly coupled to
hypercharge. This also happens for the Stueckelberg Z'.
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Events/Bin /300 b~

If the coupling is not too small the Z’ will still be easily seen
provided it is not too massive..
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For low lumi the situation is much more difficult especially if
the dilepton mass resolution is poor..
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SSM with each lower histogram coupling 7z of the previous one.
One can argue whether or not the 1/16 case is visible assuming
a 1% mass resolution (no), but it clearly is not in the 3% case,
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EVENTS/BIN/100 fb~*

EVENTS/BIN /300 fb~!
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Looking at this another way..

at high luminosity rather
small values of scaled SSM
couplings can be accessible
if the Z’ is not too heavy.

But at some point we just
run out of steam
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The problem can much more severe for even smaller couplings
or for heavier states...

hep-ph/0606183

0.16
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—_LHC
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0.04
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200 400 600 800 1000
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FIG. 4: Detection plot of estimated 50 confidence level of X -
boson that kinetically mixes with hypercharge. Detection for
Tevatron (8fb— '), LHC (100fb—1'), LEP (/s = 206 GeV and
725 pb~ 1), and ILC (/s = 500 GeV and 500fb~!) can occur

at points above their respective lines.
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..and similarly..
hep-ph/0606249
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EVENTS/BIN /30 fb~!

W’ Coupling Helicity

W’ are usually chiral so the most critical issue is to determine
the handedness of its couplings to SM fermions

* This cannot be done on the ‘peak’ of the transverse mass
distribution BUT can be done in the W-W’ interference
region given enough integrated luminosity

600 [T | T T T T | T T T T | T T T — lﬂ"l L B

500 F
108 L
400
300 F

102

200 F

EVENTS/BIN /300 fb~?

10!
100

500 1000 1500 2000 100 ——




A W’ with small couplings will also have some visibility issues...
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Summary

* D-Y resonances come in many shapes & sizes but should be
easy to spot at the LHC if they are not too heavy or if their
couplings to the SM are not too small

* We need to differentiate states with various (combinations of)
spins and to identify non-BW resonance line shapes.

* Insufficient info available to uniquely determine Z' couplings?

* More detailed studies of narrow states are required at the
detector level to understand what is & is not observable &
what properties can be measured.

* The interplay of results from Z'-like & W’-like states may be
important in identifying the underlying theory
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Z’ bounds can also arise from precision measurements, e.g.,
APV (0902.0335)
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dilepton invariant mass (b) for backgrounds and two signal points in the search for W' bosons

decaying following the chain W
_5 correspond to masses my» = 1800 GeV, my
= 500 GeV respectively.

and LRSM_15

MN g

' — uNp,Np — pW™* W"™ — gq’. The signal points LRSM_18_3
= 300 GeV and my» = 1500 GeV,
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It’s
a Snake!

c/o A. DeRoeck
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