

The AdS/CFT Correspondence and Light-Front QCD

> Stan Brodsky, SLAC Columbía Uníversity

February 18, 2008

Applications of AdS/CFT to QCD

Changes in physical length scale mapped to evolution in the 5th dimension z

in collaboration with Guy de Teramond

Columbia Seminar February 18, 2008

QCD on the LF

Goal:

- Use AdS/CFT to provide an approximate, covariant, and analytic model of hadron structure with confinement at large distances, conformal behavior at short distances
- Analogous to the Schrodinger Theory for Atomic Physics
- AdS/QCD Holographic Model
- Light-Front Hadron Wavefunctions

Light-Front Wavefunctions: rigorous representation of composite systems in quantum field theory

Columbia Seminar February 18, 2008

QCD on the LF

'Tis a mistake / Time flies not It only hovers on the wing Once born the moment dies not 'tis an immortal thing

...A moment standing still for ever.

James Montgomery 1833

Sed fugit, interea, fugit irreparabile tempus. VIRG. Georg. iii. 284.

Columbia Seminar February 18, 2008 **QCD on the LF**

The poetical works of James Montgomery

TIME. 197	138 MISCELLANIES.	TIME. 139
TIME. TIME: TIME: TIME: A RHAPSODY. Main a point that blinds the gaze: —What has been is, what is shall last; The present is the focus of the past; The present is the focus of the past;	 Time is not progress, but amount; One vast accumulating store, Laid up, not lost; — we do not count Years gone but added to the score Of wealth untold, to clime nor class confined, Riches to generations lent, For ever spending, never spent, The' august inheritance of all mankind. Of this, from Adam to his latest heir, All in due turn their portion share, Which, as they husband or abuse, Their souls they win or lose. Though history, on her faded scrolls, Fragments of facts, and wrecks of names enrols, Time's indefatigable fingers write Men's meanest actions on their souls, In lines which not himself can blot: These the last day shall bring to light, Though through long centuries forgot, When hearts and sepulchres are bared to sight. Then, having fill'd his measure up, Amidst his own assembled progeny, (All that have been, that are, or yet may be,) Before the great white throne, To Him who sits thereon, Time shall present the' amalgamating cup. In which, as in a crucible, He hid the moments as they fell, 	More precious than Golconda's gems, Or stars in angels' diadems, Though to our eyes they seem'd to pass Like sands through his symbolic glass : But now, the process done, Of millions multiplied by millions, none Shall there be wanting, — while by change Ineffable and strange, All shall appear at once, all shall appear as one. Ah ! then shall each of Adam's race, In that concenter'd instant, trace, Upon the tablet of his mind, His whole existence in a thought combined, Thenceforth to part no more, but be Impictured on his memory ; — As in the image-chamber of the eye, Seen at a glance, in clear perspective, lie Myriads of forms of ocean, earth, and sky. Then shall be shown, that but in name Time and eternity were both the same ; A point which life nor death could sever, A moment standing still for ever. 1833.

Columbia Seminar February 18, 2008

QCD on the LF

Light-Front Wavefunctions

Dirac's Front Form: Fixed $\tau = t + z/c$

$$\Psi(x, k_{\perp})$$
 $x_i = \frac{k_i^+}{P^+}$

Invariant under boosts. Independent of P^{μ}

 $\mathbf{H}_{LF}^{QCD}|\psi>=M^{2}|\psi>$

Remarkable new insights from AdS/CFT, the duality between conformal field theory and Anti-de Sitter Space

Columbia Seminar February 18, 2008 **QCD** on the LF

Prediction from AdS/CFT: Meson LFWF

Columbia Seminar February 18, 2008 **QCD on the LF**

A Unified Description of Hadron Structure

Some Applications of Light-Front Wavefunctions

- Exact formulae for form factors, quark and gluon distributions; vanishing anomalous gravitational moment; edm connection to anm
- Deeply Virtual Compton Scattering, generalized parton distributions, angular momentum sum rules
- Exclusive weak decay amplitudes
- Single spin asymmetries: Role if ISI and FSI
- Factorization theorems, DGLAP, BFKL, ERBL Evolution
- Quark interchange amplitude
- Relation of spin, momentum, and other distributions to physics of the hadron itself.

Columbia Seminar February 18, 2008

QCD on the LF

 $|p,S_z\rangle = \sum_{n=3} \Psi_n(x_i,\vec{k}_{\perp i},\lambda_i)|n;\vec{k}_{\perp i},\lambda_i\rangle$

sum over states with n=3, 4, ... constituents

The Light Front Fock State Wavefunctions

$$\Psi_n(x_i, \vec{k}_{\perp i}, \lambda_i)$$

are boost invariant; they are independent of the hadron's energy and momentum P^{μ} .

The light-cone momentum fraction

$$x_i = \frac{k_i^+}{p^+} = \frac{k_i^0 + k_i^z}{P^0 + P^z}$$

are boost invariant.

$$\sum_{i=1}^{n} k_{i}^{+} = P^{+}, \ \sum_{i=1}^{n} x_{i} = 1, \ \sum_{i=1}^{n} \vec{k}_{i}^{\perp} = \vec{0}^{\perp}.$$

Intrinsic heavy quarks

Mueller: BFKL DYNAMICS

 $\bar{u}(x) \neq d(x)$ $\bar{s}(x) \neq s(x)$

Columbia Seminar February 18, 2008

QCD on the LF

Fixed LF time

Heisenberg Matrix Formulation

$$L^{QCD} \to H^{QCD}_{LF}$$

$$H_{LF}^{QCD} = \sum_{i} \left[\frac{m^2 + k_{\perp}^2}{x}\right]_i + H_{LF}^{int}$$

 H_{LF}^{int} : Matrix in Fock Space

$$H_{LF}^{QCD}|\Psi_h\rangle = \mathcal{M}_h^2|\Psi_h\rangle$$

Eigenvalues and Eigensolutions give Hadron Spectrum and Light-Front wavefunctions

DLCQ: Periodic BC in x^- . Discrete k^+ ; frame-independent truncation

Physical gauge: $A^+ = 0$

Light-Front QCD

 $H_{LF}^{QCD}|\Psi_h\rangle = \mathcal{M}_h^2|\Psi_h\rangle$

Heisenberg Matrix Formulation

DLCQ Discretized Light-Cone Quantization

	n	Sector	1 qq	2 gg	3 qq g	4 qq qq	5 gg g	6 qq gg	7 qq qq g	8 qq qq qq	88 88 8	10 qq gg g	11 qq qq gg	12 qq qq qq g	13 ବସିବସିବସିବସି
ζ k,λ	1	qq			-	N ⁺⁺	•		•	•	•	•	•	•	•
22	2	<u>g</u> g		X	~	•	~~~<`_`		•	•		•	•	•	•
p,s′ p,s	3	qq g	>-	>		~~<		~~{	M.Y	•	•	The second secon	٠	٠	•
(a)	4	qq qq	K the	٠	>		•		-	X	•	•		٠	•
¯p,s' k,λ	5	gg g	•	~~~~	+	٠	X	~	•	•	~~~<		•	٠	•
	6	qā gg	₹ 1	*	<u>}</u> ~~		>		~~<	•		-	L.Y	•	•
k,λ' p,s	7	ସସି ସସି g	•	•	**	>	٠	>	+	~~<	٠		-	The second secon	•
(b)	8	qq qq qq	•	•	٠	X	•	•	>		٠	•		-<	And A
p,s´ p,s	9	gg gg	•		•	•	<u>ک</u>		•	•	<u>}</u>	~~<	٠	•	•
	10	ସସ୍ୱି ସ୍ତୁସ୍ତ ପ୍ର	•	•		•		>-	+	•	>		~	٠	•
	11	qā dā ga	•	•	•		•		>-		٠	>		~~<	•
к, с к, с	12	ବବି ବବି ବବି g	•	•	•	•	•	•	>	>-	٠	•	>		~~<
(0)	13	qā dā dā dā	•	•	•	•	•	¢	•	Kt t	•	•	•	>	

Eigenvalues and Eigensolutions give Hadron Spectrum and Light-Front wavefunctions

H.C. Pauli & sjb

DLCQ: Frame-independent, No fermion doubling; Minkowski Space

Light-Front Wave Functions in QCD

- Hadronic bound state expanded in n-particle Fock eigenstates $|\psi_h\rangle = \sum_n \psi_{n/h} |\psi_h\rangle$ of the LF Hamiltonian $H_{LF} = P^2 = P^+P^- \mathbf{P}_{\perp}^2$, $H_{LF}|P\rangle = \mathcal{M}^2|P\rangle$, at fixed LF time $\tau = t + z/c$ (Dirac '49; Pauli and Pinsky, sjb Phys. Rept. 1988).
- Fock components

$$\psi_{n/h}(x_i, \mathbf{k}_{\perp i}) = \left\langle n; x_i, \mathbf{k}_{\perp i}, \left| \psi_h(P^+, \mathbf{P}_{\perp}) \right\rangle,\right.$$

frame independent and encode hadron properties in high momentum-transfer collisions.

• Momentum fraction $x_i = k_i^+ / P^+$ and $\mathbf{k}_{\perp i}$ are the relative coordinates of parton i in Fock-state n

$$\sum_{i=1}^{n} x_i = 1 \quad \sum_{i=1}^{n} \mathbf{k}_{\perp i} = 0.$$

• Define transverse position coordinates $x_i \mathbf{r}_{\perp i} = x_i \mathbf{R}_{\perp} + \mathbf{b}_{\perp i}$

$$\sum_{i=1}^{n} \mathbf{b}_{\perp i} = 0, \quad \sum_{i=1}^{n} x_i \mathbf{r}_{\perp i} = \mathbf{R}_{\perp}.$$

Columbia Seminar February 18, 2008

QCD on the LF

Pauli, sjb

Discretized Light-Cone Quantization

- Periodic boundary condition in x-
- discrete positive plus momenta
- frame-independent formulation
- no fermion doubling
- covariant limit on Fock space

 $=\frac{2\pi}{K}$ $\frac{2\pi}{-}n_i$ k_i^+ $n_i = K$

Columbia Seminar February 18, 2008 **QCD on the LF**

Hornbostel, Pauli, sjb

$$\frac{L}{2\pi} \frac{g^2}{\pi} \frac{1}{2} \left[\delta_{c_4}^{c_2} \delta_{c_1}^{c_3} - \frac{1}{N} \delta_{c_4}^{c_3} \delta_{c_1}^{c_2} \right] \\ \times \sum_{n_1 = 1/2, 3/2, \dots} \frac{\delta_{n_1 + n_2, n_3 + n_4}}{(n_1 + n_3)^2} b_{n_4}^{\dagger c_4} b_{n_3, c_3} d_{n_2, c_2}^{\dagger} d_{n_1}^{c_1} .$$

Columbia Seminar February 18, 2008

QCD on the LF

PRD 41, 3814 (1990)

Light-cone-quantized QCD in 1+1 dimensions

Kent Hornbostel Newman Laboratory of Nuclear Studies, Cornell University, Ithaca, New York 14853

Stanley J. Brodsky Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309

Hans-Christian Pauli Max Plank Institute for Nuclear Physics, D-6900 Heidelberg 1, Germany (Received 5 February 1990)

The QCD light-cone Hamiltonian in one space and one time dimension is diagonalized in a discrete momentum-space basis. The hadronic spectrum and wave functions for various coupling constants, numbers of color, and baryon number are computed.

FIG. 2. Spectra for N = 3, baryon number B = 0, 1, and 2 as a function of g/m; K fixed.

Columbia Seminar February 18, 2008

QCD on the LF

Columbia Seminar February 18, 2008 **QCD on the LF**

FIG. 4. Higher-Fock contributions to N=3 structure functions. (a) Lightest meson. (b) Lightest baryon, including antiquarks. (c) Baryon: contribution from two extra quark pairs. The curves are intended to guide the eye.

Columbia Seminar February 18, 2008 **QCD on the LF**

FIG. 5. (a)–(c) First three states in N = 3 meson spectrum for m/g = 1.6, 2K = 24. (d) Eleventh state.

Columbia Seminar February 18, 2008

QCD on the LF

LIGHT-FRONT SCHRODINGER EQUATION

$$\begin{pmatrix} M_{\pi}^{2} - \sum_{i} \frac{\vec{k}_{\perp i}^{2} + m_{i}^{2}}{x_{i}} \end{pmatrix} \begin{bmatrix} \psi_{q\bar{q}/\pi} \\ \psi_{q\bar{q}g/\pi} \\ \vdots \end{bmatrix} = \begin{bmatrix} \langle q\bar{q} | V | q\bar{q} \rangle & \langle q\bar{q} | V | q\bar{q}g \rangle & \cdots \\ \langle q\bar{q}g | V | q\bar{q}g \rangle & \langle q\bar{q}g | V | q\bar{q}g \rangle & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix} \begin{bmatrix} \psi_{q\bar{q}/\pi} \\ \psi_{q\bar{q}g/\pi} \\ \vdots \end{bmatrix}$$

 $A^{+} = 0$

G.P. Lepage, sjb

Columbia Seminar February 18, 2008 **QCD** on the LF

Angular Momentum on the Light-Front

$$J^{z} = \sum_{i=1}^{n} s_{i}^{z} + \sum_{j=1}^{n-1} l_{j}^{z}.$$

Conserved LF Fock state by Fock State

$$l_j^z = -i\left(k_j^1 \frac{\partial}{\partial k_j^2} - k_j^2 \frac{\partial}{\partial k_j^1}\right)$$

n-1 orbital angular momenta

Nonzero Anomalous Moment -->Nonzero orbítal angular momentum

Columbia Seminar February 18, 2008 **QCD on the LF**

Hadronization at the Amplitude Level

Construct helicity amplitude using Light-Front Perturbation theory; coalesce quarks via LFWFs

Columbia Seminar February 18, 2008 **QCD** on the LF

Light-Front Wavefunctions

Invariant under boosts! Independent of P^µ

Columbia Seminar February 18, 2008 **QCD** on the LF

Calculation of Form Factors in Equal-Time Theory

Need vacuum fluctuations

Calculation of Form Factors in Light-Front Theory

Columbia Seminar February 18, 2008 **QCD** on the LF

Problems with the Instant Form

- Need n simultaneous measurements to specify initial condition for system of n partons
- Boosts are dynamical and complex; not product of Wigner boosts! McGee, Primack, Osborne, sjb)
- Wavefunction insufficient to determine current matrix elements -- need to couple to vacuum
- N! time-ordered frame-dependent diagrams to calculate covariant Feynman amplitude of order g^{N} .

$$D = E_{init} - \sum \sqrt{\vec{k}^2 + m^2 + i\epsilon}$$

Columbia Seminar February 18, 2008 **QCD on the LF**

The Electromagnetic Interactions Of Loosely Bound Composite Systems. Stanley J. Brodsky, Joel R. Primack (SLAC) . SLAC-PUB-0440, Jun 1968. 9pp. Published in Phys.Rev.174:2071-2073,1968.

The Electromagnetic Interactions of Composite Systems. <u>Stanley J. Brodsky</u>, <u>Joel R. Primack</u> (<u>SLAC</u>). SLAC-PUB-0512, Oct 1968. 88pp. Published in Annals Phys.52:315-365,1969.

Columbia Seminar February 18, 2008

QCD on the LF

$$\frac{F_{2}(q^{2})}{2M} = \sum_{a} \int [dx] [d^{2}\mathbf{k}_{\perp}] \sum_{j} e_{j} \frac{1}{2} \times \text{Drell, sjb}$$

$$\begin{bmatrix} -\frac{1}{q^{L}} \psi_{a}^{\uparrow *}(x_{i}, \mathbf{k}'_{\perp i}, \lambda_{i}) \psi_{a}^{\downarrow}(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}) + \frac{1}{q^{R}} \psi_{a}^{\downarrow *}(x_{i}, \mathbf{k}'_{\perp i}, \lambda_{i}) \psi_{a}^{\uparrow}(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}) \end{bmatrix}$$

$$\mathbf{k}'_{\perp i} = \mathbf{k}_{\perp i} - x_{i}\mathbf{q}_{\perp} \qquad \mathbf{k}'_{\perp j} = \mathbf{k}_{\perp j} + (1 - x_{j})\mathbf{q}_{\perp}$$

$$\mathbf{3.9} \mathbf{q}_{\perp} = \mathbf{q}_{\perp} + \mathbf{q}_$$

Must have
$$\Delta \ell_z = \pm 1$$
 to have nonzero $F_2(q^2)$

Columbia Seminar February 18, 2008

QCD on the LF

Electric Dipole Form Factor on the Light Front

We consider the electric dipole form factor $F_3(q^2)$ in the light-front formalism of QCD, to complement earlier studies of the Dirac and Pauli form factors. [Drell, Yan, PRL 1970; West, PRL 1970; Brodsky, Drell, PRD 1980] Recall Gardner, Hwang, sjb,

 $\langle P', S'_{z} | J^{\mu}(0) | P, S_{z} \rangle =$ $\overline{U}(P', \lambda') \left[F_{1}(q^{2})\gamma^{\mu} + F_{2}(q^{2}) \frac{i}{2M} \sigma^{\mu\alpha} q_{\alpha} + F_{3}(q^{2}) \frac{-1}{2M} \sigma^{\mu\alpha} \gamma_{5} q_{\alpha} \right] U(P, \lambda)$

$$\kappa = rac{e}{2M} \left[F_2(0)
ight] \;, \qquad d = rac{e}{M} \left[F_3(0)
ight] \;,$$

Find: $F_3(q^2) = F_2(q^2) \times \tan \phi$

CP-violating phase

Fock state by Fock state

Columbia Seminar February 18, 2008 **QCD** on the LF

Electromagnetic Form Factors on the Light Front

Interaction picture for $J^+(0)$, $q^+ = 0$ frame, a imply $(q^{R/L} \equiv q^1 \pm iq^2)$:

Gardner, Hwang, sjb,

$$\frac{F_2(q^2)}{2M} = \sum_a \int [\mathrm{d}x] [\mathrm{d}^2 \mathbf{k}_{\perp}] \sum_j e_j \frac{1}{2} \times \\ - \frac{1}{q^L} \psi_a^{\uparrow *}(\mathbf{x}_i, \mathbf{k}'_{\perp i}, \lambda_i) \psi_a^{\downarrow}(\mathbf{x}_i, \mathbf{k}_{\perp i}, \lambda_i) + \frac{1}{q^R} \psi_a^{\downarrow *}(\mathbf{x}_i, \mathbf{k}'_{\perp i}, \lambda_i) \psi_a^{\uparrow}(\mathbf{x}_i, \mathbf{k}_{\perp i}, \lambda_i) \Big],$$

$$\begin{split} \frac{F_3(q^2)}{2M} &= \sum_a \int [\mathrm{d}x] [\mathrm{d}^2 \mathbf{k}_{\perp}] \sum_j e_j \; \frac{i}{2} \times \\ \left[\; - \frac{1}{q^L} \psi_a^{\uparrow *}(x_i, \mathbf{k}'_{\perp i}, \lambda_i) \; \psi_a^{\downarrow}(x_i, \mathbf{k}_{\perp i}, \lambda_i) - \frac{1}{q^R} \psi_a^{\downarrow *}(x_i, \mathbf{k}'_{\perp i}, \lambda_i) \; \psi_a^{\uparrow}(x_i, \mathbf{k}_{\perp i}, \lambda_i) \; \right] \,, \end{split}$$

 $\mathbf{k}'_{\perp j} = \mathbf{k}_{\perp j} + (1 - x_j)\mathbf{q}_{\perp}$ for the struck constituent *j* and $\mathbf{k}'_{\perp i} = \mathbf{k}_{\perp i} - x_i\mathbf{q}_{\perp}$ for each spectator ($i \neq j$). $q^+ = 0 \implies$ only n' = n. Both $F_2(q^2)$ and $F_3(q^2)$ are helicity-flip form factors.

$$F_3(q^2) = F_2(q^2) \times \tan \phi$$

Columbia Seminar February 18, 2008 **QCD on the LF**

Anomalous gravitomagnetic moment B(0)

Okun, Kobzarev, Teryaev: B(O) Must vanish because of Equivalence Theorem

Advantages of LF QCD

- Lorentz frame invariant; no boosts
- No fermion doubling
- Minkowski space
- Complete set of eigensolutions, bound state and continuum spectroscopy
- LFWFs, observables, simple spin properties
- Physical gauge: ghost free
- Zero modes instead of VEVS
- QED(3+1), QCD(1+1)
- Perturbation theory tractable, renormalization (alternate denominators)
- Relativistic statistical physics

Columbia Seminar February 18, 2008

QCD on the LF

33

Stan Brodsky, SLAC

QCD at the Amplitude Level

LFD in Exclusive Processes

Columbia Seminar February 18, 2008

QCD on the LF

- Fundamental gauge invariant non-perturbative input to hard exclusive processes, heavy hadron decays. Defined for Mesons, Baryons
- Evolution Equations from PQCD, OPE, Conformal Invariance

Lepage, sjb Frishman, Lepage, Sachrajda, sjb Peskin Braun Efremov, Radyushkin Chernyak etal

• Compute from valence light-front wavefunction in light-cone gauge $\phi_M(x,Q) = \int^Q d^2 \vec{k} \ \psi_{q\bar{q}}(x,\vec{k}_{\perp})$

Columbia Seminar February 18, 2008 **QCD** on the LF

GPDs & Deeply Virtual Exclusive Processes - New Insight into Nucleon Structure

Columbia Seminar February 18, 2008 **QCD on the LF**

Stanley J. Brodsky^a, Markus Diehl^{a,1}, Dae Sung Hwang^b

Columbia Seminar February 18, 2008

QCD on the LF

Example of LFWF representation of GPDs (n => n)

Diehl, Hwang, sjb

$$\frac{1}{\sqrt{1-\zeta}} \frac{\Delta^1 - i\,\Delta^2}{2M} E_{(n\to n)}(x,\zeta,t)$$

$$= \left(\sqrt{1-\zeta}\right)^{2-n} \sum_{n,\lambda_i} \int \prod_{i=1}^n \frac{\mathrm{d}x_i\,\mathrm{d}^2 \vec{k}_{\perp i}}{16\pi^3} \,16\pi^3 \delta\left(1-\sum_{j=1}^n x_j\right) \delta^{(2)}\left(\sum_{j=1}^n \vec{k}_{\perp j}\right)$$

$$\times \,\delta(x-x_1)\psi_{(n)}^{\uparrow *}\left(x'_i,\vec{k}'_{\perp i},\lambda_i\right)\psi_{(n)}^{\downarrow}\left(x_i,\vec{k}_{\perp i},\lambda_i\right),$$

where the arguments of the final-state wavefunction are given by

$$x_{1}' = \frac{x_{1} - \zeta}{1 - \zeta}, \qquad \vec{k}_{\perp 1}' = \vec{k}_{\perp 1} - \frac{1 - x_{1}}{1 - \zeta} \vec{\Delta}_{\perp} \quad \text{for the struck quark,} x_{i}' = \frac{x_{i}}{1 - \zeta}, \qquad \vec{k}_{\perp i}' = \vec{k}_{\perp i} + \frac{x_{i}}{1 - \zeta} \vec{\Delta}_{\perp} \quad \text{for the spectators } i = 2, \dots, n.$$

Columbia Seminar February 18, 2008

QCD on the LF

N=5 VALENCE QUARK + QUARK SEA ⇒ Meson-Cloud model

Columbia Seminar February 18, 2008 **QCD on the LF**

Link to DIS and Elastic Form Factors

Columbia Seminar February 18, 2008 **QCD on the LF**

40

Diffractive Dissociation of Pion into Quark Jets

Mueller, sjb Frankfurt Miller Strikman

E791 Ashery et al.

Measure Light-Front Wavefunction of Pion

Mínímal momentum transfer to nucleus Nucleus left Intact!

Columbia Seminar February 18, 2008 **QCD on the LF**

Columbia Seminar February 18, 2008

QCD on the LF

Light-Front Quantization of the Standard Model

$$\phi(x) = \frac{1}{\sqrt{2}}v + \varphi = \frac{1}{\sqrt{2}}\left(\left[v + h(x)\right] + i\eta(x)\right)$$
No Higgs VEV!

$$k^+ = 0 \text{ zero mode}$$

A Unitary and renormalizable theory of the standard model in ghost free light cone gauge.

P. Srivastava and sjb

Phys.Rev.D66:045019,2002.

hep-ph/0202141

Decoupling of gravity to the Higgs zero mode

Columbia Seminar February 18, 2008 **QCD** on the LF

 $|p,S_z\rangle = \sum_{n=3} \Psi_n(x_i,\vec{k}_{\perp i},\lambda_i)|n;\vec{k}_{\perp i},\lambda_i\rangle$

sum over states with n=3, 4, ... constituents

The Light Front Fock State Wavefunctions

$$\Psi_n(x_i, \vec{k}_{\perp i}, \lambda_i)$$

are boost invariant; they are independent of the hadron's energy and momentum P^{μ} .

The light-cone momentum fraction

$$x_i = \frac{k_i^+}{p^+} = \frac{k_i^0 + k_i^z}{P^0 + P^z}$$

are boost invariant.

$$\sum_{i=1}^{n} k_{i}^{+} = P^{+}, \ \sum_{i=1}^{n} x_{i} = 1, \ \sum_{i=1}^{n} \vec{k}_{i}^{\perp} = \vec{0}^{\perp}.$$

Intrinsic heavy quarks

Mueller: BFKL DYNAMICS

 $\bar{u}(x) \neq d(x)$ $\bar{s}(x) \neq s(x)$

Columbia Seminar February 18, 2008

QCD on the LF

Fixed LF time

Light Antiquark Flavor Asymmetry

 Naïve Assumption from gluon splitting:

$$\bar{d}(x) = \bar{u}(x)$$

E866/NuSea (Drell-Yan)

 $|uudc\bar{c} >$ Fluctuation in Proton QCD: Probability $\frac{\sim \Lambda_{QCD}^2}{M_O^2}$

 $|e^+e^-\ell^+\ell^->$ Fluctuation in Positronium QED: Probability $\frac{\sim (m_e \alpha)^4}{M_\ell^4}$

OPE derivation - M.Polyakov et al.

 $c\bar{c}$ in Color Octet

Distribution peaks at equal rapidity (velocity) Therefore heavy particles carry the largest momentum fractions

$$\hat{x}_i = \frac{m_{\perp i}}{\sum_j^n m_{\perp j}}$$

Hoyer, Peterson, Sakai, sjb

Columbia Seminar February 18, 2008 QCD on the LF 46

Measure c(x) in Deep Inelastic Lepton-Proton Scattering

Columbia Seminar February 18, 2008

QCD on the LF