Light-Front Holography and AdS/QCD

Guy F. de Teramond ´

University of Costa Rica

In Collaboration with Stan Brodsky

Slac Theory Seminar

October 22, 2008

Outline

- 1. Introduction
- 2. Light-Front Dynamics

Light-Front Fock Representation

3. Semiclassical Approximation to QCD

Conformal Algebraic Structure, Integrability and Stability Conditions

Non-Conformal Extension of Algebraic Structure

4. Gauge/Gravity Correspondence

Gravity Action

Higher-Spin Modes

5. Fermionic Modes

Holographic Light-Front Representation

Non-Conformal Extension of Algebraic Structure

6. Conclusions

1 Introduction

- Most challenging problem of strong interaction dynamics: determine the composition of hadrons in terms of their fundamental QCD quark and gluon degrees of freedom
- Recent developments inspired by the AdS/CFT correspondence (Maldacena 1998) between string states in AdS space and conformal field theories in physical space-time have led to analytical insights into the confining dynamics of QCD
- Description of strongly coupled gauge theory using ^a dual gravity description!
- $\bullet\,$ Strings describe spin- J extended objects (no quarks). QCD degrees of freedom are pointlike particles and hadrons have orbital angular momentum: how can they be related? How can we map string states into partons?
- Light-front quantization is the ideal framework to describe hadronic structure in terms of quark and gluon degrees of freedom
- Simple vacuum structure allows unambiguous definition of the partonic content of ^a hadron: partons in ^a hadronic state are described by light-front wave functions which encode the hadronic properties

2 Light Front Dynamics

- \bullet Different possibilities to parametrize space-time Dirac (1949)
- Parametrizations differ by the hypersurface on which the initial conditions are specified. Each evolve with different "times" and has its own Hamiltonian, but should give the same physical results
- \bullet *Instant form*: hypersurface defined by $t = 0$, the familiar one
- $\bullet\,$ *Front form*: hypersurface is tangent to the light cone at $\tau=t+z/c=0$

$$
x^{+} = x^{0} + x^{3}
$$
 lightfront time
\n
$$
x^{-} = x^{0} - x^{3}
$$
 longitudinal space variable
\n
$$
k^{+} = k^{0} + k^{3}
$$
 longitudinal momentum $(k^{+} > 0)$
\n
$$
k^{-} = k^{0} - k^{3}
$$
 lightfront energy

$$
k \cdot x = \frac{1}{2} \left(k^+ x^- + k^- x^+ \right) - \mathbf{k}_{\perp} \cdot \mathbf{x}_{\perp}
$$

On shell relation $k^2=m^2$ leads to dispersion relation $\;k^-=\frac{{\bf k}_\perp^2+m^2}{k^+}\;$

• QCD Lagrangian

$$
\mathcal{L}_{\text{QCD}} = -\frac{1}{4g^2} \text{Tr} \left(G^{\mu\nu} G_{\mu\nu} \right) + i \overline{\psi} D_{\mu} \gamma^{\mu} \psi + m \overline{\psi} \psi
$$

 \bullet LF Momentum Generators $P=(P^+,P^-,{\bf P}_\perp)$ in terms of dynamical fields ψ_+ , ${\bf A}_{\perp}$

$$
P^{-} = \frac{1}{2} \int dx^{-} d^{2} \mathbf{x}_{\perp} \overline{\psi}_{+} \gamma^{+} \frac{m^{2} + (i \nabla_{\perp})^{2}}{i \partial^{+}} \psi_{+} + \text{interactions}
$$

\n
$$
P^{+} = \int dx^{-} d^{2} \mathbf{x}_{\perp} \overline{\psi}_{+} \gamma^{+} i \partial^{+} \psi_{+}
$$

\n
$$
\mathbf{P}_{\perp} = \frac{1}{2} \int dx^{-} d^{2} \mathbf{x}_{\perp} \overline{\psi}_{+} \gamma^{+} i \nabla_{\perp} \psi_{+}
$$

where the integral is over the initial surface $x^+=0$

 $\bullet\,$ LF energy P^- generates LF time translations

$$
\left[\psi_{+}(x), P^{-}\right] = i\frac{\partial}{\partial x^{+}}\psi_{+}(x)
$$

and the generators P^+ and ${\bf P}_\perp$ are kinematical

Light-Front Fock Representation

• Light-front Lorentz invariant Hamiltonian for the composite system

$$
H_{LF} = P^2 = P^-P^+ - \mathbf{P}_{\perp}^2
$$

 \bullet H_{LF} has eigenstates $|\psi_H(P)\rangle=|\psi_H(P^+,{\bf P}_\perp,S_z)\rangle$ and eigenmass ${\cal M}_H^2$, the mass spectrum of the color-singlet states of QCD:

$$
H_{LF} | \psi_H \rangle = \mathcal{M}_H^2 | \psi_H \rangle
$$

 $\bullet\,$ State $|\ket{\psi_H}$ is an expansion in multi-particle Fock states $|\ket{n}$ of the free light-front Hamiltonian

$$
|\psi_H\rangle = \sum_n \psi_{n/H} |n\rangle
$$

 \bullet Fock components $\psi_{n/H}(x_i,{\bf k}_{\perp i},\lambda^z_i)$ are independent of P^+ and ${\bf P}_\perp$ and depend only on relative partonic coordinates: momentum fraction $x_i = k_i^+/P^+$, transverse momentum ${\bf k}_{\perp i}$ and spin λ_i^z

$$
\sum_{i=1}^{n} x_i = 1, \quad \sum_{i=1}^{n} \mathbf{k}_{\perp i} = 0.
$$

- $\bullet~$ Complete basis of Fock-states $|n\rangle$ constructed by applying free-field creation operators to the vacuum state $|0\rangle$, $|P^+|0\rangle = 0$, $|{\bf P}_{\perp}|0\rangle = 0$, with no particle content
- $\bullet~$ Dirac field $\psi_+,$ expanded in terms of ladder operators on the initial surface $x^+=x^0+x^3$

$$
\psi_+(x)_\alpha = \sum_{\lambda} \int_{q^+>0} \frac{dq^+}{\sqrt{2q^+}} \frac{d^2 \mathbf{q}_\perp}{(2\pi)^3} \left[b_\lambda(q) u_\alpha(q,\lambda) e^{-iq\cdot x} + d_\lambda(q)^\dagger v_\alpha(q,\lambda) e^{iq\cdot x} \right]
$$

with u and v light-cone spinors

• Use commutation relations

$$
\left\{b(q), b^\dagger(q')\right\} = \left\{d(q), d^\dagger(q')\right\} = (2\pi)^3 \,\delta(q^+ - q'^+) \delta^{(2)}(\mathbf{q}_\perp - \mathbf{q}'_\perp)
$$

• Find

$$
P^-=\sum_{\lambda}\int\!\frac{dq^+d^2{\bf q_\perp}}{(2\pi)^3}\left(\frac{m^2+{\bf q_\perp^2}}{q^+}\right)b^\dagger_\lambda(q)b_\lambda(q)+\text{interactions}
$$

 $\bullet\,$ One parton state: $\,\,\ket{q}=\sqrt{2q^+}\,b^\dagger(q)\vert 0\rangle$

 $\bullet\,$ Compute \mathcal{M}^2 from hadronic matrix element

$$
\langle \psi_H(P')|H_{LF}|\psi_H(P)\rangle = \mathcal{M}_H^2 \langle \psi_H(P')|\psi_H(P)\rangle
$$

• Find

$$
\mathcal{M}_{H}^{2} = \sum_{n} \int \left[dx_{i} \right] \left[d^{2} \mathbf{k}_{\perp i} \right] \sum_{\ell} \left(\frac{m_{\ell}^{2} + \mathbf{k}_{\perp \ell}^{2}}{x_{q}} \right) \left| \psi_{n/H}(x_{i}, \mathbf{k}_{\perp i}) \right|^{2} + \text{interactions}
$$

• Phase space normalization of LFWFs

$$
\sum_{n} \int \left[dx_i \right] \left[d^2 \mathbf{k}_{\perp i} \right] \left| \psi_{n/h}(x_i, \mathbf{k}_{\perp i}) \right|^2 = 1
$$

 $\bullet \,$ In terms of $n\!-\!1$ independent transverse impact coordinates ${\bf b}_{\perp j},$ $j=1,2,\ldots,n\!-\!1,$

$$
\mathcal{M}_{H}^{2} = \sum_{n} \prod_{j=1}^{n-1} \int dx_{j} d^{2} \mathbf{b}_{\perp j} \psi_{n/H}^{*}(x_{i}, \mathbf{b}_{\perp i}) \sum_{\ell} \left(\frac{m_{\ell}^{2} - \nabla_{\mathbf{b}_{\perp \ell}}^{2}}{x_{q}} \right) \psi_{n/H}(x_{i}, \mathbf{b}_{\perp i}) + \text{interactions}
$$

• Normalization

$$
\sum_{n}\prod_{j=1}^{n-1}\int dx_j d^2\mathbf{b}_{\perp j} |\psi_n(x_j,\mathbf{b}_{\perp j})|^2=1
$$

3 Semiclassical Approximation to QCD

 $\bullet~$ Consider a two-parton hadronic bound state in the limit $m_q\rightarrow 0$

$$
\mathcal{M}^2 = \int_0^1 dx \int \frac{d^2 \mathbf{k}_\perp}{16\pi^3} \frac{\mathbf{k}_\perp^2}{x(1-x)} |\psi(x, \mathbf{k}_\perp)|^2 + \text{interactions}
$$

=
$$
\int_0^1 \frac{dx}{x(1-x)} \int d^2 \mathbf{b}_\perp \psi^*(x, \mathbf{b}_\perp) (-\nabla_{\mathbf{b}_\perp \ell}^2) \psi(x, \mathbf{b}_\perp) + \text{interactions}
$$

• Functional dependence on invariant mass for ^a given Fock state

$$
\mathcal{M}_n^2 = \left(\sum_{a=1}^n k_a^{\mu}\right)^2 = \sum_a \frac{\mathbf{k}_{\perp a}^2}{x_a} \longrightarrow \frac{\mathbf{k}_{\perp}^2}{x(1-x)}
$$

the measure of the off-mass shell energy $\hspace{0.1em} {\mathcal M}$ 2 $\cal M$ $_{n}^{2}$

- $\bullet \,$ Boost invariant variable in transverse space : $\quad \zeta^2 = x(1)$ $-x)$ **b**² \perp
- \bullet $\bullet~$ Semiclassical approximation: LF dynamics depends only on the boost invariant variable ζ and hadronic properties are encoded in the hadronic mode $\phi(\zeta)$: $\quad \psi(x,{\bf k}_{\perp}) \to \phi(\zeta)$
- $\bullet\,$ Normalization for the LF mode $\phi(\zeta)=\langle\zeta|\phi\rangle\colon\quad \langle\phi|\phi\rangle=\int d\zeta\,|\langle\zeta|\phi\rangle|^2=1$
- • \bullet Functional relation: $\frac{|\phi|^2}{\zeta} = \frac{2\pi}{x(1-x)} |\psi(x, \mathbf{b}_\perp)|^2$
- $\bullet \,$ Invariant mass ${\cal M}^2$ in terms of LF mode $\, \, \phi(\zeta,\varphi) \sim f(\varphi) \phi(\zeta) \,$

$$
\mathcal{M}^2 = \int d\zeta \, \phi^*(\zeta) \sqrt{\zeta} \left(-\frac{d^2}{d\zeta^2} - \frac{1}{\zeta} \frac{d}{d\zeta} + \frac{L^2}{\zeta^2} \right) \frac{\phi(\zeta)}{\sqrt{\zeta}} + \int d\zeta \, \phi^*(\zeta) U(\zeta) \, \phi(\zeta)
$$

=
$$
\int d\zeta \, \phi^*(\zeta) \left(-\frac{d^2}{d\zeta^2} - \frac{1 - 4L^2}{4\zeta^2} + U(\zeta) \right) \phi(\zeta)
$$

where the interaction terms are summed up in the effective potential $U(\zeta)$ and the orbital angular momentum has the $SO(2)$ Casimir representation $\;SO(N)\sim S^{N-1}:\;L(L+N\!-\!2)$

$$
\langle \varphi | L | f \rangle = \frac{1}{i} \frac{\partial}{\partial \varphi} \langle \varphi | f \rangle = L f(\varphi), \quad \phi(\zeta, \varphi) \sim e^{\pm iL\varphi} \phi(\zeta)
$$

 $\bullet\,$ LF eigenvalue equation $\,\,\,H_{LF}|\phi\rangle = {\cal M}^2|\phi\rangle\,\,\,$ is a LF wave equation for ϕ

$$
\left(-\frac{d^2}{d\zeta^2} - \frac{1 - 4L^2}{4\zeta^2} + U(\zeta)\right)\phi(\zeta) = \mathcal{M}^2\phi(\zeta)
$$

Conformal Algebraic Structure , Integrability and Stability Conditions

• Consider the potential (hard wall)

$$
U(\zeta)=0 \ \ \text{if} \ \ \zeta \leq \frac{1}{\Lambda_{\text{QCD}}}, \quad U(\zeta)=\infty \ \ \text{if} \ \ \zeta > \frac{1}{\Lambda_{\text{QCD}}}
$$

 \bullet If L $^2 > 0$ the LF Hamiltonian, H_{LF} , is written as a bilinear form 13 (Bargmann 1949)

$$
H_{LF}^L(\zeta) = \Pi_L^{\dagger}(\zeta)\Pi_L(\zeta)
$$

in terms of the operator

$$
\Pi_L(\zeta) = -i \left(\frac{d}{d\zeta} - \frac{L + \frac{1}{2}}{\zeta} \right)
$$

and its adjoint

$$
\Pi_L^{\dagger}(\zeta) = -i \left(\frac{d}{d\zeta} + \frac{L + \frac{1}{2}}{\zeta} \right)
$$

with commutation relations

$$
\left[\Pi_L(\zeta),\Pi_L^{\dagger}(\zeta)\right] = \frac{2L+1}{\zeta^2}
$$

• Conformal algebraic structure !

• If $L^2\geq 0$ the Hamiltonian is positive definite

$$
\langle \phi | H_{LF}^L | \phi \rangle = \int d\zeta \, |\Pi_L \phi(z)|^2 \ge 0
$$

and thus $\mathcal{M}^2\geq 0$

- \bullet If $L^2 < 0$ the Hamiltonian cannot be written as a bilinear form and the Hamiltonian is not bounded from below ("Fall-to-the-center" problem in Q.M.)
- $\bullet\,$ Critical value of the potential corresponds to $L=0,$ the lowest possible stable state
- \bullet Orbital excitations constructed by the L -th application of the raising operator $a_L^\dagger\,=\,-i\Pi_L$ on the ground state, $a^{\dagger}|L\rangle \sim |L + 1\rangle$:

$$
\phi_L(\zeta) = \langle \zeta | L \rangle = C_L \sqrt{\zeta} \left(-\zeta \right)^L \left(\frac{1}{\zeta} \frac{d}{d\zeta} \right)^L J_0(\zeta \mathcal{M})
$$

$$
= C_L \sqrt{\zeta} J_L(\zeta \mathcal{M})
$$

• $\bullet\,$ Mode spectrum from boundary conditions $\,\,\phi\Big(\zeta=\frac{1}{\Lambda_{\rm QCD}}\Big)=0,$ thus ${\cal M}^2=\beta_{Lk}\Lambda_{\rm QCD}$

Light meson orbital spectrum in a hard wall holographic model for $\Lambda_{QCD} = 0.32 \ {\rm GeV}$

Non-Conformal Extension of Algebraic Integrability

• Consider the extension of the conformal operator algebra by constructing the generator

$$
\Pi_L(\zeta) = -i \left(\frac{d}{d\zeta} - \frac{L + \frac{1}{2}}{\zeta} - \kappa^2 \zeta \right)
$$

and its adjoint

$$
\Pi_L^{\dagger}(\zeta) = -i \left(\frac{d}{d\zeta} + \frac{L + \frac{1}{2}}{\zeta} + \kappa^2 \zeta \right)
$$

with commutation relations

$$
\left[\Pi_L(\zeta),\Pi_L^{\dagger}(\zeta)\right] = \frac{2L+1}{\zeta^2} - 2\kappa^2
$$

• The LF Hamiltonian

$$
H_{LF} = \Pi_L^{\dagger} \Pi_L + C
$$

is positive definite $\langle \phi | H_{LF} | \phi \rangle \geq 0$ for L $^2\geq0$, and $C\geq-4\kappa$ 2

 $\bullet \,$ Identify the zero mode ($C=-4\kappa^2$) with the pion

- $\bullet\,$ Orbital and radial excited states are constructed from the ladder operators from the $L=0$ state.
- Light-front Hamiltonian equation

$$
H_{LF}|\phi\rangle = \mathcal{M}^2|\phi\rangle,
$$

leads to effective LF wave equation

$$
\left(-\frac{d^2}{d\zeta^2} - \frac{1 - 4L^2}{4\zeta^2} + U(\zeta)\right)\phi(\zeta) = \mathcal{M}^2\phi(\zeta)
$$

with effective potential

$$
U(\zeta) = \kappa^4 \zeta^2 + 2\kappa^2 (L - 1)
$$

eigenvalues

$$
\mathcal{M}^2 = 4\kappa^2(n+L)
$$

and eigenfunctions

$$
\phi_L(\zeta) = \kappa^{1+L} \sqrt{\frac{2n!}{(n+L)!}} \zeta^{1/2+L} e^{-\kappa^2 \zeta^2/2} L_n^L(\kappa^2 \zeta^2).
$$

 \bullet Transverse oscillator in the LF plane with $SO(2)$ rotation subgroup has Casimir L^2 representing rotations in the transverse LF plane.

Light meson orbital (a) and radial (b) spectrum in a transverse oscillator holographic model for $\kappa = 0.6$ GeV.

Pion LFWF

• Two parton LFWF bound state:

$$
\psi_{\overline{q}q/\pi}^{HW}(x,\mathbf{b}_{\perp}) = \frac{\Lambda_{\text{QCD}}\sqrt{x(1-x)}}{\sqrt{\pi}J_{1+L}(\beta_{L,k})} J_L(\sqrt{x(1-x)}|\mathbf{b}_{\perp}|\beta_{L,k}\Lambda_{\text{QCD}}) \theta\left(\mathbf{b}_{\perp}^2 \le \frac{\Lambda_{\text{QCD}}^{-2}}{x(1-x)}\right)
$$

$$
\psi_{\overline{q}q/\pi}^{SW}(x,\mathbf{b}_{\perp}) = \kappa^{L+1} \sqrt{\frac{2n!}{(n+L)!}} \left[x(1-x)\right]^{\frac{1}{2}+L} |\mathbf{b}_{\perp}|^L e^{-\frac{1}{2}\kappa^2 x(1-x)\mathbf{b}_{\perp}^2} L_n^L(\kappa^2 x(1-x)\mathbf{b}_{\perp}^2)
$$

Ground state pion LFWF in impact space. (a) HW model $\Lambda_{\rm QCD}=0.32$ GeV, (b) SW model $\kappa=0.375$ GeV

X

• LF Hamiltonian equation in QCD

Recap

$$
H_{LF}|\phi\rangle = \mathcal{M}^2|\phi\rangle
$$

is a LF wave equation for ϕ

$$
\left(-\frac{d^2}{d\zeta^2} - \frac{1 - 4L^2}{4\zeta^2} + U(\zeta)\right)\phi(\zeta) = \mathcal{M}^2\phi(\zeta)
$$

kinetic energy of partons

- Effective light-front Schrödinger equation: relativistic, frame-independent and analytically tractable
- Invariant LF variable ζ allows separation of dynamics of quark and gluon binding from kinematics of constituent spin and internal orbital angular momentum
- LF impact variable ζ measures the separation of quark and gluon constituents within the hadron

4 Gauge Gravity Correspondence

● Substitute $\Phi(\zeta) \sim \zeta^{3/2} \phi(\zeta), \;\; \zeta \to z \;\;$ in the conformal LFWE

$$
\left(-\frac{d^2}{d\zeta^2} - \frac{1 - 4L^2}{4\zeta^2}\right)\phi(\zeta) = \mathcal{M}^2\phi(\zeta)
$$

• Find:

$$
\left[z^2\partial_z^2 - 3z\,\partial_z + z^2\mathcal{M}^2 - (\mu R)^2\right]\Phi(z) = 0,
$$

with $(\mu R)^2=-4+L$ 2 , the wave equation describing the propagation of a string mode in AdS $_5$!

 $\bullet~$ Isomorphism of $SO(4,2)$ group of conformal QCD with generators $P^\mu,M^{\mu\nu},D,K^\mu$ with the group of isometries of AdS $_5$ space

$$
ds^2 = \frac{R^2}{z^2} (\eta_{\mu\nu} dx^{\mu} dx^{\nu} - dz^2)
$$

- $\bullet\,$ AdS Breitenlohner-Freedman bound $(\mu R)^2\geq -4$ equivalent to LF QM stability condition L $^{2}\geq0$
- $\bullet~$ Conformal dimension Δ of AdS mode Φ given in terms of 5-dim mass by $(\mu R)^2 = \Delta(\Delta\!-\!4)$. Thus $\Delta=2+L$ in agreement with the twist scaling dimension of a two parton object in QCD

 \bullet Truncated AdS/CFT model: cut-off at $z_0\,=\,1/\Lambda_{\rm QCD}$ breaks conformal invariance and allows the introduction of the QCD scale (Hard-Wall Model) Polchinski and Strassler (2001)

Orbital and radial AdS modes in the hard wall model for $\Lambda_{\rm QCD}$ = 0.32 GeV .

 $\bullet\,$ Excitation spectrum hard-wall model: $\;{\cal M}_n(L)\sim L+2n\;$

• Smooth cutoff: transverse oscilator model equivalent to the introduction of ^a background dilaton field $\varphi(z) = \kappa^2 z^2$ (Soft-Wall Model) Karch, Katz, Son and Stephanov (2006)

Fig: Orbital and radial AdS modes in the soft wall model for $\kappa = 0.6$ GeV.

● Excitation spectrum soft-wall: $\; \mathcal{M}_n^2(L) \sim L+n$, usual Regge dependence

Use the isometries of AdS space to map the local interpolating operators at the UV boundary of AdS space into the modes propagating inside AdS:

 $x^\mu \rightarrow \lambda x^\mu,~z \rightarrow \lambda z$

$$
\underbrace{ds^2}_{L_{\text{AdS}}} = \underbrace{\frac{R^2}{z^2} (\underbrace{\eta_{\mu\nu} dx^{\mu} dx^{\nu}}_{L_{\text{Minkowski}}} - dz^2)}_{L_{\text{Minkowski}}}
$$

 $\bullet\,$ A distance $L_{\rm AdS}$ shrinks by a warp factor as observed in Minkowski space $\,(dz=0)$:

$$
L_{\rm Minkowski} \sim \frac{z}{R}\,L_{\rm AdS}
$$

- $\bullet\,$ Different values of z correspond to different scales at which the hadron is examined
- AdS boundary at $z\to 0$ correspond to the $\,Q\to\infty\,$ UV zero separation limit
- $\bullet\,$ There is a maximum separation of quarks and a maximum value of z at the IR boundary

Gravity Action

$$
\mathcal{R}_{ik\ell m} = -\frac{1}{R^2} \left(g_{i\ell} g_{km} - g_{im} g_{k\ell} \right)
$$

• AdS $_{d+1}$ metric $x^{\ell}=(x^{\mu},z)$:

$$
ds^2 = g_{\ell m} dx^{\ell} dx^m = \frac{R^2}{z^2} (\eta_{\mu\nu} dx^{\mu} dx^{\nu} - dz^2)
$$

 $\bullet\,$ Action for gravity coupled to scalar field in AdS $_{d+1}$

$$
S = \int d^{d+1}x \sqrt{g} \left(\underbrace{\frac{1}{\kappa^2} \left(\mathcal{R} - 2\Lambda \right)}_{S_G} + \underbrace{\frac{1}{2} \left(g^{\ell m} \partial_\ell \Phi \partial_m \Phi - \mu^2 \Phi^2 \right)}_{S_M} \right)
$$

with $\Lambda = -\frac{d(d-1)}{2R^2}$ and $\sqrt{g} = (\frac{R}{z})^{d+1}$

• Equations of motion

$$
\mathcal{R}_{\ell m} - \frac{1}{2} g_{\ell m} \mathcal{R} - \Lambda g_{\ell m} = 0
$$

$$
z^{3} \partial_{z} \left(\frac{1}{z^{3}} \partial_{z} \Phi \right) - \partial_{\rho} \partial^{\rho} \Phi - \left(\frac{\mu R}{z} \right)^{2} \Phi = 0
$$

- $\bullet\,$ Physical AdS modes $\;\;\Phi_P(x,z) \sim e^{-iP\cdot x}\,\Phi(z) \;\;$ are plane waves along the Poincaré coordinates with four-momentum P^μ and hadronic invariant mass states $\quad P_\mu P^\mu = {\cal M}^2$
- $\bullet\,$ Factoring out dependence of string mode $\Phi_{P}(x,z)$ along x^{μ} -coordinates

$$
\left[z^2\partial_z^2 - (d-1)z\,\partial_z + z^2\mathcal{M}^2 - (\mu R)^2\right]\Phi(z) = 0
$$

• Solution:

$$
\Phi(z) = C z^{\frac{d}{2}} J_{\Delta - \frac{d}{2}}(z\mathcal{M})
$$

• Conformal dimension

$$
\Delta = \frac{1}{2} \Big(d + \sqrt{d^2 + 4\mu^2 R^2} \,\Big)
$$

• Normalization

$$
R^{d-1} \int_0^{\Lambda_{\rm QCD}^{-1}} \frac{dz}{z^{d-1}} \, \Phi^2(z) = 1
$$

5 Higher-Spin Modes

Hard Wall Model

- $\bullet~$ Spin J -field on AdS represented by rank- J totally symmetric tensor field $\Phi(x,z)_{\ell_1\cdots\ell_J}$
- $\bullet~$ Action in AdS $_{d+1}$

$$
S_M = \frac{1}{2} \int d^{d+1}x \sqrt{g} \left(\partial_\ell \Phi_{\ell_1 \cdots \ell_J} \partial^\ell \Phi^{\ell_1 \cdots \ell_J} - \mu^2 \Phi_{\ell_1 \cdots \ell_J} \Phi^{\ell_1 \cdots \ell_J} + \cdots \right)
$$

• Each hadronic state of total spin J is dual to ^a normalizable string mode

$$
\Phi_P(x,z)_{\mu_1\cdots\mu_J} = e^{-iP\cdot x} \Phi(z)_{\mu_1\cdots\mu_J}
$$

with four-momentum P_μ , spin polarization indices along the 3+1 physical coordinates and hadronic invariant mass $P_\mu P^\mu = {\cal M}^2$

 $\bullet\,$ For string modes with all indices along Poincaré coordinates, $\Phi_{z\mu_2\cdots\mu_J}=\Phi_{\mu_1z\cdots\mu_J}=\cdots=0$ and appropriate subsidiary conditions system of coupled differential equations from S_M reduce to a homogeneous wave equation for $\Phi(z)_{\mu_1\cdots\mu_J}$

 $\bullet\,$ Define the spin- J field $\Phi_{\mu_1\cdots\mu_J}$ from the scalar mode Φ by shifting dimensions

$$
\Phi_J(z) = \left(\frac{z}{R}\right)^{-J} \Phi(z)
$$

• Normalization Hong, Yoon and Strassler (2006)

$$
R^{d-2J-1} \int_0^{z_{max}} \frac{dz}{z^{d-2J-1}} \, \Phi_J^2(z) = 1.
$$

 $\bullet~$ Substituting in the AdS wave equation for Φ

$$
\left[z^2\partial_z^2 - (d-1-2J)z\,\partial_z + z^2\mathcal{M}^2 - (\mu R)^2\right]\Phi_J = 0
$$

upon fifth-dimensional mass rescaling $(\mu R)^2 \to (\mu R)^2 - J(d-J)$

• Conformal dimension of J -mode

$$
\Delta = \frac{1}{2} \left(d + \sqrt{(d - 2J)^2 + 4\mu^2 R^2} \right)
$$

and thus $(\mu R)^2 = (\Delta - J)(\Delta - d + J)$

• Upon substitution $z\rightarrow \zeta$ and

$$
\phi_J(\zeta)\!\sim\!\zeta^{-3/2+J}\Phi_J(\zeta)
$$

we recover the QCD LF wave equation

$$
\left(-\frac{d^2}{d\zeta^2} - \frac{1 - 4L^2}{4\zeta^2}\right)\phi_{\mu_1\cdots\mu_J} = \mathcal{M}^2\phi_{\mu_1\cdots\mu_J}
$$

with $(\mu R)^2 = -(2-J)^2 + L^2$ for $d=4$

- Total orbital decoupling in the HW model
- $\bullet~$ For $L^2\geq 0$ the LF Hamiltonian is positive definite $\langle \phi_J|H_{LF}|\phi_J\rangle\geq 0$ and we find the stability bound $(\mu R)^2 \ge -(2-J)^2$
- $\bullet\,$ The scaling dimensions are $\Delta=2+L$ independent of J in agreement with the twist scaling dimension of ^a two parton bound state in QCD

Note: p**-forms**

 $\bullet~$ In tensor notation EOM for a p-form in AdS $_{d+1}$ are $p+1$ coupled differential equations $~$ l'Yi (1998)

$$
[z2 \partial_z^2 - (d+1-2p)z \partial_z - z2 \mathcal{M}^2 - (\mu R)^2 + d + 1 - 2p] \Phi_{z\alpha_2 \cdots \alpha_p} = 0
$$

...

$$
[z2 \partial_z^2 - (d-1-2p)z \partial_z - z2 \mathcal{M}^2 - (\mu R)^2] \Phi_{\alpha_1 \alpha_2 \cdots \alpha_p}
$$

$$
= 2z (\partial_{\alpha_1} \Phi_{z\alpha_2 \cdots \alpha_p} + \partial_{\alpha_2} \Phi_{\alpha_1 z \cdots \alpha_p} + \cdots)
$$

 $\bullet~$ For modes with all indices along the Poincaré coordinates $\Phi_{z\alpha_2\cdots\alpha_p}=\Phi_{\alpha_1z\cdots\alpha_p}=\cdots=0$

$$
\left[z^2\partial_z^2 - (d-1-2p)z\,\partial_z + z^2\mathcal{M}^2 - (\mu R)^2\right]\Phi_{\alpha_1\cdots\alpha_p} = 0
$$

with $(\mu R)^2 = (\Delta - p)(\Delta - d + p)$

6 Fermionic Modes

- Baryons Spectrum in "bottom-up" holographic QCD (GdT and SJB: hep-th/0409074, hep-th/0501022)
- $\bullet \,$ Conformal metric $x^{\ell} = (x^{\mu}, z)$:

$$
\left(\begin{array}{c} \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \end{array}\right)
$$

From Nick Evans

$$
ds^2 = g_{\ell m} dx^{\ell} dx^m = \frac{R^2}{z^2} (\eta_{\mu\nu} dx^{\mu} dx^{\nu} - dz^2)
$$

 $\bullet\,$ Action for massive fermionic modes on AdS $_{d+1}$:

$$
S[\overline{\Psi}, \Psi] = \int d^{d+1}x \sqrt{g} \,\overline{\Psi}(x, z) \left(i\Gamma^{\ell}D_{\ell} - \mu \right) \Psi(x, z)
$$

 $\bullet \,$ Equation of motion: $\,\,\left(i\Gamma^\ell D_\ell - \mu\right)\Psi(x,z) = 0$

$$
\left[i\left(z\eta^{\ell m}\Gamma_\ell\partial_m+\frac{d}{2}\Gamma_z\right)+\mu R\right]\Psi(x^\ell)=0
$$

Holographic Light-Front Representation

● Upon the substitution $\;\Psi(z) \sim z^2 \psi(z),\;\; z \to \zeta \;\;$ we find

$$
H_{LF}|\psi\rangle = \mathcal{M}|\psi\rangle
$$

with $H_{LF} = \alpha \, \Pi$ and $\mu R = \nu + \frac{1}{2}$

• The operator

$$
\Pi_{\nu}(\zeta) = -i \left(\frac{d}{d\zeta} - \frac{\nu + \frac{1}{2}}{\zeta} \gamma_5 \right)
$$

and its adjoint $\; \Pi_{\nu}^{\dagger}(\zeta) \;$ satisfy the commutation relations

$$
\left[\Pi_{\nu}(\zeta),\Pi_{\nu}^{\dagger}(\zeta)\right]=\frac{2\nu+1}{\zeta^2}\gamma_5
$$

 $\bullet \,$ In the Weyl representation $(i\alpha=\gamma_5\beta)$

$$
i\alpha = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}, \qquad \beta = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}, \qquad \gamma_5 = \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix}
$$

 $\bullet\,$ Baryon: twist-dimension $3+L\,\,\,\,(\nu=L+1)$

$$
\mathcal{O}_{3+L} = \psi D_{\{\ell_1} \dots D_{\ell_q} \psi D_{\ell_{q+1}} \dots D_{\ell_m\}} \psi, \quad L = \sum_{i=1}^m \ell_i
$$

• Solution to Dirac eigenvalue equation

$$
(\alpha \Pi(\zeta) - \mathcal{M}) \psi(\zeta) = 0,
$$

is

$$
\psi(\zeta) = C\sqrt{\zeta} \left[J_{L+1}(\zeta \mathcal{M})u_+ + J_{L+2}(\zeta \mathcal{M})u_- \right]
$$

Baryonic modes propagating in AdS space have two components: orbital L and $L + 1$

• Hadronic mass spectrum determined from IR boundary conditions

$$
\psi_{\pm} \left(\zeta = 1/\Lambda_{\rm QCD} \right) = 0,
$$

$$
\text{given by}\qquad \qquad {\cal M}^+_{L,k} = \beta_{L+1,k} \Lambda_{\text{QCD}},\quad {\cal M}^-_{L,k} = \beta_{L+2,k} \Lambda_{\text{QCD}}
$$

with ^a scale independent mass ratio

Light baryon orbital spectrum for Λ_{QCD} = 0.25 GeV in the HW model. The ${\bf 56}$ trajectory corresponds to L even $P=+$ states, and the ${\bf 70}$ to L odd $P=-$ states.

Non-Conformal Extension of Algebraic Structure

• We write the Dirac equation

$$
\left(\alpha\Pi(\zeta)-\mathcal{M}\right)\psi(\zeta)=0
$$

in terms of the matrix-valued operator Π_ν

$$
\Pi_{\nu}(\zeta) = -i \left(\frac{d}{d\zeta} - \frac{\nu + \frac{1}{2}}{\zeta} \gamma_5 - \kappa^2 \zeta \gamma_5 \right)
$$

• Commutation relations for fermionic generators

$$
\left[\Pi_{\nu}(\zeta),\Pi_{\nu}^{\dagger}(\zeta)\right]=\left(\frac{2\nu+1}{\zeta^2}-2\kappa^2\right)\gamma_5
$$

• Solutions to the Dirac equation

$$
\psi_{+}(\zeta) \sim z^{\frac{1}{2}+\nu} e^{-\kappa^{2} \zeta^{2}/2} L_{n}^{\nu}(\kappa^{2} \zeta^{2})
$$

$$
\psi_{-}(\zeta) \sim z^{\frac{3}{2}+\nu} e^{-\kappa^{2} \zeta^{2}/2} L_{n}^{\nu+1}(\kappa^{2} \zeta^{2})
$$

• Eigenvalues

$$
\mathcal{M}^2 = 4\kappa^2(n+\nu+1)
$$

 $\bullet\,$ Equivalent to Dirac equation in AdS space $\quad x^\ell = (x^\mu, z)$

$$
\[i\left(z\eta^{\ell m}\Gamma_{\ell}\partial_{m}+\frac{d}{2}\Gamma_{z}\right)+\mu R+U(z)\right]\Psi(x^{\ell})=0.
$$

in presence of a linear confining potential $U(z) = \kappa^2 z$!

• Define the zero point energy (identical as in the meson case) $\,{\cal M}^2 \rightarrow {\cal M}^2 - 4 \kappa^2$:

$$
\mathcal{M}^2 = 4\kappa^2(n+L+1).
$$

Proton Regge Trajectory $\kappa = 0.49$ GeV

7 Conclusions

- Holographic duality requires ^a higher dimensional warped space. Space with negative curvature and a 4-dim boundary: AdS_5
- $\bullet\,$ Local operators like hadronic interpolating operators $\mathcal{O},$ the energy-momentum tensor $\Theta^{\mu\nu}$, the EM current J^{μ} and the QCD Lagrangian $\mathcal{L}_{\mathrm{QCD}}$ are defined in terms of quark and gluon fields at the AdS $_5$ boundary
- Hadronic transition matrix elements like $\langle P'|\Theta^{\mu\nu}|P\rangle$ probes the hadronic wave function $\Phi(z)$ at $z \sim 1/Q \ \ \ (Q = P' - P)$

 $\langle P'|\Theta^{\mu\nu}(0)|P\rangle$

 $\Theta^{\mu\nu}(0)$

- Eigenvalues of normalizable modes inside AdS give the hadronic spectrum. AdS modes represent also the probability amplitude for distribution of quarks at ^a given scale.
- Non-normalizable modes are related to external currents: they probe the cavity interior. Also couple to boundary QCD interpolating operators.

Other Applications of Light-Front Holography

- Nucleon form-factors: space-like region
- \bullet Pion form-factors: space and time-like regions
- \bullet Gravitational form-factors of composite hadrons
- \bullet $\,n$ -parton LFWF with massive quarks

SJB and GdT, PLB **582**, 211 (2004) GdT and SJB, PRL **94**, 201601 (2005) SJB and GdT, PRL **96**, 201601 (2006) SJB and GdT, PRD **77**, 056007 (2008) SJB and GdT, PRD **78**, 025032 (2008) GdT and SJB, arXiv:0809.489