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1 Introduction

• Most challenging problem of strong interaction dynamics: determine the composition of hadrons in

terms of their fundamental QCD quark and gluon degrees of freedom

• Recent developments inspired by the AdS/CFT correspondence (Maldacena 1998) between string

states in AdS space and conformal field theories in physical space-time have led to analytical insights

into the confining dynamics of QCD

• Description of strongly coupled gauge theory using a dual gravity description!

• Strings describe spin-J extended objects (no quarks). QCD degrees of freedom are pointlike particles

and hadrons have orbital angular momentum: how can they be related? How can we map string states

into partons?

• Light-front quantization is the ideal framework to describe hadronic structure in terms of quark and

gluon degrees of freedom

• Simple vacuum structure allows unambiguous definition of the partonic content of a hadron: partons

in a hadronic state are described by light-front wave functions which encode the hadronic properties
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2 Light Front Dynamics

• Different possibilities to parametrize space-time Dirac (1949)

• Parametrizations differ by the hypersurface on which the initial conditions are specified. Each evolve

with different ”times” and has its own Hamiltonian, but should give the same physical results

• Instant form: hypersurface defined by t = 0, the familiar one

• Front form: hypersurface is tangent to the light cone at τ = t+ z/c = 0

x+ = x0 + x3 light-front time

x− = x0 − x3 longitudinal space variable

k+ = k0 + k3 longitudinal momentum (k+ > 0)

k− = k0 − k3 light-front energy

k · x = 1
2 (k+x− + k−x+)− k⊥ · x⊥

On shell relation k2 = m2 leads to dispersion relation k− = k2
⊥+m2

k+
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• QCD Lagrangian

LQCD = − 1
4g2

Tr (GμνGμν) + iψDμγ
μψ +mψψ

• LF Momentum Generators P = (P+, P−,P⊥) in terms of dynamical fields ψ+, A⊥

P− =
1
2

∫
dx−d2x⊥ψ+ γ

+ m2 + (i∇⊥)2

i∂+
ψ+ + interactions

P+ =
∫
dx−d2x⊥ ψ+ γ

+i∂+ψ+

P⊥ =
1
2

∫
dx−d2x⊥ ψ+ γ

+i∇⊥ψ+

where the integral is over the initial surface x+ = 0

• LF energy P− generates LF time translations

[
ψ+(x), P−

]
= i

∂

∂x+
ψ+(x)

and the generators P+ and P⊥ are kinematical
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Light-Front Fock Representation

• Light-front Lorentz invariant Hamiltonian for the composite system

HLF = P 2 = P−P+ −P2
⊥

• HLF has eigenstates |ψH(P )〉 = |ψH(P+,P⊥, Sz)〉 and eigenmass M2
H , the mass spectrum

of the color-singlet states of QCD:

HLF |ψH〉 = M2
H |ψH〉

• State |ψH〉 is an expansion in multi-particle Fock states |n〉 of the free light-front Hamiltonian

|ψH〉 =
∑

n

ψn/H |n〉

• Fock components ψn/H(xi,k⊥i, λ
z
i ) are independent of P+ and P⊥ and depend only on relative

partonic coordinates: momentum fraction xi = k+
i /P

+, transverse momentum k⊥i and spin λz
i

n∑
i=1

xi = 1,
n∑

i=1

k⊥i = 0.
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• Complete basis of Fock-states |n〉 constructed by applying free-field creation operators to the vacuum

state |0〉, P+|0〉 = 0, P⊥|0〉 = 0, with no particle content

• Dirac field ψ+, expanded in terms of ladder operators on the initial surface x+ = x0 + x3

ψ+(x)α =
∑

λ

∫
q+>0

dq+√
2q+

d2q⊥
(2π)3

[
bλ(q)uα(q, λ)e−iq·x + dλ(q)†vα(q, λ)eiq·x

]
with u and v light-cone spinors

• Use commutation relations{
b(q), b†(q′)

}
=
{
d(q), d†(q′)

}
= (2π)3 δ(q+ − q′+)δ(2)

(
q⊥ − q′⊥

)
• Find

P− =
∑

λ

∫
dq+d2q⊥

(2π)3
(m2 + q2

⊥
q+

)
b†λ(q)bλ(q) + interactions

• One parton state: |q〉 =
√

2q+ b†(q)|0〉
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• ComputeM2 from hadronic matrix element

〈ψH(P ′)|HLF |ψH(P )〉=M2
H〈ψH(P ′)|ψH(P )〉

• Find

M2
H =

∑
n

∫ [
dxi

][
d2k⊥i

]∑
�

(m2
� + k2

⊥�

xq

) ∣∣ψn/H(xi,k⊥i)
∣∣2 + interactions

• Phase space normalization of LFWFs∑
n

∫ [
dxi

] [
d2k⊥i

] ∣∣ψn/h(xi,k⊥i)
∣∣2 = 1

• In terms of n−1 independent transverse impact coordinates b⊥j , j = 1, 2, . . . , n−1,

M2
H =

∑
n

n−1∏
j=1

∫
dxjd

2b⊥jψ
∗
n/H(xi,b⊥i)

∑
�

(m2
� −∇2

b⊥�

xq

)
ψn/H(xi,b⊥i)+interactions

• Normalization ∑
n

n−1∏
j=1

∫
dxjd

2b⊥j |ψn(xj ,b⊥j)|2 = 1
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3 Semiclassical Approximation to QCD

• Consider a two-parton hadronic bound state in the limit mq → 0

M2 =
∫ 1

0
dx

∫
d2k⊥
16π3

k2
⊥

x(1− x) |ψ(x,k⊥)|2 + interactions

=
∫ 1

0

dx

x(1− x)
∫
d2b⊥ ψ∗(x,b⊥)

(−∇2
b⊥�

)
ψ(x,b⊥) + interactions

• Functional dependence on invariant mass for a given Fock state

M2
n =

( n∑
a=1

kμ
a

)2
=
∑

a

k2
⊥a

xa
→ k2

⊥
x(1− x)

the measure of the off-mass shell energy M2 −M2
n

• Boost invariant variable in transverse space : ζ2 = x(1− x)b2
⊥

• Semiclassical approximation: LF dynamics depends only on the boost invariant variable ζ and hadronic

properties are encoded in the hadronic mode φ(ζ): ψ(x,k⊥) → φ(ζ)

• Normalization for the LF mode φ(ζ) = 〈ζ|φ〉: 〈φ|φ〉 =
∫
dζ |〈ζ|φ〉|2 = 1
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• Functional relation: |φ|2
ζ = 2π

x(1−x) |ψ(x,b⊥)|2

• Invariant massM2 in terms of LF mode φ(ζ, ϕ) ∼ f(ϕ)φ(ζ)

M2 =
∫
dζ φ∗(ζ)

√
ζ

(
− d2

dζ2
− 1
ζ

d

dζ
+
L2

ζ2

)
φ(ζ)√
ζ

+
∫
dζ φ∗(ζ)U(ζ)φ(ζ)

=
∫
dζ φ∗(ζ)

(
− d2

dζ2
− 1− 4L2

4ζ2
+ U(ζ)

)
φ(ζ)

where the interaction terms are summed up in the effective potential U(ζ) and the orbital angular

momentum has the SO(2) Casimir representation SO(N) ∼ SN−1 : L(L+N−2)

〈ϕ|L|f〉 =
1
i

∂

∂ϕ
〈ϕ|f〉 = Lf(ϕ), φ(ζ, ϕ) ∼ e±iLϕφ(ζ)

• LF eigenvalue equation HLF |φ〉 = M2|φ〉 is a LF wave equation for φ(
− d2

dζ2
− 1− 4L2

4ζ2
+ U(ζ)

)
φ(ζ) =M2φ(ζ)
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Conformal Algebraic Structure , Integrability and Stability Conditions

• Consider the potential (hard wall)

U(ζ) = 0 if ζ ≤ 1
ΛQCD

, U(ζ) = ∞ if ζ >
1

ΛQCD

• If L2 > 0 the LF Hamiltonian, HLF , is written as a bilinear form (Bargmann 1949)

HL
LF (ζ) = Π†L(ζ)ΠL(ζ)

in terms of the operator

ΠL(ζ) = −i
(
d

dζ
− L+ 1

2

ζ

)

and its adjoint

Π†L(ζ) = −i
(
d

dζ
+
L+ 1

2

ζ

)

with commutation relations [
ΠL(ζ),Π†L(ζ)

]
=

2L+ 1
ζ2

• Conformal algebraic structure !
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• If L2 ≥ 0 the Hamiltonian is positive definite

〈φ ∣∣HL
LF

∣∣φ〉 =
∫
dζ |ΠLφ(z)|2 ≥ 0

and thusM2 ≥ 0

• If L2 < 0 the Hamiltonian cannot be written as a bilinear form and the Hamiltonian is not bounded

from below ( “Fall-to-the-center” problem in Q.M.)

• Critical value of the potential corresponds to L = 0, the lowest possible stable state

• Orbital excitations constructed by the L-th application of the raising operator a†L = −iΠL on the

ground state, a†|L〉 ∼ |L+ 1〉:

φL(ζ) = 〈ζ|L〉 = CL

√
ζ (−ζ)L

(
1
ζ

d

dζ

)L

J0(ζM)

= CL

√
ζJL (ζM)

• Mode spectrum from boundary conditions φ
(
ζ = 1

ΛQCD

)
= 0, thusM2 = βLkΛQCD
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Light meson orbital spectrum in a hard wall holographic model for ΛQCD = 0.32 GeV
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Non-Conformal Extension of Algebraic Integrability

• Consider the extension of the conformal operator algebra by constructing the generator

ΠL(ζ) = −i
(
d

dζ
− L+ 1

2

ζ
− κ2ζ

)

and its adjoint

Π†L(ζ) = −i
(
d

dζ
+
L+ 1

2

ζ
+ κ2ζ

)

with commutation relations [
ΠL(ζ),Π†L(ζ)

]
=

2L+ 1
ζ2

− 2κ2

• The LF Hamiltonian

HLF = Π†LΠL + C

is positive definite 〈φ|HLF |φ〉 ≥ 0 for L2 ≥ 0, and C ≥ −4κ2

• Identify the zero mode (C = −4κ2) with the pion
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• Orbital and radial excited states are constructed from the ladder operators from the L = 0 state.

• Light-front Hamiltonian equation

HLF |φ〉 = M2|φ〉,
leads to effective LF wave equation(

− d2

dζ2
− 1− 4L2

4ζ2
+ U(ζ)

)
φ(ζ) =M2φ(ζ)

with effective potential

U(ζ) = κ4ζ2 + 2κ2(L−1)

eigenvalues

M2 = 4κ2(n+ L)

and eigenfunctions

φL(ζ) = κ1+L

√
2n!

(n+ L)!
ζ1/2+Le−κ2ζ2/2LL

n

(
κ2ζ2

)
.

• Transverse oscillator in the LF plane with SO(2) rotation subgroup has Casimir L2 representing

rotations in the transverse LF plane.
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Pion LFWF

• Two parton LFWF bound state:

ψHW
qq/π(x,b⊥) =

ΛQCD

√
x(1− x)√

πJ1+L(βL,k)
JL

(√
x(1− x) |b⊥|βL,kΛQCD

)
θ

(
b2
⊥ ≤

Λ−2
QCD

x(1− x)

)

ψSW
qq/π(x,b⊥) = κL+1

√
2n!

(n+ L)!
[x(1− x)] 1

2+L|b⊥|Le− 1
2 κ2x(1−x)b2

⊥LL
n

(
κ2x(1− x)b2

⊥
)

(a) (b)b b

xx

ψ
(x

,b
)
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Ground state pion LFWF in impact space. (a) HW model ΛQCD = 0.32 GeV, (b) SW model κ = 0.375 GeV
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Recap

• LF Hamiltonian equation in QCD

HLF |φ〉 = M2|φ〉
is a LF wave equation for φ(

− d2

dζ2
− 1− 4L2

4ζ2︸ ︷︷ ︸
kinetic energy of partons

+ U(ζ)︸ ︷︷ ︸
confinement

)
φ(ζ) =M2φ(ζ)

• Effective light-front Schrödinger equation: relativistic, frame-independent and analytically tractable

• Invariant LF variable ζ allows separation of dynamics of quark and gluon binding from kinematics of

constituent spin and internal orbital angular momentum

• LF impact variable ζ measures the separation of quark and gluon constituents within the hadron
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4 Gauge Gravity Correspondence

• Substitute Φ(ζ) ∼ ζ3/2φ(ζ), ζ → z in the conformal LFWE(
− d2

dζ2
− 1− 4L2

4ζ2

)
φ(ζ) =M2φ(ζ)

• Find: [
z2∂2

z − 3z ∂z + z2M2 − (μR)2
]
Φ(z) = 0,

with (μR)2 = −4 + L2, the wave equation describing the propagation of a string mode in AdS5 !

• Isomorphism of SO(4, 2) group of conformal QCD with generators Pμ,Mμν, D,Kμ with the group

of isometries of AdS5 space

ds2 =
R2

z2
(ημνdx

μdxν − dz2)

• AdS Breitenlohner-Freedman bound (μR)2 ≥ −4 equivalent to LF QM stability condition L2 ≥ 0

• Conformal dimension Δ of AdS mode Φ given in terms of 5-dim mass by (μR)2 = Δ(Δ−4). Thus

Δ = 2 + L in agreement with the twist scaling dimension of a two parton object in QCD
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• Truncated AdS/CFT model: cut-off at z0 = 1/ΛQCD breaks conformal invariance and allows the

introduction of the QCD scale (Hard-Wall Model) Polchinski and Strassler (2001)

10 2 3 4

1

2

0

3

z

Φ(z)

2-2007
8721A18

-2

-4

0

2

4

Φ(z)

10 2 3 4
z

2-2007
8721A19

Orbital and radial AdS modes in the hard wall model for ΛQCD = 0.32 GeV .

• Excitation spectrum hard-wall model: Mn(L) ∼ L+ 2n

Φ(z) ∼ zΔ

z → 0
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• Smooth cutoff: transverse oscilator model equivalent to the introduction of a background dilaton field

ϕ(z) = κ2z2 (Soft-Wall Model) Karch, Katz, Son and Stephanov (2006)

0
0 4 8
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6

Φ(z)
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8721A20 z

-5

0

5

0 4 8
z

Φ(z)

2-2007
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Fig: Orbital and radial AdS modes in the soft wall model for κ = 0.6 GeV .

• Excitation spectrum soft-wall: M2
n(L) ∼ L+ n , usual Regge dependence

Φ(z) ∼ zΔ

z → 0
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Use the isometries of AdS space to map the local

interpolating operators at the UV boundary of AdS

space into the modes propagating inside AdS:

xμ → λxμ, z → λz

ds2︸︷︷︸
LAdS

=
R2

z2
(ημνdx

μdxν︸ ︷︷ ︸
LMinkowski

−dz2)

• A distance LAdS shrinks by a warp factor as observed in Minkowski space (dz = 0):

LMinkowski ∼ z

R
LAdS

• Different values of z correspond to different scales at which the hadron is examined

• AdS boundary at z → 0 correspond to the Q→∞ UV zero separation limit

• There is a maximum separation of quarks and a maximum value of z at the IR boundary
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Gravity Action
Rik�m = − 1

R2
(gi�gkm − gimgk�)

• AdSd+1 metric x� = (xμ, z):

ds2 = g�mdx
�dxm =

R2

z2
(ημνdx

μdxν − dz2)

• Action for gravity coupled to scalar field in AdSd+1

S =
∫
dd+1x

√
g
( 1
κ2

(R− 2Λ)︸ ︷︷ ︸
SG

+
1
2
(
g�m∂�Φ∂mΦ− μ2Φ2

)
︸ ︷︷ ︸

SM

)

with Λ = −d(d−1)
2R2 and

√
g = (R

z )d+1

• Equations of motion

R�m − 1
2
g�mR− Λg�m = 0

z3∂z

(
1
z3
∂zΦ
)
− ∂ρ∂

ρΦ−
(
μR

z

)2

Φ = 0
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• Physical AdS modes ΦP (x, z) ∼ e−iP ·x Φ(z) are plane waves along the Poincaré coordinates

with four-momentum Pμ and hadronic invariant mass states PμP
μ = M2

• Factoring out dependence of string mode ΦP (x, z) along xμ-coordinates[
z2∂2

z − (d− 1)z ∂z + z2M2 − (μR)2
]
Φ(z) = 0

• Solution:

Φ(z) = Cz
d
2JΔ− d

2
(zM)

• Conformal dimension

Δ = 1
2

(
d+
√
d2 + 4μ2R2

)
• Normalization

Rd−1

∫ Λ−1
QCD

0

dz

zd−1
Φ2(z) = 1
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5 Higher-Spin Modes

Hard Wall Model

• Spin J -field on AdS represented by rank-J totally symmetric tensor field Φ(x, z)�1···�J

• Action in AdSd+1

SM =
1
2

∫
dd+1x

√
g
(
∂�Φ�1···�J

∂�Φ�1···�J − μ2Φ�1···�J
Φ�1···�J + . . .

)
• Each hadronic state of total spin J is dual to a normalizable string mode

ΦP (x, z)μ1···μJ = e−iP ·x Φ(z)μ1···μJ

with four-momentum Pμ, spin polarization indices along the 3+1 physical coordinates and hadronic

invariant mass PμP
μ = M2

• For string modes with all indices along Poincaré coordinates, Φzμ2···μJ = Φμ1z···μJ = · · · = 0
and appropriate subsidiary conditions system of coupled differential equations from SM reduce to a

homogeneous wave equation for Φ(z)μ1···μJ
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• Define the spin-J field Φμ1···μJ from the scalar mode Φ by shifting dimensions

ΦJ(z) =
( z
R

)−J
Φ(z)

• Normalization Hong, Yoon and Strassler (2006)

Rd−2J−1

∫ zmax

0

dz

zd−2J−1
Φ2

J(z) = 1.

• Substituting in the AdS wave equation for Φ[
z2∂2

z − (d−1−2J)z ∂z + z2M2− (μR)2
]
ΦJ = 0

upon fifth-dimensional mass rescaling (μR)2 → (μR)2 − J(d− J)

• Conformal dimension of J -mode

Δ =
1
2

(
d+
√

(d− 2J)2 + 4μ2R2
)

and thus (μR)2 = (Δ− J)(Δ− d+ J)

SLAC Theory Seminar, October 22, 2008 Page 30



• Upon substitution z→ζ and

φJ(ζ)∼ζ−3/2+JΦJ(ζ)

we recover the QCD LF wave equation(
− d2

dζ2
− 1− 4L2

4ζ2

)
φμ1···μJ = M2φμ1···μJ

with (μR)2 = −(2− J)2 + L2 for d = 4

• Total orbital decoupling in the HW model

• ForL2 ≥ 0 the LF Hamiltonian is positive definite 〈φJ |HLF |φJ〉 ≥ 0 and we find the stability bound

(μR)2 ≥ −(2− J)2

• The scaling dimensions are Δ = 2 + L independent of J in agreement with the twist scaling dimen-

sion of a two parton bound state in QCD
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Note: p-forms

• In tensor notation EOM for a p-form in AdSd+1are p+ 1 coupled differential equations l’Yi (1998)

[
z2∂2

z − (d+ 1− 2p)z ∂z − z2M2 − (μR)2 + d+ 1− 2p
]
Φzα2···αp = 0

· · ·[
z2∂2

z − (d− 1− 2p)z ∂z − z2M2 − (μR)2
]
Φα1α2···αp

= 2z
(
∂α1Φzα2···αp + ∂α2Φα1z···αp + · · · )

• For modes with all indices along the Poincaré coordinates Φzα2···αp = Φα1z···αp = · · · = 0[
z2∂2

z − (d−1−2p)z ∂z + z2M2− (μR)2
]
Φα1···αp = 0

with (μR)2 = (Δ− p)(Δ− d+ p)
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6 Fermionic Modes

From Nick Evans

• Baryons Spectrum in “bottom-up” holographic QCD

(GdT and SJB: hep-th/0409074, hep-th/0501022)

• Conformal metric x� = (xμ, z):

ds2 = g�mdx
�dxm =

R2

z2
(ημνdx

μdxν − dz2)

• Action for massive fermionic modes on AdSd+1:

S[Ψ,Ψ] =
∫
dd+1x

√
gΨ(x, z)

(
iΓ�D� − μ

)
Ψ(x, z)

• Equation of motion:
(
iΓ�D� − μ

)
Ψ(x, z) = 0[

i

(
zη�mΓ�∂m +

d

2
Γz

)
+ μR

]
Ψ(x�) = 0
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Holographic Light-Front Representation

• Upon the substitution Ψ(z) ∼ z2ψ(z), z → ζ we find

HLF |ψ〉 = M|ψ〉

with HLF = αΠ and μR = ν + 1
2

• The operator

Πν(ζ) = −i
(
d

dζ
− ν + 1

2

ζ
γ5

)

and its adjoint Π†ν(ζ) satisfy the commutation relations[
Πν(ζ),Π†ν(ζ)

]
=

2ν + 1
ζ2

γ5

• In the Weyl representation (iα = γ5β)

iα =

⎛
⎝ 0 I

−I 0

⎞
⎠ , β =

⎛
⎝0 I

I 0

⎞
⎠ , γ5 =

⎛
⎝I 0

0 −I

⎞
⎠
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• Baryon: twist-dimension 3 + L (ν = L+ 1)

O3+L = ψD{�1 . . . D�qψD�q+1 . . . D�m}ψ, L =
m∑

i=1

�i

• Solution to Dirac eigenvalue equation

(αΠ(ζ)−M)ψ(ζ) = 0,

is
ψ(ζ) = C

√
ζ [JL+1(ζM)u+ + JL+2(ζM)u−]

Baryonic modes propagating in AdS space have two components: orbital L and L+ 1

• Hadronic mass spectrum determined from IR boundary conditions

ψ± (ζ = 1/ΛQCD) = 0,

given by M+
L,k = βL+1,kΛQCD, M−

L,k = βL+2,kΛQCD

with a scale independent mass ratio

SLAC Theory Seminar, October 22, 2008 Page 35



SU(6) S L Baryon State
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I = 1/2 I = 3/2
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Light baryon orbital spectrum for ΛQCD = 0.25 GeV in the HW model. The 56 trajectory corresponds to L even

P = + states, and the 70 to L odd P = − states.
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Non-Conformal Extension of Algebraic Structure

• We write the Dirac equation

(αΠ(ζ)−M)ψ(ζ) = 0

in terms of the matrix-valued operator Πν

Πν(ζ) = −i
(
d

dζ
− ν + 1

2

ζ
γ5 − κ2ζγ5

)

• Commutation relations for fermionic generators[
Πν(ζ),Π†ν(ζ)

]
=
(

2ν + 1
ζ2

− 2κ2

)
γ5

• Solutions to the Dirac equation

ψ+(ζ) ∼ z
1
2
+νe−κ2ζ2/2Lν

n(κ2ζ2)

ψ−(ζ) ∼ z
3
2
+νe−κ2ζ2/2Lν+1

n (κ2ζ2)

• Eigenvalues

M2 = 4κ2(n+ ν + 1)
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• Equivalent to Dirac equation in AdS space x� = (xμ, z)[
i

(
zη�mΓ�∂m +

d

2
Γz

)
+ μR+ U(z)

]
Ψ(x�) = 0.

in presence of a linear confining potential U(z) = κ2z !

• Define the zero point energy (identical as in the meson case) M2 →M2 − 4κ2:

M2 = 4κ2(n+ L+ 1).

Proton Regge Trajectory κ = 0.49 GeV
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7 Conclusions
〈P ′|Θμν(0)|P 〉

Θμν(0)

• Holographic duality requires a higher dimensional

warped space. Space with negative curvature

and a 4-dim boundary: AdS5

• Local operators like hadronic interpolating operatorsO,

the energy-momentum tensor Θμν , the EM current

Jμ and the QCD Lagrangian LQCD are defined in

terms of quark and gluon fields at the AdS5 boundary

• Hadronic transition matrix elements like

〈P ′|Θμν |P 〉 probes the hadronic wave

function Φ(z) at z ∼ 1/Q (Q = P ′ − P )

• Eigenvalues of normalizable modes inside AdS give the hadronic spectrum. AdS modes represent

also the probability amplitude for distribution of quarks at a given scale.

• Non-normalizable modes are related to external currents: they probe the cavity interior. Also couple to

boundary QCD interpolating operators.
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Other Applications of Light-Front Holography
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• Nucleon form-factors: space-like region

• Pion form-factors: space and time-like regions

• Gravitational form-factors of composite hadrons

• n-parton LFWF with massive quarks
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