Light-Front Hadron Dynamics and AdS/QCD Correspondence

Guy F. de Téramond

Ecole Polytechnique and University of Costa Rica

In Collaboration with Stan Brodsky

From Strings to Things: String Theory Methods in QCD and Hadron Physics

Institute for Nuclear Theory

Seattle, April 10, 2008

Outline

1. Introduction

Strongly Coupled QCD and Effective Gravity Description

Conformal QCD Window in Exclusive Processes

2. Light-Front Dynamics

Light-Front Fock Representation

Electromagnetic and Gravitational Form Factors of Composite Hadrons

3. Semiclassical Gauge/Gravity Correspondence

Gravity Action

Electromagnetic and Gravitational Transition Matrix Elements in AdS

- 4. Light-Front Mapping of String Amplitudes
- 5. Quark-Hadron Duality in AdS/QCD

1 Introduction

- Most challenging problem of strong interaction dynamics: determine the composition of hadrons in terms of their fundamental QCD quark and gluon degrees of freedom
- Recent developments using the AdS/CFT correspondence between string states in AdS space and conformal field theories in physical space-time have renewed the hope of finding an analytical approximation to describe the confining dynamics of QCD, at least in its strongly coupling regime
- Original correspondence between $\mathcal{N} = 4$ SYM at large N_C and the low energy supergravity approximation to Type IIB string on AdS₅ × S^5 Maldacena, hep-th/9711200
- Description of strongly coupled gauge theory using a dual gravity description!
- QCD is fundamentally different from SYM theories where all matter is in the adjoint rep of $SU(N_C)$, and is non-conformal. Is there a dual string theory to QCD?

Strongly Coupled QCD and Effective Gravity Description

- Semi-classical correspondence as a first approximation to quasi-conformal QCD (strongly coupled at all scales)
- Use the isometries of AdS to map the local interpolating operators at the UV boundary of AdS space into the modes propagating inside AdS
- Strings describe extended objects (no quarks). QCD degrees of freedom are pointlike particles: how can they be related? How can we map string states into partons?
- Eigenvalues of normalizable modes inside AdS give the hadronic spectrum. AdS modes represent also the probability amplitude for distribution of quarks at a given scale
- Non-normalizable modes are related to external currents: they probe the cavity interior. Also couple to boundary QCD interpolating operators

• Isomorphism of SO(4,2) of conformal QCD with the group of isometries of AdS space

$$ds^{2} = \frac{R^{2}}{z^{2}} (\eta_{\mu\nu} dx^{\mu} dx^{\nu} - dz^{2})$$

- $x^{\mu} \to \lambda x^{\mu}$, $z \to \lambda z$, maps scale transformations into the holographic coordinate z
- A distance L_{AdS} shrinks by a warp factor as observed in Minkowski space (dz = 0):

$$L_{Minkowski} \sim \frac{z}{R} L_{AdS}$$

- Different values of z correspond to different scales at which the hadron is examined: AdS boundary at $z \to 0$ correspond to the $Q \to \infty$, UV zero separation limit
- There is a maximum separation of quarks and a maximum value of z at the IR boundary
- Truncated AdS/CFT model: cut-off at $z_0 = 1/\Lambda_{QCD}$ breaks conformal invariance and allows the introduction of the QCD scale (Hard-Wall Model) Polchinski and Strassler (2001)
- Smooth cutoff: introduction of a background dilaton field $\varphi(z)$ usual Regge dependence can be obtained (Soft-Wall Model) Karch, Katz, Son and Stephanov (2006)

⁸⁻²⁰⁰⁷ 8685A14 Page 6

Conformal QCD Window in Exclusive Processes

- In the semi-classical approximation to QCD with massless quarks and no quantum loops the β function is zero and the approximate theory is scale and conformal invariant
- Is α_s frezed in the IR ? D-S Equation Alkofer, Fischer, LLanes-Estrada, Papavassiliou ...
- New JLAB extraction of effective $\alpha_s(Q^2)$ from CLAS spin structure data shows lack of Q^2 dependence in the low Q^2 region Deur *et al.*, arXiv:0803.4119: $\frac{\alpha_{s,g_1}}{\pi} = \left(1 \frac{6\Gamma_1^{p-n}}{g_A}\right)$, $\Gamma_1^{p-n}(Q^2)$ Bjorken sum

Fig: Infrared conformal window (from Deur et al., arXiv:0803.4119)

• Phenomenological success of dimensional scaling laws for exclusive processes

$$d\sigma/dt \sim 1/s^{n-2}, \quad n = n_A + n_B + n_C + n_D,$$

implies QCD is a strongly coupled conformal theory at moderate but not asymptotic energies Brodsky and Farrar (1973); Matveev *et al.* (1973)

- Derivation of counting rules for gauge theories with mass gap dual to string theories in warped space (hard behavior instead of soft behavior characteristic of strings) Polchinski and Strassler (2001)
- Example: Dirac proton form factor: $F_1(Q^2) \sim \left[1/Q^2\right]^{n-1}, \ n=3$

From: M. Diehl *et al.* Eur. Phys. J. C **39**, 1 (2005).

2 Light Front Dynamics

- Different possibilities to parametrize space-time in terms of general coordinates $\overline{x}(x)$ (excluding all related by a Lorentz transformation)
- According to Dirac there are no more than three different parametrization of space-time, the *instant form*, the *front form* and the *point form*, Dirac (1949)
- Parametrizations differ by the hypersurface on which the initial conditions are specified. Each evolve with different "times" and has its own Hamiltonian, but should give the same physical results
- Instant form: hypersurface defined by t = 0, the familiar one
- Front form: hypersurface is tangent to the light cone
- *Point form*: hypersurface is an hyperboloid

Light-Front Fock Representation

• Light-front expansion constructed by quantizing QCD at fixed light-cone time $\tau = t + z/c$ and forming the invariant light-front Hamiltonian (Brodsky, Pauli and Pinski, Phys. Rept. **301** 299 (1998)) :

$$H_{LF} = P^+ P^- - \vec{P}_\perp^2,$$

where $P^{\pm}=P^{0}\pm P^{z}$

- Momentum generators P^+ and \vec{P}_{\perp} are kinematical (independent of the interactions) and $P^- = i \frac{d}{d\tau}$ generates light-front time translations
- Eigenvalues of H_{LF} give the mass spectrum of the color-singlet hadronic states:

$$H_{LC} \mid \psi_H \rangle = \mathcal{M}_H^2 \mid \psi_H \rangle$$

• State $|\psi_h\rangle$ is an expansion in multi-particle Fock eigenstates $|n\rangle$ of the free light-front Hamiltonian:

$$|\psi_H\rangle = \sum_n \psi_{n/H} |n\rangle$$

• Proton:

$$|P\rangle = \psi_{uud/P}|uud\rangle + \psi_{uudg/P}|uudg\rangle + \psi_{uud\overline{q}q/P}|uud\overline{q}q\rangle \dots$$

• Fock components $\psi_{n/h}(x_i, \mathbf{k}_{\perp i})$ are independent of the total momentum P^+ and \mathbf{P}_{\perp} of the hadron and depend only on the relative partonic coordinates: momentum fraction $x_i = k_i^+/P^+$, transverse momentum $\mathbf{k}_{\perp i}$ and spin component λ_i

$$\sum_{i=1}^{n} x_i = 1, \quad \sum_{i=1}^{n} \mathbf{k}_{\perp i} = 0.$$

- Complete basis of Fock-states $|n\rangle$ constructed by applying free-field creation operators to the vacuum state $|0\rangle$: $P^+|0\rangle = 0$, $\mathbf{P}_{\perp}|0\rangle = 0$
- Dirac field ψ_+ , $\psi_\pm = \Lambda_\pm \psi$, $\Lambda_\pm = \gamma^0 \gamma^\pm$, and the transverse field \mathbf{A}_\perp in the $A^+ = 0$ gauge, expanded in terms of quark and gluon ladder operators on the transverse plane with coordinates $x^- = x^0 x^3$ and \mathbf{x}_\perp at fixed light-front time $x^+ = x^0 + x^3$

$$\psi_{+}(x)_{\alpha} = \sum_{\lambda} \int_{q^{+}>0} \frac{dq^{+}}{\sqrt{2q^{+}}} \frac{d^{2}\mathbf{q}_{\perp}}{(2\pi)^{3}} \left[b_{\lambda}(q)u_{\alpha}(q,\lambda)e^{-iq\cdot x} + d_{\lambda}(q)^{\dagger}v_{\alpha}(q,\lambda)e^{iq\cdot x} \right],$$

with u and v light-cone spinors

• Commutation relations

$$\left\{b(q), b^{\dagger}(q')\right\} = \left\{d(q), d^{\dagger}(q')\right\} = (2\pi)^{3} \,\delta(q^{+} - q'^{+}) \delta^{(2)} \left(\mathbf{q}_{\perp} - \mathbf{q}_{\perp}'\right)$$

• One parton state: $|q
angle=\sqrt{2q^+}\,b^\dagger(q)|0
angle$

Electromagnetic Form Factor of Composite Hadrons

• EM FF defined by matrix elements of the current operator $J^+(x) = \sum_q e_q \overline{\psi}(x) \gamma^+ \psi(x)$

$$\langle P' | J^+(0) | P \rangle = 2 (P + P')^+ F(Q^2), \quad Q = P' - P$$

• Particle number representation

$$J^{+} = \sum_{q} e_{q} \int \frac{dq^{+}d^{2}\mathbf{q}_{\perp}}{(2\pi)^{3}} \int \frac{dq'^{+}d^{2}\mathbf{q}'_{\perp}}{(2\pi)^{3}} \left\{ b^{\dagger}(q)b(q') + d^{\dagger}(q)d(q') \right\}$$

• Drell-Yan-West (DYW) expression for meson form factor

$$F(q^2) = \sum_{n} \int \left[dx_i \right] \left[d^2 \mathbf{k}_{\perp i} \right] \sum_{j} e_j \psi_{n/P'}^*(x_i, \mathbf{k}'_{\perp i}) \psi_{n/P}(x_i, \mathbf{k}_{\perp i}),$$

where $\mathbf{k}'_{\perp i} = \mathbf{k}_{\perp i} + (1 - x_i) \mathbf{q}_{\perp}$ for a struck quark and $\mathbf{k}'_{\perp i} = \mathbf{k}_{\perp i} - x_i \mathbf{q}_{\perp}$ for each spectator

• Phase space normalization of LFWFs

$$\sum_{n} \int \left[dx_i \right] \left[d^2 \mathbf{k}_{\perp i} \right] \left| \psi_{n/h}(x_i, \mathbf{k}_{\perp i}) \right|^2 = 1$$

• Transverse position coordinates $x_i \mathbf{r}_{\perp i} = x_i \mathbf{R}_{\perp} + \mathbf{b}_{\perp i}$

$$\sum_{i=1}^{n} \mathbf{b}_{\perp i} = 0, \quad \sum_{i=1}^{n} x_i \mathbf{r}_{\perp i} = \mathbf{R}_{\perp}$$

• LFWF $\psi_n(x_j, \mathbf{k}_{\perp j})$ expanded in terms of n-1 independent coordinates $\mathbf{b}_{\perp j}$, $j=1,2,\ldots,n-1$

$$\psi_n(x_j, \mathbf{k}_{\perp j}) = (4\pi)^{\frac{n-1}{2}} \prod_{j=1}^{n-1} \int d^2 \mathbf{b}_{\perp j} \exp\left(i\sum_{j=1}^{n-1} \mathbf{b}_{\perp j} \cdot \mathbf{k}_{\perp j}\right) \tilde{\psi}_n(x_j, \mathbf{b}_{\perp j})$$

• Normalization

$$\sum_{n} \prod_{j=1}^{n-1} \int dx_j d^2 \mathbf{b}_{\perp j} \left| \tilde{\psi}_n(x_j, \mathbf{b}_{\perp j}) \right|^2 = 1$$

• The form factor has the exact representation (DYW)

$$F(q^2) = \sum_{n} \prod_{j=1}^{n-1} \int dx_j d^2 \mathbf{b}_{\perp j} \sum_{q} e_q \exp\left(i\mathbf{q}_{\perp} \cdot \sum_{j=1}^{n-1} x_j \mathbf{b}_{\perp j}\right) |\tilde{\psi}_n(x_j, \mathbf{b}_{\perp j})|^2$$

Gravitational Form Factor of Composite Hadrons

• Gravitational FF defined by matrix elements of the energy momentum tensor $\Theta^{++}(x)$

$$\left\langle P' \left| \Theta^{++}(0) \right| P \right\rangle = 2 \left(P^{+} \right)^{2} A(Q^{2})$$

• $\Theta^{\mu\nu}$ is computed for each constituent in the hadron from the QCD Lagrangian

$$\mathcal{L}_{\text{QCD}} = \overline{\psi} \left(i \gamma^{\mu} D_{\mu} - m \right) \psi - \frac{1}{4} G^{a}_{\mu\nu} G^{a\,\mu\nu}$$

• Symmetric and gauge invariant $\Theta^{\mu\nu}$ from variation of $S_{\rm QCD} = \int d^4x \sqrt{g} \mathcal{L}_{\rm QCD}$ with respect to four-dim Minkowski metric $g_{\mu\nu}$, $\Theta^{\mu\nu}(x) = -\frac{2}{\sqrt{g}} \frac{\delta S_{\rm QCD}}{\delta g_{\mu\nu}(x)}$:

$$\Theta^{\mu\nu} = \frac{1}{2}\overline{\psi}i(\gamma^{\mu}D^{\nu} + \gamma^{\nu}D^{\mu})\psi - g^{\mu\nu}\overline{\psi}(iD - m)\psi - G^{a\,\mu\lambda}G^{a\,\nu}{}_{\lambda} + \frac{1}{4}g^{\mu\nu}G^{a\,\mu\nu}_{\mu\nu}G^{a\,\mu\nu}$$

• Quark contribution in light front gauge ($A^+ = 0, g^{++} = 0$)

$$\Theta^{++}(x) = \frac{i}{2} \sum_{f} \overline{\psi}^{f}(x) \gamma^{+} \overleftrightarrow{\partial}^{+} \psi^{f}(x)$$

• Particle number representation

$$\Theta^{++} = \frac{1}{2} \sum_{f} \int \frac{dq^{+} d^{2} \mathbf{q}_{\perp}}{(2\pi)^{3}} \int \frac{dq'^{+} d^{2} \mathbf{q}'_{\perp}}{(2\pi)^{3}} \left(q^{+} + q'^{+}\right) \left\{b^{f\dagger}(q)b^{f}(q') + d^{f\dagger}(q)d^{f}(q')\right\}$$

• Gravitational form-factor in momentum space

$$A(q^2) = \sum_{n} \int \left[dx_i \right] \left[d^2 \mathbf{k}_{\perp i} \right] \sum_{f} x_f \, \psi_{n/P'}^*(x_i, \mathbf{k}'_{\perp i}) \psi_{n/P}(x_i, \mathbf{k}_{\perp i}),$$

where $\mathbf{k}'_{\perp i} = \mathbf{k}_{\perp i} + (1 - x_i) \mathbf{q}_{\perp}$ for a struck quark and $\mathbf{k}'_{\perp i} = \mathbf{k}_{\perp i} - x_i \mathbf{q}_{\perp}$ for each spectator

• Gravitational form-factor in impact space

$$A(q^2) = \sum_{n} \prod_{j=1}^{n-1} \int dx_j d^2 \mathbf{b}_{\perp j} \sum_{f} x_f \exp\left(i\mathbf{q}_{\perp} \cdot \sum_{j=1}^{n-1} x_j \mathbf{b}_{\perp j}\right) \left|\tilde{\psi}_n(x_j, \mathbf{b}_{\perp j})\right|^2$$

3 Semi-Classical Correspondence

Correspondence between a gravity theory in AdS_{d+1} and the strong coupling limit of a conformal field theory at the z = 0 boundary Gubser, Klebanov and Polyakov (1998); Witten (1998)

• *d*-dim QCD generating functional in presence of external source $J(x) = \Phi_0(x)$

$$Z_{\text{QCD}}[\Phi_0(x)] = e^{iW_{\text{QCD}}[\Phi_0]} = \int \mathcal{D}[\psi, \overline{\psi}, A] \exp\left\{iS_{\text{QCD}} + i\int d^d x \Phi_0 \mathcal{O}\right\},$$

with ${\cal O}$ a hadronic local interpolating operator (${\cal O}=G^a_{\mu\nu}G^{a\mu\nu}, \overline{q}\gamma_5 q, \cdots)$

• d+1-dim gravity partition function for scalar field in AdS_{d+1} : $\Phi(x,z)$

$$Z_{grav}[\Phi(x,z)] = e^{iS_{eff}[\Phi]} = \int \mathcal{D}[\Phi]e^{iS[\Phi]}$$

• Boundary condition for full theory (True for QCD ?):

$$Z_{grav} \left[\Phi(x, z = 0) = \Phi_0(x) \right] = Z_{\text{QCD}} \left[\Phi_0 \right]$$

• Semi-classical effective approximation

$$W_{\text{QCD}}[\phi_0] = S_{eff} [\Phi(x, z)|_{z=0} = \Phi_0(x)]_{\text{on-shell}}$$

• Near the boundary of AdS_{d+1} space $z \to 0$:

$$\Phi(x,z) \to z^{\Delta} \Phi_+(x) + z^{d-\Delta} \Phi_-(x)$$

- $\Phi_{-}(x)$ is the boundary limit of non-normalizable mode (source): $\Phi_{-} = \Phi_{0}$
- $\Phi_+(x)$ is the boundary limit of the normalizable mode (physical states)
- Using the equations of motion AdS action reduces to a UV surface term

$$S_{eff} = \frac{R^{d-1}}{4} \lim_{z \to 0} \int d^d x \, \frac{1}{z^{d-1}} \, \Phi \partial_z \Phi$$

• S_{eff} is identified with the boundary functional W_{CFT}

$$\langle \mathcal{O} \rangle_{\Phi_0} = \frac{\delta W_{CFT}}{\delta \Phi_0} = \frac{\delta S_{\text{eff}}}{\delta \Phi_0} \sim \Phi_+(x)$$

Balasubramanian et. al. (1998), Klebanov and Witten (1999)

- Physical AdS modes $\Phi_P(x,z) \sim e^{-iP \cdot x} \Phi(z)$ are plane waves along the Poincaré coordinates with four-momentum P^{μ} and hadronic invariant mass states $P_{\mu}P^{\mu} = \mathcal{M}^2$
- For small- $z \Phi(z) \sim z^{\Delta}$. The scaling dimension Δ of a normalizable string mode, is the same dimension of the interpolating operator \mathcal{O} which creates a hadron out of the vacuum: $\langle P|\mathcal{O}|0\rangle \neq 0$

Gravity Action

$$\mathcal{R}_{ik\ell m} = -\frac{1}{R^2} \left(g_{i\ell} g_{km} - g_{im} g_{k\ell} \right)$$

• AdS_{d+1} metric $x^{\ell} = (x^{\mu}, z)$:

$$ds^{2} = g_{\ell m} dx^{\ell} dx^{m} = \frac{R^{2}}{z^{2}} (\eta_{\mu\nu} dx^{\mu} dx^{\nu} - dz^{2})$$

• Action for gravity coupled to scalar field in AdS_{d+1} $\left(\Lambda = -\frac{d(d-1)}{2R^2}\right)$:

$$S = \int d^{d+1}x \sqrt{g} \left(\underbrace{\frac{1}{\kappa^2} \left(\mathcal{R} - 2\Lambda \right)}_{S_G} + \underbrace{g^{\ell m} \partial_\ell \Phi^* \partial_m \Phi - \mu^2 \Phi^* \Phi}_{S_M} \right)$$

• Equations of motion

$$\mathcal{R}_{\ell m} - \frac{1}{2}g_{\ell m}\mathcal{R} - \Lambda g_{\ell m} = 0$$

$$z^{3}\partial_{z}\left(\frac{1}{z^{3}}\partial_{z}\Phi\right) - \partial_{\rho}\partial^{\rho}\Phi - (\mu R)^{2}\Phi = 0$$

Electromagnetic Transition Matrix Elements in AdS

• Hadronic matrix element for EM coupling with AdS mode Φ , $J^{\ell} = \frac{1}{\sqrt{q}} \frac{\delta S_I}{\delta A^{\ell}}$:

$$\langle P'|M|P\rangle = \mathcal{Q} \int d^4x \, dz \, \sqrt{g} \, A^\ell(x,z) \Phi_{P'}^*(x,z) \overleftrightarrow{\partial}_\ell \Phi_P(x,z)$$

• Electromagnetic probe polarized along Minkowski coordinates $(Q^2 = -q^2 > 0)$

$$A(x,z)_{\mu} = \epsilon_{\mu} e^{-iQ \cdot x} J(Q,z), \quad A_z = 0$$

Propagation of external current inside AdS space described by the AdS wave equation

$$\left[z\partial_z\left(\frac{1}{z}\partial_z\right) - Q^2\right]J(Q,z) = 0,$$

subject to boundary conditions J(Q=0,z)=J(Q,z=0)=1

Solution

$$J(Q,z) = zQK_1(zQ)$$

- Substitute hadronic modes $\Phi(x,z)$ in the transition matrix element $\langle P'|M|P
angle$

$$\Phi_P(x,z) = e^{-iP \cdot x} \Phi(z), \quad \Phi(z) \to z^{\Delta}, \quad z \to 0$$

• Find the transition amplitude

$$\langle P'|M^{\mu}|P\rangle = 2(P+P')^{\mu}F(Q^2)$$

• EM form-factor $F(Q^2)$ is the overlap of normalizable modes dual to the in and out hadrons Φ_P and $\Phi_{P'}$, with non-normalizable mode J(Q, z) dual to external source [Polchinski and Strassler (2002)]

$$F(Q^{2}) = R^{3} \int_{0}^{\Lambda_{\text{QCD}}^{-1}} \frac{dz}{z^{3}} \Phi(z) J(Q, z) \Phi(z)$$

- Since $K_n(x) \sim \sqrt{\frac{\pi}{2x}}e^{-x}$, the external source is suppressed inside AdS for large Q. Important contribution to the integral is from $z \sim 1/Q$, where $\Phi \sim z^{\Delta}$
- $\bullet\,$ For large Q^2

$$F(Q^2) \to \left(\frac{1}{Q^2}\right)^{\Delta - 1},$$

and the power-law ultraviolet point-like scaling is recovered [Polchinski and Susskind (2001)]

Fig: Suppression of external modes for large Q inside AdS. Red curves: J(Q,z), black: $\Phi(z)$

Gravitational Transition Matrix Elements in AdS

• Consider a small deformation of the metric about AdS background $g_{\ell m}$: $\overline{g}_{\ell m} = g_{\ell m} + h_{\ell m}$ and expand S_M , $\Theta^{\ell m}(x^{\ell}) = -\frac{2}{\sqrt{g}} \frac{\delta S_M}{\delta g_{\ell m}(x^{\ell})}$: $S_M[h_{\ell m}] = S_M[0] - \frac{1}{2} \int d^{d+1}x \sqrt{g} h_{\ell m} \Theta^{\ell m} + \mathcal{O}(h^2),$

$$S_M[h_{\ell m}] = S_M[0] - \underbrace{\frac{1}{2} \int d^{d+1}x \sqrt{g} h_{\ell m} \Theta^{\ell m}}_{S_I} + \mathcal{O}(h^2)$$

where

$$\Theta^{\ell m} = \partial^{\ell} \Phi^* \partial^m \Phi + \partial^m \Phi^* \partial^{\ell} \Phi - g^{\ell m} \left(\partial_n \Phi^* \partial^n \Phi - \mu^2 \Phi^* \Phi \right)$$

• Hadronic matrix element

$$\langle P'|T|P\rangle = \int d^4x \, dz \sqrt{g} \, h_{\ell m}(x,z) \partial^{(\ell} \Phi_{P'}^*(x,z) \partial^{m)} \Phi_P(x,z)$$

• Find propagation of gravitational probe inside AdS. Expand S_G ($\overline{g}_{\ell m} = g_{\ell m} + h_{\ell m}$) :

$$S_G[h_{\ell m}] = S_G[0] + \underbrace{\frac{1}{4\kappa^2} \int d^{d+1}x \sqrt{g} \left(\partial_n h^{\ell m} \partial^n h_{\ell m} - \frac{1}{2} \partial_\ell h \, \partial^\ell h\right)}_{S_h} + \mathcal{O}(h^2),$$

in the harmonic gauge $\partial_\ell h_m^\ell = \frac{1}{2} \partial_m h$

• Graviton with metric components along Minkowski coordinates $h_{zz} = h_{z\mu} = 0$. Equation of motion

$$z^{3}\partial_{z}\left(\frac{1}{z^{3}}\partial_{z}h_{\mu}^{\nu}\right) - \partial_{\rho}\partial^{\rho}h_{\mu}^{\nu} = 0,$$

in the transverse and traceless ($h=h_{\mu}^{\mu}=0$) gauge

• Write

$$h^{\nu}_{\mu}(x,z) = \epsilon^{\nu}_{\mu} e^{-iq \cdot x} H(q^2,z)$$

with boundary conditions $H(q^2\!=\!0,z)=H(q^2,z\!=\!0)=1$

• Solution $H(Q^2,z) = \frac{1}{2}Q^2z^2K_2(zQ)$

- Substitute hadronic modes $\Phi(x,z)$ in the transition matrix element $\langle P'|T|P\rangle$

$$\Phi_P(x,z) = e^{-iP \cdot x} \Phi(z)$$

• Find the transition amplitude

$$\left\langle P' \left| T^{\mu\nu} \right| P \right\rangle = \left(P'^{\mu} P^{\nu} + P^{\mu} P'^{\nu} \right) A(Q^2)$$

• Gravitational form-factor ${\cal A}(Q^2)$

$$A(Q^2) = R^3 \int \frac{dz}{z^3} \, \Phi(z) H(Q^2, z) \Phi(z), \quad A(0) = 1$$

• At large Q^2

$$A(Q^2) \to \left(\frac{1}{Q^2}\right)^{\Delta - 1},$$

we recover ultraviolet point-like behavior responsible for power law scaling

4 Light-Front Mapping of String Amplitudes

- Consider LF holographic mapping of a two-parton bound state with LFWF $\psi_{\overline{q}q/\pi}(x,{f b}_{\perp})$
- *n*-parton holographic mapping $\psi_{n/H}(x_i, \mathbf{b}_{\perp i})$ described in terms of effective single particle distribution (Soper): SJB and GdT, arXiv:0707.385 and arXiv:0804.045

Electromagnetic Form Factor

• Drell-Yan West electromagnetic form factor in impact space

$$F(q^2) = \sum_{n} \prod_{j=1}^{n-1} \int dx_j d^2 \mathbf{b}_{\perp j} \sum_{q} e_q \exp\left(i\mathbf{q}_{\perp} \cdot \sum_{j=1}^{n-1} x_j \mathbf{b}_{\perp j}\right) \left|\tilde{\psi}_n(x_j, \mathbf{b}_{\perp j})\right|^2$$

• For a two-quark π^+ bound state $|u\overline{d}\rangle$ with charges $e_u = \frac{2}{3}$ and $e_{\overline{d}} = \frac{1}{3}$:

$$F_{\pi^+}(q^2) = \int_0^1 dx \int d^2 \mathbf{b}_\perp e^{i\mathbf{q}_\perp \cdot \mathbf{b}_\perp (1-x)} \left| \tilde{\psi}_{u\overline{d}/\pi}(x, \mathbf{b}_\perp) \right|^2,$$

where $F_{\pi}^+(q=0)=1$

• Integrating over angle

$$F_{\pi^+}(q^2) = 2\pi \int_0^1 \frac{dx}{x(1-x)} \int \zeta d\zeta J_0\left(\zeta q \sqrt{\frac{1-x}{x}}\right) \left|\tilde{\psi}_{u\overline{d}/\pi}(x,\zeta)\right|^2,$$

where $\zeta^2 = x(1-x) \mathbf{b}_{\perp}^2$

• Electromagnetic form-factor in AdS space:

$$F_{\pi^+}(Q^2) = R^3 \int \frac{dz}{z^3} J(Q^2, z) |\Phi_{\pi^+}(z)|^2,$$

where $J(Q^2, z) = zQK_1(zQ)$.

 $\bullet\,$ Use integral representation for $J(Q^2,z)$

$$J(Q^2, z) = \int_0^1 dx \, J_0\left(\zeta Q \sqrt{\frac{1-x}{x}}\right)$$

• Write the AdS electromagnetic form-factor as

$$F_{\pi^+}(Q^2) = R^3 \int_0^1 dx \int \frac{dz}{z^3} J_0\left(zQ\sqrt{\frac{1-x}{x}}\right) |\Phi_{\pi^+}(z)|^2$$

• Compare with electromagnetic form-factor in light-front QCD for arbitrary Q

$$\left|\tilde{\psi}_{q\bar{q}/\pi}(x,\zeta)\right|^{2} = \frac{R^{3}}{2\pi} x(1-x) \frac{|\Phi_{\pi}(\zeta)|^{2}}{\zeta^{4}}$$

with $\zeta = z, \ 0 \leq \zeta \leq \Lambda_{\rm QCD}$

Gravitational Form Factor

• Gravitational form factor in impact space

$$A(q^2) = \sum_{n} \prod_{j=1}^{n-1} \int dx_j d^2 \mathbf{b}_{\perp j} \sum_{f} x_f \exp\left(i\mathbf{q}_{\perp} \cdot \sum_{j=1}^{n-1} x_j \mathbf{b}_{\perp j}\right) \left|\tilde{\psi}_n(x_j, \mathbf{b}_{\perp j})\right|^2$$

 $\bullet\,$ For a two-quark π^+ bound state $|u\overline{d}\rangle$ with longitudinal momentum fraction x and 1-x

$$A_{\pi}(q^2) = 2 \int_0^1 x dx \int d^2 \mathbf{b}_{\perp} e^{i\mathbf{q}_{\perp} \cdot \mathbf{b}_{\perp}(1-x)} \left| \tilde{\psi}_{q\overline{q}/\pi}(x, \mathbf{b}_{\perp}) \right|^2,$$

where $A(q=0) = 1 \left(\int_0^1 x dx \int d^2 \mathbf{b}_{\perp} |\tilde{\psi}(x, \mathbf{b}_{\perp})|^2 = \frac{1}{2} \right)$

• Integrating over angle we find

$$A_{\pi}(Q^2) = 4\pi \int_0^1 \frac{dx}{(1-x)} \int \zeta d\zeta J_0\left(\zeta q \sqrt{\frac{1-x}{x}}\right) |\tilde{\psi}_{q\overline{q}/\pi}(x,\zeta)|^2$$

where $\zeta^2 = x(1-x) {\bf b}_\perp^2$

• Hadronic gravitational form-factor in AdS space

$$A_{\pi}(Q^2) = R^3 \int \frac{dz}{z^3} H(Q^2, z) |\Phi_{\pi}(z)|^2,$$

where $H(Q^2,z)=\frac{1}{2}Q^2z^2K_2(zQ)$

 $\bullet\,$ Use integral representation for $H(Q^2,z)$

$$H(Q^2, z) = 2 \int_0^1 x \, dx \, J_0\left(zQ\sqrt{\frac{1-x}{x}}\right)$$

• Write the AdS gravitational form-factor as

$$A_{\pi}(Q^2) = 2R^3 \int_0^1 x \, dx \int \frac{dz}{z^3} \, J_0\left(zQ\sqrt{\frac{1-x}{x}}\right) \, |\Phi_{\pi}(z)|^2$$

• Compare with gravitational form-factor in light-front QCD for arbitrary Q

$$\left|\tilde{\psi}_{q\overline{q}/\pi}(x,\zeta)\right|^2 = \frac{R^3}{2\pi} x(1-x) \frac{\left|\Phi_{\pi}(\zeta)\right|^2}{\zeta^4},$$

which is identical to the result obtained from the EM form-factor

Example: Two-parton Pion LFWF

• Hard-Wall Model (P-S)

$$\tilde{\psi}_{\overline{q}q/\pi}^{HW}(x,\mathbf{b}_{\perp}) = \frac{\Lambda_{\rm QCD}\sqrt{x(1-x)}}{\sqrt{\pi}J_{1+L}(\beta_{L,k})} J_L\left(\sqrt{x(1-x)}\,|\mathbf{b}_{\perp}|\beta_{L,k}\Lambda_{\rm QCD}\right) \theta\left(\mathbf{b}_{\perp}^2 \le \frac{\Lambda_{\rm QCD}^{-2}}{x(1-x)}\right)$$

• Soft-Wall Model (K-K-S-S)

$$\tilde{\psi}_{\bar{q}q/\pi}^{SW}(x,\mathbf{b}_{\perp}) = \kappa^{L+1} \sqrt{\frac{2n!}{(n+L)!}} \left[x(1-x) \right]^{\frac{1}{2}+L} |\mathbf{b}_{\perp}|^{L} e^{-\frac{1}{2}\kappa^{2}x(1-x)\mathbf{b}_{\perp}^{2}} L_{n}^{L} \left(\kappa^{2}x(1-x)\mathbf{b}_{\perp}^{2}\right)$$

Fig: Ground state pion LFWF in impact space: (a) HW model $\Lambda_{\rm QCD}=0.32$ GeV, (b) SW model $\kappa=0.375$ GeV

Other Applications of Light-Front Holography

$$\left[-\frac{d^2}{d\zeta^2} + V(\zeta)\right]\phi(\zeta) = \mathcal{M}^2\phi(\zeta)$$

- Light baryon spectrum
- Light meson spectrum
- Nucleon form-factors: space-like region
- Pion form-factors: space and time-like regions
- *n*-parton LFWF with massive quarks

hep-th/0501022 hep-ph/0602252 arXiv:0707.3859 arXiv:0802.0514 arXiv:0804.0452

5 Quark Hadron Duality in AdS/QCD

Local operators like $\Theta^{\mu\nu}$ are defined in terms of quark and gluon fields at AdS₅ boundary z = 0

 $\langle P'|\Theta^{\mu\nu}(0)|P\rangle$

Hadronic transition matrix element $\langle P'|\Theta^{\mu\nu}|P\rangle$ probes hadronic wave function $\Phi(z)$ at $z\sim 1/Q~~(Q=P'-P)$