Ads/CFT and QCD

Stan Brodsky SLAC/IPPP

Fritzsch Symposium LMU June 6, 2008

Bjorken: Scaling

Feynman: Parton model

p = (u u d)

 $10^{-15}m = 10^{-13}cm$

Fritzsch Symposium June 6, 2008

AdS/QCD

2

Gell Mann: **Eightfold Way** "Three quarks for Muster Mark!"

Zweig: "Aces, Deuces, Treys"

Current Algebra: Quarks and What Else?

Harald Fritzsch^{$*\dagger$}

and

Murray Gell–Mann^{**†}

CERN, Geneva, Switzerland

Proceedings of the XVI International Conference on High Energy Physics, Chicago, 1972. Volume 2, p. 135 (J. D. Jackson, A. Roberts, eds.)

Frítzsch and Gell-Mann íntroduce 'Color'

Fritzsch Symposium June 6, 2008

AdS/QCD 3

Electron-Positron Annihilation

$$e^+e^- \rightarrow \gamma^* \rightarrow \mu^+\mu^-$$

Fritzsch Symposium June 6, 2008

AdS/QCD

Electron-Positron Annihilation

Rate proportional to quark charge squared and number of colors

$$R_{e^+e^-}(E_{cm}) = N_{colors} \times \sum_q e_q^2$$

Fritzsch Symposium June 6, 2008 AdS/QCD

5

How to Count Quarks

SPEAR Electron-Positron Collider

Fritzsch Symposium June 6, 2008

AdS/QCD 7

Fritzsch Symposium June 6, 2008 AdS/QCD 8

A Measurement of the QCD color factors and a limit on the light gluino. By ALEPH Collaboration (<u>R. Barate *et al.*</u>). Published in **Z.Phys.C76:1-14,1997**.

Hadron Multiplicity in Color Gauge Theory Models.

<u>Stanley J. Brodsky</u> (<u>SLAC</u>), <u>J.F. Gunion</u> (<u>UC, Davis</u>). SLAC-PUB-1749, UCD-76-5, May 1976. 13pp. Published in **Phys.Rev.Lett.37:402-405,1976**.

Volume 47B, number 4

PHYSICS LETTERS

26 November 1973

ADVANTAGES OF THE COLOR OCTET GLUON PICTURE[☆]

H. FRITZSCH*, M. GELL-MANN and H. LEUTWYLER**

California Institute of Technology, Pasadena, Calif. 91109, USA

Received 1 October 1973

It is pointed out that there are several advantages in abstracting properties of hadrons and their currents from a Yang-Mills gauge model based on colored quarks and color octet gluons.

Fritzsch, Gell-Mann, and Leutwyler introduce ' 'Quantum Chromodynamics' (QCD) as the Gauge Theory of the Strong Interactions

Fritzsch Symposium June 6, 2008 AdS/QCD

10

QCD Lagrangian

Yang-Mills Gauge Principle: Invariance under Color Rotation and Phase Change at Every Point of Space and Time

Dimensionless Coupling Renormalizable Asymptotic Freedom Color Confinement

Fritzsch Symposium June 6, 2008 AdS/QCD

II

The World of Quarks and Gluons:

- Quarks and Gluons: Fundamental constituents of hadrons and nuclei
- Remarkable and novel properties of *Quantum Chromodynamics* (QCD)
- New Insights from higher space-time dimensions: Light-Front Holography: AdS/CFT

Fritzsch Symposium June 6, 2008 AdS/QCD

12

- Although we know the QCD Lagrangian, we have only begun to understand its remarkable properties and features.
- Novel QCD Phenomena: hidden color, color transparency, strangeness asymmetry, intrinsic charm, anomalous heavy quark phenomena, anomalous spin effects, single-spin asymmetries, odderon, diffractive deep inelastic scattering, dangling gluons, shadowing, antishadowing, QGP, CGL, ...

Fritzsch Symposium June 6, 2008 AdS/QCD

I4

Truth is stranger than fiction, but it is because Fiction is obliged to stick to possibilities.

-Mark Twain

Fritzsch Symposium June 6, 2008 AdS/QCD

15

Applications of AdS/CFT to QCD

Changes in physical length scale mapped to evolution in the 5th dimension z

in collaboration with Guy de Teramond

Fritzsch Symposium June 6, 2008 AdS/QCD 16

Goal:

- Use AdS/CFT to provide an approximate, covariant, and analytic model of hadron structure with confinement at large distances, conformal behavior at short distances
- Analogous to the Schrodinger Theory for Atomic Physics
- AdS/QCD Light-Front Holography
- Hadronic Spectra and Light-Front Wavefunctions
- Hadronization at the Amplitude Level

Fritzsch Symposium June 6, 2008 AdS/QCD

17

AdS/QCD 18

SLAC & IPPP

SLAC & IPPP

Fritzsch Symposium June 6, 2008

AdS/QCD

SLAC & IPPP

Fritzsch Symposium June 6, 2008

AdS/QCD

2I

Conformal Theories are invariant under the Poincare and conformal transformations with

 $\mathbf{M}^{\mu\nu}, \mathbf{P}^{\mu}, \mathbf{D}, \mathbf{K}^{\mu},$

the generators of SO(4,2)

SO(4,2) has a mathematical representation on AdS5

Fritzsch Symposium June 6, 2008

AdS/QCD

22

Scale Transformations

• Isomorphism of SO(4,2) of conformal QCD with the group of isometries of AdS space

$$ds^{2} = \frac{R^{2}}{z^{2}} (\eta_{\mu\nu} dx^{\mu} dx^{\nu} - dz^{2}),$$
 invariant measure

 $x^{\mu} \rightarrow \lambda x^{\mu}, \ z \rightarrow \lambda z$, maps scale transformations into the holographic coordinate z.

- AdS mode in z is the extension of the hadron wf into the fifth dimension.
- Different values of z correspond to different scales at which the hadron is examined.

$$x^2 \to \lambda^2 x^2, \quad z \to \lambda z.$$

 $x^2 = x_\mu x^\mu$: invariant separation between quarks

• The AdS boundary at $z \to 0$ correspond to the $Q \to \infty$, UV zero separation limit.

Fritzsch Symposium June 6, 2008 AdS/QCD

23

Ads/CFT: Anti-de Sitter Space / Conformal Field Theory

Maldacena:

Map $AdS_5 \times S_5$ to conformal N=4 SUSY

- QCD is not conformal; however, it has manifestations of a scale-invariant theory: Bjorken scaling, dimensional counting for hard exclusive processes
- Conformal window in the IR:

 $\alpha_s(Q^2) \simeq \text{const} \text{ at small } Q^2$

 Use mathematical mapping of the conformal group SO(4,2) to AdS5 space

Fritzsch Symposium June 6, 2008 AdS/QCD

24

Deur, Korsch, et al: Effective Charge from Bjorken Sum Rule

25

Deur, Korsch, et al.

IR Conformal Window for QCD?

- Dyson-Schwinger Analysis: QCD Coupling has IR Fixed Point
- Evidence from Lattice Gauge Theory
- Define coupling from observable: indications of IR fixed point for QCD effective charges
- Confined gluons and quarks have maximum wavelength
- Decoupling of QCD vacuum polarization at small Q²

 $\Pi(Q^2) \to \frac{\alpha}{15\pi} \frac{Q^2}{m^2} \qquad Q^2 << 4m^2$

Fritzsch Symposium June 6, 2008

AdS/QCD

27

Stan Brodsky SLAC & IPPP

 ℓ^+

Shrock,

de Teramond,

sjb

Serber-

Uehling

• Phenomenological success of dimensional scaling laws for exclusive processes

$$d\sigma/dt \sim 1/s^{n-2}, \ n = n_A + n_B + n_C + n_D,$$

implies QCD is a strongly coupled conformal theory at moderate but not asymptotic energies Farrar and sjb (1973); Matveev *et al.* (1973).

 Derivation of counting rules for gauge theories with mass gap dual to string theories in warped space (hard behavior instead of soft behavior characteristic of strings) Polchinski and Strassler (2001).

Fritzsch Symposium	AdS/OCD	Stan Brodsky
June 6, 2008	28	SLAC & IPPP

Brodsky and Farrar, Phys. Rev. Lett. 31 (1973) 1153 Matveev et al., Lett. Nuovo Cimento, 7 (1973) 719

Quark Counting Rules for Exclusive Processes

- Power-law fall-off of the scattering rate reflects degree of compositeness
- The more composite -- the faster the fall-off
- Power-law counts the number of quarks and gluon constituents
- Form factors: probability amplitude to stay intact
- $F_H(Q) \propto \frac{1}{(Q^2)^{n-1}}$ n = # elementary constituents

Fritzsch Symposium June 6, 2008 AdS/QCD

29

Fritzsch Symposium June 6, 2008 AdS/QCD

30

Conformal Invariance:

$$\frac{d\sigma}{dt}(\gamma p \to MB) = \frac{F(\theta_{cm})}{s^7}$$

Fritzsch Symposium June 6, 2008

AdS/QCD

31

Test of PQCD Scaling

Constituent counting rules

Deuteron Photodisintegration

J-Lab PQCD and AdS/CFT: $s^{n_{tot}-2}\frac{d\sigma}{dt}(A+B\rightarrow C+D) =$ $F_{A+B\rightarrow C+D}(\theta_{CM})$ $s^{11}\frac{d\sigma}{dt}(\gamma d \to np) = F(\theta_{CM})$ $n_{tot} - 2 =$ (1+6+3+3) - 2 = 11

Reflects conformal invariance

Elastic electron-deuteron scattering

Fritzsch Symposium June 6, 2008 AdS/QCD

34

QCD Prediction for Deuteron Form Factor

$$F_d(Q^2) = \left[\frac{\alpha_s(Q^2)}{Q^2}\right]^5 \sum_{m,n} d_{mn} \left(\ln \frac{Q^2}{\Lambda^2}\right)^{-\gamma_n^d - \gamma_m^d} \left[1 + O\left(\alpha_s(Q^2), \frac{m}{Q}\right)\right]$$

Define "Reduced" Form Factor

$$f_d(Q^2) \equiv \frac{F_d(Q^2)}{F_N^{-2}(Q^2/4)} \, .$$

Same large momentum transfer behavior as pion form factor

$$f_d(Q^2) \sim \frac{\alpha_s(Q^2)}{Q^2} \left(\ln \frac{Q^2}{\Lambda^2} \right)^{-(2/5) C_F/\beta}$$

Fritzsch Symposium June 6, 2008 AdS/QCD 35

FIG. 2. (a) Comparison of the asymptotic QCD prediction $f_d (Q^2) \propto (1/Q^2) [\ln (Q^2/\Lambda^2)]^{-1-(2/5)} C_F/\beta}$ with final data of Ref. 10 for the reduced deuteron form factor, where $F_N(Q^2) = [1+Q^2/(0.71 \text{ GeV}^2)]^{-2}$. The normalization is fixed at the $Q^2 = 4 \text{ GeV}^2$ data point. (b) Comparison of the prediction $[1 + (Q^2/m_0^2)]f_d(Q^2) \propto [\ln (Q^2/\Lambda^2)]^{-1-(2/5)} C_F/\beta}$ with the above data. The value m_0^2 $= 0.28 \text{ GeV}^2$ is used (Ref. 8).

• 15% Hidden Color in the Deuteron

Fritzsch Symposium June 6, 2008 AdS/QCD 36

Hidden Color in QCD Lepage, Ji, sjb

- Deuteron six quark wavefunction:
- 5 color-singlet combinations of 6 color-triplets -one state is |n p>
- Components evolve towards equality at short distances
- Hidden color states dominate deuteron form factor and photodisintegration at high momentum transfer

• **Predict** $\frac{d\sigma}{dt}(\gamma d \to \Delta^{++}\Delta^{-}) \simeq \frac{d\sigma}{dt}(\gamma d \to pn)$ at high Q^2

Fritzsch Symposium June 6, 2008

AdS/QCD

37

P.A.M Dirac, Rev. Mod. Phys. 21, 392 (1949)

Dirac's Amazing Idea: The Front Form

Evolve in ordinary time

Evolve in light-front time!

Instant Form

Fritzsch Symposium June 6, 2008

AdS/QCD 38

Each element of flash photograph íllumínated at same LF tíme

$$\tau = t + z/c$$

HELEN BRADLEY - PHOTOGRAPHY

Light-Front Wavefunctions: rigorous representation of composite systems in quantum field theory

40

June 6, 2008

SLAC & IPPP

40

Angular Momentum on the Light-Front

$$J^{z} = \sum_{i=1}^{n} s_{i}^{z} + \sum_{j=1}^{n-1} l_{j}^{z}.$$

Conserved LF Fock state by Fock State

$$l_j^z = -i\left(k_j^1 \frac{\partial}{\partial k_j^2} - k_j^2 \frac{\partial}{\partial k_j^1}\right)$$

n-1 orbital angular momenta

Nonzero Anomalous Moment -->Nonzero orbítal angular momentum

Fritzsch Symposium June 6, 2008

AdS/QCD

4I

A Unified Description of Hadron Structure

Hadronization at the Amplitude Level

Construct helicity amplitude using Light-Front Perturbation theory; coalesce quarks via LFWFs

Fritzsch Symposium June 6, 2008

AdS/QCD

Hadron Dynamics at the Amplitude Level

- LFWFS are the universal hadronic amplitudes which underlie structure functions, GPDs, exclusive processes, distribution amplitudes, direct subprocesses, hadronization.
- Relation of spin, momentum, and other distributions to physics of the hadron itself.
- Connections between observables, orbital angular momentum
- Role of FSI and ISIs: Diffractive DIS, Sivers effect

Fritzsch Symposium	AdS/OCD	Stan Brodsky
June 6, 2008	44 SL	SLAC & IPPP

Deep Inelastic Electron-Proton Scattering

Conventional wisdom: Final-state interactions of struck quark can be neglected

Fritzsch Symposium June 6, 2008 AdS/QCD

45

AdS/QCD

47

and produce a T-odd effect! (also need $L_z \neq 0$)

HERMES coll., A. Airapetian et al., Phys. Rev. Lett. 94 (2005) 012002.

Sivers asymmetry from HERMES

Fritzsch Symposium June 6, 2008

- First evidence for non-zero Sivers function!
- ⇒ presence of non-zero quark
 orbital angular momentum!
- Positive for π⁺...
 Consistent with zero for π⁻...

Gamberg: Hermes data compatible with BHS model

Schmidt, Lu: Hermes charge pattern follow quark contributions to anomalous

> moment Stan Brodsky SLAC & IPPP

Fínal-State Interactions Produce Pseudo T-Odd (Sivers Effect)

- New window to QCD coupling and running gluon mass in the IR
- QED S and P Coulomb phases infinite -- difference of phases finite!

Fritzsch Symposium June 6, 2008 AdS/QCD

48

Remarkable observation at HERA

10% to 15% of DIS events are díffractíve !

Fraction r of events with a large rapidity gap, $\eta_{\text{max}} < 1.5$, as a function of Q_{DA}^2 for two ranges of x_{DA} . No acceptance corrections have been applied.

M. Derrick et al. [ZEUS Collaboration], Phys. Lett. B 315, 481 (1993).

Fritzsch Symposium June 6, 2008

AdS/QCD

49

Hoyer, Marchal, Peigne, Sannino, sjb

QCD Mechanism for Rapidity Gaps

Fritzsch Symposium June 6, 2008 AdS/QCD

Final State Interactions in QCD

Feynman GaugeLight-Cone GaugeResult is Gauge Independent

Fritzsch Symposium June 6, 2008 AdS/QCD

- Truncated AdS/CFT (Hard-Wall) model: cut-off at $z_0 = 1/\Lambda_{QCD}$ breaks conformal invariance and allows the introduction of the QCD scale (Hard-Wall Model) Polchinski and Strassler (2001).
- Smooth cutoff: introduction of a background dilaton field $\varphi(z)$ usual linear Regge dependence can be obtained (Soft-Wall Model) Karch, Katz, Son and Stephanov (2006).

We will consider both holographic models

Fritzsch Symposium June 6, 2008 AdS/QCD 52

Prediction from AdS/CFT: Meson LFWF

- Fundamental gauge invariant non-perturbative input to hard exclusive processes, heavy hadron decays. Defined for Mesons, Baryons
- Evolution Equations from PQCD, OPE, Conformal Invariance

Lepage, sjb Frishman, Lepage, Sachrajda, sjb Peskin Braun Efremov, Radyushkin Chernyak etal

• Compute from valence light-front wavefunction in light-cone gauge $\phi_M(x,Q) = \int^Q d^2 \vec{k} \ \psi_{q\bar{q}}(x,\vec{k}_{\perp})$

Fritzsch Symposium June 6, 2008 AdS/QCD

54

Prediction from AdS/CFT: Meson LFWF

$$\psi_M(x,k_{\perp}) = \frac{4\pi}{\kappa\sqrt{x(1-x)}} e^{-\frac{k_{\perp}^2}{2\kappa^2 x(1-x)}} \qquad \phi_M(x,Q_0) \propto \sqrt{x(1-x)}$$

Fritzsch Symposium June 6, 2008

AdS/QCD 55

Soft Wall: Harmonic Oscillator Confinement

Hard Wall: Truncated Space Confinement

One parameter - set by pion decay constant.

de Teramond, sjb See also: Radyushkin Stan Brodsky **SLAC & IPPP**

Fritzsch Symposium June 6, 2008

AdS/QCD 56