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1 Introduction

• Most challenging problem of strong interaction dynamics: determine the composition of hadrons in

terms of their fundamental QCD quark and gluon degrees of freedom

• Recent developments inspired by the AdS/CFT correspondence [Maldacena (1998)] between string

states in AdS space and conformal field theories in physical space-time have led to analytical insights

into the confining dynamics of QCD

• Description of strongly coupled gauge theory using a dual gravity description!

• Strings describe spin-J extended objects (no quarks). QCD degrees of freedom are pointlike particles

and hadrons have orbital angular momentum: how can they be related?

• Light-front (LF) quantization is the ideal framework to describe hadronic structure in terms of quarks

and gluons: simple vacuum structure allows unambiguous definition of the partonic content of a

hadron, exact formulae for form factors, physics of angular momentum of constituents ...

• Frame-independent LF Hamiltonian equation PμP
μ|P 〉 =M2|P 〉 similar structure of AdS EOM

• First semiclassical approximation to the bound-state LF Hamiltonian equation in QCD is equivalent to

equations of motion in AdS and can be systematically improved
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2 Light Front Dynamics

• Different possibilities to parametrize space-time [Dirac (1949)]

• Parametrizations differ by the hypersurface on which the initial conditions are specified. Each evolve

with different “times” and has its own Hamiltonian, but should give the same physical results

• Instant form: hypersurface defined by t = 0, the familiar one

• Front form: hypersurface is tangent to the light cone at τ = t+ z/c = 0

x+ = x0 + x3 light-front time

x− = x0 − x3 longitudinal space variable

k+ = k0 + k3 longitudinal momentum (k+ > 0)

k− = k0 − k3 light-front energy

k · x = 1
2 (k

+x− + k−x+)− k⊥ · x⊥

On shell relation k2 = m2 leads to dispersion relation k− = k2
⊥+m2

k+
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• QCD Lagrangian

LQCD = − 1
4g2

Tr (GμνGμν) + iψDμγ
μψ +mψψ

• LF Momentum Generators P = (P+, P−,P⊥) in terms of dynamical fields ψ, A⊥

P− =
1
2

∫
dx−d2x⊥ψ γ+ (i∇⊥)2+m2

i∂+
ψ + interactions

P+ =
∫
dx−d2x⊥ ψ γ+i∂+ψ

P⊥ =
1
2

∫
dx−d2x⊥ ψ γ+i∇⊥ψ

• LF Hamiltonian P− generates LF time translations

[
ψ(x), P−

]
= i

∂

∂x+
ψ(x)

and the generators P+ and P⊥ are kinematical
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Light-Front Fock Representation

• Dirac field ψ, expanded in terms of ladder operators on the initial surface x+ = x0 + x3

P− =
∑

λ

∫
dq+d2q⊥
(2π)3

(q2
⊥ +m2

q+

)
b†λ(q)bλ(q) + interactions

Sum over free quanta q− = q2
⊥+m2

q+ plus interactions (m2 = 0 for gluons)

• Construct light-front invariant Hamiltonian for the composite system: HLF = PμP
μ = P−P+−P2

⊥

HLC |ψH〉 =M2
H |ψH〉

• State |ψH(P )〉 = |ψH(P+,P⊥, Jz)〉 is an expansion in multi-particle Fock eigenstates |n〉 of the

free LF Hamiltonian:

|ψH〉 =
∑

n

ψn/H |n〉

• Fock components ψn/H(xi,k⊥i, λ
z
i ) are independent of P+ and P⊥ and depend only on relative

partonic coordinates: momentum fraction xi = k+
i /P

+, transverse momentum k⊥i and spin λz
i

n∑
i=1

xi = 1,
n∑

i=1

k⊥i = 0.
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• ComputeM2 from hadronic matrix element

〈ψH(P ′)|HLF |ψH(P )〉=M2
H〈ψH(P ′)|ψH(P )〉

• Find

M2
H =

∑
n

∫ [
dxi

][
d2k⊥i

]∑
�

(k2
⊥� +m2

�

xq

) ∣∣ψn/H(xi,k⊥i)
∣∣2 + interactions

• Phase space normalization of LFWFs∑
n

∫ [
dxi

] [
d2k⊥i

] ∣∣ψn/h(xi,k⊥i)
∣∣2 = 1

• In terms of n−1 independent transverse impact coordinates b⊥j , j = 1, 2, . . . , n−1,

M2
H =

∑
n

n−1∏
j=1

∫
dxjd

2b⊥jψ
∗
n/H(xi,b⊥i)

∑
�

(−∇2
b⊥�

+m2
�

xq

)
ψn/H(xi,b⊥i)+interactions

• Normalization ∑
n

n−1∏
j=1

∫
dxjd

2b⊥j |ψn(xj ,b⊥j)|2 = 1
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3 Semiclassical Approximation to QCD

• Consider a two-parton hadronic bound state in transverse impact space in the limit mq → 0

M2 =
∫ 1

0

dx

1− x
∫
d2b⊥ ψ∗(x,b⊥)

(−∇2
b⊥

)
ψ(x,b⊥) + interactions

• Separate angular, transverse and longitudinal modes in terms of boost invariant transverse variable:

ζ2 = x(1− x)b2
⊥ – In k⊥ space key variable is the LF KE k2

⊥/x(1− x) –

ψ(x, ζ, ϕ) =
φ(ζ)√
2πζ

eiMϕX(x)

• Find (L = |M |)

M2 =
∫
dζ φ∗(ζ)

√
ζ

(
− d2

dζ2
− 1
ζ

d

dζ
+
L2

ζ2

)
φ(ζ)√
ζ
+

∫
dζ φ∗(ζ)U(ζ)φ(ζ)

where the confining forces from the interaction terms is summed up in the effective potential U(ζ)
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• Ultra relativistic limit mq → 0 longitudinal modes X(x) decouple and LF eigenvalue equation

HLF |φ〉 =M2|φ〉 is a LF wave equation for φ

(
− d2

dζ2
− 1− 4L2

4ζ2︸ ︷︷ ︸
kinetic energy of partons

+ U(ζ)︸ ︷︷ ︸
confinement

)
φ(ζ) =M2φ(ζ)

• Effective light-front Schrödinger equation: relativistic, frame-independent and analytically tractable

• Eigenmodes φ(ζ) determine the hadronic mass spectrum and represent the probability amplitude to

find n-massless partons at transverse impact separation ζ within the hadron at equal light-front time

• LF modes φ(ζ) = 〈ζ|φ〉 are normalized by

〈φ|φ〉 =
∫
dζ |〈ζ|φ〉|2 = 1

• Semiclassical approximation to light-front QCD does not account for particle creation and absorption

but can be implemented in the LF Hamiltonian EOM
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Hard-Wall Model

• Consider the potential (hard wall)

U(ζ) =

⎧⎨
⎩ 0 if ζ ≤ 1

ΛQCD

∞ if ζ > 1
ΛQCD

• If L2 ≥ 0 the Hamiltonian is positive definite 〈φ ∣∣HL
LF

∣∣φ〉 ≥ 0 and thusM2 ≥ 0

• If L2 < 0 the Hamiltonian is not bounded from below ( “Fall-to-the-center” problem in Q.M.)

• Critical value of the potential corresponds to L = 0, the lowest possible stable state

• Solutions:

φL(ζ) = CL

√
ζJL (ζM)

• Mode spectrum from boundary conditions

φ

(
ζ =

1
ΛQCD

)
= 0

Thus

M2 = βLkΛQCD
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• Excitation spectrum hard-wall model: Mn,L ∼ L+ 2n

Light-meson orbital spectrum ΛQCD = 0.32 GeV
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Holographic Mapping

• Holographic mapping found originally by matching expressions of EM and gravitational form factors of

hadrons in AdS and LF QCD [Brodsky and GdT (2006, 2008)]

• Substitute Φ(ζ) ∼ ζ3/2φ(ζ), ζ → z in the conformal LFWE(
− d2

dζ2
− 1− 4L2

4ζ2

)
φ(ζ) =M2φ(ζ)

• Find: [
z2∂2

z − 3z ∂z + z2M2 − (μR)2
]
Φ(z) = 0

with (μR)2 = −4 + L2, the wave equation of string mode in AdS5 !

• Isomorphism of SO(4, 2) group of conformal QCD with generators Pμ,Mμν, D,Kμ with the group

of isometries of AdS5 space: xμ → λxμ, z → λz

ds2 =
R2

z2
(ημνdx

μdxν − dz2)

• AdS Breitenlohner-Freedman bound (μR)2 ≥ −4 equivalent to LF QM stability condition L2 ≥ 0

• Conformal dimensionΔ of AdS modeΦ given in terms of 5-dim mass by (μR)2 = Δ(Δ−4). Thus

Δ = 2 + L in agreement with the twist scaling dimension of a two parton object in QCD

LC 2009, Brazil, July 9, 2009 Page 12



• AdS5 metric:

ds2︸︷︷︸
LAdS

=
R2

z2
(ημνdx

μdxν︸ ︷︷ ︸
LMinkowski

−dz2)

• A distance LAdS shrinks by a warp factor

as observed in Minkowski space (dz = 0):

LMinkowski ∼ z

R
LAdS

• Different values of z correspond to different scales at which the hadron is examined

• Since xμ → λxμ, z → λz, short distances xμx
μ → 0 maps to UV conformal AdS5 boundary

z → 0, which corresponds to the Q→∞ UV zero separation limit

• Large confinement dimensions xμx
μ ∼ 1/Λ2

QCD maps to large IR region of AdS5, z ∼ 1/ΛQCD,

thus there is a maximum separation of quarks and a maximum value of z at the IR boundary

• Local operators likeO and LQCD defined in terms of quark and gluon fields at the AdS5 boundary

• Use the isometries of AdS to map the local interpolating operators at the UV boundary of AdS into the

modes propagating inside AdS
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4 Higher-Spin Bosonic Modes

Hard-Wall Model

• AdSd+1 metric x� = (xμ, z):

ds2 = g�mdx
�dxm =

R2

z2
(ημνdx

μdxν − dz2)

• Action for gravity coupled to scalar field in AdSd+1

S =
∫
dd+1x

√
g
( 1
κ2

(R− 2Λ)︸ ︷︷ ︸
SG

+
1
2
(
g�m∂�Φ∂mΦ− μ2Φ2

)
︸ ︷︷ ︸

SM

)

• Equations of motion for SM

z3∂z

( 1
z3
∂zΦ

)
− ∂ρ∂

ρΦ−
(μR
z

)2
Φ = 0

• Physical AdS modes ΦP (x, z) ∼ e−iP ·xΦ(z) are plane waves along the Poincaré coordinates

with four-momentum Pμ and hadronic invariant mass states PμP
μ =M2

• Factoring out dependence of string mode ΦP (x, z) along xμ-coordinates[
z2∂2

z − (d− 1)z ∂z + z2M2 − (μR)2
]
Φ(z) = 0
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• Spin J -field on AdS represented by rank-J totally symmetric tensor field Φ(x, z)�1···�J
[Fronsdal;

Fradkin and Vasiliev]

• Action in AdSd+1 for spin-J field

SM =
1
2

∫
dd+1x

√
g
(
∂�Φ�1···�J

∂�Φ�1···�J − μ2Φ�1···�J
Φ�1···�J + . . .

)
• Each hadronic state of total spin J is dual to a normalizable string mode

ΦP (x, z)μ1···μJ = e−iP ·xΦ(z)μ1···μJ

with four-momentum Pμ, spin polarization indices along the 3+1 physical coordinates and hadronic

invariant mass PμP
μ =M2

• For string modes with all indices along Poincaré coordinates, Φzμ2···μJ = Φμ1z···μJ = · · · = 0
and appropriate subsidiary conditions system of coupled differential equations from SM reduce to a

homogeneous wave equation for Φ(z)μ1···μJ
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• Obtain spin-J mode Φμ1···μJ with all indices along 3+1 coordinates from Φ by shifting dimensions

ΦJ(z) =
( z
R

)−J
Φ(z)

• Normalization [Hong, Yoon and Strassler (2006)]

Rd−2J−1

∫ zmax

0

dz

zd−2J−1
Φ2

J(z) = 1

• Substituting in the AdS scalar wave equation for Φ[
z2∂2

z − (d−1−2J)z ∂z + z2M2− (μR)2
]
ΦJ = 0

upon fifth-dimensional mass rescaling (μR)2 → (μR)2 − J(d− J)
• Conformal dimension of J -mode

Δ =
1
2

(
d+

√
(d− 2J)2 + 4μ2R2

)
and thus (μR)2 = (Δ− J)(Δ− d+ J)
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• Upon substitution z→ζ and

φJ(ζ)∼ζ−3/2+JΦJ(ζ)

we recover the QCD LF wave equation (d = 4)

(
− d2

dζ2
− 1− 4L2

4ζ2

)
φμ1···μJ =M2φμ1···μJ

with (μR)2 = −(2− J)2 + L2

• J -decoupling in the HW model

• ForL2 ≥ 0 the LF Hamiltonian is positive definite 〈φJ |HLF |φJ〉 ≥ 0 and we find the stability bound

(μR)2 ≥ −(2− J)2

• The scaling dimensions are Δ = 2 + L independent of J in agreement with the twist scaling dimen-

sion of a two parton bound state in QCD
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Soft-Wall Model

• Soft-wall model [Karch, Katz, Son and Stephanov (2006)] retain conformal AdS metrics but introduce

smooth cutoff wich depends on the profile of a dilaton background field ϕ(z) = ±κ2z2

S =
∫
ddx dz

√
g eϕ(z)L,

• Equation of motion for scalar field L = 1
2

(
g�m∂�Φ∂mΦ− μ2Φ2

)
[
z2∂2

z −
(
d− 1∓ 2κ2z2

)
z ∂z + z2M2 − (μR)2

]
Φ(z) = 0

with (μR)2 ≥ −4.

• LH holography requires ‘plus dilaton’ ϕ = +κ2z2. Lowest possible state (μR)2 = −4

M2 = 0, Φ(z) ∼ z2e−κ2z2
, 〈r2〉 ∼ 1

κ2

A chiral symmetric bound state of two massless quarks with scaling dimension 2: the pion
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• Action in AdSd+1 for spin J -field

SM =
1
2

∫
ddx dz

√
g eκ

2z2
(
∂�Φ�1···�J

∂�Φ�1···�J − μ2Φ�1···�J
Φ�1···�J + . . .

)
• Obtain spin-J mode Φμ1···μJ with all indices along 3+1 coordinates from Φ by shifting dimensions

ΦJ(z) =
( z
R

)−J
Φ(z)

• Normalization

Rd−2J−1

∫ ∞

0

dz

zd−2J−1
eκ

2z2
Φ2

J(z) = 1.

• Substituting in the AdS scalar wave equation for Φ[
z2∂2

z −
(
d−1−2J − 2κ2z2

)
z ∂z + z2M2− (μR)2

]
ΦJ = 0

upon mass rescaling (μR)2 → (μR)2 − J(d− J) andM2 →M2 − 2Jκ2
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• Upon substitution z→ζ (Jz = Lz + Sz) we find for d = 4

φJ(ζ)∼ζ−3/2+Jeκ
2ζ2/2ΦJ(ζ), (μR)2 = −(2− J)2 + L2

(
− d2

dζ2
− 1− 4L2

4ζ2
+ κ4ζ2 + 2κ2(L+ S − 1)

)
φμ1···μJ =M2φμ1···μJ

• Eigenfunctions

φnL(ζ) = κ1+L

√
2n!

(n+L)!
ζ1/2+Le−κ2ζ2/2LL

n(κ
2ζ2)

• Eigenvalues

M2
n,L,S = 4κ2

(
n+ L+

S

2

)
4κ2 for Δn = 1
4κ2 for ΔL = 1
2κ2 for ΔS = 1 0

0 4 8

2

4

6

Φ(z)

2-2007
8721A20 z

-5

0

5

0 4 8
z

Φ(z)

2-2007
8721A21

Orbital and radial states: 〈ζ〉 increase with L and n
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1−− 2++ 3−− 4++ JPC

M2

L

Parent and daughter Regge trajectories for the I = 1 ρ-meson family (red)

and the I = 0 ω-meson family (black) for κ = 0.54 GeV
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5 Higher-Spin Fermionic Modes

Hard-Wall Model

From Nick Evans• Action for massive fermionic modes on AdSd+1:

S[Ψ,Ψ] =
∫
ddx dz

√
gΨ(x, z)

(
iΓ�D� − μ

)
Ψ(x, z)

• Equation of motion:
(
iΓ�D� − μ

)
Ψ(x, z) = 0[

i

(
zη�mΓ�∂m +

d

2
Γz

)
+ μR

]
Ψ(x�) = 0

• Solution (μR = ν + 1/2, d = 4)

Ψ(z) = Cz5/2 [Jν(zM)u+ + Jν+1(zM)u−]

• Hadronic mass spectrum determined from IR boundary conditions ψ± (z = 1/ΛQCD) = 0

M+ = βν,k ΛQCD, M− = βν+1,k ΛQCD

with scale independent mass ratio

• Obtain spin-J mode Φμ1···μJ−1/2
, J > 1

2 , with all indices along 3+1 from Ψ by shifting dimensions
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SU(6) S L Baryon State

56 1
2 0 N 1

2

+(939)
3
2 0 Δ 3

2

+(1232)

70 1
2 1 N 1

2

−(1535) N 3
2

−(1520)
3
2 1 N 1

2

−(1650) N 3
2

−(1700) N 5
2

−(1675)
1
2 1 Δ 1

2

−(1620) Δ 3
2

−(1700)

56 1
2 2 N 3

2

+(1720) N 5
2

+(1680)
3
2 2 Δ 1

2

+(1910) Δ 3
2

+(1920) Δ 5
2

+(1905) Δ 7
2

+(1950)

70 1
2 3 N 5

2

−
N 7

2

−

3
2 3 N 3

2

−
N 5

2

−
N 7

2

−(2190) N 9
2

−(2250)
1
2 3 Δ 5

2

−(1930) Δ 7
2

−

56 1
2 4 N 7

2

+
N 9

2

+(2220)
3
2 4 Δ 5

2

+ Δ 7
2

+ Δ 9
2

+ Δ 11
2

+(2420)

70 1
2 5 N 9

2

−
N 11

2

−(2600)
3
2 5 N 7

2

−
N 9

2

−
N 11

2

−
N 13

2

−
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• Excitation spectrum for baryons in the hard-wall model: M∼ L+ 2n

Light baryon orbital spectrum for ΛQCD = 0.25 GeV in the HW model. The 56 trajectory corresponds to L even

P = + states, and the 70 to L odd P = − states: (a) I = 1/2 and (b) I = 3/2
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Soft-Wall Model

• Equivalent to Dirac equation in presence of a holographic linear confining potential[
i

(
zη�mΓ�∂m +

d

2
Γz

)
+ μR+ κ2z

]
Ψ(x�) = 0.

• Solution (μR = ν + 1/2, d = 4)

Ψ+(z) ∼ z
5
2
+νe−κ2z2/2Lν

n(κ
2z2)

Ψ−(z) ∼ z
7
2
+νe−κ2z2/2Lν+1

n (κ2z2)

• Eigenvalues

M2 = 4κ2(n+ ν + 1)

• Obtain spin-J mode Φμ1···μJ−1/2
, J > 1

2 , with all indices along 3+1 from Ψ by shifting dimensions
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4κ2 for Δn = 1
4κ2 for ΔL = 1

2κ2 for ΔS = 1

M2

L

Parent and daughter 56 Regge trajectories for the N and Δ baryon families for κ = 0.5 GeV
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6 Other Applications of Gauge/Gravity Duality to QCD

• Chiral symmetry breaking [Erlich, Katz, Son and Stephanov, Da Rold and Pomarol . . . ]

• Hadronic spectrum [Boschi-Filho, Braga, Frederico, Forkel, Beyer, Vega, Schmidt ...]

• Electromagnetic, gravitational and transition form-factors of composite hadrons

[Abidin and Carlson, Grigoryan and Radyushkin, Kwee and Lebed, Brodsky and GdT ...]

• DIS and Pomeron Physics [Polchinski, Strassler, Brower, Tan, Ballon Bayona, Boschi-Filho, Braga ...]

• Quark and gluon matter at extreme conditions in heavy ion physics (RHIC, LHC)

[Policastro, Son, Starinets, Kovtun, Gubser, Kim, Sin, Zahed, Cáceres, Güijosa, Edelstein, . . . ]

• Condensed matter physics [Herzog, Kovtun, Son . . . ]

Future Applications of Light-Front Holography

• Introduction of massive quarks (heavy and heavy-light quark systems)

• Systematic improvement (QCD Coulomb forces, higher Fock states (HFS) . . . )
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Example: Space- and Time Like Pion Form-Factor (HFS) PRELIMINARY

|π〉 = ψqq/π|qq〉+ ψqqqq/π|qqqq〉
Mρ

2 → 4κ2(n+ 1/2)

κ = 0.54 GeV

Γρ = 130, Γρ′ = 400, Γρ′′ = 300 MeV

Pqqqq = 13 %
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