Light-Front Holography and Gauge/Gravity Correspondence: Applications to the Meson and Baryon Spectrum

Guy F. de Teramond ´

University of Costa Rica

In Collaboration with Stan Brodsky

Light-Cone 2009: Relativistic Hadronic and Particle Physics Instituto Tecnologico de Aeron ´ autica ´ Sao Jos ˜ ^e dos Campos, Brazil, July 8-13, 2009 ´

GdT and Brodsky, PRL **102**, 081601 (2009)

Outline

- 1. Introduction
- 2. Light-Front Dynamics

Light-Front Fock Representation

3. Semiclassical Approximation to QCD

Hard-Wall Model

Holographic Mapping

4. Higher-Spin Bosonic Modes

Hard-Wall Model

Soft-Wall Model

5. Higher-Spin Fermionic Modes

Hard-Wall Model

Soft-Wall Model

1 Introduction

- Most challenging problem of strong interaction dynamics: determine the composition of hadrons in terms of their fundamental QCD quark and gluon degrees of freedom
- Recent developments inspired by the AdS/CFT correspondence [Maldacena (1998)] between string states in AdS space and conformal field theories in physical space-time have led to analytical insights into the confining dynamics of QCD
- \bullet Description of strongly coupled gauge theory using ^a dual gravity description!
- •Strings describe spin- J extended objects (no quarks). QCD degrees of freedom are pointlike particles and hadrons have orbital angular momentum: how can they be related?
- Light-front (LF) quantization is the ideal framework to describe hadronic structure in terms of quarks and gluons: simple vacuum structure allows unambiguous definition of the partonic content of ^a hadron, exact formulae for form factors, physics of angular momentum of constituents ...
- $\bullet\,$ Frame-independent LF Hamiltonian equation $P_\mu P^\mu|P\rangle={\cal M}^2|P\rangle$ similar structure of AdS EOM
- \bullet First semiclassical approximation to the bound-state LF Hamiltonian equation in QCD is equivalent to equations of motion in AdS and can be systematically improved

2 Light Front Dynamics

- Different possibilities to parametrize space-time [Dirac (1949)]
- \bullet Parametrizations differ by the hypersurface on which the initial conditions are specified. Each evolve with different "times" and has its own Hamiltonian, but should give the same physical results
- \bullet *Instant form*: hypersurface defined by $t = 0$, the familiar one
- $\bullet\,$ *Front form*: hypersurface is tangent to the light cone at $\tau=t+z/c=0$

$$
x^{+} = x^{0} + x^{3}
$$
 lightfront time

$$
x^{-} = x^{0} - x^{3}
$$
 longitudinal space variable

$$
k^{+} = k^{0} + k^{3}
$$
 longitudinal momentum $(k^{+} > 0)$

$$
k^{-} = k^{0} - k^{3}
$$
 lightfront energy

$$
k \cdot x = \frac{1}{2} \left(k^+ x^- + k^- x^+ \right) - \mathbf{k}_{\perp} \cdot \mathbf{x}_{\perp}
$$

On shell relation $k^2=m^2$ leads to dispersion relation $\;k^-=\frac{{\bf k}_\perp^2+m^2}{k^+}\;$

• QCD Lagrangian

$$
\mathcal{L}_{\text{QCD}} = -\frac{1}{4g^2} \text{Tr} \left(G^{\mu\nu} G_{\mu\nu} \right) + i \overline{\psi} D_{\mu} \gamma^{\mu} \psi + m \overline{\psi} \psi
$$

 \bullet LF Momentum Generators $P=(P^+,P^-, {\bf P}_\perp)$ in terms of dynamical fields ψ , ${\bf A}_{\perp}$

$$
P^{-} = \frac{1}{2} \int dx^{-} d^{2} \mathbf{x}_{\perp} \overline{\psi} \gamma^{+} \frac{(i \nabla_{\perp})^{2} + m^{2}}{i \partial^{+}} \psi + \text{interactions}
$$

$$
P^{+} = \int dx^{-} d^{2} \mathbf{x}_{\perp} \overline{\psi} \gamma^{+} i \partial^{+} \psi
$$

$$
\mathbf{P}_{\perp} = \frac{1}{2} \int dx^{-} d^{2} \mathbf{x}_{\perp} \overline{\psi} \gamma^{+} i \nabla_{\perp} \psi
$$

 $\bullet\,$ LF Hamiltonian P^- generates LF time translations

$$
[\psi(x), P^{-}] = i \frac{\partial}{\partial x^{+}} \psi(x)
$$

and the generators P^+ and ${\bf P}_\perp$ are kinematical

Light-Front Fock Representation

 $\bullet~$ Dirac field ψ , expanded in terms of ladder operators on the initial surface $x^+=x^0+x^3$

$$
P^{-} = \sum_{\lambda} \int \frac{dq^{+}d^{2}\mathbf{q}_{\perp}}{(2\pi)^{3}} \left(\frac{\mathbf{q}_{\perp}^{2} + m^{2}}{q^{+}}\right) b_{\lambda}^{\dagger}(q) b_{\lambda}(q) + \text{interactions}
$$

Sum over free quanta $q^- = \frac{q_\perp^2 + m^2}{q^+}$ plus interactions $(m^2 = 0$ for gluons)

 \bullet Construct light-front invariant Hamiltonian for the composite system: $H_{LF} = P_{\mu}P^{\mu} = P^-P^+ - {\bf P}^2_{\perp}$

$$
H_{LC} | \psi_H \rangle = \mathcal{M}_H^2 | \psi_H \rangle
$$

 $\bullet\,$ State $|\psi_H(P)\rangle=|\psi_H(P^+,{\bf P}_\perp,J_z)\rangle$ is an expansion in multi-particle Fock eigenstates $\,\mid n\rangle$ of the free LF Hamiltonian:

$$
|\psi_H\rangle = \sum_n \psi_{n/H} |n\rangle
$$

 \bullet Fock components $\psi_{n/H}(x_i,{\bf k}_{\perp i},\lambda^z_i)$ are independent of P^+ and ${\bf P}_\perp$ and depend only on relative partonic coordinates: momentum fraction $x_i = k_i^+/P^+$, transverse momentum ${\bf k}_{\perp i}$ and spin λ_i^z

$$
\sum_{i=1}^{n} x_i = 1, \quad \sum_{i=1}^{n} \mathbf{k}_{\perp i} = 0.
$$

 $\bullet\,$ Compute \mathcal{M}^2 from hadronic matrix element

$$
\langle \psi_H(P')|H_{LF}|\psi_H(P)\rangle = \mathcal{M}_H^2 \langle \psi_H(P')|\psi_H(P)\rangle
$$

• Find

$$
\mathcal{M}_{H}^{2} = \sum_{n} \int \left[dx_{i} \right] \left[d^{2} \mathbf{k}_{\perp i} \right] \sum_{\ell} \left(\frac{\mathbf{k}_{\perp \ell}^{2} + m_{\ell}^{2}}{x_{q}} \right) \left| \psi_{n/H}(x_{i}, \mathbf{k}_{\perp i}) \right|^{2} + \text{interactions}
$$

• Phase space normalization of LFWFs

$$
\sum_{n} \int \left[dx_i \right] \left[d^2 \mathbf{k}_{\perp i} \right] \left| \psi_{n/h}(x_i, \mathbf{k}_{\perp i}) \right|^2 = 1
$$

 $\bullet \,$ In terms of $n\!-\!1$ independent transverse impact coordinates ${\bf b}_{\perp j},$ $j=1,2,\ldots,n\!-\!1,$

$$
\mathcal{M}_{H}^{2} = \sum_{n} \prod_{j=1}^{n-1} \int dx_{j} d^{2} \mathbf{b}_{\perp j} \psi_{n/H}^{*}(x_{i}, \mathbf{b}_{\perp i}) \sum_{\ell} \left(\frac{-\nabla_{\mathbf{b}_{\perp \ell}}^{2} + m_{\ell}^{2}}{x_{q}} \right) \psi_{n/H}(x_{i}, \mathbf{b}_{\perp i}) + \text{interactions}
$$

• Normalization

$$
\sum_{n}\prod_{j=1}^{n-1}\int dx_j d^2\mathbf{b}_{\perp j} |\psi_n(x_j,\mathbf{b}_{\perp j})|^2=1
$$

3 Semiclassical Approximation to QCD

 $\bullet~$ Consider a two-parton hadronic bound state in transverse impact space in the limit $m_q\rightarrow 0$

$$
\mathcal{M}^2 = \int_0^1 \frac{dx}{1-x} \int d^2 \mathbf{b}_\perp \, \psi^*(x, \mathbf{b}_\perp) \left(-\nabla_{\mathbf{b}_\perp}^2 \right) \psi(x, \mathbf{b}_\perp) + \text{interactions}
$$

• Separate angular, transverse and longitudinal modes in terms of boost invariant transverse variable: $\zeta^2=x(1$ $(x-x)b_{\perp}^2$ – In ${\bf k}_{\perp}$ space key variable is the LF KE $-{\bf k}_{\perp}$ $\frac{2}{\perp}/x(1$ $- x$) –

$$
\psi(x,\zeta,\varphi) = \frac{\phi(\zeta)}{\sqrt{2\pi\zeta}} e^{iM\varphi} X(x)
$$

 $\bullet~$ Find ($L=|M|$)

$$
\mathcal{M}^2 = \int d\zeta \, \phi^*(\zeta) \sqrt{\zeta} \left(-\frac{d^2}{d\zeta^2} - \frac{1}{\zeta} \frac{d}{d\zeta} + \frac{L^2}{\zeta^2} \right) \frac{\phi(\zeta)}{\sqrt{\zeta}} + \int d\zeta \, \phi^*(\zeta) \, U(\zeta) \, \phi(\zeta)
$$

where the confining forces from the interaction terms is summed up in the effective potential $U(\zeta)$

 $\bullet\,$ Ultra relativistic limit $m_q\to 0$ longitudinal modes $X(x)$ decouple and LF eigenvalue equation $H_{LF} |\phi\rangle = {\cal M}^2 |\phi\rangle$ is a LF wave equation for ϕ

- $\bullet\,$ Eigenmodes $\phi(\zeta)$ determine the hadronic mass spectrum and represent the probability amplitude to find n -massless partons at transverse impact separation ζ within the hadron at equal light-front time
- $\bullet\,$ LF modes $\phi(\zeta)=\langle\zeta|\phi\rangle$ are normalized by

$$
\langle \phi|\phi\rangle = \int d\zeta\, |\langle \zeta|\phi\rangle|^2 = 1
$$

• Semiclassical approximation to light-front QCD does not account for particle creation and absorption but can be implemented in the LF Hamiltonian EOM

Hard-Wall Model

• Consider the potential (hard wall)

$$
U(\zeta) = \begin{cases} 0 & \text{if } \zeta \le \frac{1}{\Lambda_{\text{QCD}}} \\ \infty & \text{if } \zeta > \frac{1}{\Lambda_{\text{QCD}}} \end{cases}
$$

- $\bullet\,$ If $L^2\geq 0$ the Hamiltonian is positive definite $\bra{\phi}H^L_{LF}\ket{\phi}\geq 0$ and thus $\mathcal{M}^2\geq 0$
- $\bullet\,$ If $L^2 < 0$ the Hamiltonian is not bounded from below ("Fall-to-the-center" problem in Q.M.)
- $\bullet\,$ Critical value of the potential corresponds to $L=0,$ the lowest possible stable state
- Solutions:

$$
\phi_L(\zeta) = C_L \sqrt{\zeta} J_L(\zeta \mathcal{M})
$$

• Mode spectrum from boundary conditions

$$
\phi\bigg(\zeta = \frac{1}{\Lambda_{\rm QCD}}\bigg) = 0
$$

Thus

$$
\mathcal{M}^2 = \beta_{Lk} \Lambda_{\rm QCD}
$$

 $\bullet\,$ Excitation spectrum hard-wall model: $\;\;{\cal M}_{n,L}\sim L+2n$

Light-meson orbital spectrum $\Lambda_{QCD}=0.32$ GeV

Holographic Mapping

- Holographic mapping found originally by matching expressions of EM and gravitational form factors of hadrons in AdS and LF QCD [Brodsky and GdT (2006, 2008)]
- Substitute $\Phi(\zeta) \sim \zeta^{3/2} \phi(\zeta), \quad \zeta \to z \quad$ in the conformal LFWE

$$
\left(-\frac{d^2}{d\zeta^2} - \frac{1 - 4L^2}{4\zeta^2}\right)\phi(\zeta) = \mathcal{M}^2\phi(\zeta)
$$

• Find:

$$
\left[z^2\partial_z^2 - 3z\,\partial_z + z^2\mathcal{M}^2 - (\mu R)^2\right]\Phi(z) = 0
$$

with $(\mu R)^2=-4+L^2$, the wave equation of string mode in AdS $_5$!

 $\bullet~$ Isomorphism of $SO(4,2)$ group of conformal QCD with generators $P^\mu,M^{\mu\nu},D,K^\mu$ with the group of isometries of AdS $_5$ space: $x^\mu \rightarrow \lambda x^\mu,~z \rightarrow \lambda z$

$$
ds^2 = \frac{R^2}{z^2} (\eta_{\mu\nu} dx^{\mu} dx^{\nu} - dz^2)
$$

- $\bullet~$ AdS Breitenlohner-Freedman bound $(\mu R)^2\geq -4$ equivalent to LF QM stability condition $L^2\geq 0$
- $\bullet~$ Conformal dimension Δ of AdS mode Φ given in terms of 5-dim mass by $(\mu R)^2 = \Delta(\Delta\!-\!4).$ Thus $\Delta=2+L$ in agreement with the twist scaling dimension of a two parton object in QCD

 \bullet AdS₅ metric:

$$
\underbrace{ds^2}_{L_{\text{AdS}}} = \underbrace{\frac{R^2}{z^2} (\underbrace{\eta_{\mu\nu} dx^{\mu} dx^{\nu}}_{L_{\text{Minkowski}}} - dz^2)}_{L_{\text{Minkowski}}}
$$

 $\bullet\,$ A distance $L_{\rm AdS}$ shrinks by a warp factor as observed in Minkowski space $(dz = 0)$:

$$
L_{\text{Minkowski}} \sim \frac{z}{R} L_{\text{AdS}}
$$

- \bullet Different values of z correspond to different scales at which the hadron is examined
- \bullet Since $x^\mu\, \to\, \lambda x^\mu,\, z\, \to\, \lambda z,$ short distances $x_\mu x^\mu\, \to\, 0$ maps to UV conformal AdS $_5$ boundary $z\rightarrow 0$, which corresponds to the $\,Q\rightarrow\infty\,$ UV zero separation limit
- $\bullet\,$ Large confinement dimensions $x_\mu x^\mu\sim 1/\Lambda_{\rm QCD}^2$ maps to large IR region of AdS $_5,$ $z\sim 1/\Lambda_{\rm QCD},$ thus there is a maximum separation of quarks and a maximum value of z at the IR boundary
- $\bullet\,$ Local operators like ${\cal O}$ and ${\cal L}_{\rm QCD}$ defined in terms of quark and gluon fields at the AdS $_5$ boundary
- • Use the isometries of AdS to map the local interpolating operators at the UV boundary of AdS into the modes propagating inside AdS

4 Higher-Spin Bosonic Modes

Hard-Wall Model

•
$$
AdS_{d+1}
$$
 metric $x^{\ell} = (x^{\mu}, z)$:

$$
ds^2 = g_{\ell m} dx^{\ell} dx^m = \frac{R^2}{z^2} (\eta_{\mu\nu} dx^{\mu} dx^{\nu} - dz^2)
$$

 $\bullet\,$ Action for gravity coupled to scalar field in AdS $_{d+1}$

$$
S = \int d^{d+1}x \sqrt{g} \left(\underbrace{\frac{1}{\kappa^2} \left(\mathcal{R} - 2\Lambda \right)}_{S_G} + \underbrace{\frac{1}{2} \left(g^{\ell m} \partial_\ell \Phi \partial_m \Phi - \mu^2 \Phi^2 \right)}_{S_M} \right)
$$

 $\bullet~$ Equations of motion for S_M

$$
z^3 \partial_z \left(\frac{1}{z^3} \partial_z \Phi\right) - \partial_\rho \partial^\rho \Phi - \left(\frac{\mu R}{z}\right)^2 \Phi = 0
$$

- Physical AdS modes $\;\; \Phi_P(x,z) \sim e^{-i P \cdot x} \, \Phi(z) \;\;$ are plane waves along the Poincaré coordinates with four-momentum P^μ and hadronic invariant mass states $\quad P_\mu P^\mu = {\cal M}$ 2
- $\bullet\,$ Factoring out dependence of string mode $\Phi_{P}(x,z)$ along x^{μ} -coordinates

$$
\left[z^2\partial_z^2 - (d-1)z\,\partial_z + z^2\mathcal{M}^2 - (\mu R)^2\right]\Phi(z) = 0
$$

- \bullet Spin J -field on AdS represented by rank- J totally symmetric tensor field $\Phi(x,z)_{\ell_1...\ell_J}$ [Fronsdal; Fradkin and Vasiliev]
- $\bullet \,$ Action in AdS $_{d+1}$ for spin- J field

$$
S_M = \frac{1}{2} \int d^{d+1}x \sqrt{g} \left(\partial_\ell \Phi_{\ell_1 \cdots \ell_J} \partial^\ell \Phi^{\ell_1 \cdots \ell_J} - \mu^2 \Phi_{\ell_1 \cdots \ell_J} \Phi^{\ell_1 \cdots \ell_J} + \cdots \right)
$$

• Each hadronic state of total spin J is dual to ^a normalizable string mode

$$
\Phi_P(x,z)_{\mu_1\cdots\mu_J} = e^{-iP\cdot x} \Phi(z)_{\mu_1\cdots\mu_J}
$$

with four-momentum P_μ , spin polarization indices along the 3+1 physical coordinates and hadronic invariant mass $P_\mu P^\mu = {\cal M}^2$

 $\bullet\,$ For string modes with all indices along Poincaré coordinates, $\Phi_{z\mu_2\cdots\mu_J}=\Phi_{\mu_1z\cdots\mu_J}=\cdots=0$ and appropriate subsidiary conditions system of coupled differential equations from S_M reduce to a homogeneous wave equation for $\Phi(z)_{\mu_1\cdots\mu_J}$

 $\bullet\,$ Obtain spin- J mode $\Phi_{\mu_1\cdots\mu_J}$ with all indices along 3+1 coordinates from Φ by shifting dimensions

$$
\Phi_J(z) = \left(\frac{z}{R}\right)^{-J} \Phi(z)
$$

• Normalization [Hong, Yoon and Strassler (2006)]

$$
R^{d-2J-1} \int_0^{z_{max}} \frac{dz}{z^{d-2J-1}} \, \Phi_J^2(z) = 1
$$

 $\bullet~$ Substituting in the AdS scalar wave equation for Φ

$$
\left[z^2\partial_z^2 - (d-1-2J)z\,\partial_z + z^2\mathcal{M}^2 - (\mu R)^2\right]\Phi_J = 0
$$

upon fifth-dimensional mass rescaling $(\mu R)^2 \to (\mu R)^2 - J(d-J)$

 \bullet • Conformal dimension of J -mode

$$
\Delta = \frac{1}{2} \left(d + \sqrt{(d - 2J)^2 + 4\mu^2 R^2} \right)
$$

and thus $(\mu R)^2 = (\Delta - J)(\Delta - d + J)$

• Upon substitution $z\rightarrow \zeta$ and

$$
\phi_J(\zeta) \sim \zeta^{-3/2+J} \Phi_J(\zeta)
$$

we recover the QCD LF wave equation $(d = 4)$

$$
\overline{\left(-\frac{d^2}{d\zeta^2} - \frac{1 - 4L^2}{4\zeta^2}\right)\phi_{\mu_1\cdots\mu_J}} = \mathcal{M}^2\phi_{\mu_1\cdots\mu_J}
$$

with $(\mu R)^2 = -(2-J)^2 + L^2$

- \bullet J-decoupling in the HW model
- $\bullet~$ For $L^2\geq 0$ the LF Hamiltonian is positive definite $\langle \phi_J|H_{LF}|\phi_J\rangle\geq 0$ and we find the stability bound $(\mu R)^2 \ge -(2-J)^2$
- $\bullet\,$ The scaling dimensions are $\Delta=2+L$ independent of J in agreement with the twist scaling dimension of ^a two parton bound state in QCD

Soft-Wall Model

• Soft-wall model [Karch, Katz, Son and Stephanov (2006)] retain conformal AdS metrics but introduce smooth cutoff wich depends on the profile of a dilaton background field $\varphi(z) = \pm \kappa^2 z^2$

$$
S = \int d^dx\,dz\,\sqrt{g}\,e^{\varphi(z)}\mathcal{L},
$$

 $\bullet\,$ Equation of motion for scalar field $\;\mathcal{L}=\frac{1}{2}\big(g^{\ell m}\partial_\ell\Phi\partial_m\Phi-\mu^2\Phi^2\big)$

$$
\left[z^2\partial_z^2 - \left(d - 1 \mp 2\kappa^2 z^2\right)z\partial_z + z^2\mathcal{M}^2 - (\mu R)^2\right]\Phi(z) = 0
$$

with $(\mu R)^2\geq -4.$

 $\bullet\,$ LH holography requires 'plus dilaton' $\varphi=+\kappa^2 z^2$. Lowest possible state $(\mu R)^2=-4$

$$
\mathcal{M}^2 = 0, \quad \Phi(z) \sim z^2 e^{-\kappa^2 z^2}, \quad \langle r^2 \rangle \sim \frac{1}{\kappa^2}
$$

A chiral symmetric bound state of two massless quarks with scaling dimension 2: the pion

 $\bullet \,$ Action in AdS $_{d+1}$ for spin J -field

$$
S_M = \frac{1}{2} \int d^d x \, dz \, \sqrt{g} \, e^{\kappa^2 z^2} \left(\partial_\ell \Phi_{\ell_1 \cdots \ell_J} \partial^\ell \Phi^{\ell_1 \cdots \ell_J} - \mu^2 \Phi_{\ell_1 \cdots \ell_J} \Phi^{\ell_1 \cdots \ell_J} + \cdots \right)
$$

 $\bullet\,$ Obtain spin- J mode $\Phi_{\mu_1\cdots\mu_J}$ with all indices along 3+1 coordinates from Φ by shifting dimensions

$$
\Phi_J(z) = \left(\frac{z}{R}\right)^{-J} \Phi(z)
$$

• Normalization

$$
R^{d-2J-1} \int_0^\infty \frac{dz}{z^{d-2J-1}} e^{\kappa^2 z^2} \Phi_J^2(z) = 1.
$$

 $\bullet~$ Substituting in the AdS scalar wave equation for Φ

$$
[z^{2}\partial_{z}^{2} - (d - 1 - 2J - 2\kappa^{2}z^{2}) z \partial_{z} + z^{2}M^{2} - (\mu R)^{2}] \Phi_{J} = 0
$$

upon mass rescaling $(\mu R)^2 \to (\mu R)^2 - J(d-J)$ and $\mathcal{M}^2 \to \mathcal{M}^2 - 2J\kappa^2$

 $\bullet\,$ Upon substitution $\,z\!\rightarrow\!\zeta\,$ $\,(J_z = L_z + S_z)\,$ we find for $d=4$

$$
\phi_J(\zeta) \sim \zeta^{-3/2+J} e^{\kappa^2 \zeta^2/2} \Phi_J(\zeta), \quad (\mu R)^2 = -(2-J)^2 + L^2
$$

$$
\left| \left(-\frac{d^2}{d\zeta^2} - \frac{1 - 4L^2}{4\zeta^2} + \kappa^4 \zeta^2 + 2\kappa^2 (L + S - 1) \right) \phi_{\mu_1 \cdots \mu_J} = \mathcal{M}^2 \phi_{\mu_1 \cdots \mu_J} \right| \sum_{i=1}^{\infty} \phi_{\mu_1 \cdots \mu_J} \left| \phi_{\mu_1 \cdots \mu_J} \right|
$$

• Eigenfunctions

$$
\phi_{nL}(\zeta) = \kappa^{1+L} \sqrt{\frac{2n!}{(n+L)!}} \zeta^{1/2+L} e^{-\kappa^2 \zeta^2/2} L_n^L(\kappa^2 \zeta^2)
$$

• Eigenvalues

 $\mathcal{M}^2_{n,L,S} = 4 \kappa^2 \Big(n + L + \frac{S}{2}\Big)$ $4\kappa^2$ for ${\Delta}n=1$ $4\kappa^2$ for $\Delta L=1$

Orbital and radial states: $\langle \zeta \rangle$ increase with L and n

Parent and daughter Regge trajectories for the $I = 1$ ρ -meson family (red) and the $I=0$ ω -meson family (black) for $\kappa=0.54$ GeV

5 Higher-Spin Fermionic Modes

Hard-Wall Model

• Action for massive fermionic modes on AdS

$$
S[\overline{\Psi}, \Psi] = \int d^d x \, dz \, \sqrt{g} \, \overline{\Psi}(x, z) \left(i \Gamma^\ell D_\ell - \mu \right) \Psi(x, z)
$$

 $\bullet\,$ Equation of motion: $\,\,\,\,(i \Gamma^\ell D_\ell)$ $-\mu$) $\Psi(x,z)=0$

$$
\left[i\left(z\eta^{\ell m}\Gamma_{\ell}\partial_{m}+\frac{d}{2}\Gamma_{z}\right)+\mu R\right]\Psi(x^{\ell})=0
$$

\n- Solution
$$
(\mu R = \nu + 1/2, d = 4)
$$
\n
$$
\Psi(z) = C z^{5/2} \left[J_{\nu}(z\mathcal{M}) u_+ + J_{\nu+1}(z\mathcal{M}) u_- \right]
$$

 $\bullet\,$ Hadronic mass spectrum determined from IR boundary conditions $\psi_{\pm}\left(z=1/\Lambda_{\rm QCD}\right)=0$

$$
\mathcal{M}^+ = \beta_{\nu,k} \Lambda_{\text{QCD}}, \quad \mathcal{M}^- = \beta_{\nu+1,k} \Lambda_{\text{QCD}}
$$

with scale independent mass ratio

 $\bullet\,$ Obtain spin- J mode $\Phi_{\mu_1\cdots\mu_{J-1/2}},\,J>\frac12,$ with all indices along 3+1 from Ψ by shifting dimensions

From Nick Evans

Light baryon orbital spectrum for Λ_{QCD} = 0.25 GeV in the HW model. The 56 trajectory corresponds to L even $P=+$ states, and the ${\bf 70}$ to L odd $P=-$ states: (a) $I=1/2$ and (b) $I=3/2$

Soft-Wall Model

• Equivalent to Dirac equation in presence of ^a holographic linear confining potential

$$
\[i\left(z\eta^{\ell m}\Gamma_{\ell}\partial_{m}+\frac{d}{2}\Gamma_{z}\right)+\mu R+\kappa^{2}z\right]\Psi(x^{\ell})=0.
$$

• Solution
$$
(\mu R = \nu + 1/2, d = 4)
$$

$$
\Psi_{+}(z) \sim z^{\frac{5}{2}+\nu} e^{-\kappa^2 z^2/2} L_n^{\nu}(\kappa^2 z^2)
$$

$$
\Psi_{-}(z) \sim z^{\frac{7}{2}+\nu} e^{-\kappa^2 z^2/2} L_n^{\nu+1}(\kappa^2 z^2)
$$

• Eigenvalues

$$
\mathcal{M}^2 = 4\kappa^2(n+\nu+1)
$$

 $\bullet\,$ Obtain spin- J mode $\Phi_{\mu_1\cdots\mu_{J-1/2}},$ $J>\frac{1}{2}$, with all indices along 3+1 from Ψ by shifting dimensions

 $4\kappa^2$ for ${\Delta}n=1$ $4\kappa^2$ for $\Delta L=1$ $2\kappa^2$ for $\Delta S=1$

 \mathcal{M}^2

Parent and daughter 56 Regge trajectories for the N and Δ baryon families for $\kappa=0.5$ GeV

6 Other Applications of Gauge/Gravity Duality to QCD

- Chiral symmetry breaking [Erlich, Katz, Son and Stephanov, Da Rold and Pomarol ...]
- Hadronic spectrum [Boschi-Filho, Braga, Frederico, Forkel, Beyer, Vega, Schmidt ...]
- \bullet Electromagnetic, gravitational and transition form-factors of composite hadrons [Abidin and Carlson, Grigoryan and Radyushkin, Kwee and Lebed, Brodsky and GdT ...]
- DIS and Pomeron Physics [Polchinski, Strassler, Brower, Tan, Ballon Bayona, Boschi-Filho, Braga ...]
- • Quark and gluon matter at extreme conditions in heavy ion physics (RHIC, LHC) [Policastro, Son, Starinets, Kovtun, Gubser, Kim, Sin, Zahed, Cáceres, Güijosa, Edelstein, ...]
- Condensed matter physics [Herzog, Kovtun, Son ...]

Future Applications of Light-Front Holography

- Introduction of massive quarks (heavy and heavy-light quark systems)
- Systematic improvement (QCD Coulomb forces, higher Fock states (HFS) ...)

 -10

 -5

 $\bf{0}$

5

10

LC 2009, Brazil, July 9, 2009 Page 28