# Light Front Holography and AdS/QCD



University of Helsinki April 29, 2008

AdS/QCD

# Goal:

- Use AdS/CFT to provide an approximate, covariant, and analytic model of hadron structure with confinement at large distances, conformal behavior at short distances
- Analogous to the Schrodinger Theory for Atomic Physics
- Ads/QCD Light-Front Holography
- Hadronic Spectra and Wavefunctions

# Applications of AdS/CFT to QCD



Changes in physical length scale mapped to evolution in the 5th dimension z

#### in collaboration with Guy de Teramond

University of Helsinki April 29, 2008

AdS/QCD

3



April 29, 2008



- Truncated AdS/CFT (Hard-Wall) model: cut-off at  $z_0 = 1/\Lambda_{QCD}$  breaks conformal invariance and allows the introduction of the QCD scale (Hard-Wall Model) Polchinski and Strassler (2001).
- Smooth cutoff: introduction of a background dilaton field  $\varphi(z)$  usual linear Regge dependence can be obtained (Soft-Wall Model) Karch, Katz, Son and Stephanov (2006).

# We will consider both holographic models

University of Helsinki April 29, 2008

AdS/QCD

5

P.A.M Dirac, Rev. Mod. Phys. 21, 392 (1949)

# Dírac's Amazing Idea: The Front Form

**Evolve in** ordinary time **Evolve in** light-front time!



Each element of flash photograph íllumínated at same LF tíme

$$\tau = t + z/c$$



HELEN BRADLEY - PHOTOGRAPHY

### Light-Front Wavefunctions: rigorous representation of composite systems in quantum field theory



University of Helsinki April 29, 2008

AdS/QCD 8

Angular Momentum on the Light-Front

$$J^{z} = \sum_{i=1}^{n} s_{i}^{z} + \sum_{j=1}^{n-1} l_{j}^{z}.$$

Conserved LF Fock state by Fock State

$$l_j^z = -i\left(k_j^1 \frac{\partial}{\partial k_j^2} - k_j^2 \frac{\partial}{\partial k_j^1}\right)$$

n-1 orbital angular momenta

Nonzero Anomalous Moment -->Nonzero orbítal angular momentum

University of Helsinki April 29, 2008

AdS/QCD

9



Holography: Unique mapping derived from equality of LF and AdS formula for current matrix elements: **em and gravitational!** 

University of Helsinki April 29, 2008

AdS/QCD



## Prediction from AdS/CFT: Meson LFWF



$$\psi_M(x,k_{\perp}) = \frac{4\pi}{\kappa\sqrt{x(1-x)}} e^{-\frac{k_{\perp}^2}{2\kappa^2 x(1-x)}} \qquad \phi_M(x,Q_0) \propto \sqrt{x(1-x)}$$

University of Helsinki April 29, 2008

AdS/QCD 12



Hard Wall: Truncated Space Confinement

One parameter - set by pion decay constant.

**University of Helsinki** April 29, 2008

AdS/QCD

13

Stan Brodsky, SLAC & IPPP

de Teramond, sjb

See also: Radyushkin

#### Heisenberg Matrix Formulation

$$L^{QCD} \to H^{QCD}_{LF}$$

$$H_{LF}^{QCD} = \sum_{i} \left[\frac{m^2 + k_{\perp}^2}{x}\right]_i + H_{LF}^{int}$$

 $H_{LF}^{int}$ : Matrix in Fock Space

$$H_{LF}^{QCD}|\Psi_h>=\mathcal{M}_h^2|\Psi_h>$$

Eigenvalues and Eigensolutions give Hadron Spectrum and Light-Front wavefunctions

DLCQ: Periodic BC in  $x^-$ . Discrete  $k^+$ ; frame-independent truncation



Physical gauge:  $A^+ = 0$ 

#### **Light-Front Wave Functions in QCD**

- Hadronic bound state expanded in n-particle Fock eigenstates  $|\psi_h\rangle = \sum_n \psi_{n/h} |n\rangle^{+}$  the LF Hamiltonian  $H_{LF} = P^2 = P^+P^- \mathbf{P}_{\perp}^2$ ,  $H_{LF}|P\rangle = \mathcal{M}^2|P\rangle$ , at fixed LF time  $\tau = t + z/c$  (Dirac '49; Pauli and Pinsky, sjb Phys. Rept. 1988).
- Fock components

$$\psi_{n/h}(x_i, \mathbf{k}_{\perp i}) = \left\langle n; x_i, \mathbf{k}_{\perp i}, \left| \psi_h(P^+, \mathbf{P}_{\perp}) \right\rangle,\right.$$

frame independent and encode hadron properties in high momentum-transfer collisions.

• Momentum fraction  $x_i = k_i^+ / P^+$  and  $\mathbf{k}_{\perp i}$  are the relative coordinates of parton i in Fock-state n

$$\sum_{i=1}^{n} x_i = 1 \quad \sum_{i=1}^{n} \mathbf{k}_{\perp i} = 0.$$

• Define transverse position coordinates  $x_i \mathbf{r}_{\perp i} = x_i \mathbf{R}_{\perp} + \mathbf{b}_{\perp i}$ 

$$\sum_{i=1}^{n} \mathbf{b}_{\perp i} = 0, \quad \sum_{i=1}^{n} x_i \mathbf{r}_{\perp i} = \mathbf{R}_{\perp}.$$

University of Helsinki April 29, 2008

AdS/QCD

15

### Light-Front QCD

 $H_{LF}^{QCD}|\Psi_h\rangle = \mathcal{M}_h^2|\Psi_h\rangle$ 

#### Heisenberg Matrix Formulation

#### DLCQ Discretized Light-Cone Quantization

|                                         | n  | Sector           | 1<br>qq            | 2<br>99  | 3<br>qq g   | 4<br>qq qq      | 5<br>99 9     | 6<br>qq gg | 7<br>qq qq g | 8<br>qq qq qq | 88 88<br>8 | 10<br>qq gg g | 11<br>qq qq gg | 12<br>qq qq qq g | 13<br>qସ୍ୱି qସ୍ୱି qସ୍ୱି qସ୍ |
|-----------------------------------------|----|------------------|--------------------|----------|-------------|-----------------|---------------|------------|--------------|---------------|------------|---------------|----------------|------------------|-----------------------------|
| ζ, κ,λ                                  | 1  | qq               |                    |          | -           | N <sup>++</sup> | •             |            | •            | •             | •          | •             | •              | •                | •                           |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |    | <u>g</u> g       |                    | X        | ~           | ٠               | ~~~<`_`       |            | •            | •             |            | •             | •              | •                | •                           |
| p,s′ p,s                                | 3  | qq g             | >-                 | >        |             | ~               |               | ~~~{       | L.V.         | •             | •          | Tr.           | ٠              | •                | •                           |
| (a)                                     | 4  | qā dā            |                    | ٠        | >           |                 | •             |            | -            | Y Y           | ٠          | ٠             |                | •                | ٠                           |
| ¯p,s΄ k,λ                               | 5  | 99 g             | •                  | <u>}</u> |             | ٠               | X             | ~~<        | •            | •             | ~~~<       |               | ٠              | •                | •                           |
|                                         | 6  | qq gg            | V <sup>2</sup> + { |          | <u>}</u> ~~ |                 | $\rightarrow$ |            | ~            | •             |            | -             |                | •                | •                           |
| k,λ΄ p,s                                | 7  | ସସି ସସି ପ୍ର      | •                  | ٠        | <b>**</b>   | >               | •             | >          | +            | ~~<           | •          |               |                | 1 M              | •                           |
| (b)                                     | 8  | qq qq qq         | •                  | ٠        | ٠           | K               | •             | •          | >            |               | ٠          | •             |                | -                | X                           |
| p,s p,s                                 | 9  | <u>aa aa</u>     | •                  |          | •           | •               | ~~~~          |            | •            | •             | X          | ~~<           | •              | •                | •                           |
| - NA                                    | 10 | qq gg g          | •                  | ٠        |             | •               |               | >          |              | •             | >          |               | ~              | •                | •                           |
|                                         | 11 | qā da ga         | •                  | ٠        | •           |                 | ٠             |            | >-           |               | ٠          | >             |                | ~~<              | •                           |
| к, σ К, σ                               | 12 | ବସି ବସି ବସି ସ୍ତୁ | •                  | •        |             | •               | •             | •          | N N          | >-            | •          | •             | >              |                  | ~~<                         |
| (0)                                     | 13 | qā qā qā qā      | •                  | ٠        | •           | •               | •             | •          | •            | K             | •          | •             | •              | >                |                             |

#### **Eigenvalues and Eigensolutions give Hadron Spectrum and Light-Front wavefunctions**

H.C. Pauli & sjb

DLCQ: Frame-independent, No fermion doubling; Minkowski Space

# LIGHT-FRONT SCHRODINGER EQUATION

$$\left(M_{\pi}^{2}-\sum_{i}\frac{\vec{k}_{\perp i}^{2}+m_{i}^{2}}{x_{i}}\right)\begin{bmatrix}\psi_{q\bar{q}/\pi}\\\psi_{q\bar{q}g/\pi}\\\vdots\end{bmatrix}=\begin{bmatrix}\langle q\bar{q}|V|q\bar{q}\rangle & \langle q\bar{q}|V|q\bar{q}g\rangle & \cdots\\\langle q\bar{q}g|V|q\bar{q}g\rangle & \langle q\bar{q}g|V|q\bar{q}g\rangle & \cdots\\\vdots & \vdots & \ddots\end{bmatrix}\begin{bmatrix}\psi_{q\bar{q}/\pi}\\\psi_{q\bar{q}g/\pi}\\\vdots\end{bmatrix}$$



 $A^{+} = 0$ 

G.P. Lepage, sjb

University of Helsinki April 29, 2008

AdS/QCD

17

# Hadronization at the Amplitude Level



### **Construct helicity amplitude using Light-Front Perturbation theory; coalesce quarks via LFWFs**

University of Helsinki April 29, 2008

AdS/QCD 18

Light-Front Wavefunctions



Invariant under boosts! Independent of  $P^{\mu}$ 

University of Helsinki April 29, 2008

AdS/QCD

19

#### Calculation of Form Factors in Equal-Time Theory



#### Need vacuum fluctuations

Calculation of Form Factors in Light-Front Theory



University of Helsinki April 29, 2008

AdS/QCD

$$\frac{F_2(q^2)}{2M} = \sum_a \int [dx] [d^2 \mathbf{k}_{\perp}] \sum_j e_j \frac{1}{2} \times \text{Drell, sjb}$$

$$\begin{bmatrix} -\frac{1}{q^L} \psi_a^{\uparrow *}(x_i, \mathbf{k}'_{\perp i}, \lambda_i) \psi_a^{\downarrow}(x_i, \mathbf{k}_{\perp i}, \lambda_i) + \frac{1}{q^R} \psi_a^{\downarrow *}(x_i, \mathbf{k}'_{\perp i}, \lambda_i) \psi_a^{\uparrow}(x_i, \mathbf{k}_{\perp i}, \lambda_i) \end{bmatrix}$$

$$\mathbf{k}'_{\perp i} = \mathbf{k}_{\perp i} - x_i \mathbf{q}_{\perp} \qquad \mathbf{k}'_{\perp j} = \mathbf{k}_{\perp j} + (1 - x_j) \mathbf{q}_{\perp}$$



Must have 
$$\Delta \ell_z = \pm 1$$
 to have nonzero  $F_2(q^2)$ 

AdS/QCD

# Anomalous gravitomagnetic moment B(0)

Okun, Kobzarev, Teryaev: B(O) Must vanish because of Equivalence Theorem



# A Unified Description of Hadron Structure



Final-State Interaction Produces Diffractive DIS



Quark Rescattering

Hoyer, Marchal, Peigne, Sannino, SJB (BHM

Enberg, Hoyer, Ingelman, SJB

Hwang, Schmidt, SJB

#### Low-Nussinov model of Pomeron

University of Helsinki April 29, 2008

AdS/QCD

Hoyer, Marchal, Peigne, Sannino, sjb

# QCD Mechanism for Rapidity Gaps



University of Helsinki April 29, 2008

AdS/QCD



**Double Initial-State Interactions** generate anomalous  $\cos 2\phi$ Boer, Hwang, sjb **Drell-Yan planar correlations**  $\frac{1}{\sigma}\frac{d\sigma}{d\Omega} \propto \left(1 + \lambda\cos^2\theta + \mu\sin2\theta\,\cos\phi + \frac{\nu}{2}\sin^2\theta\cos2\phi\right)$ PQCD Factorization (Lam Tung):  $1 - \lambda - 2\nu = 0$  $\propto h_1^{\perp}(\pi) h_1^{\perp}(N)$  $\frac{\nu}{2}$  $\pi N \rightarrow \mu^+ \mu^- X \text{ NA10}$ P<sub>2</sub> 0.4 0.35  $\nu(Q_T)_{0.25}^{0.3}$ lard gluon radiation. 0.2 0.15 Q = 8 GeV0.1 0.05 Double ISI  $\overline{P_1}$  $P_1$ 5 2 3 4 6 **Violates Lam-Tung relation!** Model: Boer, **University of Helsinki** AdS/QCD Stan Brodsky, SLAC & IPPP

27

April 29, 2008

Physics of Rescattering

- Diffractive DIS
- Non-Unitary Correction to DIS: Structure functions are not probability distributions
- Nuclear Shadowing, Antishadowing- Not in Target WF
- Single Spin Asymmetries -- opposite sign in DY and DIS
- DY  $\cos 2\phi$  distribution at leading twist from double ISI-- not given by PQCD factorization -- breakdown of factorization!
- Wilson Line Effects not 1 even in LCG
- Must correct hard subprocesses for initial and final-state soft gluon attachments
- Corrections to Handbag Approximation in DVCS!

Hoyer, Marchal, Peigne, Sannino, sjb

University of Helsinki April 29, 2008

AdS/QCD 28

### Prediction from AdS/CFT: Meson LFWF



Conformal Theories are invariant under the Poincare and conformal transformations with

 $\mathbf{M}^{\mu\nu}, \mathbf{P}^{\mu}, \mathbf{D}, \mathbf{K}^{\mu},$ 

the generators of SO(4,2)

SO(4,2) has a mathematical representation on AdS5

University of Helsinki April 29, 2008

AdS/QCD

#### **Scale Transformations**

• Isomorphism of SO(4,2) of conformal QCD with the group of isometries of AdS space

$$ds^{2} = \frac{R^{2}}{z^{2}} (\eta_{\mu\nu} dx^{\mu} dx^{\nu} - dz^{2}),$$
 invariant measure

 $x^{\mu} \rightarrow \lambda x^{\mu}, \ z \rightarrow \lambda z$ , maps scale transformations into the holographic coordinate z.

- AdS mode in z is the extension of the hadron wf into the fifth dimension.
- Different values of z correspond to different scales at which the hadron is examined.

$$x^2 \to \lambda^2 x^2, \quad z \to \lambda z.$$

 $x^2 = x_\mu x^\mu$ : invariant separation between quarks

• The AdS boundary at  $z \to 0$  correspond to the  $Q \to \infty$ , UV zero separation limit.

University of Helsinki April 29, 2008

AdS/QCD

31



#### AdS/QCD



#### AdS/QCD

33



AdS/QCD

34



AdS/QCD

35

# *AdS/CFT:* Anti-de Sitter Space / Conformal Field Theory Maldacena:

Map  $AdS_5 \times S_5$  to conformal N=4 SUSY

- QCD is not conformal; however, it has manifestations of a scale-invariant theory: Bjorken scaling, dimensional counting for hard exclusive processes
- Conformal window:  $\alpha_s(Q^2) \simeq \text{const}$  at small  $Q^2$
- Use mathematical mapping of the conformal group SO(4,2) to AdS5 space

University of Helsinki April 29, 2008

AdS/QCD

36

#### **Conformal QCD Window in Exclusive Processes**

- Does  $\alpha_s$  develop an IR fixed point? Dyson–Schwinger Equation Alkofer, Fischer, LLanes-Estrada, Deur ...
- Recent lattice simulations: evidence that  $\alpha_s$  becomes constant and is not small in the infrared Furui and Nakajima, hep-lat/0612009 (Green dashed curve: DSE).



University of Helsinki April 29, 2008 AdS/QCD

37

Deur, Korsch, et al: Effective Charge from Bjorken Sum Rule



University of Helsinki April 29, 2008

AdS/QCD 38

#### Deur, Korsch, et al.



University of Helsinki April 29, 2008

AdS/QCD

**39** 

# IR Fixed-Point for QCD?

- Dyson-Schwinger Analysis: QCD Coupling has IR Fixed Point
- Evídence from Lattice Gauge Theory
- Define coupling from observable: indications of IR fixed point for QCD effective charges
- Confined gluons and quarks have maximum wavelength: Decoupling of QCD vacuum
   polarization at small Q<sup>2</sup> Serber-Uehling

 $\Pi(Q^2) \rightarrow \frac{\alpha}{15\pi} \frac{Q^2}{m^2} \qquad Q^2 << 4m^2 \qquad \dots$ 

Shrock, de Teramond, sjb

• Justifies application of AdS/CFT in strongcoupling conformal window

University of Helsinki April 29, 2008

AdS/QCD

40

Stan Brodsky, SLAC & IPPP

 $\ell^+$ 

 $\ell^{-}$ 

# Constituent Counting Rules



$$\frac{d\sigma}{dt}(s,t) = \frac{F(\theta_{\rm CM})}{s^{[n_{\rm tot}-2]}} \qquad s = E_{\rm CM}^2$$

$$F_H(Q^2) \sim \left[\frac{1}{Q^2}\right]^{n_H - 1}$$

$$n_{tot} = n_A + n_B + n_C + n_D$$

Fixed t/s or  $\cos \theta_{cm}$ 

Farrar & sjb; Matveev, Muradyan, Tavkhelidze

Conformal symmetry and PQCD predict leading-twist scaling behavior of fixed-CM angle exclusive amplitudes

Characterístic scale of QCD: 300 MeV

Many new J-PARC, GSI, J-Lab, Belle, Babar tests

University of Helsinki April 29, 2008

AdS/QCD



• Phenomenological success of dimensional scaling laws for exclusive processes

$$d\sigma/dt \sim 1/s^{n-2}, \ n = n_A + n_B + n_C + n_D,$$

implies QCD is a strongly coupled conformal theory at moderate but not asymptotic energies Farrar and sjb (1973); Matveev *et al.* (1973).

 Derivation of counting rules for gauge theories with mass gap dual to string theories in warped space (hard behavior instead of soft behavior characteristic of strings) Polchinski and Strassler (2001).

| University of Helsinki | AdS/QCD |  |  |  |  |
|------------------------|---------|--|--|--|--|
| April 29, 2008         | 42      |  |  |  |  |



Conformal Invariance:

$$\frac{d\sigma}{dt}(\gamma p \to MB) = \frac{F(\theta_{cm})}{s^7}$$

University of Helsinki April 29, 2008

AdS/QCD 43





AdS/QCD

44