Result: Soft-Wall LFWF for massive constituents

$$\psi(x, \mathbf{k}_{\perp}) = \frac{4\pi c}{\kappa \sqrt{x(1-x)}} e^{-\frac{1}{2\kappa^2} \left(\frac{\mathbf{k}_{\perp}^2}{x(1-x)} + \frac{m_1^2}{x} + \frac{m_2^2}{1-x}\right)}$$

LFWF in impact space: soft-wall model with massive quarks

$$\psi(x, \mathbf{b}_{\perp}) = \frac{c \kappa}{\sqrt{\pi}} \sqrt{x(1-x)} e^{-\frac{1}{2}\kappa^2 x(1-x)\mathbf{b}_{\perp}^2 - \frac{1}{2\kappa^2} \left[\frac{m_1^2}{x} + \frac{m_2^2}{1-x}\right]}$$

$$z \to \zeta \to \chi$$

$$\chi^2 = b^2 x (1 - x) + \frac{1}{\kappa^4} \left[\frac{m_1^2}{x} + \frac{m_2^2}{1 - x}\right]$$

Landau Congress Moscow, June 20, 2008 AdS/QCD 95

 J/ψ

LFWF peaks at

$$x_{i} = \frac{m_{\perp i}}{\sum_{j}^{n} m_{\perp j}}$$

where
$$m_{\perp i} = \sqrt{m^{2} + k}$$

$$m_{\perp i} = \sqrt{m^2 + k_{\perp}^2}$$

minimum of LF energy denomínator

$$\kappa = 0.375 \text{ GeV}$$

Landau Congress Moscow, June 20, 2008

96

• Baryons Spectrum in "bottom-up" holographic QCD GdT and Brodsky: hep-th/0409074, hep-th/0501022.

> Baryons ín Ads/CFT

• Action for massive fermionic modes on AdS_{d+1} :

$$S[\overline{\Psi}, \Psi] = \int d^{d+1}x \sqrt{g} \,\overline{\Psi}(x, z) \left(i\Gamma^{\ell}D_{\ell} - \mu\right) \Psi(x, z).$$

• Equation of motion: $\left(i\Gamma^\ell D_\ell - \mu\right)\Psi(x,z) = 0$

$$\left[i\left(z\eta^{\ell m}\Gamma_{\ell}\partial_m + \frac{d}{2}\Gamma_z\right) + \mu R\right]\Psi(x^{\ell}) = 0.$$

Landau Congress Moscow, June 20, 2008 AdS/QCD 98

Fig: Light baryon orbital spectrum for Λ_{QCD} = 0.25 GeV in the HW model. The **56** trajectory corresponds to L even P = + states, and the **70** to L odd P = - states.

Landau Congress Moscow, June 20, 2008 AdS/QCD 99

SU(6)	S	L	Baryon State
56	$\frac{1}{2}$	0	$N\frac{1}{2}^{+}(939)$
	$\frac{3}{2}$	0	$\Delta \frac{3}{2}^{+}(1232)$
70	$\frac{1}{2}$	1	$N\frac{1}{2}^{-}(1535) N\frac{3}{2}^{-}(1520)$
	$\frac{3}{2}$	1	$N\frac{1}{2}^{-}(1650) N\frac{3}{2}^{-}(1700) N\frac{5}{2}^{-}(1675)$
	$\frac{1}{2}$	1	$\Delta \frac{1}{2}^{-}(1620) \ \Delta \frac{3}{2}^{-}(1700)$
56	$\frac{1}{2}$	2	$N\frac{3}{2}^+(1720) N\frac{5}{2}^+(1680)$
	$\frac{3}{2}$	2	$\Delta_{\frac{1}{2}}^{\pm}(1910) \ \Delta_{\frac{3}{2}}^{\pm}(1920) \ \Delta_{\frac{5}{2}}^{\pm}(1905) \ \Delta_{\frac{7}{2}}^{\mp}(1950)$
70	$\frac{1}{2}$	3	$N\frac{5}{2}^{-}$ $N\frac{7}{2}^{-}$
	$\frac{3}{2}$	3	$N\frac{3}{2}^{-}$ $N\frac{5}{2}^{-}$ $N\frac{7}{2}^{-}(2190)$ $N\frac{9}{2}^{-}(2250)$
	$\frac{1}{2}$	3	$\Delta \frac{5}{2}^{-}(1930) \ \Delta \frac{7}{2}^{-}$
56	$\frac{1}{2}$	4	$N\frac{7}{2}^+ N\frac{9}{2}^+(2220)$
	$\frac{3}{2}$	4	$\Delta \frac{5}{2}^+ \qquad \Delta \frac{7}{2}^+ \qquad \Delta \frac{9}{2}^+ \qquad \Delta \frac{11}{2}^+ (2420)$
70	$\frac{1}{2}$	5	$N\frac{9}{2}^{-}$ $N\frac{11}{2}^{-}(2600)$
	$\frac{3}{2}$	5	$N\frac{7}{2}^{-}$ $N\frac{9}{2}^{-}$ $N\frac{11}{2}^{-}$ $N\frac{13}{2}^{-}$

Landau Congress Moscow, June 20, 2008 AdS/QCD 100

Space-Like Dirac Proton Form Factor

• Consider the spin non-flip form factors

$$F_{+}(Q^{2}) = g_{+} \int d\zeta J(Q,\zeta) |\psi_{+}(\zeta)|^{2},$$

$$F_{-}(Q^{2}) = g_{-} \int d\zeta J(Q,\zeta) |\psi_{-}(\zeta)|^{2},$$

where the effective charges g_+ and g_- are determined from the spin-flavor structure of the theory.

- Choose the struck quark to have $S^z = +1/2$. The two AdS solutions $\psi_+(\zeta)$ and $\psi_-(\zeta)$ correspond to nucleons with $J^z = +1/2$ and -1/2.
- For SU(6) spin-flavor symmetry

$$F_1^p(Q^2) = \int d\zeta J(Q,\zeta) |\psi_+(\zeta)|^2,$$

$$F_1^n(Q^2) = -\frac{1}{3} \int d\zeta J(Q,\zeta) \left[|\psi_+(\zeta)|^2 - |\psi_-(\zeta)|^2 \right],$$

where $F_1^p(0) = 1$, $F_1^n(0) = 0$.

Landau Congress Moscow, June 20, 2008 AdS/QCD

• Scaling behavior for large Q^2 : $Q^4 F_1^p(Q^2) \rightarrow \text{constant}$ Proton $\tau = 3$

SW model predictions for $\kappa = 0.424$ GeV. Data analysis from: M. Diehl *et al.* Eur. Phys. J. C **39**, 1 (2005).

Landau Congress Moscow, June 20, 2008

AdS/QCD 102

Dirac Neutron Form Factor

Truncated Space Confinement

(Valence Approximation)

 $Q^4F_1^n(Q^2)$ [GeV⁴] 0 -0.05 -0.1 -0.15 -0.2 -0.25 -0.3 -0.35 2 3 4 5 1 6 Q^2 [GeV²]

Prediction for $Q^4 F_1^n(Q^2)$ for $\Lambda_{QCD} = 0.21$ GeV in the hard wall approximation. Data analysis from Diehl (2005).

Landau Congress Moscow, June 20, 2008

AdS/QCD 103

Spacelíke Paulí Form Factor

Preliminary

From overlap of L = 1 and L = 0 LFWFs

Prediction from AdS/CFT: Meson LFWF

- Fundamental gauge invariant non-perturbative input to hard exclusive processes, heavy hadron decays. Defined for Mesons, Baryons
- Evolution Equations from PQCD, OPE, Conformal Invariance

Lepage, sjb Frishman, Lepage, Sachrajda, sjb Peskin Braun Efremov, Radyushkin Chernyak etal

• Compute from valence light-front wavefunction in light-cone gauge $\phi_M(x,Q) = \int^Q d^2 \vec{k} \ \psi_{q\bar{q}}(x,\vec{k}_{\perp})$

Landau Congress Moscow, June 20, 2008 AdS/QCD 106

Prediction from AdS/CFT: Meson LFWF

$$\psi_M(x,k_{\perp}) = \frac{4\pi}{\kappa\sqrt{x(1-x)}} e^{-\frac{k_{\perp}^2}{2\kappa^2 x(1-x)}} \qquad \phi_M(x,Q_0) \propto \sqrt{x(1-x)}$$

Landau Congress Moscow, June 20, 2008 AdS/QCD 107

Soft Wall: Harmonic Oscillator Confinement

Hard Wall: Truncated Space Confinement

One parameter - set by pion decay constant.

de Teramond, sjb See also: Radyushkin Stan Brodsky **SLAC & IPPP**

Landau Congress Moscow, June 20, 2008 AdS/QCD 108

Light-Front Wavefunctions

Dirac's Front Form: Fixed $\tau = t + z/c$

$$\Psi(x, k_{\perp})$$
 $x_i = \frac{k_i^+}{P^+}$

Invariant under boosts. Independent of \mathcal{P}^{μ} $\mathrm{H}^{QCD}_{LF}|\psi>=M^{2}|\psi>$

Remarkable new insights from AdS/CFT, the duality between conformal field theory and Anti-de Sitter Space

Landau Congress Moscow, June 20, 2008 AdS/QCD 109

How can we systematically improve AdS/QCD?

AdS/QCD: Semiclassical model

No Particle Creation

Valence Fock State only

Landau Congress Moscow, June 20, 2008 AdS/QCD

110

 $|p,S_z\rangle = \sum_{i} \Psi_n(x_i,\vec{k}_{\perp i},\lambda_i)|n;\vec{k}_{\perp i},\lambda_i\rangle$

sum over states with n=3, 4, ... constituents

The Light Front Fock State Wavefunctions

$$\Psi_n(x_i, \vec{k}_{\perp i}, \lambda_i)$$

are boost invariant; they are independent of the hadron's energy and momentum P^{μ} .

The light-cone momentum fraction

$$x_i = \frac{k_i^+}{p^+} = \frac{k_i^0 + k_i^z}{P^0 + P^z}$$

are boost invariant.

$$\sum_{i=1}^{n} k_{i}^{+} = P^{+}, \ \sum_{i=1}^{n} x_{i} = 1, \ \sum_{i=1}^{n} \vec{k}_{i}^{\perp} = \vec{0}^{\perp}.$$

Intrinsic heavy quarks

Mueller: BFKL DYNAMICS

 $\bar{u}(x) \neq \bar{d}(x)$ $\bar{s}(x) \neq s(x)$ AdS/QCD

III

Landau Congress Moscow, June 20, 2008

Fixed LF time

Stan Brodsky SLAC & IPPP

111

Light Antiquark Flavor Asymmetry

Naïve Assumption from gluon splitting:

$$\bar{d}(x) = \bar{u}(x)$$

•

E866/NuSea (Drell-Yan)

Heisenberg Matrix Formulation

$$L^{QCD} \to H_{LF}^{QCD}$$

$$H_{LF}^{QCD} = \sum_{i} \left[\frac{m^2 + k_{\perp}^2}{x}\right]_i + H_{LF}^{int}$$

 H_{LF}^{int} : Matrix in Fock Space

$$H_{LF}^{QCD}|\Psi_h>=\mathcal{M}_h^2|\Psi_h>$$

Physical gauge: $A^+ = 0$

Eigenvalues and Eigensolutions give Hadron Spectrum and Light-Front wavefunctions

DLCQ: Periodic BC in x^- . Discrete k^+ ; frame-independent truncation

LIGHT-FRONT SCHRODINGER EQUATION

$$\left(M_{\pi}^{2} - \sum_{i} \frac{\vec{k}_{\perp i}^{2} + m_{i}^{2}}{x_{i}}\right) \begin{bmatrix} \psi_{q\bar{q}/\pi} \\ \psi_{q\bar{q}g/\pi} \\ \vdots \end{bmatrix} = \begin{bmatrix} \langle q\bar{q} | V | q\bar{q} \rangle & \langle q\bar{q} | V | q\bar{q}g \rangle & \cdots \\ \langle q\bar{q}g | V | q\bar{q}g \rangle & \langle q\bar{q}g | V | q\bar{q}g \rangle & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix} \begin{bmatrix} \psi_{q\bar{q}/\pi} \\ \psi_{q\bar{q}g/\pi} \\ \vdots \end{bmatrix}$$

 $A^{+} = 0$

G.P. Lepage, sjb

Landau Congress Moscow, June 20, 2008 AdS/QCD 114

Light-Front QCD

Heisenberg Matrix Formulation

 $H_{LF}^{QCD}|\Psi_h\rangle = \mathcal{M}_h^2|\Psi_h\rangle$

DLCQ

Discretized Light-Cone Quantization

	n	Sector	1 qq	2 99	3 qq g	4 ସବି ସବି	5 99 9	6 qq gg	7 qq qq g	8 qq qq qq	9 99 99	10 qq gg g	11 qq qq gg	12 qq qq qq g	13 qqqqqqqq
ζ κ,λ	1	qq			-	N ⁺⁺	•		•	•	•	٠	•	•	•
- 12		<u>g</u> g		X	~	•	~~~{``		•	•		•	•	•	•
p,s′ p,s	3	qq g	>	>		~		~~~<~_	the second	•	•		•	•	•
(a)	4	qā dā	Kit	•	>		٠		$- \Big\langle $	¥4	•	٠	4	٠	•
\overline{p},s' k,λ	5	99 g	•	~~~~		٠	X	~~<	•	•	~~~~(~		•	•	•
	6	qq gg	<u>}</u>	} ; ;	<u>}</u> ~~		\rightarrow	↓	~~<	•				•	•
k,λ΄ p,s	7	ସସି ସସି g	•	٠	*	\succ	•	>		~	•		-	they are	•
(b)	8	qā qā qā	•	•	•	V	•	•	>		•	٠		-	Att A
p,s p,s	9	<u>aa aa</u>	•		•	•	~~~~		•	•	X	~~<	•	•	•
	10	qq gg g	•	•		٠	****	>-		•	>		~	٠	•
	11	qq qq gg	•	•	•		•	K	>-		٠	>		~~<	•
к,о к,о	12	ବସି ବସି ବସି ସ୍ତୁ	•	•	•	•	•	•	X	>-	•	•	>		~~<
(0)	13	ବସି ବସି ବସି ବସି	•	•	•	•	•		•	X	•	•	•	>	

Eigenvalues and Eigensolutions give Hadron Spectrum and Light-Front wavefunctions

H.C. Pauli & sjb

DLCQ: Frame-independent, No fermion doubling; Minkowski Space

Líght-Front QCD Heisenberg Equation

 $H_{LC}^{QCD} |\Psi_h\rangle = \mathcal{M}_h^2 |\Psi_h\rangle$

	n	Sector	1 qq	2 gg	3 qq g	4 qq qq	5 gg g	6 qq gg	7 qq qq g	8 qq qq qq	9 99	10 qq gg g	11 qq qq gg	12 qq qq qq g	13 qqqqqqqq
ζ, k,λ	1	qq			-		•	Transfer and the second	•	•	•	٠	•	•	•
	2	gg		X	~~<	•	~~~<~	The second secon	•	•		•	•	•	•
p,s´ p,s	3	qq g	>-	\rightarrow		~~<	-	~~~{~~	L.V.	•	•		•	•	•
(a)	4	qq qq	K	•	>		•	+	-	M.Y	•	•		•	•
¯p,s' k,λ	5	gg g	•	<u>کر</u>		•	X	~~<	•	•	~~~{		•	•	•
wit	6	qq gg	<u>↓</u>	*	<u>}</u> ~		>	T_	~~<	•			A HANNE	•	•
k̄,λ΄ p,s	7	qq qq g	•	•	***	>-	•	>	+	~~<	•		-	M.	•
(-)	8	qq qq qq	•	٠	•	N H	•	•	>		٠	•	+	-<	X+1
p,s′ p,s	9	gg gg	•		•	•	<u>کر</u>		•	•		~~	٠	•	•
	10	qq gg g	•	•	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	٠	*	>-		•	>		~~<	•	•
	11	ସସି ସସି ପ୍ରସ୍ତ	•	•	•		•	N N	>-		٠	>		~~<	•
(c)	12	qq qq qq g	•	•	Ð	•	•	•	N N	>-	٠	•	>		~~<
L	13 (qā dā dā da	•	•	•	•	•	•	•	K+1	•	•	•	>	

Use AdS/QCD basis functions

Landau Congress Moscow, June 20, 2008 AdS/QCD 116

Use AdS/CFT orthonormal LFWFs as a basis for diagonalizing the QCD LF Hamiltonian

- Good initial approximant: generates all Fock states
- Better than plane wave basis

Pauli, Hornbostel, Hiller, McCartor, sjb

- DLCQ discretization -- highly successful 1+1
- Use independent HO LFWFs, remove CM Vary, Harinandrath, Maris, sjb
- Similar to Shell Model calculations

Landau Congress Moscow, June 20, 2008 AdS/QCD

II7

Holographic Connection between LF and AdS/CFT

- Predictions for hadronic spectra, light-front wavefunctions, interactions
- Deduce meson and baryon wavefunctions, distribution amplitude, structure function from holographic constraint
- Identification of Orbital Angular Momentum Casimir for SO(2): LF Rotations
- Extension to massive quarks

Landau Congress Moscow, June 20, 2008 AdS/QCD

New Perspectives for QCD from AdS/CFT

- LFWFs: Fundamental frame-independent description of hadrons at amplitude level
- Holographic Model from AdS/CFT : Confinement at large distances and conformal behavior at short distances
- Model for LFWFs, meson and baryon spectra: many applications!
- New basis for diagonalizing Light-Front Hamiltonian
- Physics similar to MIT bag model, but covariant. No problem with support 0 < x < I.
- Quark Interchange dominant force at short distances

Landau Congress Moscow, June 20, 2008 AdS/QCD

119

CIM: Blankenbecler, Gunion, sjb

Quark Interchange (Spín exchange ín atomatom scattering) Gluon Exchange (Van der Waal --Landshoff)

$$\frac{d\sigma}{dt} = \frac{|M(s,t)|^2}{s^2}$$

M(s,t)gluonexchange $\propto sF(t)$

MIT Bag Model (de Tar), large N_{C_r} ('t Hooft), AdS/CFT all predict dominance of quark interchange:

Landau Congress Moscow, June 20, 2008

M(t, u)interchange $\propto \frac{1}{ut^2}$

AdS/QCD 120

Comparison of Exclusive Reactions at Large t

B. R. Baller, ^(a) G. C. Blazey, ^(b) H. Courant, K. J. Heller, S. Heppelmann, ^(c) M. L. Marshak, E. A. Peterson, M. A. Shupe, and D. S. Wahl^(d) University of Minnesota, Minneapolis, Minnesota 55455

> D. S. Barton, G. Bunce, A. S. Carroll, and Y. I. Makdisi Brookhaven National Laboratory, Upton, New York 11973

> > and

S. Gushue^(e) and J. J. Russell

Southeastern Massachusetts University, North Dartmouth, Massachusetts 02747 (Received 28 October 1987; revised manuscript received 3 February 1988)

Cross sections or upper limits are reported for twelve meson-baryon and two baryon-baryon reactions for an incident momentum of 9.9 GeV/c, near 90° c.m.: $\pi^{\pm}p \rightarrow p\pi^{\pm}, p\rho^{\pm}, \pi^{+}\Delta^{\pm}, K^{+}\Sigma^{\pm}, (\Lambda^{0}/\Sigma^{0})K^{0};$ $K^{\pm}p \rightarrow pK^{\pm}; p^{\pm}p \rightarrow pp^{\pm}$. By studying the flavor dependence of the different reactions, we have been able to isolate the quark-interchange mechanism as dominant over gluon exchange and quark-antiquark annihilation.

$\pi^{\pm}p \rightarrow p\pi^{\pm},$	K + s	s K ⁺	TT ^{-d} u	d K°
$K^{\pm} p \rightarrow p K^{\pm},$ $\pi^{\pm} p \rightarrow p \rho^{\pm}.$	P U GE	U U U U	P U AN	s A°
$\pi^{\pm} p \longrightarrow \pi^{+} \Delta^{\pm},$	к ⁺	<u></u> s к ⁺	π ^{-d} u	d K°
$\pi \stackrel{\perp}{} p \longrightarrow K^+ \Sigma \stackrel{\perp}{},$ $\pi^- p \longrightarrow \Lambda^0 K^0, \Sigma^0 K^0,$	PU		P	Sed N°
$p \stackrel{\pm}{\rightarrow} p \rightarrow pp \stackrel{\pm}{\rightarrow}.$	d QI	N d''	u co	MU

New Perspectives on QCD Phenomena from AdS/CFT

- AdS/CFT: Duality between string theory in Anti-de Sitter Space and Conformal Field Theory
- New Way to Implement Conformal Symmetry
- Holographic Model: Conformal Symmetry at Short Distances, Confinement at large distances
- Remarkable predictions for hadronic spectra, wavefunctions, interactions
- AdS/CFT provides novel insights into the quark structure of hadrons

Landau Congress Moscow, June 20, 2008 AdS/QCD

123

Hadron Dynamics at the Amplitude Level

- LFWFS are the universal hadronic amplitudes which underlie structure functions, GPDs, exclusive processes, distribution amplitudes, direct subprocesses, hadronization.
- Relation of spin, momentum, and other distributions to physics of the hadron itself.
- Connections between observables, orbital angular momentum
- Role of FSI and ISIs: Diffractive DIS, Sivers effect

Landau Congress Moscow, June 20, 2008 AdS/QCD

I24

Deep Inelastic Electron-Proton Scattering

Conventional wisdom: Final-state interactions of struck quark can be neglected

Landau Congress Moscow, June 20, 2008 AdS/QCD

125

AdS/QCD

127

and produce a T-odd effect! (also need $L_z \neq 0$)

HERMES coll., A. Airapetian et al., Phys. Rev. Lett. 94 (2005) 012002.

Sivers asymmetry from HERMES

Landau Congress Moscow, June 20, 2008

- First evidence for non-zero Sivers function!
- ⇒ presence of non-zero quark
 orbital angular momentum!
- Positive for π⁺...
 Consistent with zero for π⁻...

Gamberg: Hermes data compatible with BHS model

Schmidt, Lu: Hermes charge pattern follow quark contributions to anomalous

> moment Stan Brodsky SLAC & IPPP

Fínal-State Interactions Produce Pseudo T-Odd (Sívers Effect)

- New window to QCD coupling and running gluon mass in the IR
- QED S and P Coulomb phases infinite -- difference of phases finite!

Landau Congress Moscow, June 20, 2008 AdS/QCD 128

Remarkable observation at HERA

10% to 15% of DIS events are díffractíve !

Fraction r of events with a large rapidity gap, $\eta_{\text{max}} < 1.5$, as a function of Q_{DA}^2 for two ranges of x_{DA} . No acceptance corrections have been applied.

M. Derrick et al. [ZEUS Collaboration], Phys. Lett. B 315, 481 (1993).

Landau Congress Moscow, June 20, 2008 AdS/QCD 129

Hoyer, Marchal, Peigne, Sannino, sjb

QCD Mechanism for Rapidity Gaps

Landau Congress Moscow, June 20, 2008 AdS/QCD 130

Final State Interactions in QCD

Feynman GaugeLight-Cone GaugeResult is Gauge Independent

Landau Congress Moscow, June 20, 2008 AdS/QCD 131

Some Applications of Light-Front Wavefunctions

- Exact formulae for form factors, quark and gluon distributions; vanishing anomalous gravitational moment; edm connection to anm
- Deeply Virtual Compton Scattering, generalized parton distributions, angular momentum sum rules
- Exclusive weak decay amplitudes
- Single spin asymmetries: Role of ISI and FSI
- Factorization theorems, DGLAP, BFKL, ERBL Evolution
- Quark interchange amplitude
- Relation of spin, momentum, and other distributions to physics of the hadron itself.

Landau Congress Moscow, June 20, 2008 AdS/QCD 132

Space-time picture of DVCS

 $\sigma = \frac{1}{2}x^{-}P^{+}$

The position of the struck quark differs by x^{-1} in the two wave functions

Measure x- distribution from DVCS: Take Fourier transform of skewness, $\xi = \frac{Q^2}{2p.q}$ the longitudinal momentum transfer

S. J. Brodsky^a, D. Chakrabarti^b, A. Harindranath^c, A. Mukherjee^d, J. P. Vary^{e,a,f}

Landau Congress Moscow, June 20, 2008 AdS/QCD 133 Stan Brodsky SLAC & IPPP

P. Hoyer

S. J. Brodsky^a, D. Chakrabarti^b, A. Harindranath^c, A. Mukherjee^d, J. P. Vary^{e,a,f}

AdS/CFT and Hadronic Physics on the Light Front

Lev Davidovich Landau

Stan Brodsky SLAC/IPPP

Landau Memorial Meeting Moscow June 20, 2008

Light-Front Holography and AdS/QCD Correspondence.

Stanley J. Brodsky, Guy F. de Teramond . SLAC-PUB-13220, Apr 2008. 14pp. e-Print: arXiv:0804.3562 [hep-ph]

Light-Front Dynamics and AdS/QCD Correspondence: Gravitational Form Factors of Composite Hadrons.

Stanley J. Brodsky (SLAC), Guy F. de Teramond (Ecole Polytechnique, CPHT & Costa Rica U.). SLAC-PUB-13192, Apr 2008. 12pp. e-Print: arXiv:0804.0452 [hep-ph]

AdS/CFT and Light-Front QCD.

Stanley J. Brodsky, Guy F. de Teramond . SLAC-PUB-13107, Feb 2008. 38pp.

Invited talk at International School of Subnuclear Physics: 45th Course: Searching for the "Totally Unexpected" in the LHC Era, Erice, Sicily, Italy, 29 Aug - 7 Sep 2007.

e-Print: arXiv:0802.0514 [hep-ph]

AdS/CFT and Exclusive Processes in QCD.

Stanley J. Brodsky, Guy F. de Teramond . SLAC-PUB-12804, Sep 2007. 29pp. Temporary entry e-Print: arXiv:0709.2072 [hep-ph]

Light-Front Dynamics and AdS/QCD Correspondence: The Pion Form Factor in the Space- and Time-Like Regions.

<u>Stanley J. Brodsky</u> (<u>SLAC</u>), <u>Guy F. de Teramond</u> (<u>Costa Rica U.</u> & <u>SLAC</u>). SLAC-PUB-12554, SLAC-PUB-12544, Jul 2007. 20pp. Published in **Phys.Rev.D77:056007,2008**. e-Print: **arXiv:0707.3859** [hep-ph]

Landau Congress Moscow, June 20, 2008 AdS/QCD

I37