

Laboratory

Hadronization at the Amplitude Level Stan Brodsky SLAC & IPP May 30, 2008

Features of LF T-Matrix Formalism "Event Amplitude Generator"

- Hidden Color: Six-quark color-singlet Fock states of deuteron from hard gluon exchange:
- Deuteron LFWF not always product of nucleon clusters

Rutherford Appleton Laboratory Hadronization at the Amplitude Level Stan Brodsky SLAC & IPP 46 May 30, 2008

Ji, Lepage, sjb

5 X 5 Matrix Evolution Equation for deuteron distribution amplitude

Rutherford Appleton Laboratory Hadronization at the Amplitude LevelStan Brodsky SLAC & IPP:47May 30, 2008

Hidden Color in QCD Lepage, Ji, sjb

- Deuteron six quark wavefunction:
- 5 color-singlet combinations of 6 color-triplets -one state is |n p>
- Components evolve towards equality at short distances
- Hidden color states dominate deuteron form factor and photodisintegration at high momentum transfer

• **Predict** $\frac{d\sigma}{dt}(\gamma d \to \Delta^{++}\Delta^{-}) \simeq \frac{d\sigma}{dt}(\gamma d \to pn)$ at high Q^2

Rutherford Appleton Laboratory

Hadronization at the Amplitude LevelStan Brodsky SLAC & IPP48May 30, 2008

Deep Inelastic Electron-Deuteron Scattering

Hidden color: excited target spectator system. No nucleon spectator

Rutherford Appleton Laboratory Hadronization at the Amplitude Level Stan Brodsky SLAC & IPP

Intrinsic Heavy-Quark Fock States

- Rigorous prediction of QCD, OPE
- Color-Octet Color-Octet Fock State!

- Probability $P_{Q\bar{Q}} \propto \frac{1}{M_Q^2}$ $P_{Q\bar{Q}Q\bar{Q}} \sim \alpha_s^2 P_{Q\bar{Q}}$ $P_{c\bar{c}/p} \simeq 1\%$
- Large Effect at high x
- Greatly increases kinematics of colliders such as Higgs production (Kopeliovich, Schmidt, Soffer, sjb)
- Severely underestimated in conventional parameterizations of heavy quark distributions (Pumplin, Tung)
- Many empirical tests

Rutherford Appleton
LaboratoryHadronization at the Amplitude Level
50Stan Brodsky SLAC & IPP
May 30, 2008

 $|uudc\bar{c} >$ Fluctuation in Proton QCD: Probability $\frac{\sim \Lambda_{QCD}^2}{M_O^2}$

 $|e^+e^-\ell^+\ell^- >$ Fluctuation in Positronium QED: Probability $\frac{\sim (m_e \alpha)^4}{M_\ell^4}$

OPE derivation - M.Polyakov et al.

$$VS. c\bar{c}$$
 in Color Octet

Distribution peaks at equal rapidity (velocity) Therefore heavy particles carry the largest momentum fractions

$$\hat{x}_i = \frac{m_{\perp i}}{\sum_j^n m_{\perp j}}$$

High x charm! Charm at Threshold

Rutherford Appleton Laboratory

Hadronization at the Amplitude Level Stan Brodsky SLAC & IPP 51 May 30, 2008 Electron-Electron Scattering in QED

$$\mathcal{M}_{ee \to ee}(++;++) = \frac{8\pi s}{t} \alpha(t) + \frac{8\pi s}{u} \alpha(u)$$

$$\alpha(t) = \frac{\alpha(0)}{1 - \Pi(t)}$$

Gell Mann-Low Effective Charge

Electron-Electron Scattering in QED

$$\mathcal{M}_{ee \to ee}(++;++) = \frac{8\pi s}{t} \alpha(t) + \frac{8\pi s}{u} \alpha(u)$$

t

u

- Two separate physical scales: t, u = photon virtuality
- Gauge Invariant. Dressed photon propagator
- Sums all vacuum polarization, non-zero beta terms into running coupling.
- If one chooses a different scale, one can sum an infinite number of graphs
 -- but always recover same result!
- Number of active leptons correctly set
- Analytic: reproduces correct behavior at lepton mass thresholds
- No renormalization scale ambiguity!

Rutherford AppletonHadronization at the Amplitude LevelStan Brodsky SLAC & IPP:
May 30, 2008Laboratory53May 30, 2008

Another Example in QED: Muonic Atoms

 $V(q^2) = -\frac{Z\alpha_{QED}(q^2)}{q^2}$

$\mu_R^2 \equiv q^2$ $\alpha_{QED}(q^2) = \frac{\alpha_{QED}(0)}{1 - \Pi(q^2)}$

Scale is unique: Tested to ppm

Gyulassy: Higher Order VP verified to 0.1% precision in μ Pb

Rutherford Appleton Laboratory

Hadronization at the Amplitude Level Stan Brodsky SLAC & IPP May 30, 2008

54

QED Renormalization Scale Setting in LFPth

Rutherford Appleton Laboratory

Hadronization at the Amplitude Level Stan Brodsky SLAC & IPP

Alternate Denominator: UV Subtraction Method

Rutherford Appleton Laboratory Hadronization at the Amplitude Level Stan Brodsky SLAC & IPP

$$\lim N_C \to 0 \text{ at fixed } \alpha = C_F \alpha_s, n_\ell = n_F / C_F$$

QCD → Abelian Gauge Theory

Analytic Feature of SU(Nc) Gauge Theory

Scale-Setting procedure for QCD must be applicable to QED

Rutherford Appleton Laboratory

Hadronization at the Amplitude Level Stan Brodsky SLAC & IPP 57 May 30, 2008

Example of Multiple BLM Scales

Angular distributions of massive quarks and leptons close to threshold.

Rutherford Appleton Laboratory

Hadronization at the Amplitude LevelStan Brodsky SLAC & IPP58May 30, 2008

General Structure of the Three-Gluon Vertex

"THE FORM-FACTORS OF THE GAUGE-INVARIANT THREE-GLUON VERTEX"

3 index tensor $\hat{\Gamma}_{\mu_1\mu_2\mu_3}$ built out of $\mathcal{G}_{\mu\nu}$ and p_1, p_2, p_3 with $p_1 + p_2 + p_3 = 0$

Rutherford Appleton Laboratory Hadronization at the Amplitude Level Stan Brodsky SLAC & IPP

 $\mu_R^2 \simeq \frac{p_{min}^2 p_{med}^2}{p_{max}^2}$

Rutherford Appleton Laboratory Hadronization at the Amplitude Level Stan Brodsky SLAC & IPP

Binger, sjb

Properties of the Effective Scale

$$Q_{eff}^{2}(a,b,c) = Q_{eff}^{2}(-a,-b,-c)$$

$$Q_{eff}^{2}(\lambda a, \lambda b, \lambda c) = |\lambda| Q_{eff}^{2}(a,b,c)$$

$$Q_{eff}^{2}(a,a,a) = |a|$$

$$Q_{eff}^{2}(a,-a,-a) \approx 5.54 |a|$$

$$Q_{eff}^{2}(a,a,c) \approx 3.08 |c| \text{ for } |a| >> |c|$$

$$Q_{eff}^{2}(a,-a,c) \approx 22.8 |c| \text{ for } |a| >> |c|$$

$$Q_{eff}^{2}(a,b,c) \approx 22.8 \frac{|bc|}{|a|} \text{ for } |a| >> |b|,|c|$$

Surprising dependence on Invariants

Rutherford Appleton Laboratory Hadronization at the Amplitude LevelStan Brodsky SLAC & IPP61May 30, 2008

BLM Method

- Satisfies Transitivity, all aspects of Renormalization Group; scheme independent
- Analytic at Flavor Thresholds
- Preserves Underlying Conformal Template
- Physical Interpretation of Scales; Multiple Scales
- Correct Abelian Limit (N_C = 0)
- Eliminates unnecessary source of imprecision of PQCD predictions
- Commensurate Scale Relations: Fundamental Tests of QCD free of renormalization scale and scheme ambiguities
- BLM used in many applications, QED, LGTH, BFKL, ...

Rutherford AppletonHadronization at the Amplitude LevelStan Brodsky SLAC & IPP:Laboratory62May 30, 2008

Kramer & Lampe

Three-Jet Rate

The scale μ/\sqrt{s} according to the BLM (dashed-dotted), PMS (dashed), FAC (full), and \sqrt{y} (dotted) procedures for the three-jet rate in e^+e^- annihilation, as computed by Kramer and Lampe [10]. Notice the strikingly different behavior of the BLM scale from the PMS and FAC scales at low y. In particular, the latter two methods predict increasing values of μ as the jet invariant mass $\mathcal{M} < \sqrt{(ys)}$ decreases.

Other Jet Observables:

Rathsman

Rutherford AppletonHadronization at the Amplitude LevelStan Brodsky SLAC & IPPLaboratory63May 30, 2008

Transitivity Property of Renormalization Group

 $A \rightarrow C \qquad C \rightarrow B$ identical to $A \rightarrow B$

Relation of observables independent of intermediate scheme C

Rutherford Appleton Laboratory Hadronization at the Amplitude LevelStan Brodsky SLAC & IPP64May 30, 2008

$\pi N \rightarrow \mu^+ \mu^- X$ at high x_F In the limit where $(1-x_F)Q^2$ is fixed as $Q^2 \rightarrow \infty$

Berger and Brodsky, PRL 42 (1979) 940

Rutherford Appleton Laboratory

Hadronization at the Amplitude Level Stan Brodsky SLAC & IPP

$$\pi^- N \rightarrow \mu^+ \mu^- X$$
 at 80 GeV/c

$$\frac{d\sigma}{d\Omega} \propto 1 + \lambda \cos^2\theta + \rho \sin 2\theta \cos\phi + \omega \sin^2\theta \cos 2\phi.$$

$$\frac{d^2\sigma}{dx_{\pi}d\cos\theta} \propto x_{\pi} \left[(1-x_{\pi})^2 (1+\cos^2\theta) + \frac{4}{9} \frac{\langle k_T^2 \rangle}{M^2} \sin^2\theta \right]$$

 $\langle k_T^2 \rangle = 0.62 \pm 0.16 \text{ GeV}^2/c^2$

Dramatíc change in angular dístribution at large x_F

Example of a higher-twist direct subprocess

Chicago-Princeton Collaboration

Phys.Rev.Lett.55:2649,1985

Rutherford Appleton Laboratory

Hadronization at the Amplitude Level Stan Brodsky SLAC & IPP

66

S. S. Adler *et al.* PHENIX Collaboration *Phys. Rev. Lett.* **91**, 172301 (2003). *Particle ratio changes with centrality!*

67

Rutherford Appleton Laboratory

Hadronization at the Amplitude Level Stan Brodsky SLAC & IPP

Crucial Test of Leading -Twist QCD: Scaling at fixed xt

$$E\frac{d\sigma}{d^3p}(pN \to \pi X) = \frac{F(x_T, \theta_{CM})}{p_T^{neff}}$$

Parton model: $n_{eff} = 4$

As fundamental as Bjorken scaling in DIS

Conformal scaling: $n_{eff} = 2 n_{active} - 4$

Rutherford Appleton Laboratory

Hadronization at the Amplitude Level Stan Brodsky SLAC & IPP May 30, 2008

QCD prediction: Modification of power fall-off due to DGLAP evolution and the Running Coupling

Key test of PQCD: power-law fall-off at fixed x_T

Rutherford Appleton Laboratory Hadronization at the Amplitude LevelStan Brodsky SLAC & IPP70May 30, 2008

 $\sqrt{s}^n E \frac{d\sigma}{d^3 p} (pp \to \gamma X)$ at fixed x_T

Tannenbaum

Scaling of direct photon production consistent with PQCD

evel Stan Brodsky SLAC & IPP May 30, 2008

71

 $^{6.3} \times E \frac{d\sigma}{d^3 p} (pp \to H^{\pm} X)$ at fixed x_T

Rutherford Appleton Laboratory

Hadronization at the Amplitude Level Stan Brodsky SLAC & IPP May 30, 2008

Protons produced in AuAu collisions at RHIC do not exhibit clear scaling properties in the available p_T range. Shown are data for central (0 - 5%) and for peripheral (60 - 90%) collisions.

Rutherford Appleton Laboratory Hadronization at the Amplitude LevelStan Brodsky SLAC & IPP74May 30, 2008

 $\sqrt{s_{NN}} = 130$ and 200 GeV

Proton power changes with centrality !

Rutherford Appleton Laboratory Hadronization at the Amplitude LevelStan Brodsky SLAC & IPP:77May 30, 2008

Baryon can be made directly within hard subprocess

78

A. Sickles and SJB

Dimensional counting rules provide a simple rule-of-thumb guide for the power-law fall-off of the inclusive cross section in both p_T and $(1 - x_T)$ due to a given subprocess:

$$E\frac{d\sigma}{d^3p}(AB \to CX) \propto \frac{(1-x_T)^{2n_{spectator}-1}}{p_T^{2n_{active}-4}}$$

where n_{active} is the "twist", i.e., the number of elementary fields participating in the hard subprocess, and $n_{spectator}$ is the total number of constituents in A, B and C not participating in the hard-scattering subprocess. For example, consider $pp \rightarrow pX$. The leading-twist contribution from $qq \rightarrow qq$ has $n_{active} = 4$ and $n_{spectator} = 6$. The higher-twist subprocess $qq \rightarrow p\bar{q}$ has $n_{active} = 6$ and $n_{spectator} = 4$. This simplified model provides two distinct contributions to the inclusive cross section

$$\frac{d\sigma}{d^3p/E}(pp \to pX) = A \frac{(1-x_T)^{11}}{p_T^4} + B \frac{(1-x_T)^7}{p_T^8}$$

and $n = n(x_T)$ increases from 4 to 8 at large x_T .
$$Small color-singletColor TransparentMinimal same-side energy$$

Rutherford Appleton Laboratory

Hadronization at the Amplitude Level Stan Brodsky SLAC & IPP

80

Power-law exponent $n(x_T)$ for π^0 and h spectra in central and peripheral Au+Au collisions at $\sqrt{s_{NN}} = 130$ and 200 GeV

S. S. Adler, et al., PHENIX Collaboration, Phys. Rev. C 69, 034910 (2004) [nucl-ex/0308006].

Proton production dominated by color-transparent direct high n_{eff} subprocesses

Rutherford Appleton Laboratory Hadronization at the Amplitude LevelStan Brodsky SLAC & IPP81May 30, 2008

S. S. Adler *et al.* PHENIX Collaboration *Phys. Rev. Lett.* **91**, 172301 (2003). *Particle ratio changes with centrality!*

Rutherford Appleton Laboratory Hadronization at the Amplitude Level Stan Brodsky SLAC & IPP

Anne Sickles

Paul Sorensen

84

Rutherford Appleton Laboratory

Hadronization at the Amplitude Level Stan Brodsky SLAC & IPP

Lambda can be made directly within hard subprocess

Rutherford Appleton Laboratory Hadronization at the Amplitude Level Stan Brodsky SLAC & IPP

Evidence for Direct, Higher-Twist Subprocesses

- Anomalous power behavior at fixed x_T
- Protons more likely to come from direct subprocess than pions
- Protons less absorbed than pions in central nuclear collisions because of color transparency
- Predicts increasing proton to pion ratio in central collisions
- Exclusive-inclusive connection at $x_T = I$

Rutherford Appleton Laboratory

Hadronization at the Amplitude Level Stan Brodsky SLAC & IPP 86 May 30, 2008

- Renormalization scale is not arbitrary; multiple scales, unambiguous at given order
- Heavy quark distributions do not derive exclusively from DGLAP or gluon splitting -- component intrinsic to hadron wavefunction
- Initial and final-state interactions are not always power suppressed in a hard QCD reaction
- LFWFS are universal, but measured nuclear parton distributions are not universal -- antishadowing is flavor dependent
- Hadroproduction at large transverse momentum does not derive exclusively from 2 to 2 scattering subprocesses
- Hadronization at the Amplitude Level

Rutherford AppletonHadronization at the Amplitude LevelStan Brodsky SLAC & IPP:
May 30, 2008Laboratory87May 30, 2008