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1 Introduction
Gauge Gravity Correspondence and Light-Front QCD

e The AdS/CFT correspondence [Maldacena (1998)] between gravity on AdS space and conformal field
theories in physical spacetime has led to a semiclassical approximation for strongly-coupled QCD,

which provides physical insights into its non-perturbative dynamics

e Light-front (LF) quantization is the ideal framework to describe hadronic structure in terms of quarks
and gluons: simple vacuum structure allows unambiguous definition of the partonic content of a

hadron, exact formulae for form factors, physics of angular momentum of constituents ...

e Light-front holography provides a remarkable connection between the equations of motion in AdS and
the bound-state LF Hamiltonian equation in QCD [GdT and S. J. Brodsky, PRL 102, 081601 (2009)]

e Isomorphism of SO(4,2) group of conformal transformations with generators P*, M* K" D,
with the group of isometries of AdSs, a space of maximal symmetry, negative curvature and a four-dim
boundary: Minkowski space (Dim isometry group of AdSy11is  (d+ 1)(d +2)/2)
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e AdSs metric:

R2
ds® = ﬁ(?wdw“dwi —sz)
Lads -

LMinkowski

e Adistance L aq4g shrinks by a warp factor z/ R

as observed in Minkowski space (dz = 0):

ya
L\linkowski ™~ I Lags

e Since the AdS metric is invariant under a dilatation of all coordinates z# — Ax*, 2z — Az, the

variable z acts like a scaling variable in Minkowski space
e Short distances x, 2" — 0 map to UV conformal AdS5 boundary z — 0

e Large confinement dimensions xua:“ ~ 1/A%CD maps to large IR region of AdSs, 2 ~ 1/AQCD,

thus there is a maximum separation of quarks and a maximum value of 2

e Use the isometries of AdS to map the local interpolating operators at the UV boundary of AdS into the

modes propagating inside AdS
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2 Light Front Dynamics

e Different possibilities to parametrize space-time [Dirac (1949)]

e Parametrizations differ by the hypersurface on which the initial conditions are specified. Each evolve

with different “times” and has its own Hamiltonian, but should give the same physical results

e Instant form: hypersurface defined by ¢ = 0, the familiar one

e front form: hypersurface is tangent to the light cone at 7 = ¢ + z/c =0

T =29+ 23 light-front time
r” =20 — 23 longitudinal space variable
kt = kY 4+ k2  longitudinal momentum (kT > 0)

k= =k — k3 light-front energy

k-z=3(kte™ +k 2) -k -xy

On shell relation k% = m? leads to dispersion relation k~ = F
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The instant form The front form The point form
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3=z X3 = ct—z X3=¢ , x= tsinhw cosO
10 0 0 0 0} 100 0
. _[o-1 0 0 . _[o-1 00 o = o0 0
Sy = 00 -1 0 Suv = 0 0 -1 0 Euv=| 0 0 -*sinh’w 0
2 cinh2 L)
00 0 -1 10 0 0 0 0 0  —’sinh”w sin“6

CRST, QM, February 3, 2011 Page 7



e QCD Lagrangian

1 _ _
Lqcp = —@TI' (GWG/W) + uDDw“w + myy

e LF Momentum Generators P = (P™, P~ P ) in terms of dynamical fields 1), A |

1 —
P~ = §/d$_d2xL¢7+

(iVJ_)2 + m?
107

1) + interactions

Pt = /dx_dQXLﬂnyri@J%b

1 _
P, = i/dadeXway*iVMb

e LF Hamiltonian P~ generates LF time translations

[w(x)ap_} — 2&6—4_ (37)

and the generators P and P | are kinematical
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Light-Front Fock Representation

e Dirac field 7, expanded in terms of ladder operators on the initial surface

d +d2 2 2
Z/ ! qL qL tm > b;(Q)bx(q) + interactions
q

e Construct LF Lorentz invariant Hamiltonian equation for the relativistic bound state
P, P [yp(P)) = (P~ P* = P1) [(P)) = M*[4(P))
e State [¢)(P)) is expanded in multi-particle Fock states | n) of the free LF Hamiltonian

— Z¢n|’n>, In) = { |uud), |uudg), luudgq), ---}

with k2 = m?, k; = (k;r, k. k), for each constituent ¢ in state n

e Fock components ¢y, (z;, k1 ;, A?) independent of P and P; and depend only on relative partonic
coordinates: momentum fraction x; = k;L/P+, transverse momentum k | ; and spin )\f

zn:il?izl, Zn:kLZZO
1=1 1=1
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Semiclassical Approximation to QCD in the Light Front

[GAT and S. J. Brodsky, PRL 102, 081601 (2009)]
e Compute M? from hadronic matrix element  (1)(P')| P, PH|¢)(P)) = M?*{3p(P") |1 (P))

e Find

2 2 kQu + m% 2 . :
M= = Z/ [dwz} [d kli} Z [9n (x;, k1 5)|” + interactions
n 14

Lq

e LFWF 1), represents a bound state which is off the LF energy shell M? — M?

~ ) ki, +mg
i = (S)’ - 5 e

a

with k2 = m?2 for each constituent
e Invariant mass M?% key variable which controls the bound state: LFWF peaks at the minimum /\/l%

e Semiclassical approximation to QCD:

wn(k17k27”'7kn) _>¢n(\(kl+k2++kn)2)7 Mgy — 0

7

N~
2
M2
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e In terms of n—1 independent transverse impact coordinates b ;, 7 = 1,2,...,n—1,

n—1
M=% 11 /dxjd%u%(%bﬂ) 2.

n j=l1 14

—Vi +m?
( beE t Yn(x;, b1;) + interactions
q

e Relevant variable conjugate to invariant mass in the limit of zero quark masses

the x-weighted transverse impact coordinate of the spectator system (x active quark)

e For atwo-parton system (* = z(1 — z)b?%
(1-2)

e To first approximation LF dynamics depend only on the invariant variable (, and hadronic properties

are encoded in the hadronic mode ¢(() from

¢(¢)
v2m(¢

factoring angular , longitudinal X () and transverse mode ¢(()

P(z, () = eMPX ()
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e Ultra relativistic limit m, — 0 longitudinal modes X (x) decouple (L = L?)

M — /d(qﬁ*(g“)\/g (_j—@ . %d% N ?2) “@? T /d<¢*<<> U(¢) 6(C)

where the confining forces from the interaction terms are summed up in the effective potential U ()

e LF eigenvalue equation P, P*|¢) = M?|¢) is a LF wave equation for ¢

d>  1-—4L? 5
(~dm——qm + U )60 =M x
h g d con finement
kinetic energy of partons

e Effective light-front Schrodinger equation: relativistic, frame-independent and analytically tractable

e Eigenmodes ¢(C) determine the hadronic mass spectrum and represent the probability amplitude to

find n-massless partons at transverse impact separation ¢ within the hadron at equal light-front time

e Semiclassical approximation to light-front QCD does not account for particle creation and absorption

but can be implemented in LF Hamiltonian EOM by applying the L-S formalism or evolution equations
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3 Light-Front Holographic Mapping
Higher Spin Modes in AdS Space
e Description of higher spin modes in AdS space (Frondsal, Fradkin and Vasiliev)
e Action for spin-J field in AdS,1 in presence of dilaton background ¢(z) (2™ = (2, 2))

/

]. / /

2gMiMy L

— =g My M; )

g J(I)Ml---MJ(I)M{---M3+
where D is the covariant derivative which includes parallel transport
[Dn, Dg|®asynt, = R ng®ront, = — Ry Ne®asr
e Physical hadron has plane-wave and polarization indices along 3+ 1 physical coordinates

_iP-
Cp(z,2) o, =€ TR pyonss Popgen, = =Puipgez =0

with four-momentum Pu and invariant hadronic mass P,VLP'u — M2
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e Construct effective action in terms of spin-J modes ® ; with only physical degrees of freedom

H. G. Dosch, S. J. Brodsky, J. Erlich, and GdT (in progress)

e Introduce fields with tangent indices

J
+ _ My _Mo> My _(Z
(I)AlAg---AJ = eAl €A2 "'BAJ (I)MlMQ---MJ — <E (I)AlAg---AJ

e Find effective action

]_ / / / - -
S = 2 /ddx dz /g e <9NN L P TR ON @y oy ON R

A

2 1 wyi's &
—u°n L...nm J(I)Ml"'MJ(I)u/l--'/Lf]
upon p-rescaling

e Variation of the action gives AdS wave equation for spin-J/ mode ®; = ®,,,...,,,

Ld—1-2J e?(2) 1R 2
[ o) O (zd—Tw@z>+(7>

with @ 7(z) = (2/R)”?® ;(z) and all indices along 3+1

d;(z) = M2<I>J(z)
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Dual QCD Light-Front Wave Equation Op(z) < [Y(P))

e LF Holographic mapping found originally matching expressions of EM and gravitational form factors of
hadrons in AdS and LF QCD [Brodsky and GdT (2006, 2008)]

e Upon substitution z—¢ and ¢5(¢) ~ (7321?22 ® 5(¢) in AdS WE

Zd—l—QJ 690<Z) ,LLR 2
[ e (m@% (7)

find LFWE (d = 4)

D;(2) = M?*®;(2)

d?  1—4IL72
d¢? 4¢2

- " U(g)) 83(0) = M?65(C)

with
U(C) = 2¢"(2) + () +

2 4
and (uR)? = —(2 — J)? + L?

e AdS Breitenlohner-Freedman bound (;1R)? > —4 equivalent to LF QM stability condition L2 > 0

e Scaling dimension 7 of AdS mode (i)J is 7 = 2 + L in agreement with twist scaling dimension of a

two parton bound state in QCD
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Bosonic Modes and Meson Spectrum
e Positive dilaton background ¢ = k222 : U(z) = k*(? + 26*(L + 5 — 1)
e Normalized eigenfunctions (¢|@) = [d(¢ |¢(2)?| = 1
2n! 1202
L L L(,.22
0uiQ) =K g € )

e Eigenvalues

o Il
) 2 4 6 8 10

LFWFs ¢,, 1,(¢) in physical spacetime for dilaton exp(x%22): a) orbital modes and b) radial modes
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4rk2 for An = 1

4r2% for AL = 1
262 for AS =1
JPC
0-+ 1+- -+ 3+- 4-+
| | | | |
6 |- n=3 n=2 n=1 n=0 N

0 @2 | | | L
1 2 3 4
2-2011 9-2009
8796A5 8796A1 L

Regge trajectories for the m (x = 0.6 GeV) and the I =1 p-meson and I =0 w-meson families (x = 0.54 GeV)
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Fermionic Modes and Baryon Spectrum
[Hard wall model: GdT and S. J. Brodsky, PRL 94, 201601 (2005)]

From Nick Evans

e For baryons LFWE equivalent to system of coupled linear equations (v = L + 1)

d v+ 3
— - - jg 20h_ — K2 + 2irtpy = Mapy
g 1
d_C¢+ B Vz_ 2y — K2Cy — 2k = Mip_

with eigenfunctions

Q) ~ (FHeERLY (522
Yo (() ~ (e CRLEHL(2¢2)

and eigenvalues
M? =42 (n +v)

e large No: M? =4k*(Nc+n+L—-2) = M ~/NocAqgcp
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Same multiplicity of states for mesons and baryons!

4rk2 for An = 1
4k for AL = 1
2k2for AS =1
| | | | | |
sL @
n=3 n= n=1 n=0
M2
4
2
0 l l l l l l l l l l
0.2000 1 2 3 4 0 1 2 3 4
8796A3 L L

Regge trajectories for positive parity /N and A baryon families (x = 0.5 GeV)
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4 Light-Front Holographic Mapping of Current Matrix Elements
[S. J. Brodsky and GdT, PRL 96, 201601 (2006)], PRD 77, 056007 (2008)]

e EM transition matrix element in QCD: local coupling to pointlike constituents

(W(P")|J*p(P)) = (P + P)F(Q?)
where Q = P — P and J* = e, qv"q

e EM hadronic matrix element in AdS space from non-local coupling of external EM field propagating in
AdS with extended mode ®(z, 2)

4 w(z) g4 *
d*rdz /g e?" " A" (z,2)Pp/ (z,2) O ¢Pp(z, 2)
e Are the transition amplitudes related ?

e How to recover hard pointlike scattering at large () out of soft collision of extended objects?
[Polchinski and Strassler (2002)]

e Mapping of J T elements at fixed light-front time: ®p(z) < |¥(P))
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e Electromagnetic probe polarized along Minkowski coordinates, (Q? = —g¢* > 0)
Az, 2), = eue_iQ'xV(Q, z), A,=0
e Propagation of external current inside AdS space described by the ‘free’ AdS wave equation
2202 — 20, — 2*°Q*] V(Q,2) =0

e Solution V(Q,z) = zQK;(2Q)

e Substitute hadronic modes ®(z, z) in the AdS EM matrix element
Op(z,2) =e 2H(2), P(2)— 2", 2—0

e Find form factor in AdS as overlap of normalizable modes dual to the in and out hadrons ® p and P pr,

with the non-normalizable mode V' (@), z) dual to external source [Polchinski and Strassler (2002)].

1.2

T—1
FQ) = [ 5e0v(@2) #56) — ()

At large () important contribution to the integral from z ~ 1/Q) where ® ~ 27 and power-law

point-like scaling is recovered [Polchinski and Susskind (2001)]
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Electromagnetic Form-Factor

e Drell-Yan-West electromagnetic FF in impact space [Soper (1977)]

Z H /da:jd2b“ Zeq exp(qu Zxkbj_k> | ( :B],bL])\

n j=1

e Consider a two-quark " Fock state |ud) with e, = % and e5 = =

1
F.+(q%) = / dx / d*b | el bL1-2)
0

with normalization F. (¢=0) = 1

2
%g/w(il?,bL)|

e Integrating over angle

Fe(q°) = 2”/01%/@3@]0 (cm/ 1 w) ol <>\

where (2 = z(1 — z)b%
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e Compare with electromagnetic FF in AdS space

F@) =R [ 5V(Q2)9% ()

where V(Q, z) = zQK1(2Q)

e Use the integral representation

1 J—
V<Q,z)=/0deo (ccz 13;”)

1
F(Q2):R3/O dx/gjo <ZQ 1;) B2, (2)

e Compare with electromagnetic FF in LF QCD for arbitrary (). Expressions can be matched only if
LFWF is factorized

e Find

¢(¢)

x = M X (1
V(x, ¢, p) ( )\/W

e Find

—3/2
X(z) = z(l—2), ¢<<>=(—) e?I2D((), z—¢
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e “Free current’ V(Q, z) = zQ K1(2Q)) — infinite hadron radius (mauve)

e “Dressed current” non-perturbative sum of an infinite number of terms — finite radius (blue)

e Form factor in soft-wall model expressed as N — 1 product of poles along vector radial trajectory
[Brodsky and GdT (2008)] (M ,> — 4k2(n + 1/2))

2 2 2 -1
() () )|

F(QY) =

Fele)

—2.5‘ - ‘—2.0‘ - ‘—1.5‘ - ‘—1.0‘ - ‘—0.5‘ - ‘0.0 0.0‘ — ‘0.5‘ ‘ ‘ ‘ 1.0‘ ‘ — 1.5‘ — ‘2.0
Pion form factor (lowest mode) Proton form factor (lowest mode)
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Gravitational or Energy-Momentum Form-Factor

[S. J. Brodsky and GdT, PRD 78, 025032 (2008)]

e Gravitational form factor of composite hadrons in QCD: local coupling to pointlike constituents
/ v _ v Dl v 2
(P'|®)| P) = (P'P, + P,P") A(Q%)
where ) = P’ — P and
1—-

O = 57i(YuDy + 7 D) 4 — 8T (i — m) ¢ — Gr Gy + 18, G5, G

e Hadronic matrix element of energy-momentum tensor from perturbing the static AdS metric: non-local

coupling of external graviton field propagating in AdS with extended mode ®(x, z)
/ d*z dz\/q hom (a%};,amcp p 4 0" D%, 0P p)

e Are the transition amplitudes related ?

e Mapping of O elements at fixed LF time: Identical mapping ®p(z) < |[(P)) as EMFF
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5 Beyond the Lowest Order Approximation

Higher Fock states
[GdT and S. J Brodsky, arXiv:1010.1204 [hep-ph]]

e Only interaction in LF holographic semiclassical approx is the confinement potential: create Fock states

with extra quark-antiquark pairs, no dynamical gluons
e Explain the dominance of quark interchange in large angle elastic scattering

e Form factor in soft-wall model expressed as N — 1 product of poles along vector radial trajectory
[Brodsky and GdT (2008)] (M ,* — 4k*(n + 1/2))

9 2 2 -1
(+ &) ) (1 5]

e Higher Fock components in pion LFWF

F(Q*) =

|7T> — wqq/ﬂ|qq>7':2 + quqG/ﬁ|qqqq>T:4 + -

e Expansion of LFWF up to twist 4 (monopole + tripole)

k= 0.54 GeV,T, = 130, T,y = 400, T = 300 MeV, Pyggqg = 13%
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Higher Loop Effects
S. J. Brodsky, F.-G. Cao and GdT (in preparation)

e Pion distribution amplitude

dz— . ~ _ + (Q)
_ Yo i(2e—1)z7 /2 . Y5 ‘ >
x, = C 0 z QY(z)|m
ow.Q =[5 (ofp-21 2wl L
Q" dk?
- /0 Tom2 V(@ kL)
o 1 :
e Normalization [, dx ¢(x, o) = 2{/5
e Evolution of pion DA given by the ERBL equation.
3z, Q%) = x(1 - x) an(Q*)CH/? (22 — 1)
n=0,2,4,.-
e Meson transition form factor (T = 1 — x)
4 [t ¢(2,7Q) zQ’
2F 2 — _/ ? 1_ _
QFr(Q7) mzs ) de—— exp | —5 5
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Asymptotic form: ¢ (. 119) = V3 frx(1 — )

AdS/QCD form: ¢p*5 (z, pg) = %fﬁ z(l —x)

DA evolution Q% = 0.5, 1, 10, 100, 1000 GeV?

0.45 ¢
0.40
0.35 F
0.30 F
0.25 f
0.20 |
0.15 [ o
0.10 £
i 0.05 F
0.00 ———————= — 0.00 B i

1 10 100 1 10 100

Q? <
PRELIMINARY

Q*F,, (Q?)
Q%F,. (Q?)
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“Working with a front is a process that is unfamiliar to physicists.
But still | feel that the mathematical simplification that it introduces
is all-important. | consider the method to be promising and have recently
been making an extensive study of it. It offers new opportunities,
while the familiar instant form seems to be played out ”
P.A.M. Dirac (1977)
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