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1 Introduction

Gauge Gravity Correspondence and Light-Front QCD

• The AdS/CFT correspondence [Maldacena (1998)] between gravity on AdS space and conformal field

theories in physical spacetime has led to a semiclassical approximation for strongly-coupled QCD,

which provides physical insights into its non-perturbative dynamics

• Light-front (LF) quantization is the ideal framework to describe hadronic structure in terms of quarks

and gluons: simple vacuum structure allows unambiguous definition of the partonic content of a

hadron, exact formulae for form factors, physics of angular momentum of constituents ...

• Light-front holography provides a remarkable connection between the equations of motion in AdS and

the bound-state LF Hamiltonian equation in QCD [GdT and S. J. Brodsky, PRL 102, 081601 (2009)]

• Isomorphism of SO(4, 2) group of conformal transformations with generators Pµ,Mµν,Kµ, D,

with the group of isometries of AdS5, a space of maximal symmetry, negative curvature and a four-dim

boundary: Minkowski space (Dim isometry group of AdSd+1 is (d+ 1)(d+ 2)/2)
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eiWQCD[J=Φ0] = Zgrav[Φ] =
∫
DeiSeff [Φ]
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• AdS5 metric:

ds2︸︷︷︸
LAdS

=
R2

z2

(
ηµνdx

µdxν︸ ︷︷ ︸
LMinkowski

−dz2
)

• A distance LAdS shrinks by a warp factor z/R

as observed in Minkowski space (dz = 0):

LMinkowski ∼
z

R
LAdS

• Since the AdS metric is invariant under a dilatation of all coordinates xµ → λxµ, z → λz, the

variable z acts like a scaling variable in Minkowski space

• Short distances xµx
µ → 0 map to UV conformal AdS5 boundary z → 0

• Large confinement dimensions xµx
µ ∼ 1/Λ2

QCD maps to large IR region of AdS5, z ∼ 1/ΛQCD,

thus there is a maximum separation of quarks and a maximum value of z

• Use the isometries of AdS to map the local interpolating operators at the UV boundary of AdS into the

modes propagating inside AdS
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2 Light Front Dynamics

• Different possibilities to parametrize space-time [Dirac (1949)]

• Parametrizations differ by the hypersurface on which the initial conditions are specified. Each evolve

with different “times” and has its own Hamiltonian, but should give the same physical results

• Instant form: hypersurface defined by t = 0, the familiar one

• Front form: hypersurface is tangent to the light cone at τ = t+ z/c = 0

x+ = x0 + x3 light-front time

x− = x0 − x3 longitudinal space variable

k+ = k0 + k3 longitudinal momentum (k+ > 0)

k− = k0 − k3 light-front energy

k · x = 1
2 (k+x− + k−x+)− k⊥ · x⊥

On shell relation k2 = m2 leads to dispersion relation k− = k2
⊥+m2

k+
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• QCD Lagrangian

LQCD = − 1
4g2

Tr (GµνGµν) + iψDµγ
µψ +mψψ

• LF Momentum Generators P = (P+, P−,P⊥) in terms of dynamical fields ψ, A⊥

P− =
1
2

∫
dx−d2x⊥ψ γ+ (i∇⊥)2+m2

i∂+
ψ + interactions

P+ =
∫
dx−d2x⊥ ψ γ+i∂+ψ

P⊥ =
1
2

∫
dx−d2x⊥ ψ γ+i∇⊥ψ

• LF Hamiltonian P− generates LF time translations[
ψ(x), P−

]
= i

∂

∂x+
ψ(x)

and the generators P+ and P⊥ are kinematical
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Light-Front Fock Representation

• Dirac field ψ, expanded in terms of ladder operators on the initial surface

P− =
∑
λ

∫
dq+d2q⊥

(2π)3

(q2
⊥ +m2

q+

)
b†λ(q)bλ(q) + interactions

• Construct LF Lorentz invariant Hamiltonian equation for the relativistic bound state

PµP
µ|ψ(P )〉 =

(
P−P+−P2

⊥
)
|ψ(P )〉 =M2|ψ(P )〉

• State |ψ(P )〉 is expanded in multi-particle Fock states |n〉 of the free LF Hamiltonian

|ψ〉 =
∑
n

ψn|n〉, |n〉 = { |uud〉, |uudg〉, |uudqq〉, · · · }

with k2
i = m2

i , ki = (k+
i , k

−
i ,k⊥i), for each constituent i in state n

• Fock components ψn(xi,k⊥i, λzi ) independent of P+ and P⊥ and depend only on relative partonic

coordinates: momentum fraction xi = k+
i /P

+, transverse momentum k⊥i and spin λzi
n∑
i=1

xi = 1,
n∑
i=1

k⊥i = 0.

CRST, QM, February 3, 2011 Page 9



Semiclassical Approximation to QCD in the Light Front

[GdT and S. J. Brodsky, PRL 102, 081601 (2009)]

• ComputeM2 from hadronic matrix element 〈ψ(P ′)|PµPµ|ψ(P )〉=M2〈ψ(P ′)|ψ(P )〉

• Find

M2 =
∑
n

∫ [
dxi
][
d2k⊥i

]∑
`

(
k2
⊥` +m2

`

xq

)
|ψn(xi,k⊥i)|2 + interactions

• LFWF ψn represents a bound state which is off the LF energy shellM2−M2
n

M2
n =

( n∑
a=1

kµa

)2
=
∑
a

k2
⊥a +m2

a

xa

with k2
a = m2

a for each constituent

• Invariant mass M2
n key variable which controls the bound state: LFWF peaks at the minimumM2

n

• Semiclassical approximation to QCD:

ψn(k1, k2, . . . , kn)→ φn
(

(k1 + k2 + · · ·+ kn)2︸ ︷︷ ︸
M2

n

)
, mq → 0
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• In terms of n−1 independent transverse impact coordinates b⊥j , j = 1, 2, . . . , n−1,

M2 =
∑
n

n−1∏
j=1

∫
dxjd

2b⊥jψ∗n(xi,b⊥i)
∑
`

(
−∇2

b⊥`
+m2

`

xq

)
ψn(xi,b⊥i) + interactions

• Relevant variable conjugate to invariant mass in the limit of zero quark masses

ζ =
√

x

1− x

∣∣∣ n−1∑
j=1

xjb⊥j
∣∣∣

the x-weighted transverse impact coordinate of the spectator system (x active quark)

• For a two-parton system ζ2 = x(1− x)b2
⊥

• To first approximation LF dynamics depend only on the invariant variable ζ, and hadronic properties

are encoded in the hadronic mode φ(ζ) from

ψ(x, ζ, ϕ) = eiMϕX(x)
φ(ζ)√
2πζ

factoring angular ϕ, longitudinal X(x) and transverse mode φ(ζ)
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• Ultra relativistic limit mq → 0 longitudinal modes X(x) decouple (L = Lz)

M2 =
∫
dζ φ∗(ζ)

√
ζ

(
− d2

dζ2
− 1
ζ

d

dζ
+
L2

ζ2

)
φ(ζ)√
ζ

+
∫
dζ φ∗(ζ)U(ζ)φ(ζ)

where the confining forces from the interaction terms are summed up in the effective potential U(ζ)

• LF eigenvalue equation PµP
µ|φ〉 =M2|φ〉 is a LF wave equation for φ

(
− d2

dζ2
− 1− 4L2

4ζ2︸ ︷︷ ︸
kinetic energy of partons

+ U(ζ)︸ ︷︷ ︸
confinement

)
φ(ζ) =M2φ(ζ)

• Effective light-front Schrödinger equation: relativistic, frame-independent and analytically tractable

• Eigenmodes φ(ζ) determine the hadronic mass spectrum and represent the probability amplitude to

find n-massless partons at transverse impact separation ζ within the hadron at equal light-front time

• Semiclassical approximation to light-front QCD does not account for particle creation and absorption

but can be implemented in LF Hamiltonian EOM by applying the L-S formalism or evolution equations
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3 Light-Front Holographic Mapping

Higher Spin Modes in AdS Space

• Description of higher spin modes in AdS space (Frondsal, Fradkin and Vasiliev)

• Action for spin-J field in AdSd+1 in presence of dilaton background ϕ(z)
(
xM = (xµ, z)

)
S =

1
2

∫
ddx dz

√
g eϕ(z)

(
gNN

′
gM1M ′1 · · · gMJM

′
JDNΦM1···MJ

DN ′ΦM ′1···M ′J

−µ2gM1M ′1 · · · gMJM
′
JΦM1···MJ

ΦM ′1···M ′J + · · ·
)

where DM is the covariant derivative which includes parallel transport

[DN , DK ]ΦM1···MJ
= −RLM1NKΦL···MJ

− · · · −RLMJNK
ΦM1···L

• Physical hadron has plane-wave and polarization indices along 3+1 physical coordinates

ΦP (x, z)µ1···µJ = e−iP ·xΦ(z)µ1···µJ , Φzµ2···µJ = · · · = Φµ1µ2···z = 0

with four-momentum Pµ and invariant hadronic mass PµP
µ=M2
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• Construct effective action in terms of spin-J modes ΦJ with only physical degrees of freedom

H. G. Dosch, S. J. Brodsky, J. Erlich, and GdT (in progress)

• Introduce fields with tangent indices

Φ̂A1A2···AJ = eM1
A1
eM2
A2
· · · eMJ

AJ
ΦM1M2···MJ

=
( z
R

)J
ΦA1A2···AJ

• Find effective action

S =
1
2

∫
ddx dz

√
g eϕ(z)

(
gNN

′
ηµ1µ′1 · · · ηµJµ′J∂N Φ̂µ1···µJ∂N ′Φ̂µ′1···µ′J

−µ2ηµ1µ′1 · · · ηµJµ′J Φ̂µ1···µJ Φ̂µ′1···µ′J

)
upon µ-rescaling

• Variation of the action gives AdS wave equation for spin-J mode ΦJ = Φµ1···µJ[
−z

d−1−2J

eϕ(z)
∂z

(
eϕ(z)
zd−1−2J

∂z

)
+
(
µR

z

)2
]

ΦJ(z) =M2ΦJ(z)

with Φ̂J(z) = (z/R)JΦJ(z) and all indices along 3+1
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Dual QCD Light-Front Wave Equation ΦP (z) ⇔ |ψ(P )〉

• LF Holographic mapping found originally matching expressions of EM and gravitational form factors of

hadrons in AdS and LF QCD [Brodsky and GdT (2006, 2008)]

• Upon substitution z→ζ and φJ(ζ) ∼ ζ−3/2+Jeϕ(z)/2 ΦJ(ζ) in AdS WE[
−z

d−1−2J

eϕ(z)
∂z

(
eϕ(z)
zd−1−2J

∂z

)
+
(
µR

z

)2
]

ΦJ(z) =M2ΦJ(z)

find LFWE (d = 4) (
− d2

dζ2
− 1− 4L2

4ζ2
+ U(ζ)

)
φJ(ζ) = M2φJ(ζ)

with

U(ζ) =
1
2
ϕ′′(z) +

1
4
ϕ′(z)2 +

2J − 3
2z

ϕ′(z)

and (µR)2 = −(2− J)2 + L2

• AdS Breitenlohner-Freedman bound (µR)2 ≥ −4 equivalent to LF QM stability condition L2 ≥ 0

• Scaling dimension τ of AdS mode Φ̂J is τ = 2 + L in agreement with twist scaling dimension of a

two parton bound state in QCD
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Bosonic Modes and Meson Spectrum

• Positive dilaton background ϕ = κ2z2 : U(z) = κ4ζ2 + 2κ2(L+ S − 1)

• Normalized eigenfunctions 〈φ|φ〉 =
∫
dζ |φ(z)2| = 1

φnL(ζ) = κ1+L

√
2n!

(n+L)!
ζ1/2+Le−κ

2ζ2/2LLn(κ2ζ2)

• Eigenvalues

M2
n,L,S = 4κ2 (n+ L+ S/2)

ΦHΖL

Ζ

HaL

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

ΦHΖL

Ζ

HbL

0 2 4 6 8 10

-0.5

0.0

0.5

LFWFs φn,L(ζ) in physical spacetime for dilaton exp(κ2z2): a) orbital modes and b) radial modes
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4κ2 for ∆n = 1
4κ2 for ∆L = 1
2κ2 for ∆S = 1
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ω3(1670)
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Regge trajectories for the π (κ = 0.6 GeV) and the I=1 ρ-meson and I=0 ω-meson families (κ = 0.54 GeV)
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Fermionic Modes and Baryon Spectrum

[Hard wall model: GdT and S. J. Brodsky, PRL 94, 201601 (2005)]

From Nick Evans

• For baryons LFWE equivalent to system of coupled linear equations (ν = L+ 1)

− d

dζ
ψ− −

ν + 1
2

ζ
ψ− − κ2ζψ− + 2iκψ+ =Mψ+

d

dζ
ψ+ −

ν + 1
2

ζ
ψ+ − κ2ζψ+ − 2iκψ− =Mψ−

with eigenfunctions

ψ+(ζ) ∼ ζ
1
2

+νe−κ
2ζ2/2Lνn(κ2ζ2)

ψ−(ζ) ∼ ζ
3
2

+νe−κ
2ζ2/2Lν+1

n (κ2ζ2)

and eigenvalues

M2 = 4κ2(n+ ν)

• Large NC : M2 = 4κ2(NC + n+ L− 2) =⇒ M∼
√
NC ΛQCD
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Same multiplicity of states for mesons and baryons!
4κ2 for ∆n = 1
4κ2 for ∆L = 1
2κ2 for ∆S = 1

0
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N(1720) Δ(1600)
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Δ(2420)

Δ(1905)

Δ(1920)
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n=3 n=2 n=1 n=0

n=3 n=2 n=1 n=0

Regge trajectories for positive parity N and ∆ baryon families (κ = 0.5 GeV)
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4 Light-Front Holographic Mapping of Current Matrix Elements

[S. J. Brodsky and GdT, PRL 96, 201601 (2006)], PRD 77, 056007 (2008)]

• EM transition matrix element in QCD: local coupling to pointlike constituents

〈ψ(P ′)|Jµ|ψ(P )〉 = (P + P ′)F (Q2)

where Q = P ′ − P and Jµ = eqqγ
µq

• EM hadronic matrix element in AdS space from non-local coupling of external EM field propagating in

AdS with extended mode Φ(x, z)∫
d4x dz

√
g eϕ(z)A`(x, z)Φ∗P ′(x, z)

←→
∂ `ΦP (x, z)

• Are the transition amplitudes related ?

• How to recover hard pointlike scattering at large Q out of soft collision of extended objects?

[Polchinski and Strassler (2002)]

• Mapping of J+ elements at fixed light-front time: ΦP (z) ⇔ |ψ(P )〉
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• Electromagnetic probe polarized along Minkowski coordinates, (Q2 = −q2 > 0)

A(x, z)µ = εµe
−iQ·xV (Q, z), Az = 0

• Propagation of external current inside AdS space described by the ‘free’ AdS wave equation[
z2∂2

z − z ∂z − z2Q2
]
V (Q, z) = 0

• Solution V (Q, z) = zQK1(zQ)

• Substitute hadronic modes Φ(x, z) in the AdS EM matrix element

ΦP (x, z) = e−iP ·x Φ(z), Φ(z)→ zτ , z → 0

• Find form factor in AdS as overlap of normalizable modes dual to the in and out hadrons ΦP and ΦP ′ ,

with the non-normalizable mode V (Q, z) dual to external source [Polchinski and Strassler (2002)].

F (Q2) = R3

∫
dz

z3
eϕ(z)V (Q, z) Φ2

J(z)→
(

1
Q2

)τ−1

10 2 3 4 5

0.4

0

0.8

1.2

J(
Q

,z
), 

Φ
(z

)

z
5-2006
8721A16

At large Q important contribution to the integral from z ∼ 1/Q where Φ ∼ zτ and power-law

point-like scaling is recovered [Polchinski and Susskind (2001)]
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Electromagnetic Form-Factor

• Drell-Yan-West electromagnetic FF in impact space [Soper (1977)]

F (q2) =
∑
n

n−1∏
j=1

∫
dxjd

2b⊥j
∑
q

eq exp
(
iq⊥ ·

n−1∑
k=1

xkb⊥k
)
|ψn(xj ,b⊥j)|2

• Consider a two-quark π+ Fock state |ud〉 with eu = 2
3 and ed = 1

3

Fπ+(q2) =
∫ 1

0
dx

∫
d2b⊥eiq⊥·b⊥(1−x)

∣∣∣ψud/π(x,b⊥)
∣∣∣2

with normalization F+
π (q=0) = 1

• Integrating over angle

Fπ+(q2) = 2π
∫ 1

0

dx

x(1− x)

∫
ζdζJ0

(
ζq

√
1− x
x

)∣∣∣ψud/π(x, ζ)
∣∣∣2

where ζ2 = x(1− x)b2
⊥
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• Compare with electromagnetic FF in AdS space

F (Q2) = R3

∫
dz

z3
V (Q, z)Φ2

π+(z)

where V (Q, z) = zQK1(zQ)

• Use the integral representation

V (Q, z) =
∫ 1

0
dx J0

(
ζQ

√
1− x
x

)
• Find

F (Q2) = R3

∫ 1

0
dx

∫
dz

z3
J0

(
zQ

√
1− x
x

)
Φ2
π+(z)

• Compare with electromagnetic FF in LF QCD for arbitrary Q. Expressions can be matched only if

LFWF is factorized

ψ(x, ζ, ϕ) = eiMϕX(x)
φ(ζ)√
2πζ

• Find

X(x) =
√
x(1− x), φ(ζ) =

(
ζ

R

)−3/2

eϕ(z)/2 Φ(ζ), z → ζ
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• “Free current” V (Q, z) = zQK1(zQ)→ infinite hadron radius (mauve)

• “Dressed current” non-perturbative sum of an infinite number of terms→ finite radius (blue)

• Form factor in soft-wall model expressed as N−1 product of poles along vector radial trajectory
[Brodsky and GdT (2008)]

(
Mρ

2 → 4κ2(n+ 1/2)
)

F (Q2) =

[(
1 +

Q2

M2
ρ

)(
1 +

Q2

M2
ρ′

)
· · ·
(

1 +
Q2

M2
ρN−2

)]−1

-2.5 -2.0 -1.5 -1.0 -0.5 0.0

0.2

0.4

0.6

0.8

1.0
F
Π
Iq2M

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0
F1

pIQ2M

Pion form factor (lowest mode) Proton form factor (lowest mode)
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Gravitational or Energy-Momentum Form-Factor

[S. J. Brodsky and GdT, PRD 78, 025032 (2008)]

• Gravitational form factor of composite hadrons in QCD: local coupling to pointlike constituents〈
P ′
∣∣Θ ν

µ

∣∣P〉 =
(
P νP ′µ + PµP

′ν)A(Q2)

where Q = P ′ − P and

Θµν = 1
2qi(γµDν + γνDµ) q − gµνq (i /D −m) q −GaµλGaν

λ + 1
4gµνGaλσG

aλσ

• Hadronic matrix element of energy-momentum tensor from perturbing the static AdS metric: non-local

coupling of external graviton field propagating in AdS with extended mode Φ(x, z)∫
d4x dz

√
g h`m

(
∂`Φ∗P ′∂

mΦP + ∂mΦ∗P ′∂
`ΦP

)
• Are the transition amplitudes related ?

• Mapping of Θ++ elements at fixed LF time: Identical mapping ΦP (z) ⇔ |ψ(P )〉 as EM FF
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5 Beyond the Lowest Order Approximation

Higher Fock states

[GdT and S. J Brodsky, arXiv:1010.1204 [hep-ph]]

• Only interaction in LF holographic semiclassical approx is the confinement potential: create Fock states

with extra quark-antiquark pairs, no dynamical gluons

• Explain the dominance of quark interchange in large angle elastic scattering

• Form factor in soft-wall model expressed as N−1 product of poles along vector radial trajectory

[Brodsky and GdT (2008)]
(
Mρ

2 → 4κ2(n+ 1/2)
)

F (Q2) =

[(
1 +

Q2

M2
ρ

)(
1 +

Q2

M2
ρ′

)
· · ·
(

1 +
Q2

M2
ρN−2

)]−1

• Higher Fock components in pion LFWF

|π〉 = ψqq/π|qq〉τ=2 + ψqqqq/π|qqqq〉τ=4 + · · ·

• Expansion of LFWF up to twist 4 (monopole + tripole)

κ = 0.54 GeV,Γρ = 130, Γρ′ = 400, Γρ′′ = 300 MeV, Pqqqq = 13%
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Higher Loop Effects

S. J. Brodsky, F.-G. Cao and GdT (in preparation)

• Pion distribution amplitude

φ(x,Q) =
∫
dz−

2π
ei(2x−1)z−/2

〈
0
∣∣∣∣ψ(−z)γ

+γ5

2
√

2
Ωψ(z)

∣∣∣∣π〉(Q)

z+=z⊥=0

=
∫ Q2

0

dk2
⊥

16π2
ψ(x, k⊥)

• Normalization
∫ 1

0 dxφ(x, µ0) = fπ
2
√

3

• Evolution of pion DA given by the ERBL equation.

φ(x,Q2) = x(1− x)
∞∑

n=0,2,4,···
an(Q2)C3/2

n (2x− 1)

• Meson transition form factor (x = 1− x)

Q2FMγ(Q2) = cM
4√
3

∫ 1

0
dx
φ(x, xQ)

x

[
1− exp

(
− xQ

2

2κ2x

)]
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Asymptotic form: φasy(x, µ0) =
√

3fπx(1− x)

AdS/QCD form: φAdS(x, µ0) = 4√
3π
fπ
√
x(1− x)

DA evolution Q2 = 0.5, 1, 10, 100, 1000 GeV2
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“ Working with a front is a process that is unfamiliar to physicists.

But still I feel that the mathematical simplification that it introduces

is all-important. I consider the method to be promising and have recently

been making an extensive study of it. It offers new opportunities,

while the familiar instant form seems to be played out ”

P.A.M. Dirac (1977)
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