Deur, Korsch, et al: Effective Charge from Bjorken Sum Rule

San Carlos, Sonora October 10, 2008

Light-Front Holography and Novel QCD

57

Stan Brodsky SLAC & IPPP

Deur, Korsch, et al.

San Carlos, Sonora October 10, 2008

Light-Front Holography and Novel QCD

58

IR Conformal Window for QCD?

- Dyson-Schwinger Analysis: QCD gluon coupling has IR Fixed Point
- Evídence from Lattice Gauge Theory
- Define coupling from observable: indications of IR fixed point for QCD effective charges
- Confined gluons and quarks have maximum wavelength: Decoupling of QCD vacuum polarization at small Q² Serber-Uehling

 $\Pi(Q^2) \to \frac{\alpha}{15\pi} \frac{Q^2}{m^2} \qquad Q^2 << 4m^2 \qquad \dots$

Shrock, de Teramond, sjb

• Justifies application of AdS/CFT in strongcoupling conformal window

San Carlos, Sonora October 10, 2008

Light-Front Holography and Novel QCD

59

Stan Brodsky SLAC & IPPP

 ℓ^{-}

QED One-Loop Vacuum Polarization

San Carlos, Sonora October 10, 2008

Light-Front Holography and Novel QCD

Maximum wavelength of bound electron

Infrared divergence of free electron propagator removed because of atomic binding

San Carlos, Sonora **October 10, 2008**

Light-Front Holography and Novel QCD

6I

Lesson from QED and Lamb Shift:

maximum wavelength of bound quarks and gluons

gluon and quark propagators cutoff in IR because of color confinement

San Carlos, Sonora October 10, 2008

Light-Front Holography and Novel QCD

62

Lesson from QED and Lamb Shift: Consequences of Maximum Quark and Gluon Wavelength

- Infrared integrations regulated by confinement
- Infrared fixed point of QCD coupling $\alpha_s(Q^2) \mbox{ finite}, \beta \to 0 \mbox{ at small } Q^2$
- Bound state quark and gluon Dyson-Schwinger Equation
- Quark and Gluon Condensates exist within hadrons
 Shrock, sjb

San Carlos, Sonora October 10, 2008

Light-Front Holography and Novel QCD

63

Lesson from QED and Lamb Shift:

maximum wavelength of bound quarks and gluons

Use Dyson-Schwinger Equation for bound-state quark propagator: find confined condensate $< \overline{b} |\overline{q}q| \overline{b} > \text{not} < 0 |\overline{q}q| 0 >$

San Carlos, Sonora October 10, 2008

Light-Front Holography and Novel QCD

64

Quark and Gluon condensates reside within hadrons, not vacuum Shrock, sjb • Bound-State Dyson-Schwinger Equations

- LF vacuum trivial up to k⁺ =0 zero modes
- Analogous to finite size superconductor
- Usual picture for $m_{\pi} \rightarrow 0$
- Implications for cosmological constant -reduction by 45 orders of magnitude!

San Carlos, Sonora October 10, 2008 **Light-Front Holography and Novel QCD**

65

Determinations of the vacuum Gluon Condensate

$$< 0 \left| \frac{\alpha_s}{\pi} G^2 \right| 0 > [\text{GeV}^4]$$

 -0.005 ± 0.003 from τ decay.Davier et al. $+0.006 \pm 0.012$ from τ decay.Geshkenbein, Ioffe, Zyablyuk $+0.009 \pm 0.007$ from charmonium sum rulesIoffe, Zyablyuk

Consistent with zero vacuum condensate

San Carlos, Sonora October 10, 2008

Light-Front Holography and Novel QCD

66

- Polchinski & Strassler: AdS/CFT builds in conformal symmetry at short distances; counting rules for form factors and hard exclusive processes; non-perturbative derivation
- Goal: Use AdS/CFT to provide an approximate model of hadron structure with confinement at large distances, conformal behavior at short distances
- de Teramond, sjb: AdS/QCD Holographic Model: Initial "semiclassical" approximation to QCD. Predict light-quark hadron spectroscopy, form factors.
- Karch, Katz, Son, Stephanov: Soft-Wall Model --Linear Confinement
- Mapping of AdS amplitudes to 3+ 1 Light-Front equations, wavefunctions!
- Use AdS/CFT wavefunctions as expansion basis for diagonalizing H^{LF}_{QCD}; variational methods

San Carlos, SonoraLight-Front Holography and Novel QCDStan BrodskyOctober 10, 200867SLAC & IPPP

AdS/CFT

- Use mapping of conformal group SO(4,2) to AdS5
- Scale Transformations represented by wavefunction $\psi(z)$ in 5th dimension $x_{\mu}^2 \rightarrow \lambda^2 x_{\mu}^2$ $z \rightarrow \lambda z$
- Match solutions at small z to conformal dimension of hadron wavefunction at short distances ψ(z) ~ z^Δ at z → 0
- Hard wall model: Confinement at large distances and conformal symmetry in interior
- Truncated space simulates "bag" boundary conditions $0 < z < z_0$ $\psi(z_0) = 0$ $z_0 = \frac{1}{\Lambda_{QCD}}$

San Carlos, Sonora October 10, 2008

Light-Front Holography and Novel QCD

68

Bosonic Solutions: Hard Wall Model

- Conformal metric: $ds^2 = g_{\ell m} dx^\ell dx^m$. $x^\ell = (x^\mu, z), \ g_{\ell m} \to \left(R^2/z^2\right) \eta_{\ell m}$.
- Action for massive scalar modes on AdS_{d+1} :

$$S[\Phi] = \frac{1}{2} \int d^{d+1}x \sqrt{g} \, \frac{1}{2} \left[g^{\ell m} \partial_{\ell} \Phi \partial_{m} \Phi - \mu^{2} \Phi^{2} \right], \quad \sqrt{g} \to (R/z)^{d+1}.$$

• Equation of motion

$$\frac{1}{\sqrt{g}}\frac{\partial}{\partial x^{\ell}}\left(\sqrt{g}\ g^{\ell m}\frac{\partial}{\partial x^m}\Phi\right) + \mu^2\Phi = 0.$$

• Factor out dependence along x^{μ} -coordinates , $\Phi_P(x,z) = e^{-iP\cdot x} \Phi(z)$, $P_{\mu}P^{\mu} = \mathcal{M}^2$:

$$\left[z^2\partial_z^2 - (d-1)z\,\partial_z + z^2\mathcal{M}^2 - (\mu R)^2\right]\Phi(z) = 0.$$

• Solution: $\Phi(z) \to z^{\Delta}$ as $z \to 0$,

$$\Phi(z) = C z^{d/2} J_{\Delta - d/2}(z\mathcal{M}) \qquad \Delta = \frac{1}{2} \left(d + \sqrt{d^2 + 4\mu^2 R^2} \right).$$
$$\Delta = 2 + L \qquad d = 4 \qquad (\mu R)^2 = L^2 - 4$$

San Carlos, Sonora October 10, 2008

Light-Front Holography and Novel QCD

69

Let $\Phi(z) = z^{3/2}\phi(z)$

Ads Schrodinger Equation for bound state of two scalar constituents:

$$\Big[-\frac{d^2}{dz^2} - \frac{1 - 4L^2}{4z^2}\Big]\phi(z) = \mathcal{M}^2\phi(z)$$

L: orbital angular momentum

Derived from variation of Action in AdS5

Hard wall model: truncated space

$$\phi(\mathbf{z} = \mathbf{z}_0 = \frac{1}{\Lambda_c}) = 0.$$

San Carlos, Sonora October 10, 2008 **Light-Front Holography and Novel QCD**

Stan Brodsky SLAC & IPPP

70

- Physical AdS modes $\Phi_P(x, z) \sim e^{-iP \cdot x} \Phi(z)$ are plane waves along the Poincaré coordinates with four-momentum P^{μ} and hadronic invariant mass states $P_{\mu}P^{\mu} = \mathcal{M}^2$.
- For small- $z \Phi(z) \sim z^{\Delta}$. The scaling dimension Δ of a normalizable string mode, is the same dimension of the interpolating operator \mathcal{O} which creates a hadron out of the vacuum: $\langle P|\mathcal{O}|0\rangle \neq 0$.

Identify hadron by its interpolating operator at z -- > 0

San Carlos, Sonora October 10, 2008

Light-Front Holography and Novel QCD

7I

Match fall-off at small z to conformal twist-dimension_ at short distances twist.

• Pseudoscalar mesons: $\mathcal{O}_{2+L} = \overline{\psi} \gamma_5 D_{\{\ell_1} \dots D_{\ell_m\}} \psi$ ($\Phi_\mu = 0$ gauge). $\Delta = 2 + L$

- 4-*d* mass spectrum from boundary conditions on the normalizable string modes at $z = z_0$, $\Phi(x, z_o) = 0$, given by the zeros of Bessel functions $\beta_{\alpha,k}$: $\mathcal{M}_{\alpha,k} = \beta_{\alpha,k} \Lambda_{QCD}$
- Normalizable AdS modes $\Phi(z)$

S=0 Meson orbital and radial AdS modes for $\Lambda_{QCD}=0.32$ GeV.

San Carlos, Sonora October 10, 2008

Light-Front Holography and Novel QCD

Fig: Orbital and radial AdS modes in the hard wall model for Λ_{QCD} = 0.32 GeV .

Fig: Light meson and vector meson orbital spectrum $\Lambda_{QCD}=0.32~{
m GeV}$

San Carlos, Sonora October 10, 2008

Light-Front Holography and Novel QCD

73

• Karch, Katz, Son, Stephanov

• de Teramond, sjb

Ads Schrodinger Equation for bound state of two scalar constituents:

$$\left[-\frac{d^2}{dz^2} - \frac{1 - 4L^2}{4z^2} + U(z)\right]\phi(z) = \mathcal{M}^2\phi(z)$$

$$U(z) = \kappa^{4} z^{2} + 2\kappa^{2} (L + S - 1)$$

Derived from variation of Action Dílaton-Modífied AdS₅

San Carlos, Sonora October 10, 2008

Light-Front Holography and Novel QCD

74

Light meson orbital (a) and radial (b) spectrum for $\kappa = 0.6$ GeV.

San Carlos, Sonora October 10, 2008

Light-Front Holography and Novel QCD

75

Higher Spin Bosonic Modes SW

• Effective LF Schrödinger wave equation

$$-\frac{d^2}{dz^2} - \frac{1 - 4L^2}{4z^2} + \kappa^4 z^2 + 2\kappa^2 (L + S - 1) \bigg] \phi_S(z) = \mathcal{M}^2 \phi_S(z)$$
with eigenvalues $\mathcal{M}^2 - 2\kappa^2 (2n + 2L + S)$ Same slope in \mathcal{M} and L

Soft-wall model

• Compare with Nambu string result (rotating flux tube): $M_n^2(L) = 2\pi\sigma \left(n + L + 1/2\right)$.

Vector mesons orbital (a) and radial (b) spectrum for $\kappa = 0.54$ GeV.

 Glueballs in the bottom-up approach: (HW) Boschi-Filho, Braga and Carrion (2005); (SW) Colangelo, De Facio, Jugeau and Nicotri(2007).

San Carlos, Sonora	Light-Front Holography and Novel QCD	Stan Brodsky
October 10, 2008	76	SLAC & IPPP

AdS/QCD Soft Wall Model -- Reproduces Linear Regge Trajectories

Hadron Form Factors from AdS/CFT

Propagation of external perturbation suppressed inside AdS.

0.8

0.6

0.4

0.2

 $J(Q,z) = zQK_1(zQ)$

J(Q, z)

1

$$F(Q^2)_{I \to F} = \int \frac{dz}{z^3} \Phi_F(z) J(Q, z) \Phi_I(z)$$

3

 $\Phi(z)$

4

 \mathbf{Z}

5

High Q² from small z ~ 1/Q

de Teramond, sjb

Polchinski, Strassler

Consider a specific AdS mode $\Phi^{(n)}$ dual to an n partonic Fock state $|n\rangle$. At small z, Φ scales as $\Phi^{(n)} \sim z^{\Delta_n}$. Thus:

2

where $\tau = \Delta_n - \sigma_n$, $\sigma_n = \sum_{i=1}^n \sigma_i$. The twist is equal to the number of partons, $\tau = n$.

San Carlos, SonoraLight-Front Holography and Novel QCDStan BrodskyOctober 10, 200878SLAC & IPPP

Current Matrix Elements in AdS Space (HW)

• Hadronic matrix element for EM coupling with string mode $\Phi(x^{\ell})$, $x^{\ell} = (x^{\mu}, z)$

$$ig_5 \int d^4x \, dz \, \sqrt{g} \, A^\ell(x,z) \Phi^*_{P'}(x,z) \overleftrightarrow{\partial}_\ell \Phi_P(x,z).$$

• Electromagnetic probe polarized along Minkowski coordinates $\ (Q^2=-q^2>0)$

$$A(x,z)_{\mu} = \epsilon_{\mu} e^{-iQ \cdot x} J(Q,z), \quad A_z = 0.$$

Propagation of external current inside AdS space described by the AdS wave equation

$$\left[z^2\partial_z^2 - z\,\partial_z - z^2Q^2\right]J(Q,z) = 0,$$

subject to boundary conditions J(Q = 0, z) = J(Q, z = 0) = 1.

• Solution

$$J(Q,z) = zQK_1(zQ).$$

• Substitute hadronic modes $\Phi(x,z)$ in the AdS EM matrix element

$$\Phi_P(x,z) = e^{-iP \cdot x} \Phi(z), \quad \Phi(z) \to z^{\Delta}, \quad z \to 0.$$

San Carlos, Sonora October 10, 2008

Light-Front Holography and Novel QCD

79

Current Matrix Elements in AdS Space (SW)

sjb and GdT Grigoryan and Radyushkin

> Soft Wall Model

• Propagation of external current inside AdS space described by the AdS wave equation

$$\left[z^2\partial_z^2 - z\left(1 + 2\kappa^2 z^2\right)\partial_z - Q^2 z^2\right]J_{\kappa}(Q, z) = 0.$$

• Solution bulk-to-boundary propagator

$$J_{\kappa}(Q,z) = \Gamma\left(1 + \frac{Q^2}{4\kappa^2}\right) U\left(\frac{Q^2}{4\kappa^2}, 0, \kappa^2 z^2\right),$$

where U(a,b,c) is the confluent hypergeometric function

$$\Gamma(a)U(a,b,z) = \int_0^\infty e^{-zt} t^{a-1} (1+t)^{b-a-1} dt.$$

• Form factor in presence of the dilaton background $\varphi = \kappa^2 z^2$

$$F(Q^2) = R^3 \int \frac{dz}{z^3} e^{-\kappa^2 z^2} \Phi(z) J_{\kappa}(Q, z) \Phi(z).$$

 $\bullet~{\rm For}~{\rm large}~Q^2\gg 4\kappa^2$

$$J_{\kappa}(Q,z) \to zQK_1(zQ) = J(Q,z),$$

the external current decouples from the dilaton field.

San Carlos, Sonora October 10, 2008

Light-Front Holography and Novel QCD

80

Soft Wall: Harmonic Oscillator Confinement

Hard Wall: Truncated Space Confinement

One parameter - set by pion decay constant.

de Teramond, sjb See also: Radyushkin **Stan Brodsky SLAC & IPPP**

San Carlos, Sonora **October 10, 2008**

Light-Front Holography and Novel QCD

Spacelike pion form factor from AdS/CFT

Data Compilation from Baldini, Kloe and Volmer

SW: Harmonic Oscillator Confinement

HW: Truncated Space Confinement

One parameter - set by pion decay constant.

de Teramond, sjb

San Carlos, Sonora October 10, 2008 Light-Front Holography and Novel QCD

82

- Analytical continuation to time-like region $q^2
 ightarrow -q^2$ $M_
 ho = 2\kappa = 750~{
 m MeV}$
- Strongly coupled semiclassical gauge/gravity limit hadrons have zero widths (stable).

Space and time-like pion form factor for $\kappa = 0.375$ GeV in the SW model.

 Vector Mesons: Hong, Yoon and Strassler (2004); Grigoryan and Radyushkin (2007).
 San Carlos, Sonora Light-Front Holography and Novel QCD Stan Brodsky October 10, 2008 83

Note: Analytical Form of Hadronic Form Factor for Arbitrary Twist

• Form factor for a string mode with scaling dimension $au, \Phi_{ au}$ in the SW model

$$F(Q^2) = \Gamma(\tau) \frac{\Gamma\left(1 + \frac{Q^2}{4\kappa^2}\right)}{\Gamma\left(\tau + \frac{Q^2}{4\kappa^2}\right)}.$$

- For $\tau = N$, $\Gamma(N+z) = (N-1+z)(N-2+z)\dots(1+z)\Gamma(1+z)$.
- Form factor expressed as N-1 product of poles

$$F(Q^{2}) = \frac{1}{1 + \frac{Q^{2}}{4\kappa^{2}}}, \quad N = 2,$$

$$F(Q^{2}) = \frac{2}{\left(1 + \frac{Q^{2}}{4\kappa^{2}}\right)\left(2 + \frac{Q^{2}}{4\kappa^{2}}\right)}, \quad N = 3,$$

...

$$F(Q^{2}) = \frac{(N-1)!}{\left(1 + \frac{Q^{2}}{4\kappa^{2}}\right)\left(2 + \frac{Q^{2}}{4\kappa^{2}}\right)\cdots\left(N - 1 + \frac{Q^{2}}{4\kappa^{2}}\right)}, \quad N.$$

• For large Q^2 :

$$F(Q^2) \rightarrow (N-1)! \left[\frac{4\kappa^2}{Q^2}\right]^{(N-1)}$$

San Carlos, Sonora October 10, 2008 Light-Front Holography and Novel QCD 84

Constituent Counting Rules

$$\frac{d\sigma}{dt}(s,t) = \frac{F(\theta_{\rm Cm})}{s^{[n_{\rm tot}-2]}} \qquad s = E_{\rm Cm}^2$$

$$F_H(Q^2) \sim \left[\frac{1}{Q^2}\right]^{n_H - 1}$$

$$n_{tot} = n_A + n_B + n_C + n_D$$

Fixed t/s or $\cos \theta_{cm}$

Farrar & sjb; Matveev, Muradyan, Tavkhelidze

Conformal symmetry and PQCD predict leading-twist scaling behavior of fixed-CM angle exclusive amplitudes

Characterístic scale of QCD: 300 MeV

Many new J-PARC, GSI, J-Lab, Belle, Babar tests

San Carlos, Sonora October 10, 2008 Light-Front Holography and Novel QCD

85

• Phenomenological success of dimensional scaling laws for exclusive processes

$$d\sigma/dt \sim 1/s^{n-2}, \quad n = n_A + n_B + n_C + n_D,$$

implies QCD is a strongly coupled conformal theory at moderate but not asymptotic energies Farrar and sjb (1973); Matveev *et al.* (1973).

 Derivation of counting rules for gauge theories with mass gap dual to string theories in warped space (hard behavior instead of soft behavior characteristic of strings) Polchinski and Strassler (2001).

San Carlos, Sonora	Light-Front Holography and Novel QCD	Stan Brodsky
October 10, 2008	86	SLAC & IPPP

Conformal Invariance:

$$\frac{d\sigma}{dt}(\gamma p \to MB) = \frac{F(\theta_{cm})}{s^7}$$

San Carlos, Sonora October 10, 2008

Light-Front Holography and Novel QCD

87

San Carlos, Sonora October 10, 2008

Light-Front Holography and Novel QCD

88

Deuteron Photodisintegration

PQCD and AdS/CFT: $s^{n_{tot}-2}\frac{d\sigma}{dt}(A+B \to C+D) = F_{A+B\to C+D}(\theta_{CM})$ $s^{11}\frac{d\sigma}{dt}(\gamma d \to np) = F(\theta_{CM})$

J-Lab

 $n_{tot} - 2 =$ (1 + 6 + 3 + 3) - 2 = 11

Reflects conformal invariance

Light-Front Representation of Two-Body Meson Form Factor

Drell-Yan-West form factor

$$\vec{q}_{\perp}^2 = Q^2 = -q^2$$

$$F(q^2) = \sum_{q} e_q \int_0^1 dx \int \frac{d^2 k_\perp}{16\pi^3} \psi_{P'}^*(x, \vec{k}_\perp - x\vec{q}_\perp) \psi_P(x, \vec{k}_\perp).$$

• Fourrier transform to impact parameter space \vec{b}_{\perp}

$$\psi(x,\vec{k}_{\perp}) = \sqrt{4\pi} \int d^2 \vec{b}_{\perp} \ e^{i\vec{b}_{\perp}\cdot\vec{k}_{\perp}} \widetilde{\psi}(x,\vec{b}_{\perp})$$

• Find ($b=|ec{b}_{\perp}|$) :

$$F(q^2) = \int_0^1 dx \int d^2 \vec{b}_\perp e^{ix\vec{b}_\perp \cdot \vec{q}_\perp} |\tilde{\psi}(x,b)|^2 \qquad \text{Soper}$$
$$= 2\pi \int_0^1 dx \int_0^\infty b \, db \, J_0 \left(bqx\right) \, \left|\tilde{\psi}(x,b)\right|^2,$$

San Carlos, Sonora October 10, 2008

Light-Front Holography and Novel QCD

Holographic Mapping of AdS Modes to QCD LFWFs

• Integrate Soper formula over angles:

$$F(q^2) = 2\pi \int_0^1 dx \, \frac{(1-x)}{x} \int \zeta d\zeta J_0\left(\zeta q \sqrt{\frac{1-x}{x}}\right) \tilde{\rho}(x,\zeta),$$

with $\widetilde{\rho}(x,\zeta)$ QCD effective transverse charge density.

• Transversality variable

$$\zeta = \sqrt{\frac{x}{1-x}} \Big| \sum_{j=1}^{n-1} x_j \mathbf{b}_{\perp j} \Big|.$$

• Compare AdS and QCD expressions of FFs for arbitrary Q using identity:

$$\int_0^1 dx J_0\left(\zeta Q \sqrt{\frac{1-x}{x}}\right) = \zeta Q K_1(\zeta Q),$$

the solution for $J(Q,\zeta) = \zeta Q K_1(\zeta Q)$!

San Carlos, Sonora October 10, 2008

Light-Front Holography and Novel QCD

91

• Electromagnetic form-factor in AdS space:

$$F_{\pi^+}(Q^2) = R^3 \int \frac{dz}{z^3} J(Q^2, z) \, |\Phi_{\pi^+}(z)|^2 \, ,$$

where $J(Q^2, z) = zQK_1(zQ)$.

 $\bullet\,$ Use integral representation for $J(Q^2,z)$

$$J(Q^2, z) = \int_0^1 dx \, J_0\left(\zeta Q \sqrt{\frac{1-x}{x}}\right)$$

Write the AdS electromagnetic form-factor as

$$F_{\pi^+}(Q^2) = R^3 \int_0^1 dx \int \frac{dz}{z^3} J_0\left(zQ\sqrt{\frac{1-x}{x}}\right) |\Phi_{\pi^+}(z)|^2$$

• Compare with electromagnetic form-factor in light-front QCD for arbitrary Q

$$\left|\tilde{\psi}_{q\bar{q}/\pi}(x,\zeta)\right|^2 = \frac{R^3}{2\pi} x(1-x) \frac{\left|\Phi_{\pi}(\zeta)\right|^2}{\zeta^4}$$

with $\zeta = z, \ 0 \leq \zeta \leq \Lambda_{\rm QCD}$

San Carlos, Sonora October 10, 2008 Light-Front Holography and Novel QCD

Light-Front Holography: Unique mapping derived from equality of LF and AdS formula for current matrix elements

San Carlos, Sonora October 10, 2008

Light-Front Holography and Novel QCD

93

San Carlos, Sonora October 10, 2008 Light-Front Holography and Novel QCD

94

Stan Brodsky SLAC & IPPP

94

Derivation of the Light-Front Radial Schrodinger Equation directly from LF QCD

$$\mathcal{M}^2 = \int_0^1 dx \int \frac{d^2 \vec{k}_\perp}{16\pi^3} \frac{\vec{k}_\perp^2}{x(1-x)} \left| \psi(x, \vec{k}_\perp) \right|^2 + \text{interactions}$$
$$= \int_0^1 \frac{dx}{x(1-x)} \int d^2 \vec{b}_\perp \, \psi^*(x, \vec{b}_\perp) \left(-\vec{\nabla}_{\vec{b}_\perp \ell}^2 \right) \psi(x, \vec{b}_\perp) + \text{interactions.}$$

Change variables

ge
$$(\vec{\zeta},\varphi), \ \vec{\zeta} = \sqrt{x(1-x)}\vec{b}_{\perp}: \quad \nabla^2 = \frac{1}{\zeta}\frac{d}{d\zeta}\left(\zeta\frac{d}{d\zeta}\right) + \frac{1}{\zeta^2}\frac{\partial^2}{\partial\varphi^2}$$

$$\mathcal{M}^{2} = \int d\zeta \,\phi^{*}(\zeta) \sqrt{\zeta} \left(-\frac{d^{2}}{d\zeta^{2}} - \frac{1}{\zeta} \frac{d}{d\zeta} + \frac{L^{2}}{\zeta^{2}} \right) \frac{\phi(\zeta)}{\sqrt{\zeta}} + \int d\zeta \,\phi^{*}(\zeta) U(\zeta) \phi(\zeta)$$
$$= \int d\zeta \,\phi^{*}(\zeta) \left(-\frac{d^{2}}{d\zeta^{2}} - \frac{1 - 4L^{2}}{4\zeta^{2}} + U(\zeta) \right) \phi(\zeta)$$

San Carlos, Sonora October 10, 2008 **Light-Front Holography and Novel QCD**

Consider the AdS_5 metric:

$$ds^{2} = \frac{R^{2}}{z^{2}} (\eta_{\mu\nu} dx^{\mu} dx^{\nu} - dz^{2}).$$

 ds^2 invariant if $x^\mu \to \lambda x^\mu$, $z \to \lambda z$,

Maps scale transformations to scale changes of the the holographic coordinate z.

We define light-front coordinates $x^{\pm} = x^0 \pm x^3$.

Then $\eta^{\mu\nu} dx_{\mu} dx_{\nu} = dx_0^2 - dx_3^2 - dx_{\perp}^2 = dx^+ dx^- - dx_{\perp}^2$

and

$$ds^2 = -\frac{R^2}{z^2}(dx_{\perp}^2 + dz^2)$$
 for $x^+ = 0$.

•
$$ds^2$$
 is invariant if $dx_{\perp}{}^2 o \lambda^2 dx_{\perp}{}^2,$ and $z o \lambda z,$ at equal LF time.

• Maps scale transformations in transverse LF space to scale changes of the holographic coordinate z.

Light-Front/AdS5 Duality

- Holographic connection of AdS_5 to the light-front.
- The effective wave equation in the two-dim transverse LF plane has the Casimir representation L^2 corresponding to the SO(2) rotation group [The Casimir for $SO(N) \sim S^{N-1}$ is L(L + N 2)].

San Carlos, Sonora	Light-Front Holography and Novel QCD	Stan Brodsky
October 10, 2008	96	SLAC & IPPP

San Carlos, Sonora October 10, 2008

Light-Front Holography and Novel QCD

97

Prediction from AdS/CFT: Meson LFWF

$$\psi_M(x,k_\perp) = \frac{4\pi}{\kappa\sqrt{x(1-x)}} e^{-\frac{k_\perp^2}{2\kappa^2 x(1-x)}} \quad \phi_M(x,Q_0) \propto \sqrt{x(1-x)}$$

Connection of Confinement to TMDs

San Carlos, Sonora October 10, 2008 Light-Front Holography and Novel QCD

98

Hadron Distribution Amplitudes $\phi_H(x_i, Q)$ $\mu_L^2 < Q^2$

Fixed $\tau = t + z/c$

- Fundamental gauge invariant non-perturbative input to hard exclusive processes, heavy hadron decays. Defined for Mesons, Baryons
- Evolution Equations from PQCD, OPE, Conformal Invariance

 $\sum_{i} x_i = 1$

Lepage, sjb Efremov, Radyushkin. Sachrajda, Frishman Lepage, sjb Braun, Gardi

• Compute from valence light-front wavefunction in light-cone gauge $\phi_M(x,Q) = \int^Q d^2 \vec{k} \ \psi_{q\bar{q}}(x,\vec{k}_{\perp})$

San Carlos, Sonora October 10, 2008

Light-Front Holography and Novel QCD

99

San Carlos, Sonora October 10, 2008

Light-Front Holography and Novel QCD

100

C. Ji, A. Pang, D. Robertson, sjb Lepage, sjb Choi, Ji $F_{\pi}(Q^{2}) = \int_{0}^{1} dx \phi_{\pi}(x) \int_{0}^{1} dy \phi_{\pi}(y) \frac{16\pi C_{F} \alpha_{V}(Q_{V})}{(1-x)(1-y)Q^{2}}$ 0.60.50.4 $Q^2 F_{\pi}(Q^2)$ 0.3 (GeV^2) $\phi(x,Q_0) \propto \sqrt{x(1-x)}$ $\phi_{asymptotic} \propto x(1-x)$ 0.2Ŧ Ŧ 0.1Normalized to f_{π} 0 10 $\mathbf{2}$ 4 6 8 0 Q^2 (GeV²)

AdS/CFT:

Increases PQCD leading twist prediction for $F_{\pi}(Q^2)$ by factor 16/9

San Carlos, Sonora October 10, 2008

Light-Front Holography and Novel QCD

101

Second Moment of Píon Dístribution Amplitude

$$<\xi^2>=\int_{-1}^1 d\xi \ \xi^2\phi(\xi)$$

$$\xi = 1 - 2x$$

$$<\xi^2>_{\pi}=1/5=0.20$$
 $\phi_{asympt}\propto x(1-x)$
 $<\xi^2>_{\pi}=1/4=0.25$ $\phi_{AdS/QCD}\propto \sqrt{x(1-x)}$
Lattice (I) $<\xi^2>_{\pi}=0.28\pm0.03$ Donnellan et al.

Lattice (II)
$$\langle \xi^2 \rangle_{\pi} = 0.269 \pm 0.039$$

San Carlos, Sonora October 10, 2008 Light-Front Holography and Novel QCD 102 Braun et al.

Diffractive Dissociation of Pion into Quark Jets

E791 Ashery et al.

Measure Light-Front Wavefunction of Pion

Mínímal momentum transfer to nucleus Nucleus left Intact!

San Carlos, Sonora October 10, 2008

Light-Front Holography and Novel QCD

103

E791 FNAL Diffractive DiJet

Gunion, Frankfurt, Mueller, Strikman, sjb Frankfurt, Miller, Strikman

Two-gluon exchange measures the second derivative of the pion light-front wavefunction

San Carlos, Sonora October 10, 2008

Light-Front Holography and Novel QCD

Key Ingredients in E791 Experiment

Brodsky Mueller Frankfurt Miller Strikman

Small color-dípole moment píon not absorbed; interacts with <u>each</u> nucleon coherently <u>QCD COLOR Transparency</u>

San Carlos, Sonora October 10, 2008

Light-Front Holography and Novel QCD

Color Transparency

Bertsch, Gunion, Goldhaber, sjb A. H. Mueller, sjb

- Fundamental test of gauge theory in hadron physics
- Small color dipole moments interact weakly in nuclei
- Complete coherence at high energies
- Clear Demonstration of CT from Diffractive Di-Jets

San Carlos, Sonora October 10, 2008

Light-Front Holography and Novel QCD

TO6

- Fully coherent interactions between pion and nucleons.
- Emerging Di-Jets do not interact with nucleus.

San Carlos, Sonora October 10, 2008

Light-Front Holography and Novel QCD

Mueller, sjb; Bertsch et al; Frankfurt, Miller, Strikman

Measure pion LFWF in diffractive dijet production Confirmation of color transparency

A-Dependence results:	$\sigma \propto A^{lpha}$		
$\mathbf{k}_t \ \mathbf{range} \ \mathbf{(GeV/c)}$	<u>α</u>	α (CT)	
${f 1.25} < \ k_t < {f 1.5}$	1.64 + 0.06 - 0.12	1.25	
${f 1.5} < \ k_t < {f 2.0}$	1.52 ± 0.12	1.45	Ashery E791
${f 2.0} < \ k_t < {f 2.5}$	$\boldsymbol{1.55}\pm\boldsymbol{0.16}$	1.60	

 α (Incoh.) = 0.70 ± 0.1

Conventional Glauber Theory Ruled **Factor of 7** Out !

San Carlos, Sonora October 10, 2008

Light-Front Holography and Novel QCD 108

E791 Diffractive Di-Jet transverse momentum distribution

Two Components

High Transverse momentum dependence $k_T^{-6.5}$ consistent with PQCD, ERBL Evolution

Gaussian component similar to AdS/CFT HO LFWF

San Carlos, Sonora October 10, 2008

Light-Front Holography and Novel QCD

Narrowing of x distribution at higher jet transverse momentum

x distribution of diffractive dijets from the platinum target for $1.25 \le k_t \le 1.5 \text{ GeV}/c$ (left) and for $1.5 \le k_t \le 2.5 \text{ GeV}/c$ (right). The solid line is a fit to a combination of the asymptotic and CZ distribution amplitudes. The dashed line shows the contribution from the asymptotic function and the dotted line that of the CZ function.

> **Possibly two components:** Nonperturbative (AdS/CFT) and **Perturbative (ERBL) Evolution to asymptotic distribution**

San Carlos, Sonora **October 10, 2008**

Light-Front Holography and Novel QCD

IIO

Stan Brodsky SLAC & IPPP

 $\phi(x) \propto \sqrt{x(1-x)}$

Ashery E791

Possibly two components: Perturbative (ERBL) + Nonperturbative (AdS/CFT)

 $\phi(x) = A_{\text{pert}}(k_{\perp}^2)x(1-x) + B_{\text{nonpert}}(k_{\perp}^2)\sqrt{x(1-x)}$

Narrowing of x distribution at high jet transverse momentum

San Carlos, Sonora October 10, 2008

Light-Front Holography and Novel QCD

Gravitational Form Factor of Composite Hadrons

• Gravitational FF defined by matrix elements of the energy momentum tensor $\Theta^{++}(x)$

$$\left\langle P' \left| \Theta^{++}(0) \right| P \right\rangle = 2 \left(P^{+} \right)^{2} A(Q^{2})$$

• $\Theta^{\mu\nu}$ is computed for each constituent in the hadron from the QCD Lagrangian

$$\mathcal{L}_{\text{QCD}} = \overline{\psi} \left(i \gamma^{\mu} D_{\mu} - m \right) \psi - \frac{1}{4} G^{a}_{\mu\nu} G^{a\,\mu\nu}$$

• Symmetric and gauge invariant $\Theta^{\mu\nu}$ from variation of $S_{\rm QCD} = \int d^4x \sqrt{g} \mathcal{L}_{\rm QCD}$ with respect to four-dim Minkowski metric $g_{\mu\nu}$, $\Theta^{\mu\nu}(x) = -\frac{2}{\sqrt{g}} \frac{\delta S_{\rm QCD}}{\delta g_{\mu\nu}(x)}$:

$$\Theta^{\mu\nu} = \frac{1}{2}\overline{\psi}i(\gamma^{\mu}D^{\nu} + \gamma^{\nu}D^{\mu})\psi - g^{\mu\nu}\overline{\psi}(iD - m)\psi - G^{a\,\mu\lambda}G^{a\,\nu}{}_{\lambda} + \frac{1}{4}g^{\mu\nu}G^{a\,\mu\nu}_{\mu\nu}G^{a\,\mu\nu}$$

• Quark contribution in light front gauge ($A^+ = 0, g^{++} = 0$)

$$\Theta^{++}(x) = \frac{i}{2} \sum_{f} \overline{\psi}^{f}(x) \gamma^{+} \overleftrightarrow{\partial}^{+} \psi^{f}(x)$$

San Carlos, Sonora October 10, 2008

Light-Front Holography and Novel QCD