# Light-Front Quantization Approach to the Gauge/Gravity Correspondence and the Bound State Structure of Hadrons in QCD

Guy F. de Téramond

Universidad de Costa Rica

Laboratoire Univers et Particules de Montpellier Université Montpellier 2 January 26, 2011





#### 1 Introduction

Gauge/Gravity Correspondence and Light-Front QCD

2 Light Front Dynamics

Light-Front Fock Representation

Semiclassical Approximation to QCD in the Light Front

### 3 Light-Front Holographic Mapping

Higher Spin Modes in AdS Space

Dual QCD Light-Front Wave Equation

AdS Bosonic Modes and Meson Spectrum

AdS Fermionic Modes and Baryon Spectrum

4 Light-Front Holographic Mapping of Current Matrix Elements

**Electromagnetic Form Factors** 

Gravitational or Energy-Momentum Form Factor

# **1** Introduction

### Gauge Gravity Correspondence and Light-Front QCD

- The AdS/CFT correspondence [Maldacena (1998)] between gravity on AdS space and conformal field theories in physical spacetime has led to a semiclassical approximation for strongly-coupled QCD, which provides physical insights on non-perturbative QCD dynamics
- Light-front (LF) quantization is the ideal framework to describe hadronic structure in terms of quarks and gluons: simple vacuum structure allows unambiguous definition of the partonic content of a hadron, exact formulae for form factors, physics of angular momentum of constituents ...
- Light-front holography provides a remarkable connection between the equations of motion in AdS and the bound-state LF Hamiltonian equation in QCD [GdT and S. J. Brodsky, PRL **102**, 081601 (2009)]
- Isomorphism of SO(4,2) group of conformal transformations with generators P<sup>μ</sup>, M<sup>μν</sup>, K<sup>μ</sup>, D, with the group of isometries of AdS<sub>5</sub>, a space of maximal symmetry, negative curvature and a four-dim boundary: Minkowski space

Isometry group: most general group of transformations which leave invariant the distance between two points. Ej:  $S^N \sim O(N+1)$  Dim: N(N+1)/2Dim isometry group of  $AdS_{d+1}$  is (d+1)(d+2)/2





• AdS<sub>5</sub> metric:

$$\underbrace{ds^2}_{L_{\rm AdS}} = \frac{R^2}{z^2} \Big( \underbrace{\eta_{\mu\nu} dx^{\mu} dx^{\nu}}_{L_{\rm Minkowski}} - dz^2 \Big)$$

• A distance  $L_{AdS}$  shrinks by a warp factor z/Ras observed in Minkowski space (dz = 0):

$$L_{\rm Minkowski} \sim \frac{z}{R} L_{\rm AdS}$$



- Since the AdS metric is invariant under a dilatation of all coordinates  $x^{\mu} \rightarrow \lambda x^{\mu}$ ,  $z \rightarrow \lambda z$ , the variable z acts like a scaling variable in Minkowski space
- Short distances  $x_{\mu}x^{\mu} \rightarrow 0$  maps to UV conformal AdS $_5$  boundary  $z \rightarrow 0$
- Large confinement dimensions  $x_{\mu}x^{\mu} \sim 1/\Lambda_{\rm QCD}^2$  maps to large IR region of AdS<sub>5</sub>,  $z \sim 1/\Lambda_{\rm QCD}$ , thus there is a maximum separation of quarks and a maximum value of z
- Use the isometries of AdS to map the local interpolating operators at the UV boundary of AdS into the modes propagating inside AdS

## 2 Light Front Dynamics

- Different possibilities to parametrize space-time [Dirac (1949)]
- Parametrizations differ by the hypersurface on which the initial conditions are specified. Each evolve with different "times" and has its own Hamiltonian, but should give the same physical results
- Instant form: hypersurface defined by t = 0, the familiar one
- Front form: hypersurface is tangent to the light cone at  $\tau = t + z/c = 0$

$$\begin{array}{ll} x^+ = x^0 + x^3 & \mbox{ light-front time} \\ x^- = x^0 - x^3 & \mbox{ longitudinal space variable} \\ k^+ = k^0 + k^3 & \mbox{ longitudinal momentum } & (k^+ > 0) \\ k^- = k^0 - k^3 & \mbox{ light-front energy} \end{array}$$

$$k \cdot x = \frac{1}{2} \left( k^+ x^- + k^- x^+ \right) - \mathbf{k}_\perp \cdot \mathbf{x}_\perp$$

On shell relation  $k^2 = m^2$  leads to dispersion relation  $k^- = \frac{\mathbf{k}_{\perp}^2 + m^2}{k^+}$ 







• QCD Lagrangian

$$\mathcal{L}_{\text{QCD}} = -\frac{1}{4g^2} \text{Tr} \left( G^{\mu\nu} G_{\mu\nu} \right) + i\overline{\psi} D_{\mu} \gamma^{\mu} \psi + m\overline{\psi} \psi$$

• LF Momentum Generators  $P=(P^+,P^-,{f P}_\perp)$  in terms of dynamical fields  $\psi$ ,  ${f A}_\perp$ 

$$P^{-} = \frac{1}{2} \int dx^{-} d^{2} \mathbf{x}_{\perp} \overline{\psi} \gamma^{+} \frac{(i\nabla_{\perp})^{2} + m^{2}}{i\partial^{+}} \psi + \text{interactions}$$
$$P^{+} = \int dx^{-} d^{2} \mathbf{x}_{\perp} \overline{\psi} \gamma^{+} i\partial^{+} \psi$$
$$\mathbf{P}_{\perp} = \frac{1}{2} \int dx^{-} d^{2} \mathbf{x}_{\perp} \overline{\psi} \gamma^{+} i\nabla_{\perp} \psi$$

• LF Hamiltonian  $P^-$  generates LF time translations

$$\left[\psi(x), P^{-}\right] = i \frac{\partial}{\partial x^{+}} \psi(x)$$

and the generators  $P^+$  and  $\mathbf{P}_\perp$  are kinematical

### **Light-Front Fock Representation**



• Dirac field  $\psi$ , expanded in terms of ladder operators on the initial surface

$$P^{-} = \sum_{\lambda} \int \frac{dq^{+}d^{2}\mathbf{q}_{\perp}}{(2\pi)^{3}} \left(\frac{\mathbf{q}_{\perp}^{2} + m^{2}}{q^{+}}\right) b_{\lambda}^{\dagger}(q) b_{\lambda}(q) + \text{interactions}$$

• Construct LF Lorentz invariant Hamiltonian equation for the relativistic bound state

$$P_{\mu}P^{\mu}|\psi(P)\rangle = \left(P^{-}P^{+} - \mathbf{P}_{\perp}^{2}\right)|\psi(P)\rangle = \mathcal{M}^{2}|\psi(P)\rangle$$

• State  $|\psi(P)\rangle$  is expanded in multi-particle Fock states  $|n\rangle$  of the free LF Hamiltonian

$$|\psi\rangle = \sum_{n} \psi_n |n\rangle, \qquad |n\rangle = \{ |uud\rangle, |uudg\rangle, |uud\overline{q}q\rangle, \dots \}$$
  
with  $k_i^2 = m_i^2, \ k_i = (k_i^+, k_i^-, \mathbf{k}_{\perp i})$ , for each constituent  $i$  in state  $n$ 

• Fock components  $\psi_n(x_i, \mathbf{k}_{\perp i}, \lambda_i^z)$  independent of  $P^+$  and  $\mathbf{P}_{\perp}$  and depend only on relative partonic coordinates: momentum fraction  $x_i = k_i^+/P^+$ , transverse momentum  $\mathbf{k}_{\perp i}$  and spin  $\lambda_i^z$ 

$$\sum_{i=1}^{n} x_i = 1, \quad \sum_{i=1}^{n} \mathbf{k}_{\perp i} = 0.$$

### Semiclassical Approximation to QCD in the Light Front

[GdT and S. J. Brodsky, PRL 102, 081601 (2009)]

- Compute  $\mathcal{M}^2$  from hadronic matrix element  $\langle \psi(P')|P_{\mu}P^{\mu}|\psi(P)\rangle = \mathcal{M}^2\langle \psi(P')|\psi(P)\rangle$
- Find

$$\mathcal{M}^2 = \sum_n \int \left[ dx_i \right] \left[ d^2 \mathbf{k}_{\perp i} \right] \sum_{\ell} \left( \frac{\mathbf{k}_{\perp \ell}^2 + m_{\ell}^2}{x_q} \right) \left| \psi_n(x_i, \mathbf{k}_{\perp i}) \right|^2 + \text{interactions}$$

• LFWF  $\psi_n$  represents a bound state which is off the LF energy shell  $\mathcal{M}^2 - \mathcal{M}_n^2$ 

$$\mathcal{M}_n^2 = \left(\sum_{a=1}^n k_a^\mu\right)^2 = \sum_a \frac{\mathbf{k}_{\perp a}^2 + m_a^2}{x_a}$$

with  $k_a^2=m_a^2$  for each constituent

- Invariant mass  $M_n^2$  key variable which controls the bound state: LFWF peaks at the minimum  $\mathcal{M}_n^2$
- Semiclassical approximation to QCD:

$$\psi_n(k_1, k_2, \dots, k_n) \to \phi_n\left(\underbrace{(k_1 + k_2 + \dots + k_n)^2}_{\mathcal{M}_n^2}\right), \quad m_q \to 0$$

• In terms of n-1 independent transverse impact coordinates  $\mathbf{b}_{\perp j}$ ,  $j=1,2,\ldots,n-1$ ,

$$\mathcal{M}^2 = \sum_{n} \prod_{j=1}^{n-1} \int dx_j d^2 \mathbf{b}_{\perp j} \psi_n^*(x_i, \mathbf{b}_{\perp i}) \sum_{\ell} \left( \frac{-\nabla_{\mathbf{b}_{\perp \ell}}^2 + m_{\ell}^2}{x_q} \right) \psi_n(x_i, \mathbf{b}_{\perp i}) + \text{interactions}$$

• Relevant variable conjugate to invariant mass in the limit of zero quark masses

$$\zeta = \sqrt{\frac{x}{1-x}} \left| \sum_{j=1}^{n-1} x_j \mathbf{b}_{\perp j} \right|$$

the x-weighted transverse impact coordinate of the spectator system (x active quark)

• For a two-parton system  $\zeta^2 = x(1-x) {\bf b}_{\perp}^2$ 



• To first approximation LF dynamics depend only on the invariant variable  $\zeta$ , and hadronic properties are encoded in the hadronic mode  $\phi(\zeta)$  from

$$\psi(x,\zeta,\varphi) = e^{iM\varphi}X(x)\frac{\phi(\zeta)}{\sqrt{2\pi\zeta}}$$

factoring angular arphi, longitudinal X(x) and transverse mode  $\phi(\zeta)$ 

• Ultra relativistic limit  $m_q \rightarrow 0$  longitudinal modes X(x) decouple ( $L = L^z$ )

$$\mathcal{M}^2 = \int d\zeta \,\phi^*(\zeta) \sqrt{\zeta} \left( -\frac{d^2}{d\zeta^2} - \frac{1}{\zeta} \frac{d}{d\zeta} + \frac{L^2}{\zeta^2} \right) \frac{\phi(\zeta)}{\sqrt{\zeta}} + \int d\zeta \,\phi^*(\zeta) \,U(\zeta) \,\phi(\zeta)$$

where the confining forces from the interaction terms is summed up in the effective potential  $U(\zeta)$ 

• LF eigenvalue equation  $P_{\mu}P^{\mu}|\phi
angle=\mathcal{M}^{2}|\phi
angle$  is a LF wave equation for  $\phi$ 



- Effective light-front Schrödinger equation: relativistic, frame-independent and analytically tractable
- Eigenmodes  $\phi(\zeta)$  determine the hadronic mass spectrum and represent the probability amplitude to find *n*-massless partons at transverse impact separation  $\zeta$  within the hadron at equal light-front time
- Semiclassical approximation to light-front QCD does not account for particle creation and absorption but can be implemented in the LF Hamiltonian EOM or by applying the L-S formalism

# 3 Light-Front Holographic Mapping

### **Higher Spin Modes in AdS Space**

- Description of higher spin modes in AdS space (Frondsal, Fradkin and Vasiliev)
- Action for spin-J field in AdS $_{d+1}$  in presence of dilaton background  $\varphi(z) \quad (x^M = (x^\mu, z))$

$$S = \frac{1}{2} \int d^d x \, dz \, \sqrt{g} \, e^{\varphi(z)} \left( g^{NN'} g^{M_1 M_1'} \cdots g^{M_J M_J'} D_N \Phi_{M_1 \cdots M_J} D_{N'} \Phi_{M_1' \cdots M_J'} \right)$$
$$-\mu^2 g^{M_1 M_1'} \cdots g^{M_J M_J'} \Phi_{M_1 \cdots M_J} \Phi_{M_1' \cdots M_J'} + \cdots \right)$$

where  $D_M$  is the covariant derivative which includes parallel transport

$$[D_N, D_K]\Phi_{M_1\cdots M_J} = -R^L_{M_1NK}\Phi_{L\cdots M_J} - \cdots - R^L_{M_JNK}\Phi_{M_1\cdots L}$$

• Physical hadron has plane-wave and polarization indices along 3+1 physical coordinates

$$\Phi_P(x,z)_{\mu_1\cdots\mu_J} = e^{-iP\cdot x} \Phi(z)_{\mu_1\cdots\mu_J}, \quad \Phi_{z\mu_2\cdots\mu_J} = \cdots = \Phi_{\mu_1\mu_2\cdots z} = 0$$

with four-momentum  $P_{\mu}$  and invariant hadronic mass  $P_{\mu}P^{\mu}\!=\!M^2$ 

• Construct effective action in terms of spin-J modes  $\Phi_J$  with only physical degrees of freedom

• Lagrangian for scalar field in  $AdS_{d+1}$ 

$$S = \int d^d x \, dz \, \sqrt{g} \, e^{\varphi(z)} \left( g^{MN} \partial_M \Phi^* \partial_N \Phi - \mu^2 \Phi^* \Phi \right)$$

• Factor out plane waves along 3+1:  $\Phi_P(x^\mu, z) = e^{-iP\cdot x} \Phi(z)$ 

$$\left[-\frac{z^{d-1}}{e^{\varphi(z)}}\partial_z\left(\frac{e^{\varphi}(z)}{z^{d-1}}\partial_z\right) + \left(\frac{\mu R}{z}\right)^2\right]\Phi(z) = \mathcal{M}^2\Phi(z)$$

where  $P_{\mu}P^{\mu}=\mathcal{M}^2$  invariant mass of physical hadron with four-momentum  $P_{\mu}$ 

- Spin-J mode  $\Phi_{\mu_1\cdots\mu_J}$  with all indices along 3+1 and shifted dimensions  $\Phi_J(z) \sim z^{-J} \Phi(z)$
- Find AdS wave equation

$$\left[-\frac{z^{d-1-2J}}{e^{\varphi(z)}}\partial_z\left(\frac{e^{\varphi(z)}}{z^{d-1-2J}}\partial_z\right) + \left(\frac{\mu R}{z}\right)^2\right]\Phi_J(z) = \mathcal{M}^2\Phi_J(z)$$

### **Dual QCD Light-Front Wave Equation**

$$\Phi_P(z) \Leftrightarrow |\psi(P)\rangle$$

- LF Holographic mapping found originally matching expressions of EM and gravitational form factors of hadrons in AdS and LF QCD [Brodsky and GdT (2006, 2008)]
- Upon substitution  $z \to \zeta$  and  $\phi_J(\zeta) \sim \zeta^{-3/2+J} e^{\varphi(z)/2} \Phi_J(\zeta)$  in AdS WE

$$\left[-\frac{z^{d-1-2J}}{e^{\varphi(z)}}\partial_z\left(\frac{e^{\varphi}(z)}{z^{d-1-2J}}\partial_z\right) + \left(\frac{\mu R}{z}\right)^2\right]\Phi_J(z) = \mathcal{M}^2\Phi_J(z)$$

find LFWE (d = 4)

$$\left(-\frac{d^2}{d\zeta^2} - \frac{1 - 4L^2}{4\zeta^2} + U(\zeta)\right)\phi_J(\zeta) = M^2\phi_J(\zeta)$$

with

$$U(\zeta) = \frac{1}{2}\varphi''(z) + \frac{1}{4}\varphi'(z)^2 + \frac{2J-3}{2z}\varphi'(z)$$

and  $(\mu R)^2 = -(2-J)^2 + L^2$ 

- AdS Breitenlohner-Freedman bound  $(\mu R)^2 \geq -4$  equivalent to LF QM stability condition  $L^2 \geq 0$
- Scaling dimension  $\tau$  of AdS mode  $\Phi_J$  is  $\tau = 2 + L$  in agreement with twist scaling dimension of a two parton bound state in QCD

#### **Bosonic Modes and Meson Spectrum**

- Positive dilaton background  $\ \varphi = \kappa^2 z^2$  :  $U(z) = \kappa^4 \zeta^2 + 2\kappa^2 (L+S-1)$
- $\bullet$  Normalized eigenfunctions  $\ \langle \phi | \phi \rangle = \int \! d\zeta \, |\phi(z)^2| = 1$

$$\phi_{nL}(\zeta) = \kappa^{1+L} \sqrt{\frac{2n!}{(n+L)!}} \zeta^{1/2+L} e^{-\kappa^2 \zeta^2/2} L_n^L(\kappa^2 \zeta^2)$$

• Eigenvalues

$$\mathcal{M}_{n,L,S}^2 = 4\kappa^2 \left(n + L + S/2\right)$$



LFWFs  $\phi_{n,L}(\zeta)$  in physical spacetime for dilaton  $\exp(\kappa^2 z^2)$ : a) orbital modes and b) radial modes





Regge trajectories for the  $\pi$  ( $\kappa = 0.6$  GeV) and the  $I = 1 \rho$ -meson and  $I = 0 \omega$ -meson families ( $\kappa = 0.54$  GeV)

### Fermionic Modes and Baryon Spectrum

[GdT and S. J. Brodsky, PRL 94, 201601 (2005)]



From Nick Evans

• For baryons LFWE equivalent to system of coupled linear equations  $(\nu = L + 1)$ 

$$-\frac{d}{d\zeta}\psi_{-} - \frac{\nu + \frac{1}{2}}{\zeta}\psi_{-} - \kappa^{2}\zeta\psi_{-} + 2i\kappa\psi_{+} = \mathcal{M}\psi_{+}$$
$$\frac{d}{d\zeta}\psi_{+} - \frac{\nu + \frac{1}{2}}{\zeta}\psi_{+} - \kappa^{2}\zeta\psi_{+} - 2i\kappa\psi_{-} = \mathcal{M}\psi_{-}$$

with eigenfunctions

$$\psi_{+}(\zeta) \sim \zeta^{\frac{1}{2}+\nu} e^{-\kappa^{2}\zeta^{2}/2} L_{n}^{\nu}(\kappa^{2}\zeta^{2})$$
  
$$\psi_{-}(\zeta) \sim \zeta^{\frac{3}{2}+\nu} e^{-\kappa^{2}\zeta^{2}/2} L_{n}^{\nu+1}(\kappa^{2}\zeta^{2})$$

and eigenvalues

$$\mathcal{M}^2 = 4\kappa^2(n+\nu)$$



$$4\kappa^2$$
 for  $\Delta n = 1$   
 $4\kappa^2$  for  $\Delta L = 1$   
 $2\kappa^2$  for  $\Delta S = 1$ 



Regge trajectories for positive parity N and  $\Delta$  baryon families ( $\kappa=0.5~{\rm GeV})$ 

### 4 Light-Front Holographic Mapping of Current Matrix Elements

[S. J. Brodsky and GdT, PRL 96, 201601 (2006)], PRD 77, 056007 (2008)]

• EM transition matrix element in QCD: local coupling to pointlike constituents

$$\langle \psi(P') | J^{\mu} | \psi(P) \rangle = (P + P') F(Q^2)$$

where Q=P'-P and  $J^{\mu}=e_{q}\overline{q}\gamma^{\mu}q$ 

• EM hadronic matrix element in AdS space from non-local coupling of external EM field propagating in AdS with extended mode  $\Phi(x, z)$ 

$$\int d^4x \, dz \, \sqrt{g} \, e^{\varphi(z)} A^\ell(x,z) \Phi_{P'}^*(x,z) \overleftrightarrow{\partial}_\ell \Phi_P(x,z)$$

- Are the transition amplitudes related ?
- How to recover hard pointlike scattering at large Q out of soft collision of extended objects? [Polchinski and Strassler (2002)]
- Mapping of  $J^+$  elements at fixed light-front time:  $\Phi_P(z) \Leftrightarrow |\psi(P)\rangle$

- Electromagnetic probe polarized along Minkowski coordinates,  $\left(Q^2=-q^2>0\right)$ 

$$A(x,z)_{\mu} = \epsilon_{\mu} e^{-iQ \cdot x} V(Q,z), \quad A_z = 0$$

• Propagation of external current inside AdS space described by the 'free' AdS wave equation

$$\left[z^2\partial_z^2 - z\,\partial_z - z^2Q^2\right]V(Q,z) = 0$$

- Solution  $V(Q,z) = zQK_1(zQ)$
- Substitute hadronic modes  $\Phi(x,z)$  in the AdS EM matrix element

$$\Phi_P(x,z) = e^{-iP \cdot x} \Phi(z), \quad \Phi(z) \to z^{\tau}, \quad z \to 0$$

• Find form factor in AdS as overlap of normalizable modes dual to the in and out hadrons  $\Phi_P$  and  $\Phi_{P'}$ , with the non-normalizable mode V(Q, z) dual to external source [Polchinski and Strassler (2002)].

$$F(Q^{2}) = R^{3} \int \frac{dz}{z^{3}} e^{\varphi(z)} V(Q, z) \Phi_{J}^{2}(z) \to \left(\frac{1}{Q^{2}}\right)^{\tau-1} \qquad \overset{\tilde{\mathbb{S}}^{0.8}}{\underset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}}{\overset{\tilde{\mathbb{S}}^{0}}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}}{\overset{\tilde{\mathbb{S}}^{0}}}{\overset{\tilde{\mathbb{S}}^{0}}{\overset{\tilde{\mathbb{S}}^{0}}}{\overset{\tilde{\mathbb{S}}^{0}}}{\overset{\tilde{\mathbb{S}}^{0}}}{\overset{\tilde{\mathbb{S}}^{0}}}{\overset{\tilde{\mathbb{S}}^{0}}}{\overset{\tilde{\mathbb{S}}^{0}}}{\overset{\tilde{\mathbb{S}}^{0}}}{\overset{\tilde{\mathbb{S}}^{0}}}{\overset{\tilde{\mathbb{S}}^{0}}}{\overset{\tilde{\mathbb{S}}^{0}}}{\overset{\tilde{\mathbb{S}}^{0}}}{\overset{\tilde{\mathbb{S}}^{0}}}{\overset{\tilde{\mathbb{S}}^{0}}}{\overset{\tilde{\mathbb{S}}^{0}}}{\overset{\tilde{\mathbb{S}}^{0$$

At large Q important contribution to the integral from  $z \sim 1/Q$  where  $\Phi \sim z^{\tau}$  and power-law point-like scaling is recovered [Polchinski and Susskind (2001)]

### **Electromagnetic Form-Factor**

• Drell-Yan-West electromagnetic FF in impact space [Soper (1977)]

$$F(q^2) = \sum_{n} \prod_{j=1}^{n-1} \int dx_j d^2 \mathbf{b}_{\perp j} \sum_{q} e_q \exp\left(i\mathbf{q}_{\perp} \cdot \sum_{k=1}^{n-1} x_k \mathbf{b}_{\perp k}\right) |\psi_n(x_j, \mathbf{b}_{\perp j})|^2$$

• Consider a two-quark  $\pi^+$  Fock state  $|u\overline{d}\rangle$  with  $e_u=\frac{2}{3}$  and  $e_{\overline{d}}=\frac{1}{3}$ 

$$F_{\pi^+}(q^2) = \int_0^1 dx \int d^2 \mathbf{b}_\perp e^{i\mathbf{q}_\perp \cdot \mathbf{b}_\perp (1-x)} \left| \psi_{u\overline{d}/\pi}(x, \mathbf{b}_\perp) \right|^2$$

with normalization  $F_{\pi}^{+}(q\!=\!0)=1$ 

• Integrating over angle

$$F_{\pi^+}(q^2) = 2\pi \int_0^1 \frac{dx}{x(1-x)} \int \zeta d\zeta J_0\left(\zeta q \sqrt{\frac{1-x}{x}}\right) \left|\psi_{u\overline{d}/\pi}(x,\zeta)\right|^2$$

where  $\zeta^2 = x(1-x) \mathbf{b}_{\perp}^2$ 

• Compare with electromagnetic FF in AdS space

$$F(Q^2) = R^3 \int \frac{dz}{z^3} V(Q, z) \Phi_{\pi^+}^2(z)$$

where  $V(Q,z) = zQK_1(zQ)$ 

• Use the integral representation

$$V(Q,z) = \int_0^1 dx \, J_0\left(\zeta Q \sqrt{\frac{1-x}{x}}\right)$$

• Find

$$F(Q^2) = R^3 \int_0^1 dx \int \frac{dz}{z^3} J_0\left(zQ\sqrt{\frac{1-x}{x}}\right) \Phi_{\pi^+}^2(z)$$

• Compare with electromagnetic FF in LF QCD for arbitrary *Q*. Expressions can be matched only if LFWF is factorized

$$\psi(x,\zeta,\varphi) = e^{iM\varphi}X(x)\frac{\phi(\zeta)}{\sqrt{2\pi\zeta}}$$

• Find

$$X(x) = \sqrt{x(1-x)}, \quad \phi(\zeta) = \left(\frac{\zeta}{R}\right)^{-3/2} e^{\varphi(z)/2} \Phi(\zeta), \quad z \to \zeta$$

- "Free current"  $V(Q, z) = zQK_1(zQ) \rightarrow \text{infinite hadron radius (mauve)}$
- "Dressed current" non-perturbative sum of an infinite number of terms  $\rightarrow$  finite radius (blue)
- Form factor in soft-wall model expressed as N-1 product of poles along vector radial trajectory [Brodsky and GdT (2008)]  $\left(\mathcal{M}_{\rho}^{2} \rightarrow 4\kappa^{2}(n+1/2)\right)$

$$F(Q^{2}) = \left[ \left( 1 + \frac{Q^{2}}{\mathcal{M}_{\rho}^{2}} \right) \left( 1 + \frac{Q^{2}}{\mathcal{M}_{\rho'}^{2}} \right) \cdots \left( 1 + \frac{Q^{2}}{\mathcal{M}_{\rho^{N-2}}^{2}} \right) \right]^{-1}$$



#### **Gravitational or Energy-Momentum Form-Factor**

- [S. J. Brodsky and GdT, PRD 78, 025032 (2008)]
  - Gravitational form factor of composite hadrons in QCD: local coupling to pointlike constituents

$$\left\langle P' \left| \Theta^{\nu}_{\mu} \right| P \right\rangle = \left( P^{\nu} P'_{\mu} + P_{\mu} P'^{\nu} \right) A(Q^2)$$

where  $Q=P^{\prime}-P$  and

$$\Theta_{\mu\nu} = \frac{1}{2}\overline{\psi}i(\gamma_{\mu}D_{\nu} + \gamma_{\nu}D_{\mu})\psi - g_{\mu\nu}\overline{\psi}(iD - m)\psi - G^{a}_{\mu\lambda}G^{a\,\lambda}_{\nu} + \frac{1}{4}g_{\mu\nu}G^{a}_{\lambda\sigma}G^{a\,\lambda\sigma}$$

• Hadronic matrix element of energy-momentum tensor from perturbing the static AdS metric: non-local coupling of external graviton field propagating in AdS with extended mode  $\Phi(x, z)$ 

$$\int d^4x \, dz \sqrt{g} \, h_{\ell m} \left( \partial^\ell \Phi_{P'}^* \partial^m \Phi_P + \partial^m \Phi_{P'}^* \partial^\ell \Phi_P \right)$$

- Are the transition amplitudes related ?
- Mapping of  $\Theta^{++}$  elements at fixed LF time: Identical mapping  $\Phi_P(z) \iff |\psi(P)\rangle$  as EM FF

"Working with a front is a process that is unfamiliar to physicists. But still I feel that the mathematical simplification that it introduces is all-important. I consider the method to be promising and have recently been making an extensive study of it. It offers new opportunities, while the familiar instant form seems to be played out " P.A.M. Dirac (1977)