Novel High Transverse Momentum Phenomena at the LHC

Leading-Twist Contribution to Hadron Production

Parton model and Conformal Scaling:

$$
\frac{d\sigma}{d^3p/E} = \alpha_s^2 \frac{F(x_\perp, y)}{p_\perp^4}
$$

Crucial Test of Leading -Twist QCD: Scaling at fixed xT

$$
E\frac{d\sigma}{d^3p}(pN \to \pi X) = \frac{F(x_T, \theta_{CM})}{p_T^{neff}}
$$

Parton model: $n_{\text{eff}} = 4$

As fundamental as Bjorken scaling in DIS

Conformal scaling: $n_{\rm eff}$ = 2 n $_{\rm active}$ - 4

Tannenbaum

Scaling of direct photon production consistent with **PQCD**

Prague LHC 09

Prague LHC 09 Novel High P_T QCD Physics
February 5, 2009

QCD prediction: Modification of power fall-off due to DGLAP evolution and the Running Coupling

$$
\frac{d\sigma}{d^3 p/E} = \frac{F(x_{\perp}, y)}{p_{\perp}^{n(x_{\perp})}}
$$
\n
$$
\sum_{\geq 0}^{n(x_{\perp})}
$$
\n
$$
\sum_{\geq 0}^{n(x_{\perp})}
$$
\n
$$
\sum_{\geq 0}^{n(x_{\perp})}
$$
\n
$$
\sum_{\text{DSS}}
$$
\n
$$
\sum_{\text{Stratmann}}
$$
\n
$$
\sum_{\text{Stratmann}}
$$
\n
$$
\sum_{\text{DSS FF}}
$$
\n
$$
\sum_{\text{DSS FF}}
$$
\n
$$
\sum_{\text{DSS FF}}
$$
\n
$$
\sum_{\text{DSS PF}}
$$

Production of hadrons at large transverse momentum at 200, 300, and 400 GeV *

J. W. Cronin, H. J. Frisch, and M. J. Shochet

The Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637

J. P. Boymond, P. A. Piroué, and R. L. Sumner

Department of Physics, Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08540

$$
\tfrac{d\sigma}{d^3p/E} = \tfrac{F(x_\perp,y)}{p_\perp^{n(x_\perp)}}
$$

√ s6.3 \times $E\frac{d\sigma}{d\Omega}$ \boldsymbol{d} 3p $\it (pp$ $\to H$ \pm $X)$ at fixed x_T

Tannenbaum

Scaling inconsistent with **PQCD**

Protons produced in $AuAu$ collisions at RHIC do not exhibit clear scaling properties in the available p_T range. Shown are data for central $(0-5\%)$ and for peripheral $(60-90\%)$ collisions.

13

Higher-Twist Contribution to Hadron Production

No Fragmentation Function

$\pi\, N \to \mu^+\, \mu^- \, X$ at high $\rm x_F$ In the limit where $(1-x_F)Q^2$ is fixed as $Q^2 \rightarrow \infty$

Berger, sjb Khoze, Brandenburg, Muller, sjb Hoyer Vanttinen

Prague LHC 09

Prague LHC 09
February 5, 2009 Novel High P_T QCD Physics
February 5, 2009

$$
\pi^- N \to \mu^+ \mu^- X \text{ at } 80 \text{ GeV}/c
$$

$$
\frac{d\sigma}{d\,\Omega}\propto 1+\lambda\cos^2\theta+\rho\,\sin2\theta\cos\phi+\omega\sin^2\theta\cos2\phi.
$$

$$
\frac{d^2\sigma}{dx_\pi d\cos\theta} \propto x_\pi \left[(1-x_\pi)^2 (1+\cos^2\theta) + \frac{4}{9} \frac{\langle k_T^2 \rangle}{M^2} \sin^2\theta \right]
$$

 $\langle k_T^2 \rangle = 0.62 \pm 0.16 \text{ GeV}^2/c^2$

Dramatic change in angular distribution at large xF

Example of a higher-twist direct subprocess

Prague LHC 09 Prague LHC 09
February 5, 2009 Novel High P_T QCD Physics
I7

Chicago-Princeton Collaboration

Phys.Rev.Lett.55:2649,1985

Baryon can be made directly within hard subprocess

Particle ratio changes with centrality! S. S. Adler *et al.* PHENIX Collaboration *Phys. Rev. Lett.* **91**, 172301 (2003).

Power-law exponent $n(x_T)$ for π^0 and *h* spectra in central and peripheral Au+Au collisions at $\sqrt{s_{NN}}$ = 130 and 200 GeV

S. S. Adler, *et al.*, PHENIX Collaboration, *Phys. Rev.* C **69**, 034910 (2004) [nucl-ex/0308006].

Proton production dominated by color-transparent direct high neff subprocesses

Prague LHC 09

Prague LHC 09 Novel High P_T QCD Physics Stan Brodsky SLAC
February 5, 2009

sjb: RHIC News 1-15-08

Dimensional counting rules provide ^a simple rule-of-thumb guide for the power-law fall-off of the inclusive cross section in both p_T and $(1 - x_T)$ due to ^a given subprocess:

$$
E\frac{d\sigma}{d^3p}(AB \to CX) \propto \frac{(1 - x_T)^{2n_{spectator} - 1}}{p_T^{2n_{active} - 4}}
$$

where n_{active} is the "twist", i.e., the number of elementary fields participating in the hard subprocess, and $n_{spectator}$ is the total number of constituents in A, B and C not participating in the hard-scattering subprocess. For example, consider $pp \rightarrow pX$. The leading-twist contribution from $qq \rightarrow qq$ has $n_{active} = 4$ and $n_{spectator} = 6$. The higher-twist subprocess $qq \rightarrow p\bar{q}$ has $n_{active} = 6$ and $n_{spectator} = 4$. This simplified model provides two distinct contributions to the inclusive cross section

$$
\frac{d\sigma}{d^3 p/E}(pp \to pX) = A \frac{(1 - x_T)^{11}}{p_T^4} + B \frac{(1 - x_T)^7}{p_T^8}
$$
\nand $n = n(x_T)$ increases from 4 to 8 at large x_T .
\n**Small color-singlet**
\n**Normal same-side energy**

 $\sqrt{11}$ (1 $\sqrt{7}$

Prague LHC 09

Prague LHC 09 Novel High P_T QCD Physics
February 5, 2009

Anne Sickles

Paul Sorensen

Lambda can be made directly within hard subprocess

Prague LHC 09

Prague LHC 09 Novel High P_T QCD Physics Stan Brodsky SLAC
February 5, 2009

Baryon Anomaly: Evidence for Direct, Higher-Twist Subprocesses

- \bullet Explains anomalous power behavior at fixed x_T
- \bullet Protons more likely to come from direct higher-twist subprocess than pions
- \bullet Protons less absorbed than pions in central nuclear collisions because of color transparency
- \bullet Predicts increasing proton to pion ratio in central collisions
- \bullet **• Proton power n_{eff} increases with centrality since leading** twist contribution absorbed
- •Fewer same-side hadrons for proton trigger at high centrality
- \bullet Exclusive-inclusive connection at $x_T = I$

Anne Sickles, sjb

Prague LHC 09

Prague LHC 09
February 5, 2009 Novel High P_T QCD Physics Stan Brodsky SLAC

Renormalization Scale-Setting Not Ambiguous

Conventional wisdom in QCD concerning scale setting

- Renormalization scale "unphysical": No optimal physical scale
- Can ignore possibility of multiple physical scales
- Accuracy of PQCD prediction can be judged by taking arbitrary guess

$$
\mu_R=Q
$$

- with an arbitrary range $Q/2 < \mu_R < 2Q$
- Factorization scale should be taken equal to renormalization scale $\qquad \mu_F = \mu_R$

These assumptions are untrue in QED and thus they cannot be true for QCD!

Electron-Positron Scattering in QED $M_{e^+e^-\to e^+e^-}(s,t)=\frac{8\pi s}{t}\alpha(t)+\frac{8\pi t}{s}\alpha(s)$

Gell Mann-Low Running Charge sums all vacuum polarization insertions

Another Example in QED: Muonic Atoms

 $V \;$ $V(q^2) = -\frac{Z\alpha_{QED}(q^2)}{q^2}$

 $\alpha_{QED}(q^2) = \frac{\alpha_{QED}(0)}{1-\Pi(q^2)}$

Scale is unique: Tested to ppm

Gyulassy: Higher Order VP verified to 0.1% precision in μ **Pb**

No renormalization scale ambiguity! on scale ambiguity! Scale-Setting in QED

- *•*
- *•Two separate physical scales: t, u = photon virtuality*
- *• Gauge Invariant. Dressed photon propagator*
- **•** Sums all vacuum polarization, non-zero beta terms into running *coupling.*
- **•** If one chooses a different scale, one can sum an infinite number of *graphs -- but always recover same result!*
- *• Number of active leptons correctly se*
- *• Analytic: reproduces correct behavior at lepton mass thresholds*
- *• No renormalization scale ambiguity!*
- *•Two separate physical scales.*
- *•Gauge Invariant. Dressed photon propagator*

${\cal M}$ ust recover QED result using $\alpha_S^{MS}(\mu^2)$

$$
\alpha(q^2) = \alpha(q_0^2) \frac{(1 - \Pi(q_0^2))}{(1 - \Pi(q^2))} \quad \text{where } \Pi(q^2 = 0) = 0
$$

$$
\Pi(q^2) = \dots \text{.
$$

Identical QED result if
$$
\ln(-\frac{\mu^2}{m^2}) = 6 \int_0^1 d\alpha [\alpha(1 - \alpha)] \ln(1 - \frac{q_0^2 \alpha(1 - \alpha)}{m^2})
$$

 $\mu^2=q_0^2e^{-5/3} \quad {\rm at \ large} \ q_0^2$ Dae Sung Hwang, sjb

q20: Normalization point

Prague LHC 09

Prague LHC 09
February 5, 2009 Novel High P_T QCD Physics
32

$$
\lim N_C \to 0 \text{ at fixed } \alpha = C_F \alpha_s, n_\ell = n_F/C_F
$$

$QCD \rightarrow Abelian$ Gauge Theory

Analytic Feature of SU(Nc) Gauge Theory

Scale-Setting procedure for QCD must be applicable to QED

Prague LHC 09

Prague LHC 09 Novel High P_T QCD Physics Stan Brodsky SLAC
February 5, 2009 33

Example of Multiple BLM Scales

Angular distributions of massive quarks and leptons close to threshold.

Deep Inelastic Electron-Proton Scattering

Conventional wisdom: Final-state interactions of struck quark can be neglected

Remarkable observation at HERA

10% to 15% of DIS events are diffractive !

Fraction r of events with a large rapidity gap, η_{max} < 1.5, as a function of Q_{DA}^2 for two ranges of x_{DA} . No acceptance corrections have been applied.

M. Derrick et al. [ZEUS Collaboration], Phys. Lett. B 315, 481 (1993).

Prague LHC 09

Prague LHC 09
February 5, 2009 Novel High P_T QCD Physics
36

DDIS

Diffractive Deep Inelastic Lepton-Proton Scattering

- In a large fraction (\sim 10–15%) of DIS events, the proton escapes intact, keeping a large fraction of its initial momentum
- This leaves a large rapidity gap between the proton and the produced particles
- The *t*-channel exchange must be *color singlet* \rightarrow a pomeron

Profound effect: target stays intact despite production of a massive system X

Diffractive Deep Inelastic Scattering

Diffractive DIS $ep \rightarrow epX$ where there is a large rapidity gap and the target nucleon remains intact probes the final state interaction of the scattered quark with the spectator system via gluon exchange.

Diffractive DIS on nuclei $eA \rightarrow e'AX$ and hard diffractive reactions such as $\gamma^* A \to VA$ can occur coherently leaving the nucleus intact.

Final-State QCD Interaction Produces Diffractive DIS

Low-Nussinov model of Pomeron

Hoyer, Marchal, Peigne, Sannino, sjb

QCD Mechanism for Rapidity Gaps

Reproduces lab-frame color dipole approach

Prague LHC 09

Prague LHC 09 Novel High P_T QCD Physics Stan Brodsky SLAC
February 5, 2009