AdS/QCD and Novel Effects in Hadron Dynamics

Stan Brodsky SLAC, National Accelerator Laboratory

October 29, 2009 Colloquium

The World of Quarks and Gluons:

- • Quarks and Gluons: Fundamental constituents of hadrons and nuclei
- Remarkable and novel properties of *Quantum Chromodynamics (QCD)*

 \bullet New Insights from higher space-time dimensions: Holography: AdS/CFT

Purdue October 29, 2009 *AdS/QCD* Stan Brodsky, SLAC

2

Goal of Science:

To understand the laws of physics and the fundamental composition of matter at the shortest possible distances.

•**Atoms composed of nuclei and electrons …**

Purdue October 29, 2009 *AdS/QCD* Stan Brodsky, SLAC

•

•

Why do we need huge accelerators to see quarks?

Heisenberg in 1927.

1 TeV resolves 10^{-19} m = 0.0001 fm

 1 GeV resolves 10^{-16} m $=$ 0.1 fm

 1 MeV resolves 10^{-13} m $= 100$ fm

1 KeV resolves 10^{-10} m = 1 Angstrom

Purdue October 29, 2009

AdS/QCD

4

 Δx \times \times $\Delta p > \frac{h}{2\pi}$

Need large momentum transfers to resolve small structure !

Searching for the Ultimate Constituents

Electrons, Quarks, and Gluons may be truly pointlike! 1 TeV resolves 10^{-19} m = 0.0001 fm

Purdue October 29, 2009
5

 1 TeV resolves 10^{-19} m $=$ 0.0001 fm

Large Hadron Collider **CERN** 14 TeV

p - p and heavy- ion collisions

Purdue October 29, 2009 *AdS/QCD* Stan Brodsky, SLAC urdue October 29,

PHENIX at RHIC

SLAC Two-Mile Linear Accelerator

Pief

First Evidence for Nuclear Structure of Atoms

Rutherford Scattering

Deep inelastic electron-proton scattering

 \bullet **Rutherford scattering using** *very* **high-energy electrons striking protons**

Measure rate as a function of energy loss ν and momentum transfer Q Scaling at fixed $x_{Bjorken} = \frac{Q^2}{2M_n \nu} = \frac{1}{\omega}$

Discovery of Bjorken Scaling Electron scatters on point-like quarks!

First Evidence for Quark Structure of Matter

Deep Inelastic Electron-Proton Scattering

Quarks in the Proton

Feynman & Bjorken: "Parton" model

 $p = (u u d)$

Zweig: "Aces, Deuces, Treys

Gell Mann: Three Quarks for Mr. Mark

16

Electron-Positron Annihilation

$$
e^+e^- \to \gamma^* \to \mu^+\mu^-
$$

Electron-Positron Annihilation

Rate proportional to quark charge squared and number of colors

$$
R_{e^+e^-}(E_{cm}) = N_{colors} \times \sum_q e_q^2
$$

SPEAR Electron-Positron Collider

20

How to Count Quarks

Why are there three colors of quarks?

Pauli Exclusion Principle!

spin-half quarks cannot be in same quantum state !

Three Colors (Parastatistics) Solves Paradox

3 Colors Combine: WHITE

How to Count Quarks

Collide Gold Nuclei Together

STAR Time-*Projection* Chamber at RHIC

Produce thousands of particles in each collision

Evidence of Quark-Gluon Plasma

Away-side particles quenched in Au-Au Collisions

Gluon density 50 times more dense than cold nuclear matter !

Connection to Early Universe

The matter particles

- • **All particles have antiparticles:**
	- -**Charges equal and opposite**
	- -**Identical mass**
	- \blacktriangleright Intrinsic angular momentum of $\frac{1}{2}$ a **unit (Fermions)**
- • **Second and third generations are exact copies of first … but …**
	- -**… are much heavier …**

Ouark Masses (GeV)

Constructing mesons

$$
M=(q\bar{q})
$$

$$
\pi^+ = (u\bar{d})
$$

Pseudoscalar ($J^P = 0^-$) (upper lines) and vector ($J^P = 0^-$) (lower lines) mesons with different flavour content.

$\psi' \rightarrow \pi^+\pi^-e^+e^-$ *The Particle That Writes its Own Name!*

 $\psi' \to \pi^+\pi^-J/\psi$

 $J/\psi \rightarrow e^+e^-$

November 1974 Revolution

Mark I Detector

SPEAR

The particle that writes its own name! On 10 November 1974, physicists working on the SPEAR machine at the Stanford Linear Accelerator Center (SLAC) in California were in a state of euphoria. They realized that they had discovered a remarkable new particle, which they named after the Greek letter "psi". The following morning they discovered that a different experiment, at the Brookhaven National Laboratory in New York had also discovered the same particle, which the team at Brookhaven called J. The J/psi, as it became known, turned out to be the first example of a particle containing the charm quark - in fact, a charm quark bound with its antiquark. Before this, only three quarks were known (up, down and strange). In the image shown here, from later studies*, the Mark I detector at SPEAR reveals the decay of a heavier relation, the psi', into a J/psi plus two charged pions. The J/psi itself decays into an electron (e-) and a positron (e+), and the four charged particles together write out the sign of the Greek letter psi in the detector!

The Hadron Spectrum $SU(3)_{flavor}$

Gell Mann, Zweig

Prediction and Measurement of $\Omega^- = (sss)$

Exclusive Processes

Probability decreases with number of constituents!

Timelike Proton Form Factor

Brodsky and Farrar, Phys. Rev. Lett. 31 (1973) 1153 Matveev et al., Lett. Nuovo Cimento, 7 (1973) 719

Quark Counting Rules for Exclusive Processes

- Power-law fall-off of the scattering rate reflects degree of compositeness
- The more composite -the faster the fall-o
- Power-law counts the number of quarks and gluon constituents
- Form factors: probability amplitude to stay intact

• $F_H(Q) \propto \frac{1}{(Q^2)^{n-1}}$ $n = #$ elementary constituents

• Phenomenological success of dimensional scaling laws for exclusive processes

$$
d\sigma/dt \sim 1/s^{n-2}, \quad n = n_A + n_B + n_C + n_D,
$$

implies QCD is ^a strongly coupled conformal theory at moderate but not asymptotic energies Farrar and sjb (1973); Matveev *et al.* (1973).

 \bullet Derivation of counting rules for gauge theories with mass gap dual to string theories in warped space (hard behavior instead of soft behavior characteristic of strings) Polchinski and Strassler (2001).

Conformal behavior: $Q^2F_\pi(Q^2) \rightarrow$ const

 Determination of the Charged Pion Form Factor at Q2=1.60 and 2.45 (GeV/c)2. By Fpi2 Collaboration (T. Horn *et al.*). Jul 2006. 4pp. e-Print Archive: **nucl-ex/0607005**

Primary Evidence for Quarks

- Electron-Proton Inelastic Scattering: $ep \rightarrow e'X$ Electron scatters on pointlike constituents with fractional charge; final-state jets
- Electron-Positron Annihilation: $e^+e^- \rightarrow X$ Production of pointlike pairs with fractional charges and 3 colors; quark, antiquark, gluon jets
- Exclusive hard scattering reactions: $pp \rightarrow pp, \gamma p \rightarrow \pi^+ n, ep \rightarrow ep$ probability that hadron stays intact counts number of its pointlike constituents:

Quark Counting Rules

Purdue October 29, 2009 *AdS/QCD* Stan Brodsky, SLAC

41

Constituent Counting Rules

$$
\mathbf{A} \quad \mathbf{C} \quad \frac{d\sigma}{dt}(s,t) = \frac{F(\theta_{\text{cm}})}{s^{[n_{\text{tot}}-2]}} \quad s = E_{\text{cm}}^2
$$

$$
F_H(Q^2) \sim [\frac{1}{Q^2}]^{n_H - 1}
$$

 $n_{tot} = n_A + n_B + n_C + n_D$ Fixed t/s or cos θ_{cm}

Farrar & sjb; Matveev, Muradyan, Tavkhelidze

Conformal symmetry and PQCD predict leading-twist scaling behavior of fixed-CM angle exclusive amplitudes

Characteristic scale of QCD: 300 MeV

Many new J-PARC, GSI, J-Lab, Belle, Babar tests

Counting Rules: n=9

$$
\frac{d\sigma}{dt}(\gamma p \to MB) = \frac{F(\theta_{cm})}{s^7}
$$

Quark-Counting

 $Quark-Counting$: $\frac{d\sigma}{dt}(pp\rightarrow pp) = \frac{F(\theta_{CM})}{s^{10}}$ n = 4 × 3 − 2 = 10

Deuteron Photodisintegratio-

46

J-Lab

PQCD and AdS/CFT:

 $s^{n_{tot}-2}\frac{d\sigma}{dt}(A+B\rightarrow C+D) =$ $F_{A+B\rightarrow C+D}(\theta_{CM})$

$$
s^{11}\frac{d\sigma}{dt}(\gamma d \to np) = F(\theta_{CM})
$$

$$
n_{tot} - 2 = (1 + 6 + 3 + 3) - 2 = 11
$$

Reflects conformal invariance

- Remarkable Test of Quark Counting Rules
- Deuteron Photo-Disintegration $\gamma d \rightarrow np$

$$
\frac{d\sigma}{dt} = \frac{F(t/s)}{s^n tot^{-2}}
$$

•
$$
n_{tot} = 1 + 6 + 3 + 3 = 13
$$

Scaling characteristic of scale-invariant theory at short distances

Conformal symmetry

Hidden color:
$$
\frac{d\sigma}{dt}(\gamma d \to \Delta^{++} \Delta^{-}) \simeq \frac{d\sigma}{dt}(\gamma d \to pn)
$$

at high p_T

47

QCD Prediction for Deuteron Form Factor

$$
F_d(Q^2) = \left[\frac{\alpha_s(Q^2)}{Q^2}\right]^5 \sum_{m,n} d_{mn} \left(\ln \frac{Q^2}{\Lambda^2}\right)^{-\gamma_n d - \gamma_m d} \left[1 + O\left(\alpha_s(Q^2), \frac{m}{Q}\right)\right]
$$

Define "Reduced" Form Factor

$$
f_d(Q^2) \equiv \frac{F_d(Q^2)}{F_N^2(Q^2/4)}.
$$

Same large momentum transfer behavior as pion form factor

$$
f_d(Q^2) \sim \frac{\alpha_s(Q^2)}{Q^2} \left(\ln \frac{Q^2}{\Lambda^2} \right)^{-(2/5) C_F/\beta}
$$

FIG. 2. (a) Comparison of the asymptotic QCD prediction $f_a (Q^2) \propto (1/Q^2) [\ln (Q^2/\Lambda^2)]^{-1-(2/5)C_F/8}$ with final data of Ref. 10 for the reduced deuteron form factor. where $F_N(Q^2) = [1 + Q^2/(0.71 \text{ GeV}^2)]^{-2}$. The normalization is fixed at the $Q^2 = 4 \text{ GeV}^2$ data point. (b) Compari-**Son of the prediction** $[1 + (Q^2/m_0^2)]f_d(Q^2) \propto [\ln (Q^2/m_0^2)]$
 Purdue October 29, 2009

48 $= 0.28 \text{ GeV}^2$ is used (Ref. 8).

Elastic electron-deuteron scattering

• 15% Hidden Color in the Deuteron

Purdue October 29, 2009
50
50

Lepage, Ji, sjb Hidden Color in QCD

- Deuteron six quark wavefunction:
- 5 color-singlet combinations of 6 color-triplets one state is $|n p$
- Components evolve towards equality at short distances
- Hidden color states dominate deuteron form factor and photodisintegration at high momentum transfer

 $\frac{d\sigma}{dt}(\gamma d \to \Delta^{++} \Delta^{-}) \simeq \frac{d\sigma}{dt}(\gamma d \to pn)$ at high Q^2 • Predict $\frac{d\sigma}{dt}(\gamma d \to \Delta^{++} \Delta^{-}) \simeq \frac{d\sigma}{dt}$

QCD Lagrangian

Generalization of QED

Yang Mills Gauge Principle: Color Rotation and Phase Invariance at Every Point of Space and Time

Scale-Invariant Coupling Renormalizable Nearly-Conformal Asymptotic Freedom **Color Confinement**

Fundamental Couplings

QCD

Only quarks and gluons involve basic vertices: Quark-gluon vertex

- Although we know the QCD Lagrangian, we have only begun to understand its remarkable properties and features.
- Novel QCD Phenomena: hidden color, color transparency, strangeness asymmetry, intrinsic charm, anomalous heavy quark phenomena, anomalous spin effects, single-spin asymmetries, odderon, diffractive deep inelastic scattering, dangling gluons, shadowing, antishadowing, QGP, CGC, ...

Truth is stranger than fiction, but it is because Fiction is obliged to stick to possibilities. —Mark Twain

Verification of Asymptotic Freedom

Ratio of rate for $e^+e^-\to q\bar{q}g$ to $e^+e^-\to q\bar{q} \quad$ at $Q=E_{CM}=E_{e^-}+E_{e^+}$

Deur, Korsch, et al.

QCD Lagrangian

lim $N_C\rightarrow 0$ at fixed $\alpha=C_F\alpha_s, n_\ell=n_F/C_F$

Analytic limit of QCD: Abelian Gauge Theory

$$
QCD \longrightarrow QED
$$

P. Huet, sjb

Given the elementary gauge theory interactions, all fundamental processes described in principle!

Example from QED:

Electron gyromagnetic moment - ratio of spin precession frequency to Larmor frequency in a magnetic field

$$
\frac{1}{2}g_e = 1.001 \ 159 \ 652 \ 201(30) \quad \text{(ED prediction (Kinoshita, et al.)}
$$
\n
$$
\frac{1}{2}g_e = 1.001 \ 159 \ 652 \ 193(10) \quad \text{Measurement (Dehmelt, et al.)}
$$
\n
$$
\frac{1}{2}g_e = 1.001 \ 159 \ 652 \ 180 \ 85 \ [0.76 \ ppt]
$$
\n
$$
\text{Divac: } g_e \equiv 2 \quad \text{Measurement (Gabrielse, et al.)}
$$

Purdue October 29, 2009
59 **Adole Contract Additional Stan Brodsky, SLAC**

QED provides an asymptotic series relating g and α ,

$$
\frac{g}{2} = 1 + C_2 \left(\frac{\alpha}{\pi}\right) + C_4 \left(\frac{\alpha}{\pi}\right)^2 + C_6 \left(\frac{\alpha}{\pi}\right)^3 + C_8 \left(\frac{\alpha}{\pi}\right)^4 + \dots
$$

+ $a_{\mu\tau}$ + a_{hadronic} + a_{weak} ,

Light-by-Light Scattering Contribution to C6

$$
\frac{1}{\sqrt{\frac{1}{1-\frac{
$$

Aldins, Dufner, Kinoshita, sjb

 α -1 \equiv $= 137.035999710(90)(33)$ [0.66 ppb][0.24 ppb], \equiv $= 137.035999710(96)$ [0.70 ppb].

] G. Gabrielse, D. Hanneke, T. Kinoshita, M. Nio, and B. Odom, Phys. Rev. Lett. **97**, 030802 (2006).

QED: Underlies Atomic Physics, Molecular Physics, Chemistry, Electromagnetic Interactions ...

QCD: Underlies Hadron Physics, Nuclear Physics, Strong Interactions, Jets

Theoretical Tools

- Feynman diagrams and perturbation theory
- Bethe Salpeter Equation, Dyson-Schwinger Equations
- Lattice Gauge Theory, Discretized Light-Front Quantization
- AdS/CFT !

Other High-Precision Atomic Physics Tests of QED

- Lamb Shift in Hydrogen
- Hyperfine splitting of muonium and hydrogen
- Muonic atom spectroscopy
- Positronium lifetime

All Accurate to sub-ppm

Dirac's Amazing Idea: The "Front Form"

Evolve in light-front time

Each element of flash photograph illuminated at same LF time

$$
\tau=t+z/c
$$

Evolve in LF time

$$
P^- = i \frac{d}{d\tau}
$$

Eigenstate -- independent of τ

Causally-Connected Domains

HELEN BRADLEY - PHOTOGRAPHY