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The World of Quarks and Gluons:

• Quarks and Gluons: Fundamental constituents              
of hadrons and nuclei

• Remarkable and novel properties                                    
of Quantum Chromodynamics (QCD)

• New Insights from higher space�time dimensions: 
Holography: AdS/CFT
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Goal  of Science: 

To understand the laws of physics and  the fundamental 
composition of matter at the shortest possible distances.

• Proton and neutron composed of quarks

• Nuclei composed of protons and neutrons

• Atoms composed of nuclei and electrons  …
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Heisenberg in 1927.

The more precisely the position
is determined, the less precisely
the momentum is known in this

instant, and vice versa. 
--Heisenberg, uncertainty paper, 1927

Δx×Δp > h
2π

Need large momentum transfers to 
resolve small structure !

Why do we need huge accelerators to see quarks?

1 GeV resolves 10−16 m = 0.1 fm

1 MeV resolves 10−13 m = 100 fm

1 KeV resolves 10−10 m = 1 Angstrom

1 TeV resolves 10−19 m = 0.0001 fm
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Searching for the Ultimate Constituents

Electrons, Quarks, and Gluons may be truly pointlike!

1 GeV resolves 10−16 m = 0.1 fm

1 KeV resolves 10−10 m = 1 Angstrom

1 TeV resolves 10−19 m = 0.0001 fm
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 LHC: 7 TeV + 7 TeV proton�proton collisions

1 TeV resolves 10−19 m = 0.0001 fm
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Large Hadron Collider 
CERN
14 TeV

p - p and

heavy- ion 

collisions

1 TeV resolves 10−19 m = 0.0001 fm
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PHENIX at RHIC
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SLAC  Two-Mile Linear Accelerator 

Pief
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1967 SLAC Experiment:
Scatter 20 GeV/c Electrons on protons 

in a Hydrogen Target
Discovery of the Quark Structure of Matter

Friedman, Kendall, Taylor: Nobel Prize

ep → e′X

Discovery of quarks!
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First Evidence for Nuclear Structure of Atoms

Rutherford Scattering

e

eʼ

γ* α

Au

α

p
d
u

u

Scattering at Large 
Angles!  

�Point�like� Nucleus

Au

e−

e−
Gold  

Atoms
e−

Ernest Rutherford
1911



Deep inelastic electron-proton scattering

• Rutherford scattering using 
very high-energy electrons 
striking protons

Discovery of quarks!

Expectation



Stan Brodsky,  SLAC
AdS/QCD

Purdue  October 29, 2009

ω =
2Mpν
Q2

ep → e′X

Q2 = 
q2 − ν2

Q2

p

13

Discovery of Bjorken Scaling
Electron scatters on point-like quarks!

Measure rate as a function of energy loss ν and momentum transfer Q

Scaling at fixed xBjorken = Q2

2Mpν
= 1

ω

No intrinsic length scale !

Q2

E′ = E − ν, 
q

p

SLAC 
1967
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jet

eʼ

γ*

First Evidence for Quark Structure of Matter

Deep Inelastic Electron-Proton Scattering

e

p
d
u

u

g

gg

Gluonic 
Bremmstrahlung

DGLAP Evolution
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Gell Mann: �Three Quarks for 
Mr. Mark�

16

Quarks in the Proton

p  =  �u u d�

1fm
10−15m = 10−13cm

Zweig:  �Aces, 
Deuces, Treys�

Feynman & Bjorken:  
�Parton� model
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e+e− → γ∗ → μ+μ−

Electron-Positron Annihilation

e+e−

μ+

μ−
γ∗
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e+e−

γ∗

e+e− → γ∗ → qq̄

q

q̄

Rate proportional to quark charge squared 
and number of colors

Re+e−(Ecm) = Ncolors ×
∑

q e2q

Electron-Positron Annihilation
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SPEAR  Electron-Positron Collider
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R(s) → 3

nf∑
q

Q2
q ,



Stan Brodsky,  SLAC
AdS/QCD

Purdue  October 29, 2009
21

How to Count Quarks

ūu
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How to Count Quarks

3 × [(−1
3)

2 + (2
3)

2 + (−1
3)

2] = 2

ΔR = NC × e2c = 3 × (2
3)

2 = 4
3

J/ψ = (cc̄)1S
Υ = (b̄b)1S

3 × (−1
3)

2 = 1
3

Re+e−(Ecm) = Ncolors × ∑
q e2q

NC = 3
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Pauli Exclusion Principle!

spin�half quarks cannot be in same quantum state !

u

u

u

Δ++

Jz = +3
2

Three Colors (Parastatistics) Solves Paradox 

Sz = +1
2

Sz = +1
2

Sz = +1
2

Why are there three colors of quarks?

3 Colors Combine : White
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How to Count Quarks

ūu
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Consistent with spin - 1
2 quarks
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STAR Time�Projection Chamber at  RHIC

Collide Gold Nuclei Together

Produce thousands of particles in each collision

Evidence of Quark-Gluon Plasma
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Away�side particles quenched in Au�Au Collisions

Gluon density 50 times more dense than cold nuclear matter !



Stan Brodsky,  SLAC
AdS/QCD

Purdue  October 29, 2009
30

Connection to Early Universe



The matter particles

• All particles have antiparticles:
�Charges equal and opposite

� Identical mass

� Intrinsic angular momentum of � a
unit (Fermions)

• Second and third generations are 
exact copies of first … but …
�… are much heavier … 

                                                 
Generations of   

matter  

III  II  I  

�

�
�

b

t

μ

μ
�

s
c

e
�e

d

u

L
ep

to
n

s 
Q

u
ar

k
s
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u d s c b

π0, η, η′ π− K− D0 B̄−

ū
ρ0, ω ρ− K∗− D∗0 B̄∗−

π+ π0, η, η′ K̄0 D+ B̄0

d̄
ρ+ ρ0, ω K̄∗0 D∗+ B̄∗0

K+ K0 η, η′ Ds B̄s

s̄
K∗+ K̄∗0 φ D∗

s B̄∗
s

D̄0 D− D̄s ηc B̄c

c̄
D̄∗0 D∗− D̄∗

s J/ψ B̄∗
c

B+ B0 Bs Bc ηb

b̄
B∗+ B∗0 B∗

s B∗
c Υ

Pseudoscalar (JP = 0−) (upper lines) and vector (JP = 0−) (lower lines) mesons with different flavour content.

Constructing mesons

M = (qq̄)

π+ = (ud̄)
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The particle that writes its own name! On 10 November 1974, physicists working on the SPEAR machine at the Stanford

Linear Accelerator Center (SLAC) in California were in a state of euphoria. They realized that they had discovered a 

remarkable new particle, which they named after the Greek letter "psi". The following morning they discovered that a 

different experiment, at the Brookhaven National Laboratory in New York had also discovered the same particle, which 

the team at Brookhaven called J. The J/psi, as it became known, turned out to be the first example of a particle 

containing the charm quark - in fact, a charm quark bound with its antiquark. Before this, only three quarks were 

known (up, down and strange). In the image shown here, from later studies*, the Mark I detector at SPEAR reveals the 

decay of a heavier relation, the psi', into a J/psi plus two charged pions. The J/psi itself decays into an electron (e-) and 

a positron (e+), and the four charged particles together write out the sign of the Greek letter psi in the detector!

J/ψ → e+e−

ψ′ → π+π−e+e−
The Particle That Writes its Own Name!

November 1974 
Revolution

Mark I Detector

SPEAR

ψ′ → π+π−J/ψ
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Prediction and Measurement of Ω− = (sss)

35

The Hadron Spectrum SU(3)flavor

Gell Mann, 
Zweig
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u

P

P
– 

u– 

u– 

u
d

d
– 

e+

e– 

�*

What if we ask for a speci�c �nal state?

Exclusive Processes

e+e− → pp̄

Probability decreases with number of constituents!

R(e+e− → HH̄) ∝ |F (s)|2

s = (Ee+ + Ee−)2

|F (s)| ∝ [1s ]
nq−1
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Timelike Proton Form Factor

F (s) ∝ log−2 s
Λ2

s2

2

√
s =

Quark counting for 3 quarks in proton

nq - 1  = 3 - 1 = 2 
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Quark Counting Rules for 
Exclusive Processes

• Power�law fall�o� of the scattering rate re�ects 
degree of compositeness

• The more composite �� the faster the fall�o�

• Power�law counts the number of quarks and gluon
constituents

• Form factors: probability amplitude to stay intact

• FH(Q) ∝ 1
(Q2)n−1 n = # elementary constituents

Brodsky and Farrar, Phys. Rev. Lett. 31 (1973) 1153
Matveev et al., Lett. Nuovo Cimento, 7 (1973) 719 
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• Phenomenological success of dimensional scaling laws for exclusive processes

dσ/dt ∼ 1/sn−2, n = nA + nB + nC + nD,

implies QCD is a strongly coupled conformal theory at moderate but not asymptotic energies

Farrar and sjb (1973); Matveev et al. (1973).

• Derivation of counting rules for gauge theories with mass gap dual to string theories in warped space

(hard behavior instead of soft behavior characteristic of strings) Polchinski and Strassler (2001).

5 10 15 20 25 30 35

0.2

0.4

0.6

0.8

1

Q2 [GeV2]

Q4F p
1 (Q

2) [GeV4]

F1(Q2) ∼ [
1/Q2

]n−1
, n = 3

From: M. Diehl et al. Eur. Phys. J. C 39, 1 (2005).

measured in
electron-proton 

elastic scattering
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0

0.2

0.4
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0.8

0 0.5 1 1.5 2 2.5 3 3.5 4

Q2 (GeV/c)2

Q
2  F

�
 (

G
eV

/c
)2

QCD Sum Rules (Nesterenko, 1982)

pQCD (Bakulev et al, 2004)

BSE-DSE (Maris and Tandy, 2000)

Disp. Rel. (Geshkenbein, 2000)

CERN �-e scattering

DESY (Ackermann)

DESY (Brauel)

JLab (Tadevosyan)

this work

 Determination of the Charged Pion Form Factor at
 Q2=1.60 and 2.45 (GeV/c)2.
 By Fpi2 Collaboration (T. Horn et al.). Jul 2006. 4pp.  
e-Print Archive: nucl-ex/0607005

Conformal behavior: Q2Fπ(Q2) → const
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• Electron�Proton Inelastic Scattering:                       
Electron scatters on pointlike constituents with fractional
charge; 	nal�state jets

• Electron�Positron Annihilation:                                
Production of pointlike pairs with fractional charges      
and 3 colors;  quark, antiquark, gluon jets

• Exclusive hard scattering reactions:                      
probability that hadron stays intact counts number of  its 
pointlike constituents:

41

Primary Evidence for Quarks

Quark Counting Rules

e+e− → X

ep → e′X

pp → pp, γp → π+n, ep → ep
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s = E2
cmA

B

C

D

Constituent Counting Rules

dσ
dt (s, t) = F (θcm)

s[ntot−2]

FH(Q2) ∼ [ 1
Q2]

nH−1

42

Conformal symmetry and PQCD predict  leading-twist 
scaling behavior of  fixed-CM angle exclusive amplitudes

Characteristic scale of QCD: 300 MeV

Many new  J-PARC, GSI, J-Lab, Belle, Babar tests

Farrar & sjb; Matveev, Muradyan, 
Tavkhelidze

ntot = nA + nB + nC + nD

Fixed t/s or cos θcm
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s(GeV2)

dσ
dt (γp → MB) = F (θcm)

s7

s(GeV2)

Counting Rules: n=9

43
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Quark-Counting

s(Gev2)

2 3 4 6 810 20 30
I I 1111

02 K~p—--K4p -

I I I 11111
I 2 34 6810

PIOb(GeV/C)

Fi 2 1 6 K tt i t 90°i th

dσ
dt (K

+p → K+p) = F (θCM)
s8

n = 2 × 3 + 2 × 2 − 2 = 8
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Quark-Counting : dσ
dt (pp → pp) = F (θCM)

s10
n = 4 × 3 − 2 = 10

n = 9.7 ± 0.5

Best Fit

cm2

GeV2

Re�ects
underlying 
conformal 
scale�free 

interactions
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Deuteron Photodisintegratio�

PQCD and AdS/CFT:

sntot−2d�
dt (A+B→C+D) =

FA+B→C+D(�CM)

s11d�
dt (�d → np) = F(�CM)

ntot−2=
(1 + 6 + 3+ 3 ) - 2 = 11

Re�ects conformal invariance 

J�Lab

46
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• Remarkable Test of Quark Counting Rules

• Deuteron Photo�Disintegration �d � np 

•

dσ
dt = F (t/s)

sntot−2

ntot = 1 + 6 + 3 + 3 = 13

Scaling characteristic of

scale-invariant theory at short distances

Conformal symmetry

Hidden color: dσ

dt
(γd → Δ++Δ−) � dσ

dt
(γd → pn)

at high pT

47
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QCD Prediction for Deuteron Form 
Factor 

De	ne �Reduced� Form Factor

Same large momentum transfer 
behavior as pion form factor
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p + q

p

p+q
2

p+q
2

p
2

p
2

γ∗

q

∗

e
e′

Elastic electron-deuteron scattering

d

d′

De	ne �Reduced� Form Factor

fd(Q
2) ≡ Fd(Q

2)

Fp(
Q2
4 )Fn(

Q2
4 )
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0.5

0.4

0.3

0.2

0.1

0
0 1 2 3 4 5 6 7

(1
–q

2 /
m

2 0)
 F

D
(q

2 )
/F

2 N
(q

2 /
4)

–q2  (GeV2)10-2004 
2763A18

Deuteron Reduced Form Factor

� Pion Form Factor×15%

• 15
 Hidden Color in the Deuteron
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d�
dt (�d → �++�−)� d�

dt (�d → pn) at high Q2

Lepage, Ji, sjb

d�
dt

++ − d�
dt

2

• Deuteron six quark wavefunction:

•  5 color�singlet combinations of 6 color�triplets ��
one state  is �n  p>

• Components evolve towards equality at short 
distances

• Hidden color states dominate deuteron form 
factor and photodisintegration at high 
momentum transfer

• Predict

Hidden Color in QCD
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QCD Lagrangian
Generalization of QED

Yang Mills Gauge Principle: 
Color Rotation and Phase 

Invariance at Every Point of 
Space and Time 

Scale�Invariant Coupling
Renormalizable 

Nearly�Conformal
Asymptotic Freedom
Color Con	nement



     QCD
 
        Only quarks and gluons involve basic vertices: Quark-gluon vertex

More exactly

Gluon vertices

Fundamental Couplings 

colored particles couple to gluons

Similar to QED
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Truth is stranger than fiction, but it is 
because Fiction is obliged to stick to 
possibilities.        —Mark Twain

• Although we know the QCD Lagrangian, we 
have only begun to understand its remarkable 
properties and features.

• Novel QCD Phenomena: hidden color, color 
transparency, strangeness asymmetry, intrinsic 
charm, anomalous heavy quark phenomena,  
anomalous spin e�ects, single�spin 
asymmetries, odderon, di�ractive deep 
inelastic scattering, dangling gluons, 
shadowing, antishadowing, QGP, CGC, ...
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d /

logarithmic derivative 
of the QCD coupling  is negative

Coupling becomes weaker at short 
distances or high momentum transfer

β = dαs(Q2)
d lnQ2 < 0
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σ(e+e−→three jets)
σ(e+e−→two jets)

Ratio of rate for e+e− → qq̄g to e+e− → qq̄

proportional to αs(Q)

at Q = ECM = Ee− + Ee+

Verification of Asymptotic Freedom 

αs(Q) ∝ 1
lnQ
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Deur, Korsch, et al.

�
s/�

pQCD evol. eq.

�s,g1/� JLab

Cornwall

Fit

GDH limit

Godfrey-Isgur

Bloch et al.

Burkert-Ioffe

Fischer et al.

Bhagwat et al.
Maris-Tandy

Q (GeV)

Lattice QCD

10
-1

1

10
-1

1

10
-1

1 10
-1

1

DSE  gluo�
couplings
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limNC → 0 at fixed α = CFαs, n = nF/CF

P. Huet, sjb

QCD Lagrangian

Analytic limit of QCD: Abelian Gauge Theory

QCD          QED
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Given the elementary gauge theory interactions, all 
fundamental processes described in principle!

Example from QED:

Electron gyromagnetic moment � ratio of spin precession 
frequency to Larmor frequency in a magnetic 	eld 

1
2ge = 1.001 159 652 201(30)

1
2ge = 1.001 159 652 193(10)

ge accurate to 11 figures!

QED prediction  �Kinoshita, et al.�

Measurement �Dehmelt, et al.�

Dirac:  ge ≡ 2

1
2
ge = 1.001 159 652 180 85 [0.76 ppt]

Measurement �Gabrielse, et al.�
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��1 � 137:035 999 710 �90� �33� �0:66 ppb��0:24 ppb�;
� 137:035 999 710 �96� �0:70 ppb�: (

QED provides an asymptotic series relating g and �,
 

g
2
� 1� C2

�
�
�

�
� C4

�
�
�

�
2 � C6

�
�
�

�
3 � C8

�
�
�

�
4 � . . .

� a�� � ahadronic � aweak; (6)

] G. Gabrielse, D. Hanneke, T. Kinoshita, M. Nio, and
B. Odom, Phys. Rev. Lett. 97, 030802 (2006).

Light-by-Light Scattering 
Contribution to C6

e
Aldins, Dufner, Kinoshita, sjb
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QED:   Underlies Atomic Physics, Molecular Physics, 
Chemistry, Electromagnetic Interactions  ...

QCD:   Underlies Hadron Physics, Nuclear Physics, 
Strong Interactions,  Jets

• Feynman diagrams and perturbation theory

• Bethe Salpeter Equation, Dyson�Schwinger Equations 

• Lattice Gauge Theory, Discretized Light�Front 
Quantization

• AdS/CFT !

Theoretical Tools
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Other High-Precision 
Atomic Physics Tests of QED

• Lamb Shift in Hydrogen

• Hyper	ne splitting of muonium and hydrogen 

• Muonic atom spectroscopy

• Positronium lifetime

All Accurate to sub�ppm
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Dirac’s Amazing 
Idea:

The “Front Form”

Instant Form Front Form 

τ = t + z/cσ = ct − z

Evolve in 
light�front time



Each element of 
flash photograph  

illuminated  
at same LF time

τ = t+ z/c

Eigenstate -- independent of τ

Evolve in LF time

P− = i
d

dτ

Causally-Connected Domains


