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Deuteron Photodisintegratio�

PQCD and AdS/CFT:

sntot−2d�
dt (A+B→C+D) =

FA+B→C+D(�CM)

s11d�
dt (�d → np) = F(�CM)

ntot−2=
(1 + 6 + 3+ 3 ) - 2 = 11

Re�ects conformal invariance 

J�Lab
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• Remarkable Test of Quark Counting Rules

• Deuteron Photo�Disintegration �d � np 

•

dσ
dt = F (t/s)

sntot−2

ntot = 1 + 6 + 3 + 3 = 13

Scaling characteristic of

scale-invariant theory at short distances

Conformal symmetry

Hidden color: dσ

dt
(γd → Δ++Δ−) � dσ

dt
(γd → pn)

at high pT
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QCD Prediction for Deuteron Form 
Factor 

De	ne �Reduced� Form Factor

Same large momentum transfer 
behavior as pion form factor
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p + q
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p+q
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p+q
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p
2

p
2

γ∗

q

∗

e
e′

Elastic electron-deuteron scattering

d

d′

De	ne �Reduced� Form Factor

fd(Q
2) ≡ Fd(Q

2)

Fp(
Q2
4 )Fn(

Q2
4 )
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Deuteron Reduced Form Factor

� Pion Form Factor×15%

• 15
 Hidden Color in the Deuteron
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d�
dt (�d → �++�−)� d�

dt (�d → pn) at high Q2

Lepage, Ji, sjb

d�
dt

++ − d�
dt

2

• Deuteron six quark wavefunction:

•  5 color�singlet combinations of 6 color�triplets ��
one state  is �n  p>

• Components evolve towards equality at short 
distances

• Hidden color states dominate deuteron form 
factor and photodisintegration at high 
momentum transfer

• Predict

Hidden Color in QCD
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QCD Lagrangian
Generalization of QED

Yang Mills Gauge Principle: 
Color Rotation and Phase 

Invariance at Every Point of 
Space and Time 

Scale�Invariant Coupling
Renormalizable 

Nearly�Conformal
Asymptotic Freedom
Color Con	nement

50



     QCD
 
        Only quarks and gluons involve basic vertices: Quark-gluon vertex

More exactly

Gluon vertices

Fundamental Couplings 

colored particles couple to gluons

Similar to QED
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Truth is stranger than fiction, but it is 
because Fiction is obliged to stick to 
possibilities.        —Mark Twain

• Although we know the QCD Lagrangian, we 
have only begun to understand its remarkable 
properties and features.

• Novel QCD Phenomena: hidden color, color 
transparency, strangeness asymmetry, intrinsic 
charm, anomalous heavy quark phenomena,  
anomalous spin e�ects, single�spin 
asymmetries, odderon, di�ractive deep 
inelastic scattering, dangling gluons, 
shadowing, antishadowing, QGP, CGC, ...

52



Stan Brodsky,  SLAC
AdS/QCDSUNY  Stony Brook

February 5, 2008 53

AdS/QCD

logarithmic derivative 
of the QCD coupling  is negative

Coupling becomes weaker at short 
distances or high momentum transfer

β = dαs(Q2)
d lnQ2 < 0

53



Stan Brodsky,  SLAC
AdS/QCDSUNY  Stony Brook

February 5, 2008 54

σ(e+e−→three jets)
σ(e+e−→two jets)

Ratio of rate for e+e− → qq̄g to e+e− → qq̄

proportional to αs(Q)

at Q = ECM = Ee− + Ee+

Verification of Asymptotic Freedom 

αs(Q) ∝ 1
lnQ
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Conformal QCD Window in Exclusive Processes

• Does αs develop an IR fixed point? Dyson–Schwinger Equation Alkofer, Fischer, LLanes-Estrada,

Deur . . .

• Recent lattice simulations: evidence that αs becomes constant and is not small in the infrared

Furui and Nakajima, hep-lat/0612009 (Green dashed curve: DSE).
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• PQCD predicts log corrections from powers of �s, 
logs, pinch contributions  Lepage, sjb; Efremov, 
Radyushkin; Landsho�; Mueller, Duncan

• DSE: QCD ggg coupling  �mom scheme� has IR
Fixed point       Alkofer, Fischer, von Smekal et al.

• Lattice  results show similar �at behavior

• PQCD exclusive amplitudes dominated by 
integration regime where �s   is large and �at

Why do dimensional counting 
rules work so well?

Furui, Nakajima
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Ga
μν = ∂μAa

ν − ∂νAa
μ + gfabcAb

μ

[Ta, T b] = fabcT c

QED : T = 1, f = 0

ψ : charged leptons

QCD : Ta = 3 × 3 traceless matrices

ψ : quarks − color triplets

Electroweak : Ta = 2 × 2 traceless matrices

ψ : chiral fermion doublets

Fundamental Interactions of QED, QCD, and

Weak Interactions –

All derived from the Yang-Mills Lagrangian

L = ψ(iγμDμ − m)ψ − 1

4
Ga

μνGμνa

Dμ = ∂μ + igTaAa
μ
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limNC → 0 at fixed α = CFαs, n� = nF/CF

P. Huet, sjb

QCD Lagrangian

Analytic limit of QCD: Abelian Gauge Theory

QCD          QED
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QED:   Underlies Atomic Physics, Molecular Physics,
Chemistry, Electromagnetic Interactions  ...

QCD:   Underlies Hadron Physics, Nuclear Physics,  
Strong Interactions,  Jets

• Feynman diagrams and perturbation theory

• Bethe Salpeter Equation, Dyson�Schwinger Equations 

• Lattice Gauge Theory, Discretized Light�Front 
Quantization

• AdS/CFT !

Theoretical Tools
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Given the elementary gauge theory interactions, all 
fundamental processes described in principle!

Example from QED:

Electron gyromagnetic moment � ratio of spin precession 
frequency to Larmor frequency in a magnetic 	eld 

1
2ge = 1.001 159 652 201(30)

1
2ge = 1.001 159 652 193(10)

ge accurate to 11 figures!

QED prediction  �Kinoshita, et al.�

Measurement �Dehmelt, et al.�

Dirac:  ge ≡ 2

1
2
ge = 1.001 159 652 180 85 [0.76 ppt]

Measurement �Gabrielse, et al.�
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��1 � 137:035 999 710 �90� �33� �0:66 ppb��0:24 ppb�;
� 137:035 999 710 �96� �0:70 ppb�: (

QED provides an asymptotic series relating g and �,
 

g
2
� 1� C2

�
�
�

�
� C4

�
�
�

�
2 � C6

�
�
�

�
3 � C8

�
�
�

�
4 � . . .

� a�� � ahadronic � aweak; (6)

] G. Gabrielse, D. Hanneke, T. Kinoshita, M. Nio, and
B. Odom, Phys. Rev. Lett. 97, 030802 (2006).

Light-by-Light Scattering 
Contribution to C6

e

B
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Other High-Precision 
Atomic Physics Tests of QED

• Lamb Shift in Hydrogen

• Hyper	ne splitting of muonium and hydrogen 

• Muonic Atom spectroscopy

• Positronium Lifetime

All Accurate to subppm
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Dirac’s Amazing 
Idea:

The “Front Form”

Instant Form Front Form 

τ = t + z/cσ = ct − z

Evolve in 
light�cone time
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∑n
i xi = 1

∑n
i

�k⊥i = �0⊥

Ψn(xi,�k⊥i, λi)

xiP
+, xi

�P⊥ + �k⊥i

P+, �P⊥

x

Light�Front Wavefunctions

P+ = P0 + Pz
Fixed τ = t + z/c

Invariant under boosts!  Independent of Pμ 
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‘Tis a mistake / Time flies not
It only hovers on the wing

Once born the moment dies not
‘tis an immortal thing

Montgomery
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J z =
n∑

i=1

sz
i +

n−1∑

j=1

lzj . Conserved 
LF Fock state by Fock State

p
lzj = −i

(
k1
j

∂

∂k2
j

− k2
j

∂

∂k1
j

)

i h bi l l

n�1 orbital angular momenta

Angular Momentum on the Light-Front

A+=0 gauge: No unphysical degrees of freedom

Nonzero Anomalous Moment requires
Nonzero orbital angular momentu�
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Light Front Wavefunctions

67



Stan Brodsky,  SLAC
AdS/QCDSUNY  Stony Brook

February 5, 2008 68

Quantum Mechanics: Uncertainty in  p, x, spin

Relativistic Quantum Field Theory: 
Uncertainty in particle number n

Positronium n=2

Lamb Shift n=3

Hyper�ne splitting n=3

Vacuum Polarization n=4

e+e−e+e−
e+e−γ

e+e− e+e−γ
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nn

|p,Sz >=�
n=3

�n(xi,�k⊥i,�i)|n;�k⊥i,�i >

The Light Front Fock State Wavefunctions

�n(xi,�k⊥i,�i)

are boost invariant; they are independent of the hadron’s energy
and momentum Pμ.

The light-cone momentum fraction

xi =
k+i
p+
=

k0
i + kz

i

P0+Pz

are boost invariant.

n

�
i

k+i = P+,
n

�
i

xi = 1,
n

�
i

�k⊥i =�0⊥.

sum over states with n=3, 4, ...constituents

Fixed LF time

69

Intrinsic heavy quarks,    s̄(x) �= s(x)

ū(x) �= d̄(x)
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∑n
i xi = 1

∑n
i

�k⊥i = �0⊥

Ψn(xi,�k⊥i, λi)

xiP
+, xi

�P⊥ + �k⊥i

P+, �P⊥

x

P+ = P0 + Pz
Fixed τ = t + z/c

Invariant under boosts!  Independent of P
�

70

Light�Front Wavefunctions:  rigorous representation of 
composite systems in quantum �eld theory
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�(x,k⊥)

HQCD
LF |�>=M2|�>

Dirac’s Front Form: Fixed �= t+ z/c

Light-Front Wavefunctions

Invariant under boosts.   Independent of P�
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x =
k+

P+
=

k0 + k3

P 0 + P 3

Heisenberg Matrix Equation
for QCD

71



H
QCD
LC |Ψh〉 = M2

h |Ψh〉
Heisenberg Matrix 

Formulation

Light�Front QCD

Hans Christian Pauli  & sjb

DLCQ
Discretized Light�Cone 

Quantization

Eigenvalues and Eigensolutions give Hadron 
Spectrum and Light�Front wavefunctions

72



SUNY  Stony Brook
February 5, 2008

Stan Brodsky,  SLAC
AdS/QCD

73

New Perspectives in QCD from 
AdS/CFT

• Need to understand QCD at the Amplitude 
Level:  Hadron wavefunctions!

• Remarkable new insights from AdS/CFT, the 
duality between conformal 	eld theory and  
Anti�de Sitter Space

73



• Use AdS/CFT to provide an 
approximate, covariant, and 
analytic model of hadron structure
with con�nement at large 
distances, conformal behavior at 
short distances

• Analogous to the Schrodinger 
Equation for Atomic Physics

• AdS/QCD Holographic Model

Goal:
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New Way to Solve QCD:
AdS/CFT

• Maldacena Correspondence

• Mathematical Representation of Lorentz 
Invariant and Conformal  �Scale�Free� Theories

• Add new 5th space dimension to 3+1 space�time

• Holographic Model with Color Con	nement and 
Quark Counting Rules de Teramond, sjb
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Mμν,Pμ,D,Kμ,

Conformal Theories are invariant under the 
Poincare and conformal transformations with  

the generators of SO(4,2)

SO�4,2�  has a mathematical representation on AdS5
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5-Dimensional
A nti-de Sitter

Spacetime

4-Dimensional
F lat Spacetime

(hologram)

B lack Hole

z0 = 1/ΛQCD

z
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5-Dimensional
A nti-de Sitter

Spacetime

4-Dimensional
F lat Spacetime

(hologram)

B lack Hole

z0 = 1/ΛQCD

z

82

Truncated AdS Space

z
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Scale Transformations

• Isomorphism of SO(4, 2) of conformal QCD with the group of isometries of AdS space

SO(1, 5)

ds2 =
R2

z2
(ημνdxμdxν − dz2),

xμ → λxμ, z → λz, maps scale transformations into the holographic coordinate z.

• AdS mode in z is the extension of the hadron wf into the fifth dimension.

• Different values of z correspond to different scales at which the hadron is examined.

x2 → λ2x2, z → λz.

x2 = xμxμ: invariant separation between quarks

• The AdS boundary at z → 0 correspond to the Q→∞, UV zero separation limit.

83

invariant measure
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We will consider both holographic models 

• Truncated AdS/CFT (Hard-Wall) model: cut-off at z0 = 1/ΛQCD breaks conformal invariance and

allows the introduction of the QCD scale (Hard-Wall Model) Polchinski and Strassler (2001).

• Smooth cutoff: introduction of a background dilaton field ϕ(z) – usual linear Regge dependence can

be obtained (Soft-Wall Model) Karch, Katz, Son and Stephanov (2006).
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• Polchinski & Strassler: AdS/CFT  builds in 
conformal symmetry at short distances, counting,
rules for form factors and hard exclusive 
processes; non�perturbative derivation

• Goal: Use AdS/CFT to provide models of hadron 
structure: con	nement at large distances, near 
conformal behavior at short distances

• Holographic Model: Initial �classical�
approximation to QCD: Remarkable agreement 
with light hadron spectroscopy

• Use AdS/CFT wavefunctions as expansion basis 
for diagonalizing HLFQCD ; variational methods

85

Guy de Teramond, sjb
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• Use mapping of conformal group SO�4,2� to AdS5

• Scale Transformations represented by wavefunction 
in 5th dimension

• Holographic model: Con	nement at large distances 
and conformal symmetry in interior

• Match solutions at small z to conformal dimension of 
hadron wavefunction at short distances

• Truncated space simulates �bag� boundary conditions

Guy de Teramond
SJB 

ψ(z) ∼ zΔ at z → 0

ψ(z0) = 0

0 < z < z0

z0 = 1
ΛQCD

x2
μ → λ2x2

μ z → λz

ψ(z)

AdS/CFT

86
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AdS Schrodinger Equation for bound state 
of  two scalar constituents

[ − d2

dz2 + V(z)]φ(z) = M2φ(z)

V(z) = −1−4L2

4z2

Φ(z) = z3/2φ(z)

Derived from variation of Action in AdS5

φ(z = z0 = 1
Λc

) = 0.

Truncated space

V(z) = −1−4L2

4z2 + κ4z2

Alternative: Harmonic osci�ator  con�nemen�

Karch, et al.
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