Deuteron Photodisintegratio-

PQCD and AdS/CFT: $s^{n_{tot}-2}\frac{d\sigma}{dt}(A+B\rightarrow C+D) =$ $F_{A+B\rightarrow C+D}(\theta_{CM})$

J-Lab

$$
s^{11}\frac{d\sigma}{dt}(\gamma d \to np) = F(\theta_{CM})
$$

$$
n_{tot} - 2 = (1 + 6 + 3 + 3) - 2 = 11
$$

Reflects conformal invariance

- Remarkable Test of Quark Counting Rules
- Deuteron Photo-Disintegration $\gamma d \rightarrow np$

$$
\frac{d\sigma}{dt} = \frac{F(t/s)}{s^n \tau^2}
$$

•
$$
n_{tot} = 1 + 6 + 3 + 3 = 13
$$

Scaling characteristic of scale-invariant theory at short distances

Conformal symmetry

Hidden color:
$$
\frac{d\sigma}{dt}(\gamma d \to \Delta^{++} \Delta^{-}) \simeq \frac{d\sigma}{dt}(\gamma d \to pn)
$$

at high p_T

SUNY Stony Brook *AdS/QCD*
February 5, 2008 **Ads** *Ads Ads Ads*

45

QCD Prediction for Deuteron Form Factor

$$
F_d(Q^2) = \left[\frac{\alpha_s(Q^2)}{Q^2}\right]^5 \sum_{m,n} d_{mn} \left(\ln \frac{Q^2}{\Lambda^2}\right)^{-\gamma_n^d - \gamma_m^d} \left[1 + O\left(\alpha_s(Q^2), \frac{m}{Q}\right)\right]
$$

Define "Reduced" Form Factor

$$
f_d(Q^2) \equiv \frac{F_d(Q^2)}{F_N^2(Q^2/4)} \; .
$$

Same large momentum transfer behavior as pion form factor

$$
f_d(Q^2) \sim \frac{\alpha_s(Q^2)}{Q^2} \left(\ln \frac{Q^2}{\Lambda^2} \right)^{-(2/5) C_F/\beta}
$$

6.0 $f_d (Q^2)$ ($\times 10^{-2}$) .
A= 100 MeV (a) 4.0 IO MeV GeV- 2.0 0 $\Lambda = 100$ MeV (b) $\left.\left.+\left(\frac{\mathsf{Q}^2}{\mathsf{m}_0^2}\right)\right.\right| \left.\left.\left.\mathsf{f}_{\mathsf{d}}(\mathsf{Q}^2)\right.\right.$ O MeV $O.2$ \circ \overline{c} \circ 3 5 4 6 Q^2 $(GeV²)$

FIG. 2. (a) Comparison of the asymptotic QCD prediction $f_d(Q^2) \propto (1/Q^2) [\ln (Q^2/\Lambda^2)]^{-1-(2/\pi)C_F/8}$ with final data of Ref. 10 for the reduced deuteron form factor. where $F_N(Q^2) = [1 + Q^2/(0.71 \text{ GeV}^2)]^{-2}$. The normalization is fixed at the $Q^2 = 4 \text{ GeV}^2$ data point. (b) Compari-**SUNY Stony Brook** $A U X / Q U D$ Δ^{2} Δ^{2}

Elastic electron-deuteron scattering

SUNY Stony Brook *AdS/QCD* Stan Brodsky, SLAC
February 5, 2008 47

• 15% Hidden Color in the Deuteron

SUNY Stony Brook *AdS/QCD*
February 5, 2008 **48** 48

Lepage, Ji, sjb Hidden Color in QCD

- Deuteron six quark wavefunction:
- 5 color-singlet combinations of 6 color-triplets one state is $|n p$
- Components evolve towards equality at short distances
- Hidden color states dominate deuteron form factor and photodisintegration at high momentum transfer

 $\frac{d\sigma}{dt}(\gamma d \to \Delta^{++} \Delta^{-}) \simeq \frac{d\sigma}{dt}(\gamma d \to pn)$ at high Q^2 • Predict $\frac{d\sigma}{dt}(\gamma d \to \Delta^{++} \Delta^{-}) \simeq \frac{d\sigma}{dt}$

SUNY Stony Brook AdS/QCD **Stan Brodsky, SLAC**

February 5, 2008 49

QCD Lagrangian

Generalization of QED

Yang Mills Gauge Principle: Color Rotation and Phase Invariance at Every Point of Space and Time

Scale-Invariant Coupling Renormalizable Nearly-Conformal Asymptotic Freedom Color Confinement

SUNY Stony Brook *AdS/QCD*
February 5, 2008 50 50

Fundamental Couplings

QCD

Only quarks and gluons involve basic vertices: Quark-gluon vertex

- Although we know the QCD Lagrangian, we have only begun to understand its remarkable properties and features.
- Novel QCD Phenomena: hidden color, color transparency, strangeness asymmetry, intrinsic charm, anomalous heavy quark phenomena, anomalous spin effects, single-spin asymmetries, odderon, diffractive deep inelastic scattering, dangling gluons, shadowing, antishadowing, QGP, CGC, ...

Truth is stranger than fiction, but it is because Fiction is obliged to stick to possibilities. —Mark Twain

SUNY Stony Brook *AdS/QCD*
February 5, 2008 52

Verification of Asymptotic Freedom

Ratio of rate for $e^+e^-\rightarrow q\overline{q}g$ to $e^+e^-\rightarrow q\overline{q} \quad$ at $Q=E_{CM}=E_{e^-}+E_{e^+}$

SUNY Stony Brook *AdS/QCD*
February 5, 2008 54

Conformal QCD Window in Exclusive Processes

- \bullet \bullet Does α_s develop an IR fixed point? Dyson–Schwinger Equation Alkofer, Fischer, LLanes-Estrada, Deur . . .
- $\bullet\,$ Recent lattice simulations: evidence that α_s becomes constant and is not small in the infrared Furui and Nakajima, hep-lat/0612009 (Green dashed curve: DSE).

Why do dimensional counting rules work so well?

- PQCD predicts log corrections from powers of α_s , logs, pinch contributions Lepage, sjb; Efremov, Radyushkin; Landshoff; Mueller, Duncan
- DSE: QCD ggg coupling (mom scheme) has IR Fixed point Alkofer, Fischer, von Smekal et al.
- \bullet Lattice results show similar flat behavior Furui, Nakajima
- \bullet PQCD exclusive amplitudes dominated by integration regime where $\boldsymbol{\alpha}_{\rm s}\,$ **is large and flat**

SUNY Stony Brook *AdS/QCD*
February 5, 2008 **6** 56

56

Fundamental Interactions of QED, QCD, and Weak Interactions –

All derived from the Yang-Mills Lagrangian

$$
\mathcal{L} = \overline{\psi}(i\gamma^{\mu}D_{\mu} - m)\psi - \frac{1}{4}G^{a}_{\mu\nu}G^{\mu\nu a}
$$

$$
G^{a}_{\mu\nu} = \partial_{\mu}A^{a}_{\nu} - \partial_{\nu}A^{a}_{\mu} + gf^{abc}A^{b}_{\mu}
$$

$$
D_{\mu} = \partial_{\mu} + igT^{a} A_{\mu}^{a} \qquad [T^{a}, T^{b}] = f^{abc} T^{c}
$$

 $QED: T = 1, f = 0$ $QCD: T^a = 3 \times 3$ traceless matrices

 ψ : charged leptons ψ : quarks – color triplets

 $Electroweak$: $T^a=2\times 2$ traceless matrices

 ψ : chiral fermion doublets

SUNY Stony Brook *AdS/QCD*
February 5, 2008 57

QCD Lagrangian

lim $N_C \rightarrow 0$ at fixed $\alpha = C_F \alpha_s, n_\ell = n_F/C_F$

Analytic limit of QCD: Abelian Gauge Theory

$$
QCD \longrightarrow QED
$$

P. Huet, sjb

SUNY Stony Brook *AdS/QCD*
February 5, 2008 58 58

QED: Underlies Atomic Physics, Molecular Physics, Chemistry, Electromagnetic Interactions ...

QCD: Underlies Hadron Physics, Nuclear Physics, Strong Interactions, Jets

Theoretical Tools

- Feynman diagrams and perturbation theory
- Bethe Salpeter Equation, Dyson-Schwinger Equations
- Lattice Gauge Theory, Discretized Light-Front Quantization
- AdS/CFT !

SUNY Stony Brook AdS/QCD **Suny Stan Brodsky, SLAC**
February 5, 2008 59

Given the elementary gauge theory interactions, all fundamental processes described in principle!

Example from QED:

Electron gyromagnetic moment - ratio of spin precession frequency to Larmor frequency in a magnetic field

$$
\frac{1}{2}g_e = 1.001 \ 159 \ 652 \ 201(30) \qquad \text{QED prediction (Kinoshita, et al.)}
$$
\n
$$
\frac{1}{2}g_e = 1.001 \ 159 \ 652 \ 193(10) \qquad \text{Measurement (Dehmelt, et al.)}
$$
\n
$$
\frac{1}{2}g_e = 1.001 \ 159 \ 652 \ 180 \ 85 \ [0.76 \ ppt]
$$
\n
$$
\text{DWAC:} \quad g_e \equiv 2 \qquad \text{Measurement (Gabrielse, et al.)}
$$
\n
$$
\text{SUNY Stony Brook} \qquad \text{AdS/QCD} \qquad \text{Stan Brodsky, SLAC}
$$

QED provides an asymptotic series relating g and α ,

$$
\frac{g}{2} = 1 + C_2 \left(\frac{\alpha}{\pi}\right) + C_4 \left(\frac{\alpha}{\pi}\right)^2 + C_6 \left(\frac{\alpha}{\pi}\right)^3 + C_8 \left(\frac{\alpha}{\pi}\right)^4 + \dots
$$

+ $a_{\mu\tau}$ + a_{hadronic} + a_{weak} ,

Light-by-Light Scattering Contribution to C6

$$
\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \left(\sum_{i=1}^{n} \frac{1}{n} \right)^2
$$

B

 α -1 \equiv $= 137.035999710(90)(33)$ [0.66 ppb][0.24 ppb], \equiv $= 137.035999710(96)$ [0.70 ppb].

] G. Gabrielse, D. Hanneke, T. Kinoshita, M. Nio, and B. Odom, Phys. Rev. Lett. **97**, 030802 (2006).

SUNY Stony Brook *AdS/QCD*
February 5, 2008 **61** 61

Other High-Precision Atomic Physics Tests of QED

- Lamb Shift in Hydrogen
- Hyperfine splitting of muonium and hydrogen
- Muonic Atom spectroscopy
- Positronium Lifetime

All Accurate to subppm

SUNY Stony Brook AdS/QCD Stan Brodsky, SLAC
February 5, 2008 62

Dirac's Amazing Idea: The "Front Form"

Evolve in light-cone time

Light-Front Wavefunctions

Invariant under boosts! Independent of P^{μ}

SUNY Stony Brook *AdS/QCD*
February 5, 2008 **64** 64

'Tis a mistake / Time flies not It only hovers on the wing Once born the moment dies not 'tis an immortal thing

Montgomery

SUNY Stony Brook *AdS/QCD*
February 5, 2008 65

Angular Momentum on the Light-Front

A⁺=0 gauge: No unphysical degrees of freedom

Conserved
LF Fock state by Fock State

$$
l_j^z = -\mathrm{i}\left(k_j^1 \frac{\partial}{\partial k_j^2} - k_j^2 \frac{\partial}{\partial k_j^1}\right)
$$

n-1 orbital angular momenta

i h bi dhexara Anamalays *Nonzero Anomalous Moment requires Nonzero orbital angular momentu*

SUNY Stony Brook *AdS/QCD*
February 5, 2008 **66** 66

A Unified Description of Hadron Structure

Quantum Mechanics: Uncertainty in p, x, spin

Relativistic Quantum Field Theory: Uncertainty in particle number n

 $|p,S_z\rangle = \sum$ *ⁿ*=3 $\Psi_n(x_i,$ \rightarrow *^k*[⊥]*i*,*i*)|*n*; \rightarrow k_{\perp_i}, λ_i $>$

sum over states with n=3, 4, ...constituents

The Light Front Fock State Wavefunctions

$$
\Psi_n(x_i,\vec{k}_{\perp i},\lambda_i)
$$

are boost invariant; they are independent of the hadron's energy and momentum *Pμ*.

The light-cone momentum fraction

$$
x_i = \frac{k_i^+}{p^+} = \frac{k_i^0 + k_i^z}{P^0 + P^z}
$$

are boost invariant.

$$
\sum_{i}^{n} k_{i}^{+} = P^{+}, \ \sum_{i}^{n} x_{i} = 1, \ \sum_{i}^{n} \vec{k}_{i}^{\perp} = \vec{0}^{\perp}.
$$

Intrinsic heavy quarks,

$$
\overline{s}(x) \neq s(x)
$$

$$
\overline{u}(x) \neq \overline{d}(x)
$$

$$
dS/QCD
$$

69

SUNY Stony Brook *AdS/QCD*
February 5, 2008 **69** Stan Brodsky, SLAC

Fixed LF time

Light-Front Wavefunctions: rigorous representation of composite systems in quantum field theory

SUNY Stony Brook *AdS/QCD*
February 5, 2008 *7*0

Light-Front Wavefunctions

Dirac's Front Form: Fixed $\tau = t + z/c$

$$
\psi(x, k_{\perp}) = \frac{k^+}{P^+} = \frac{k^0 + k^3}{P^0 + P^3}
$$

Invariant under boosts. Independent of P

$$
{\rm H}^{QCD}_{LF}|\psi>=M^2|\psi>
$$

Heisenberg Matrix Equation for QCD

SUNY Stony Brook *AdS/QCD*
February 5, 2008 **AdS/QCD** Stan Brodsky, SLAC

Light-Front QCD

Heisenberg Matrix $H_{LC}^{QCD}|\Psi_h\rangle = \mathcal{M}_h^2 |\Psi_h\rangle$

Formulation

DLCQ

Eigenvalues and Eigensolutions give Hadron Spectrum and Light-Front wavefunctions

Hans Christian Pauli & sjb

New Perspectives in QCD from AdS/CFT

- Need to understand QCD at the Amplitude Level: Hadron wavefunctions!
- Remarkable new insights from AdS/CFT, the duality between conformal field theory and Anti-de Sitter Space

SUNY Stony Brook AdS/QCD Stan Brodsky, SLAC
February 5, 2008 73

Goal:

- Use AdS/CFT to provide an approximate, covariant, and analytic model of hadron structure with confinement at large distances, conformal behavior at short distances
- Analogous to the Schrodinger Equation for Atomic Physics
- \bullet *AdS/QCD Holographic Model*

New Way to Solve QCD: AdS/CFT

- Maldacena Correspondence
- Mathematical Representation of Lorentz Invariant and Conformal (Scale-Free) Theories
- Add new 5th space dimension to 3+1 space-time
- Holographic Model with Color Confinement and Quark Counting Rules de Teramond, sjb

SUNY Stony Brook AdS/QCD Stan Brodsky, SLAC
February 5, 2008 75

Conformal Theories are invariant under the Poincare and conformal transformations with

 $\mathbf{M}^{\mu\nu}, \mathbf{P}^{\mu}, \mathbf{D}, \mathbf{K}^{\mu},$

the generators of SO(4,2)

 $SO(4,2)$ has a mathematical representation on AdS5

SUNY Stony Brook *AdS/QCD* Stan Brodsky, SLAC
February 5, 2008 77

SUNY Stony Brook *AdS/QCD* Stan Brodsky, SLAC
February 5, 2008 **82**

82

Scale Transformations

• Isomorphism of $SO(4,2)$ of conformal QCD with the group of isometries of AdS space

$$
ds^{2} = \frac{R^{2}}{z^{2}}(\eta_{\mu\nu}dx^{\mu}dx^{\nu} - dz^{2}),
$$
 invariant measure

 $x^\mu \rightarrow \lambda x^\mu,~ z \rightarrow \lambda z$, maps scale transformations into the holographic coordinate $z.$

- AdS mode in z is the extension of the hadron wf into the fifth dimension.
- Different values of z correspond to different scales at which the hadron is examined.

$$
x^2 \to \lambda^2 x^2, \quad z \to \lambda z.
$$

 $x^2=x_\mu x^\mu$: invariant separation between quarks

• The AdS boundary at $z\to 0$ correspond to the $Q\to \infty$, UV zero separation limit.

SUNY Stony Brook *AdS/QCD*
February 5, 2008 **83**

83

- $\bullet\,$ Truncated AdS/CFT (Hard-Wall) model: cut-off at $z_0\,=\,1/\Lambda_{\rm QCD}$ breaks conformal invariance and allows the introduction of the QCD scale (Hard-Wall Model) Polchinski and Strassler (2001).
- $\bullet\,$ Smooth cutoff: introduction of a background dilaton field $\varphi(z)$ usual linear Regge dependence can be obtained (Soft-Wall Model) Karch, Katz, Son and Stephanov (2006).

We will consider both holographic models

SUNY Stony Brook *AdS/QCD*
February 5, 2008 84

- Polchinski & Strassler: AdS/CFT builds in conformal symmetry at short distances, counting, rules for form factors and hard exclusive processes; non-perturbative derivation
- Goal: Use AdS/CFT to provide models of hadron structure: confinement at large distances, near conformal behavior at short distances
- Holographic Model: Initial "classical" approximation to QCD: Remarkable agreement with light hadron spectroscopy Guy de Teramond, sjb
- Use AdS/CFT wavefunctions as expansion basis for diagonalizing H^{LF}_{QCD} ; variational methods

SUNY Stony Brook AdS/QCD Stan Brodsky, SLAC
February 5, 2008 85

85

AdS/CFT

- Use mapping of conformal group $SO(4,2)$ to AdS_5
- Scale Transformations represented by wavefunction $\psi(z)$ in 5th dimension $x_{\mu}^2 \rightarrow \lambda^2 x_{\mu}^2$ $z \rightarrow \lambda z$
- Holographic model: Confinement at large distances and conformal symmetry in interior $\qquad 0 < z < z_0$
- Match solutions at small z to conformal dimension of hadron wavefunction at short distances $\psi(z) \sim z^{\Delta}$ at $z \to 0$

86

• Truncated space simulates "bag" boundary conditions

$$
\psi(z_0) = 0 \qquad z_0 = \frac{1}{\Lambda_{QCD}}
$$

SUNY Stony Brook AdS/QCD Stan Brodsky, SLAC
February 5, 2008 86

Guy de Teramond **SJB**

 $\Phi(z) = z^{3/2}\phi(z)$

AdS Schrodinger Equation for bound state of two scalar constituents

$$
[-\frac{\mathrm{d}^2}{\mathrm{d}z^2} + \mathrm{V}(z)]\phi(z) = \mathrm{M}^2\phi(z)
$$

Truncated space

$$
\mathrm{V(z)}=-\tfrac{1-4\mathrm{L}^2}{4\mathrm{z}^2}
$$

$$
\phi(\mathbf{z} = \mathbf{z}_0 = \frac{1}{\Lambda_c}) = 0.
$$

Alternative: Harmonic oscillator confinement.

$$
V(z) = -\frac{1-4L^2}{4z^2} + \kappa^4 z^2
$$
 Karch, et al.

Derived from variation of Action in AdS5

SUNY Stony Brook *AdS/QCD*
February 5, 2008 87