Light-Front Holography and AdS/QCD: A New Approximation to QCD

SCGT09

 2009 Nagoya Global COE Workshop "Strong Coupling Gauge Theories in LHC Era" Stan Brodsky

December 9, 2009 Dec

Light-Front Holography and Non-Perturbative QCD

Goal: Use AdS/QCD duality to construct a first approximation to QCD

Hadron Spectrum Light-Front Wavefunctions, Form Factors, DVCS, etc

in collaboration with Guy de Teramond

Central problem for strongly-coupled gauge theories

SCGT SCGT
December 8, 2009 AdS/QCD and LF Holography Stan Brodsky

Need a First Approximation to QCD

Comparable in simplicity to Schrödinger Theory in Atomic Physics

Relativistic, Frame-Independent, Color-Confining

SCGT SCGT
December 8, 2009 AdS/QCD and LF Holography Stan Brodsky
3

$$
(H_{LF}^{0} + H_{LF}^{I})|\Psi\rangle = M^{2}|\Psi\rangle
$$
\n
$$
(H_{LF}^{0} + H_{LF}^{I})|\Psi\rangle = M^{2}|\Psi\rangle
$$
\n
$$
\left[\frac{\vec{k}_{\perp}^{2} + m^{2}}{x(1-x)} + V_{\text{eff}}^{LF}\right] \psi_{LF}(x, \vec{k}_{\perp}) = M^{2} \psi_{LF}(x, \vec{k}_{\perp})
$$
\n
$$
\text{Effective two-particle equation}
$$
\n
$$
\zeta^{2} = x(1-x)b_{\perp}^{2}
$$
\n
$$
\left[-\frac{d^{2}}{d\zeta^{2}} + \frac{-1 + 4L^{2}}{\zeta^{2}} + U(\zeta, S, L)\right] \psi_{LF}(\zeta) = M^{2} \psi_{LF}(\zeta)
$$
\n
$$
Azimuthal Basis \quad \zeta, \phi
$$

$$
U(\zeta, S, L) = \kappa^2 \zeta^2 + \kappa^2 (L + S - 1/2)
$$

Semíclassical first approximation to QCD

Confining AdS/QCD potential

P.A.M Dirac, Rev. Mod. Phys. 21, 392 (1949)

Dirac's Amazing Idea: The Front Form

Each element of flash photograph illuminated at same Light Front time

 $\tau=t+z/c$

Evolve in LF time

$$
P^- = i\frac{d}{d\tau}
$$

DIS, Form Factors, DVCS, etc. measure proton WF at fixed

$$
\tau=t+z/c
$$

• QCD Lagrangian

$$
\mathcal{L}_{\text{QCD}} = -\frac{1}{4g^2} \text{Tr} \left(G^{\mu\nu} G_{\mu\nu} \right) + i \overline{\psi} D_{\mu} \gamma^{\mu} \psi + m \overline{\psi} \psi
$$

 \bullet LF Momentum Generators $P = (P^+, P^-, \mathbf{P}_\perp)$ in terms of dynamical fields ψ , \mathbf{A}_\perp

$$
P^{-} = \frac{1}{2} \int dx^{-} d^{2} \mathbf{x}_{\perp} \overline{\psi} \gamma^{+} \frac{(i \nabla_{\perp})^{2} + m^{2}}{i \partial^{+}} \psi + \text{interactions}
$$

\n
$$
P^{+} = \int dx^{-} d^{2} \mathbf{x}_{\perp} \overline{\psi} \gamma^{+} i \partial^{+} \psi
$$

\n
$$
\mathbf{P}_{\perp} = \frac{1}{2} \int dx^{-} d^{2} \mathbf{x}_{\perp} \overline{\psi} \gamma^{+} i \nabla_{\perp} \psi
$$

• LF Hamiltonian P^- generates LF time translations

$$
\left[\psi(x), P^-\right] = i\frac{\partial}{\partial x^+}\psi(x)
$$

and the generators P^+ and ${\bf P}_\perp$ are kinematical

SCGT SCGT
December 8, 2009 AdS/QCD and LF Holography Stan Brodsky
SLAC

Light-Front Wavefunctions: rigorous representation of composite systems in quantum field theory

SCGT SCGT
December 8, 2009 AdS/QCD and LF Holography Stan Brodsky
SLAC

Angular Momentum on the Light-Front

$$
J^{z} = \sum_{i=1}^{n} s_{i}^{z} + \sum_{j=1}^{n-1} l_{j}^{z}.
$$

Conserved LF Fock state by Fock State!

LF Spin Sum Rule

$$
l_j^z = -\mathrm{i} \left(k_j^1 \frac{\partial}{\partial k_j^2} - k_j^2 \frac{\partial}{\partial k_j^1} \right)
$$

n-1 orbital angular momenta

Nonzero Anomalous Moment --> Nonzero orbital angular momentum!

 $|p,S_z\rangle = \sum$ *ⁿ*=3^Ψ*n*(*xi*, \rightarrow $k_{\perp i},\lambda_i)|n;$ \rightarrow $k_{\perp_i},\lambda_i>$

sum over states with n=3, 4, ...constituents

The Light Front Fock State Wavefunctions

$$
\Psi_n(x_i,\vec{k}_{\perp i},\lambda_i)
$$

are boost invariant; they are independent of the hadron's energy and momentum *Pμ*.

The light-cone momentum fraction

$$
x_i = \frac{k_i^+}{p^+} = \frac{k_i^0 + k_i^z}{P^0 + P^z}
$$

are boost invariant.

$$
\sum_{i}^{n} k_{i}^{+} = P^{+}, \ \sum_{i}^{n} x_{i} = 1, \ \sum_{i}^{n} \vec{k}_{i}^{\perp} = \vec{0}^{\perp}.
$$

Intrinsic heavy quarks $\bar{s}(x) \neq s(x)$

$$
c(x), b(x)
$$
 at high x $\bar{u}(x) \neq \bar{d}(x)$

SCGT SCGT
December 8, 2009 AdS/QCD and LF Holography Stan Brodsky

Fixed LF time

Calculation of Form Factors in Equal-Time Theory

Need vacuum-induced currents

Calculation of Form Factors in Light-Front Theory

QCD and the LF Hadron Wavefunctions

Light-Front QCD Heisenberg Matrix

$$
L^{QCD} \to H^{QCD}_{LF}
$$

$$
Physical\ gauge;\ A^+=0
$$

$$
H_{LF}^{QCD} = \sum_{i} \left[\frac{m^2 + k_{\perp}^2}{x}\right]_i + H_{LF}^{int}
$$

 H^{int}_{LF} : Matrix in Fock Space

$$
H^{QCD}_{LF}|\Psi_h>=\mathcal{M}^2_h|\Psi_h>
$$

Ly K, L \overline{D} , S' p_{s} (a) \overline{p} , s' k, λ winn ww $\overline{k}.\lambda'$ p, s (b) \overline{p}, s' p, s $\overline{k} \cdot \sigma'$ k, σ (c)

Eigenvalues and Eigensolutions give Hadron Spectrum and Light-Front wavefunctions

 $H_{LF}^{QCD} |\Psi_h>=\mathcal{M}_h^2 |\Psi_h|$ Light-Front QCD H.C. Pauli & sjb $H^{QCD}_{LF}|\Psi_h>= {\cal M}^2_h|\Psi_h>$

Discretized Light-Cone **Quantization**

Heisenberg Matrix Formulation

Eigenvalues and Eigensolutions give Hadron Spectrum and Light-Front wavefunctions

DLCQ: Frame-independent, No fermion doubling; Minkowski Space

DLCQ: Periodic BC in x^- . Discrete k^+ ; frame-independent truncation

Light-Front QCD Features and Phenomenology

- Hidden color, Intrinsic glue, sea, Color Transparency
- Physics of spin, orbital angular momentum
- • Near Conformal Behavior of LFWFs at Short Distances; PQCD constraints
- Vanishing anomalous gravitomagnetic moment
- Relation between edm and anomalous magnetic moment
- \bullet Cluster Decomposition Theorem for relativistic systems
- OPE: DGLAP, ERBL evolution; invariant mass scheme

SCGT SCGT
December 8, 2009 AdS/QCD and LF Holography
16

Stan Brodsky SLAC^t

Applications of AdS/CFT to QCD

Changes in physical length scale mapped to evolution in the 5th dimension z

in collaboration with Guy de Teramond

SCGT SCGT
December 8, 2009 AdS/QCD and LF Holography Stan Brodsky
SLAC

Application of AdS/CFT to QCD

Changes in physical length scale mapped to evolution in the 5th dimension z

String Theory

Goal:

- Use AdS/CFT to provide an approximate, covariant, and analytic model of hadron structure with confinement at large distances, conformal behavior at short distances
- Analogous to the Schrödinger Theory for Atomic Physics
- *AdS/QCD Light-Front Holography*
- \bullet *Hadronic Spectra and Light-Front Wavefunctions*

SCGT SCGT
December 8, 2009 AdS/QCD and LF Holography Stan Brodsky

Conformal Theories are invariant under the Poincare and conformal transformations with

 $\mathbf{M}^{\mu\nu}, \mathbf{P}^{\mu}, \mathbf{D}, \mathbf{K}^{\mu},$

the generators of SO(4,2)

 $SO(4,2)$ has a mathematical representation on AdS5

SCGT SCGT
December 8, 2009 AdS/QCD and LF Holography Stan Brodsky

AdS/CFT: Anti-de Sitter Space / Conformal Field Theory

Maldacena:

Map AdS5 X S5 to conformal N=4 SUSY

- **QCD** is not conformal; however, it has manifestations of a scale-invariant theory: Bjorken scaling, dimensional counting for hard exclusive processes
- $\alpha_s(Q^2) \simeq$ const at small Q^2 2 \bullet Conformal window:
- Use mathematical mapping of the conformal group $SO(4,2)$ to AdS5 space

SCGT SCGT

December 8, 2009

AdS/QCD and LF Holography

December 8, 2009

Conformal QCD Window in Exclusive Processes *Conformal Behavior of QCD in Infrared*

- Does α_s develop an IR fixed point? Dyson–Schwinger Equation Alkofer, Fischer, LLanes-Estrada, Deur . . .
- • $\bullet\,$ Recent lattice simulations: evidence that α_s becomes constant and is not small in the infrared Furui and Nakajima, hep-lat/0612009 (Green dashed curve: DSE).

Deur, Korsch, et al.

SCGT SCGT
December 8, 2009 AdS/QCD and LF Holography Stan Brodsky
23

IR Conformal Window for QCD

- *Dyson-Schwinger Analysis:* QCD gluon coupling has IR Fixed Point
- *Evidence from Lattice Gauge Theory*
- *Stability of* $\Upsilon \rightarrow ggg$ Shrock, sjb
- Define coupling from observable: **indications of IR** fixed point for QCD effective charges Deur, Chen, Burkert, Korsch,

• Confined gluons and quarks have maximum wavelength: Decoupling of QCD vacuum polarization at small Q²
Serber-Uehling

$$
\Pi(Q^2) \to \frac{\alpha}{15\pi m^2} \qquad Q^2 \ll 4m^2 \qquad \text{where } \qquad \ell^+
$$

• Justifies application of AdS/CFT in strong-coupling [−] conformal window

SCGT SCGT MOST AdS/QCD and LF Holography Stan Brodsky
December 8, 2009

Maximal Wavelength of Confined Fields

 \bullet Colored fields confined to finite domain

$$
(x-y)^2 < \Lambda_{QCD}^{-2}
$$

- •All perturbative calculations regulated in IR
- •High momentum calculations unaffected
- •Bound-state Dyson-Schwinger Equation
- •Analogous to Bethe's Lamb Shift Calculation

Quark and Gluon vacuum polarization insertions decouple: IR fixed Point Shrock, sjb

J. D. Bjorken, SLAC-PUB 1053 Cargese Lectures 1989 *A strictly-perturbative space-time region can be defined as one which has the property that any straight-line segment lying entirely within the region has an invariant length small compared to the confinement scale (whether or not the segment is spacelike or timelike).*

SCGT SCGT

December 8, 2009

AdS/QCD and LF Holography

December 8, 2009

Stan Brodsky SLAG

Scale Transformations

• Isomorphism of $SO(4,2)$ of conformal QCD with the group of isometries of AdS space

$$
ds^{2} = \frac{R^{2}}{z^{2}}(\eta_{\mu\nu}dx^{\mu}dx^{\nu} - dz^{2}),
$$
 invariant measure

 $x^\mu \rightarrow \lambda x^\mu,~ z \rightarrow \lambda z$, maps scale transformations into the holographic coordinate $z.$

- AdS mode in z is the extension of the hadron wf into the fifth dimension.
- \bullet Different values of z correspond to different scales at which the hadron is examined.

$$
x^2 \to \lambda^2 x^2, \quad z \to \lambda z.
$$

 $x^2=x_\mu x^\mu$: invariant separation between quarks

 $\bullet\,$ The AdS boundary at $z\rightarrow 0$ correspond to the $Q\rightarrow\infty$, UV zero separation limit.

SCGT SCGT
December 8, 2009 AdS/QCD and LF Holography Stan Brodsky

- $\bullet\,$ Truncated AdS/CFT (Hard-Wall) model: cut-off at $z_0\,=\,1/\Lambda_{\rm QCD}$ breaks conformal invariance and allows the introduction of the QCD scale (Hard-Wall Model) Polchinski and Strassler (2001).
- Smooth cutoff: introduction of a background dilaton field $\varphi(z)$ usual linear Regge dependence can be obtained (Soft-Wall Model) Karch, Katz, Son and Stephanov (2006).

Holography: Unique mapping derived from equality of LF and AdS formula for current matrix elements

SCGT SCGT
December 8, 2009 AdS/QCD and LF Holography Stan Brodsky

Light-Front Holography: Map AdS/CFT to 3+1 LF Theory

Relativistic LF radial equation

Frame Independent

G. de Teramond, sjb

SCGT SCGT
December 8, 2009 AdS/QCD and LF Holography Stan Brodsky
SLAC

Light-Front Quantization of QCD and AdS/CFT

• Light-front (LF) quantization is the ideal framework to describe hadronic structure in terms of quarks and gluons: simple vacuum structure gives an unambiguous definition of the partonic content of a hadron, exact formulae for form factors, physics of angular momentum of constituents ...

• Frame-independent LF Hamiltonian equation: similar structure as AdS EOM

$$
P^{\mu}P_{\mu}|P>=(P^{-}P^{+}-\vec{P}_{\perp}^{2})|P>=M^{2}|P>
$$

• First semiclassical approximation to the bound-state LF Hamiltonian equation in QCD is equivalent to equations of motion in AdS and can be systematically improved

 GdT and Sjb PRL 102, 081601 (2009)

AdS/CFT

- Use mapping of conformal group SO(4,2) to AdS5
- $x_{\mu}^2 \rightarrow \lambda^2 x_{\mu}^2$ $z \rightarrow \lambda z$ • Scale Transformations represented by wavefunction in 5th dimension
- $\psi(z)\sim z^{\textstyle\Delta}$ at $z\to0$ • Match solutions at small z to conformal twist dimension of hadron wavefunction at short distances
- Hard wall model: Confinement at large distances and conformal symmetry in interior
- Truncated space simulates "bag" boundary conditions

$$
0 < z < z_0 \qquad \psi(z_0) = 0 \qquad z_0 = \frac{1}{\Lambda_{QCD}}
$$

SCGT SCGT
December 8, 2009 AdS/QCD and LF Holography

Stan Brodsky SLAC

Bosonic Solutions: Hard Wall Model

- \bullet Conformal metric: $ds^2=g_{\ell m}dx^\ell dx^m.$ $x^\ell=(x^\mu,z),\; g_{\ell m}\rightarrow \left(R^2/z^2\right)\eta_{\ell m}$.
- $\bullet\,$ Action for massive scalar modes on AdS $_{d+1}$:

$$
S[\Phi] = \frac{1}{2} \int d^{d+1}x \sqrt{g} \frac{1}{2} \left[g^{\ell m} \partial_{\ell} \Phi \partial_m \Phi - \mu^2 \Phi^2 \right], \quad \sqrt{g} \to (R/z)^{d+1}.
$$

• Equation of motion

$$
\frac{1}{\sqrt{g}} \frac{\partial}{\partial x^{\ell}} \left(\sqrt{g} \ g^{\ell m} \frac{\partial}{\partial x^m} \Phi \right) + \mu^2 \Phi = 0.
$$

 $\bullet\,$ Factor out dependence along x^μ -coordinates , $\Phi_P(x,z)=e^{-iP\cdot x}\,\Phi(z)$, $\,P_\mu P^\mu={\cal M}^2$:

$$
\left[z^2\partial_z^2 - (d-1)z\,\partial_z + z^2\mathcal{M}^2 - (\mu R)^2\right]\Phi(z) = 0.
$$

• Solution: $\Phi(z) \to z^{\Delta}$ as $z \to 0,$

$$
\Phi(z) = C z^{d/2} J_{\Delta - d/2}(z\mathcal{M}) \qquad \Delta = \frac{1}{2} \Big(d + \sqrt{d^2 + 4\mu^2 R^2} \,\Big) \,.
$$

 $\Delta = 2 + L$ $d = 4$ $(\mu R)^2 = L^2 - 4$

SCGT SCGT
December 8, 2009 AdS/QCD and LF Holography Stan Brodsky
36

AdS Schrodinger Equation for bound state of two scalar constituents: Let $\Phi(z) = z^{3/2} \phi(z)$

$$
\left[-\frac{d^2}{dz^2} - \frac{1 - 4L^2}{4z^2} \right] \phi(z) = \mathcal{M}^2 \phi(z)
$$

Derived from variation of Action in AdS5 L: light-front orbital angular momentum

Hard wall model: truncated space

$$
\phi(\mathbf{z}=\mathbf{z}_0=\tfrac{1}{\Lambda_{\mathrm{c}}})=0.
$$

SCGT SCGT
December 8, 2009 AdS/QCD and LF Holography Stan Brodsky
37

Match fall-off at small z to conformal twist-dimension at short distances

- $\bullet\,$ Pseudoscalar mesons: \mathcal{O}_{2+L} $=$ $\psi\gamma_5D_{\{\ell_1}\ldots D_{\ell_m\}}\psi\,\,\,\,$ $(\Phi_\mu=0$ gauge). $\qquad \Delta=2+L$
- $\bullet\,$ 4- d mass spectrum from boundary conditions on the normalizable string modes at $z\,=\,z_0,$ $\Phi(x,z_o)=0$, given by the zeros of Bessel functions $\beta_{\alpha,k}\colon\thinspace \mathcal M_{\alpha,k} = \beta_{\alpha,k}\Lambda_{QCD}$
- •Normalizable AdS modes $\Phi(z)$

Meson orbital and radial AdS modes for $\Lambda_{QCD} = 0.32$ GeV. $S=0$

SCGT

twist

Fig: Orbital and radial AdS modes in the hard wall model for $\Lambda_{\rm QCD}$ = 0.32 GeV.

Fig: Light meson and vector meson orbital spectrum $\Lambda_{QCD} = 0.32 \text{ GeV}$

Soft-Wall Model

$$
S = \int d^4x \, dz \, \sqrt{g} \, e^{\varphi(z)} \mathcal{L}, \qquad \varphi(z) = \pm \kappa^2 z^2
$$

Retain conformal AdS metrics but introduce smooth cutoff which depends on the profile of a dilaton background field

Karch, Katz, Son and Stephanov (2006)]

• $\bullet\,$ Equation of motion for scalar field $\;\mathcal{L} = \frac{1}{2} \big(g^{\ell m} \partial_\ell \Phi \partial_m \Phi - \mu^2 \Phi^2 \big)$

$$
\left[z^2\partial_z^2 - \left(3 \mp 2\kappa^2 z^2\right)z\,\partial_z + z^2\mathcal{M}^2 - (\mu R)^2\right]\Phi(z) = 0
$$
 with $(\mu R)^2 \ge -4$.

 $\bullet\,$ LH holography requires 'plus dilaton' $\varphi=+\kappa^2 z^2$. Lowest possible state $(\mu R)^2=-4$

$$
\mathcal{M}^2=0, \quad \Phi(z)\sim z^2 e^{-\kappa^2 z^2}, \quad \langle r^2\rangle\sim \frac{1}{\kappa^2}
$$

A chiral symmetric bound state of two massless quarks with scaling dimension 2:

Massless pion

AdS Soft-Wall Schrodinger Equation for bound state of two scalar constituents:

$$
\left[-\frac{d^2}{dz^2} - \frac{1 - 4L^2}{4z^2} + U(z) \right] \phi(z) = \mathcal{M}^2 \phi(z)
$$

$$
U(z) = \kappa^4 z^2 + 2\kappa^2 (L + S - 1)
$$

Derived from variation of Action Dilaton-Modified AdS5

$$
e^{\Phi(z)} = e^{+\kappa^2 z^2}
$$

Positive-sign dilaton

SCGT SCGT
December 8, 2009 AdS/QCD and LF Holography Stan Brodsky
41

$$
ds^{2} = e^{\kappa^{2}z^{2}} \frac{R^{2}}{z^{2}} (dx_{0}^{2} - dx_{1}^{2} - dx_{3}^{2} - dx_{3}^{2} - dz^{2})
$$

Gravitational potential

$$
z \to \infty
$$

$$
z \to 0
$$

$$
y = R/z
$$

Klebanov and Maldacena

$$
ds^2 = e^{A(y)}(-dx_0^2 + dx_1^2 + dx_3^2 + dx_3^2) + dy^2
$$

Figure 5

Agrees with Klebanov and Maldacena for positive-sign exponent of dilaton

Higher-Spin Hadrons

 $\bullet~$ Obtain spin- J mode $\Phi_{\mu_1\cdots\mu_J}$ with all indices along 3+1 coordinates from Φ by shifting dimensions

$$
\Phi_J(z) = \left(\frac{z}{R}\right)^{-J} \Phi(z)
$$

• Substituting in the AdS scalar wave equation for Φ

$$
\left[z^2\partial_z^2 - \left(3 - 2J - 2\kappa^2 z^2\right)z\partial_z + z^2\mathcal{M}^2 - (\mu R)^2\right]\Phi_J = 0
$$

• Upon substitution $z\!\rightarrow\!\zeta$

$$
\phi_J(\zeta) \sim \zeta^{-3/2+J} e^{\kappa^2 \zeta^2/2} \Phi_J(\zeta)
$$

we find the LF wave equation

$$
\left[\left(-\frac{d^2}{d\zeta^2} - \frac{1 - 4L^2}{4\zeta^2} + \kappa^4 \zeta^2 + 2\kappa^2 (L + S - 1) \right) \phi_{\mu_1 \cdots \mu_J} = \mathcal{M}^2 \phi_{\mu_1 \cdots \mu_J} \right]
$$

with
$$
(\mu R)^2 = -(2-J)^2 + L^2
$$

SCGT SCGT
December 8, 2009 AdS/QCD and LF Holography Stan Brodsky
45

Higher Spin Bosonic Modes SW

• Effective LF Schrödinger wave equation

$$
\left[-\frac{d^2}{dz^2} - \frac{1 - 4L^2}{4z^2} + \kappa^4 z^2 + 2\kappa^2 (L + S - 1)\right] \phi_S(z) = \mathcal{M}^2 \phi_S(z)
$$

with eigenvalues $\mathcal{M}^2 = 2\kappa^2 (2n + 2L + S)$. **Sample slope in n and L**

• Compare with Nambu string result (rotating flux tube): $M_n^2(L)=2\pi\sigma \left(n + L + 1/2\right).$

Vector mesons orbital (a) and radial (b) spectrum for $\kappa = 0.54$ GeV.

• Glueballs in the bottom-up approach: (HW) Boschi-Filho, Braga and Carrion (2005); (SW) Colangelo, De Facio, Jugeau and Nicotri(2007).

SCGT

Soft-wall model

SCGT SCGT
December 8, 2009 AdS/QCD and LF Holography Stan Brodsky
 $\frac{17}{25}$

Parent and daughter Regge trajectories for the $I = 1$ ρ -meson family (red) and the $I=0$ ω -meson family (black) for $\kappa=0.54$ GeV

Hadron Form Factors from AdS/CFT

Propagation of external perturbation suppressed inside AdS. l

$$
J(Q,z) = zQK_1(zQ)
$$

Consider a specific AdS mode $\Phi^{(n)}$ dual to an n partonic Fock state $|n\rangle$. At small z, Φ scales as $\Phi^{(n)}\sim z^{\Delta_n}.$ Thus:

$$
F(Q^2) \rightarrow \left[\frac{1}{Q^2}\right]^{\tau-1}, \qquad \qquad \text{Dimensional Quark Counting Rules:} \\ \text{General result from} \\ \text{AdS/CFT and Conformal Invariance}
$$

where $\tau=\Delta_n-\sigma_n$, $\sigma_n=\sum_{i=1}^n\sigma_i.$ The twist is equal to the number of partons, $\tau=n.$

SCGT SCGT
December 8, 2009 AdS/QCD and LF Holography Stan Brodsky
 $\begin{array}{c} \text{Stan Brodsky} \\ \text{December 8, 2009} \end{array}$

Spacelike pion form factor from AdS/CFT

SCGT SCGT
December 8, 2009 AdS/QCD and LF Holography Stan Brodsky
51

Current Matrix Elements in AdS Space (SW)

sjb and GdT Grigoryan and Radyushkin

• Propagation of external current inside AdS space described by the AdS wave equation

$$
\left[z^2\partial_z^2 - z\left(1+2\kappa^2z^2\right)\partial_z - Q^2z^2\right]J_\kappa(Q,z) = 0.
$$

• Solution bulk-to-boundary propagator

$$
J_{\kappa}(Q, z) = \Gamma\left(1 + \frac{Q^2}{4\kappa^2}\right)U\left(\frac{Q^2}{4\kappa^2}, 0, \kappa^2 z^2\right),\,
$$

where $U(a,b,c)$ is the confluent hypergeometric function

$$
\Gamma(a)U(a,b,z) = \int_0^\infty e^{-zt} t^{a-1} (1+t)^{b-a-1} dt.
$$

 $\bullet\,$ Form factor in presence of the dilaton background $\varphi=\kappa^2z^2$

$$
F(Q^2) = R^3 \int \frac{dz}{z^3} e^{-\kappa^2 z^2} \Phi(z) J_{\kappa}(Q, z) \Phi(z).
$$

 $\bullet\,$ For large $Q^2\gg 4\kappa^2$

$$
J_{\kappa}(Q, z) \to zQK_1(zQ) = J(Q, z),
$$

the external current decouples from the dilaton field.

SCGT SCGT
December 8, 2009 AdS/QCD and LF Holography Stan Brodsky
52

Soft Wall Model

Spacelike pion form factor from AdS/CFT

One parameter - set by pion decay constant

Stan Brodsky de Teramond, sjb See also: Radyushkin

SCGT SCGT
December 8, 2009 AdS/QCD and LF Holography Stan Brodsky
53

 \bullet Analytical continuation to time-like region $q^2 \rightarrow -q^2$

$$
M_\rho=2\kappa=750\,\,{\rm MeV}
$$

 \bullet Strongly coupled semiclassical gauge/gravity limit hadrons have zero widths (stable).

Space and time-like pion form factor for $\kappa = 0.375$ GeV in the SW model.

SCGT SCGT
December 8, 2009 AdS/QCD and LF Holography Stan Brodsky
54 •Vector Mesons: Hong, Yoon and Strassler (2004); Grigoryan and Radyushkin (2007).

Dressed soft-wall current bring in higher Fock states and more vector meson poles

Note: Analytical Form of Hadronic Form Factor for Arbitrary Twist

 $\bullet~$ Form factor for a string mode with scaling dimension $\tau,$ Φ_{τ} in the SW model

$$
F(Q^2) = \Gamma(\tau) \frac{\Gamma\left(1 + \frac{Q^2}{4\kappa^2}\right)}{\Gamma\left(\tau + \frac{Q^2}{4\kappa^2}\right)}.
$$

- $\bullet\,$ For $\tau=N,\,\,\,\,\Gamma(N+z)=(N-1+z)(N-2+z)\ldots(1+z)\Gamma(1+z).$
- $\bullet~$ Form factor expressed as $N-1$ product of poles

$$
F(Q^2) = \frac{1}{1 + \frac{Q^2}{4\kappa^2}}, \quad N = 2,
$$

\n
$$
F(Q^2) = \frac{2}{\left(1 + \frac{Q^2}{4\kappa^2}\right)\left(2 + \frac{Q^2}{4\kappa^2}\right)}, \quad N = 3,
$$

\n...
\n
$$
F(Q^2) = \frac{(N-1)!}{\left(1 + \frac{Q^2}{4\kappa^2}\right)\left(2 + \frac{Q^2}{4\kappa^2}\right) \cdots \left(N - 1 + \frac{Q^2}{4\kappa^2}\right)}, \quad N.
$$

• For large Q^2 :

$$
F(Q^2) \to (N-1)! \left[\frac{4\kappa^2}{Q^2} \right]^{(N-1)}.
$$

SCGT SCGT
December 8, 2009 AdS/QCD and LF Holography Stan Brodsky
51.AC

Spacelike and timelike pion form factor

Preliminary

Holographic Model for QCD Light-Front Wavefunctions *Light-Front Representation* SJB and GdT in preparation *of Two-Body Meson Form Factor*

• Drell-Yan-West form factor \blacksquare

$$
\vec{q}_{\perp}^2 = Q^2 = -q^2
$$

$$
F(q^2) = \sum_{q} e_q \int_0^1 dx \int \frac{d^2 \vec{k}_{\perp}}{16\pi^3} \psi_{P'}^*(x, \vec{k}_{\perp} - x\vec{q}_{\perp}) \psi_{P}(x, \vec{k}_{\perp}).
$$

• Fourrier transform to impact parameter space \vec{b} b_\perp

$$
\psi(x, \vec{k}_{\perp}) = \sqrt{4\pi} \int d^2 \vec{b}_{\perp} e^{i\vec{b}_{\perp} \cdot \vec{k}_{\perp}} \widetilde{\psi}(x, \vec{b}_{\perp})
$$

 $\bullet\,$ Find ($b=|\vec b|$ $b_\perp|$) :

$$
F(q^2) = \int_0^1 dx \int d^2 \vec{b}_{\perp} e^{ix\vec{b}_{\perp}\cdot\vec{q}_{\perp}} |\widetilde{\psi}(x,b)|^2
$$

= $2\pi \int_0^1 dx \int_0^\infty b \, db \, J_0 \, (bqx) \, |\widetilde{\psi}(x,b)|^2$,

SCGTSCGT
December 8, 2009 AdS/QCD and LF Holography Stan Brodsky

58

Holographic Mapping of AdS Modes to QCD LFWFs

• Integrate Soper formula over angles:

$$
F(q^2) = 2\pi \int_0^1 dx \, \frac{(1-x)}{x} \int \zeta d\zeta J_0\left(\zeta q \sqrt{\frac{1-x}{x}}\right) \tilde{\rho}(x,\zeta),
$$

with $\widetilde{\rho}(x,\zeta)$ QCD effective transverse charge density.

•Transversality variable

$$
\zeta = \sqrt{x(1-x)\vec{b}_{\perp}^2}
$$

 $\bullet\,$ Compare AdS and QCD expressions of FFs for arbitrary Q using identity:

$$
\int_0^1 dx J_0\left(\zeta Q \sqrt{\frac{1-x}{x}}\right) = \zeta Q K_1(\zeta Q),
$$

the solution for $J(Q,\zeta)=\zeta Q K_1(\zeta Q)$!

• Electromagnetic form-factor in AdS space:

$$
F_{\pi^+}(Q^2) = R^3 \int \frac{dz}{z^3} J(Q^2, z) |\Phi_{\pi^+}(z)|^2,
$$

where $J(Q^2,z)=zQK_1(zQ).$

 $\bullet\,$ Use integral representation for $J(Q^2,z)$

$$
J(Q^2, z) = \int_0^1 dx J_0 \left(\zeta Q \sqrt{\frac{1-x}{x}}\right)
$$

• Write the AdS electromagnetic form-factor as

$$
F_{\pi^+}(Q^2) = R^3 \int_0^1 dx \int \frac{dz}{z^3} J_0\left(zQ\sqrt{\frac{1-x}{x}}\right) |\Phi_{\pi^+}(z)|^2
$$

 $\bullet~$ Compare with electromagnetic form-factor in light-front QCD for arbitrary Q

$$
\left| \tilde{\psi}_{q\overline{q}/\pi}(x,\zeta) \right|^2 = \frac{R^3}{2\pi} x(1-x) \frac{\left| \Phi_\pi(\zeta) \right|^2}{\zeta^4}
$$

SCGT SCGT
December 8, 2009 AdS/QCD and LF Holography Stan Brodsky with $\zeta = z,\; 0 \leq \zeta \leq \Lambda_{\rm QCD}$

Light-Front Holography: Unique mapping derived from equality of *LF and AdS formula for current matrix elements*

SCGT SCGT
December 8, 2009 AdS/QCD and LF Holography Stan Brodsky

Gravitational Form Factor in AdS space

• Hadronic gravitational form-factor in AdS space

$$
A_{\pi}(Q^2) = R^3 \int \frac{dz}{z^3} H(Q^2, z) |\Phi_{\pi}(z)|^2,
$$
 Abidin & Carlson

where $H(Q^2,z) = \frac{1}{2} Q^2 z^2 K_2(zQ)$

 $\bullet\,$ Use integral representation for $H(Q^2,z)$

$$
H(Q^2, z) = 2 \int_0^1 x \, dx \, J_0\left(zQ\sqrt{\frac{1-x}{x}}\right)
$$

• Write the AdS gravitational form-factor as

$$
A_{\pi}(Q^{2}) = 2R^{3} \int_{0}^{1} x \, dx \int \frac{dz}{z^{3}} J_{0}\left(zQ\sqrt{\frac{1-x}{x}}\right) |\Phi_{\pi}(z)|^{2}
$$

 \bullet Compare with gravitational form-factor in light-front QCD for arbitrary Q

$$
\left|\tilde{\psi}_{q\overline{q}/\pi}(x,\zeta)\right|^2 = \frac{R^3}{2\pi}x(1-x)\frac{|\Phi_{\pi}(\zeta)|^2}{\zeta^4},
$$

entical to I I Hologicaphy obtained from *Identical to LF Holography obtained from electromagnetic current*

SCGT SCGT
December 8, 2009 AdS/QCD and LF Holography Stan Brodsky
62