Light-Front Holography: Map AdS/CFT to 3+1 LF Theory

Relativistic LF radial equation!

Frame Independent

$$\begin{bmatrix} -\frac{d^2}{d\zeta^2} + \frac{1-4L^2}{4\zeta^2} + U(\zeta) \end{bmatrix} \phi(\zeta) = \mathcal{M}^2 \phi(\zeta)$$

$$\zeta^2 = x(1-x)\mathbf{b}_{\perp}^2.$$

$$U(\zeta) = \kappa^4 \zeta^2 + 2\kappa^2 (L+S-1)$$
S. de Teramond, sjb

confining potential:

SCGT December 8, 2009

AdS/QCD and LF Holography

$$\begin{split} H^{LF}_{QCD} & \text{QCD Meson Spectrum} \\ (H^0_{LF} + H^I_{LF}) |\Psi \rangle = M^2 |\Psi \rangle & \text{Coupled Fock states} \\ [\frac{\vec{k}_{\perp}^2 + m^2}{x(1-x)} + V^{LF}_{\text{off}}] \psi_{LF}(x, \vec{k}_{\perp}) = M^2 \psi_{LF}(x, \vec{k}_{\perp}) & \text{Effective two-particle equation} \\ -\frac{d^2}{d\zeta^2} + \frac{-1 + 4L^2}{\zeta^2} + U(\zeta, S, L)] \psi_{LF}(\zeta) = M^2 \psi_{LF}(\zeta) & \text{Azimuthal Basis } \zeta, \phi \end{split}$$

$$U(\zeta,S,L)=\kappa^2\zeta^2+\kappa^2(L+S-1/2)$$

Semiclassical first approximation to QCD

Γ_

Confining AdS/QCD potential Derivation of the Light-Front Radial Schrodinger Equation directly from LF QCD

$$\mathcal{M}^2 = \int_0^1 dx \int \frac{d^2 \vec{k}_\perp}{16\pi^3} \frac{\vec{k}_\perp^2}{x(1-x)} \left| \psi(x, \vec{k}_\perp) \right|^2 + \text{interactions}$$
$$= \int_0^1 \frac{dx}{x(1-x)} \int d^2 \vec{b}_\perp \, \psi^*(x, \vec{b}_\perp) \left(-\vec{\nabla}_{\vec{b}_\perp \ell}^2 \right) \psi(x, \vec{b}_\perp) + \text{interactions.}$$

Change variables

ge
$$(\vec{\zeta}, \varphi), \ \vec{\zeta} = \sqrt{x(1-x)}\vec{b}_{\perp}: \quad \nabla^2 = \frac{1}{\zeta}\frac{d}{d\zeta}\left(\zeta\frac{d}{d\zeta}\right) + \frac{1}{\zeta^2}\frac{\partial^2}{\partial\varphi^2}$$

$$\mathcal{M}^{2} = \int d\zeta \,\phi^{*}(\zeta) \sqrt{\zeta} \left(-\frac{d^{2}}{d\zeta^{2}} - \frac{1}{\zeta} \frac{d}{d\zeta} + \frac{L^{2}}{\zeta^{2}} \right) \frac{\phi(\zeta)}{\sqrt{\zeta}} + \int d\zeta \,\phi^{*}(\zeta) U(\zeta) \phi(\zeta)$$
$$= \int d\zeta \,\phi^{*}(\zeta) \left(-\frac{d^{2}}{d\zeta^{2}} - \frac{1 - 4L^{2}}{4\zeta^{2}} + U(\zeta) \right) \phi(\zeta)$$

SCGT December 8, 2009

AdS/QCD and LF Holography

• Find (L = |M|)

$$\mathcal{M}^2 = \int d\zeta \,\phi^*(\zeta) \sqrt{\zeta} \left(-\frac{d^2}{d\zeta^2} - \frac{1}{\zeta} \frac{d}{d\zeta} + \frac{L^2}{\zeta^2} \right) \frac{\phi(\zeta)}{\sqrt{\zeta}} + \int d\zeta \,\phi^*(\zeta) \,U(\zeta) \,\phi(\zeta)$$

where the confining forces from the interaction terms is summed up in the effective potential $U(\zeta)$

• Ultra relativistic limit $m_q \to 0$ longitudinal modes X(x) decouple and LF eigenvalue equation $H_{LF} |\phi\rangle = \mathcal{M}^2 |\phi\rangle$ is a LF wave equation for ϕ

- Effective light-front Schrödinger equation: relativistic, frame-independent and analytically tractable
- Eigenmodes $\phi(\zeta)$ determine the hadronic mass spectrum and represent the probability amplitude to find *n*-massless partons at transverse impact separation ζ within the hadron at equal light-front time
- Semiclassical approximation to light-front QCD does not account for particle creation and absorption but can be implemented in the LF Hamiltonian EOM or by applying the L-S formalism

SCGT December 8, 2009

Example: Pion LFWF

• Two parton LFWF bound state:

$$\widetilde{\psi}_{\overline{q}q/\pi}^{HW}(x,\mathbf{b}_{\perp}) = \frac{\Lambda_{\rm QCD}\sqrt{x(1-x)}}{\sqrt{\pi}J_{1+L}(\beta_{L,k})} J_L\left(\sqrt{x(1-x)} \,|\,\mathbf{b}_{\perp}|\beta_{L,k}\Lambda_{\rm QCD}\right) \theta\left(\mathbf{b}_{\perp}^2 \le \frac{\Lambda_{\rm QCD}^{-2}}{x(1-x)}\right),$$

$$\widetilde{\psi}_{\overline{q}q/\pi}^{SW}(x,\mathbf{b}_{\perp}) = \kappa^{L+1} \sqrt{\frac{2n!}{(n+L)!}} \left[x(1-x) \right]^{\frac{1}{2}+L} |\mathbf{b}_{\perp}|^{L} e^{-\frac{1}{2}\kappa^{2}x(1-x)\mathbf{b}_{\perp}^{2}} L_{n}^{L} \left(\kappa^{2}x(1-x)\mathbf{b}_{\perp}^{2}\right).$$

Fig: Ground state pion LFWF in impact space. (a) HW model $\Lambda_{
m QCD}=0.32$ GeV, (b) SW model $\kappa=0.375$ GeV.

SCGT December 8, 2009

Consider the AdS_5 metric:

$$ds^{2} = \frac{R^{2}}{z^{2}} (\eta_{\mu\nu} dx^{\mu} dx^{\nu} - dz^{2}).$$

 ds^2 invariant if $x^\mu \to \lambda x^\mu$, $z \to \lambda z$,

Maps scale transformations to scale changes of the the holographic coordinate z.

We define light-front coordinates $x^{\pm} = x^0 \pm x^3$.

Then
$$\eta^{\mu\nu} dx_{\mu} dx_{\nu} = dx_0^2 - dx_3^2 - dx_{\perp}^2 = dx^+ dx^- - dx_{\perp}^2$$

and

$$ds^2 = -\frac{R^2}{z^2}(dx_{\perp}^2 + dz^2)$$
 for $x^+ = 0$.

- ds^2 is invariant if $dx_{\perp}^2 \to \lambda^2 dx_{\perp}^2$, and $z \to \lambda z$, at equal LF time.
- Maps scale transformations in transverse LF space to scale changes of the holographic coordinate z.
- Holographic connection of AdS_5 to the light-front.
- The effective wave equation in the two-dim transverse LF plane has the Casimir representation L^2 corresponding to the SO(2) rotation group [The Casimir for $SO(N) \sim S^{N-1}$ is L(L + N 2)].

SCGT December 8, 2009

AdS/QCD and LF Holography

Prediction from AdS/CFT: Meson LFWF

$$\psi_M(x,k_{\perp}) = \frac{4\pi}{\kappa\sqrt{x(1-x)}} e^{-\frac{k_{\perp}^2}{2\kappa^2 x(1-x)}}$$

$$\phi_M(x,Q_0) \propto \sqrt{x(1-x)}$$

Connection of Confinement to TMDs

SCGT December 8, 2009

AdS/QCD and LF Holography

Example: Evaluation of QCD Matrix Elements

• Pion decay constant f_{π} defined by the matrix element of EW current J_W^+ :

$$\left\langle 0 \left| \overline{\psi}_u \gamma^+ \frac{1}{2} (1 - \gamma_5) \psi_d \right| \pi^- \right\rangle = i \frac{P^+ f_\pi}{\sqrt{2}}$$

with

$$\left|\pi^{-}\right\rangle = \left|d\overline{u}\right\rangle = \frac{1}{\sqrt{N_{C}}} \frac{1}{\sqrt{2}} \sum_{c=1}^{N_{C}} \left(b_{c\ d\downarrow}^{\dagger} d_{c\ u\uparrow}^{\dagger} - b_{c\ d\uparrow}^{\dagger} d_{c\ u\downarrow}^{\dagger}\right) \left|0\right\rangle.$$

• Find light-front expression (Lepage and Brodsky '80):

$$f_{\pi} = 2\sqrt{N_C} \int_0^1 dx \int \frac{d^2 \vec{k}_{\perp}}{16\pi^3} \psi_{\overline{q}q/\pi}(x,k_{\perp}).$$

- Using relation between AdS modes and QCD LFWF in the $\zeta \rightarrow 0$ limit

$$f_{\pi} = \frac{1}{8} \sqrt{\frac{3}{2}} R^{3/2} \lim_{\zeta \to 0} \frac{\Phi(\zeta)}{\zeta^2}$$

• Holographic result ($\Lambda_{\rm QCD} = 0.22$ GeV and $\kappa = 0.375$ GeV from pion FF data): Exp: $f_{\pi} = 92.4$ MeV

$$f_{\pi}^{HW} = \frac{\sqrt{3}}{8J_1(\beta_{0,k})} \Lambda_{\text{QCD}} = 91.7 \text{ MeV}, \ f_{\pi}^{SW} = \frac{\sqrt{3}}{8} \kappa = 81.2 \text{ MeV},$$

SCGT December 8, 2009

AdS/QCD and LF Holography

Hadron Distribution Amplitudes

- Fundamental gauge invariant non-perturbative input to hard exclusive processes, heavy hadron decays. Defined for Mesons, Baryons
- Evolution Equations from PQCD, OPE, Conformal Invariance

Lepage, sjb Efremov, Radyushkin.

Sachrajda, Frishman Lepage, sjb

Braun, Gardi

• Compute from valence light-front wavefunction in lightcone gauge $\int_{Q}^{Q} dQ dQ dQ$

$$\phi_M(x,Q) = \int^Q d^2 \vec{k} \ \psi_{q\bar{q}}(x,\vec{k}_\perp)$$

SCGT December 8, 2009

AdS/QCD and LF Holography

Second Moment of Píon Distribution Amplitude

$$<\xi^2>=\int_{-1}^1 d\xi \ \xi^2\phi(\xi)$$

$$\xi = 1 - 2x$$

$$<\xi^2>_{\pi}=1/5=0.20$$
 $\phi_{asympt}\propto x(1-x)$
 $<\xi^2>_{\pi}=1/4=0.25$ $\phi_{AdS/QCD}\propto \sqrt{x(1-x)}$

Stan Brodsky

SLAC

Braun et al.

Lattice (II)
$$<\xi^2>_{\pi}=0.269\pm0.039$$

Lattice (I) $<\xi^2>_{\pi}=0.28\pm0.03$

SCGT December 8, 2009

AdS/QCD and LF Holography

73

ERBL Evolution of Pion Distribution Amplitude

SCGT December 8, 2009

AdS/QCD and LF Holography

Baryons Spectrum in "bottom-up" holographic QCD
 GdT and Sjb hep-th/0409074, hep-th/0501022.

Baryons ín Ads/CFT

• Action for massive fermionic modes on AdS_{d+1} :

$$S[\overline{\Psi}, \Psi] = \int d^{d+1}x \sqrt{g} \,\overline{\Psi}(x, z) \left(i\Gamma^{\ell}D_{\ell} - \mu\right) \Psi(x, z).$$

• Equation of motion: $(i\Gamma^{\ell}D_{\ell}-\mu)\Psi(x,z)=0$

$$\left[i\left(z\eta^{\ell m}\Gamma_{\ell}\partial_m + \frac{d}{2}\Gamma_z\right) + \mu R\right]\Psi(x^{\ell}) = 0.$$

SCGT December 8, 2009

AdS/QCD and LF Holography

• Baryons Spectrum in "bottom-up" holographic QCD GdT and Brodsky: hep-th/0409074, hep-th/0501022.

Baryons in Ads/CFT

• Action for massive fermionic modes on AdS₅:

$$S[\overline{\Psi}, \Psi] = \int d^4x \, dz \, \sqrt{g} \, \overline{\Psi}(x, z) \left(i\Gamma^\ell D_\ell - \mu \right) \Psi(x, z)$$

• Equation of motion: $\left(i\Gamma^\ell D_\ell-\mu
ight)\Psi(x,z)=0$

$$\left[i\left(z\eta^{\ell m}\Gamma_{\ell}\partial_m + \frac{d}{2}\Gamma_z\right) + \mu R\right]\Psi(x^{\ell}) = 0$$

• Solution $(\mu R = \nu + 1/2)$

$$\Psi(z) = C z^{5/2} \left[J_{\nu}(z\mathcal{M})u_+ + J_{\nu+1}(z\mathcal{M})u_- \right]$$

• Hadronic mass spectrum determined from IR boundary conditions $\psi_{\pm} \left(z = 1/\Lambda_{\rm QCD}\right) = 0$

$$\mathcal{M}^+ = \beta_{\nu,k} \Lambda_{\text{QCD}}, \quad \mathcal{M}^- = \beta_{\nu+1,k} \Lambda_{\text{QCD}}$$

with scale independent mass ratio

• Obtain spin-J mode $\Phi_{\mu_1\cdots\mu_{J-1/2}}$, $J > \frac{1}{2}$, with all indices along 3+1 from Ψ by shifting dimensions SCGT AdS/QCD and LF Holography Stan Brodsky December 8, 2009

From Nick Evans

Baryons

Holographic Light-Front Integrable Form and Spectrum

• In the conformal limit fermionic spin- $\frac{1}{2}$ modes $\psi(\zeta)$ and spin- $\frac{3}{2}$ modes $\psi_{\mu}(\zeta)$ are two-component spinor solutions of the Dirac light-front equation

$$\alpha \Pi(\zeta) \psi(\zeta) = \mathcal{M} \psi(\zeta),$$

where $H_{LF} = \alpha \Pi$ and the operator

$$\Pi_L(\zeta) = -i\left(\frac{d}{d\zeta} - \frac{L + \frac{1}{2}}{\zeta}\gamma_5\right),\,$$

and its adjoint $\Pi^{\dagger}_{L}(\zeta)$ satisfy the commutation relations

$$\left[\Pi_L(\zeta), \Pi_L^{\dagger}(\zeta)\right] = \frac{2L+1}{\zeta^2} \gamma_5.$$

SCGT December 8, 2009

AdS/QCD and LF Holography

Soft-Wall Model

• Equivalent to Dirac equation in presence of a holographic linear confining potential

$$\left[i\left(z\eta^{\ell m}\Gamma_{\ell}\partial_m + \frac{d}{2}\Gamma_z\right) + \mu R + \kappa^2 z\right]\Psi(x^{\ell}) = 0.$$

• Solution $(\mu R = \nu + 1/2, d = 4)$

$$\Psi_{+}(z) \sim z^{\frac{5}{2}+\nu} e^{-\kappa^{2}z^{2}/2} L_{n}^{\nu}(\kappa^{2}z^{2})$$

$$\Psi_{-}(z) \sim z^{\frac{7}{2}+\nu} e^{-\kappa^{2}z^{2}/2} L_{n}^{\nu+1}(\kappa^{2}z^{2})$$

• Eigenvalues

$$\mathcal{M}^2 = 4\kappa^2(n+\nu+1)$$

• Obtain spin-J mode $\Phi_{\mu_1\cdots\mu_{J-1/2}}, J>rac{1}{2}$, with all indices along 3+1 from Ψ

by shifting dimensions

SCGT December 8, 2009 AdS/QCD and LF Holography

• Note: in the Weyl representation ($i\alpha = \gamma_5\beta$)

$$i\alpha = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}, \qquad \beta = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}, \qquad \gamma_5 = \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix}.$$

• Baryon: twist-dimension 3 + L ($\nu = L + 1$)

$$\mathcal{O}_{3+L} = \psi D_{\{\ell_1} \dots D_{\ell_q} \psi D_{\ell_{q+1}} \dots D_{\ell_m\}} \psi, \quad L = \sum_{i=1}^m \ell_i.$$

• Solution to Dirac eigenvalue equation with UV matching boundary conditions

$$\psi(\zeta) = C\sqrt{\zeta} \left[J_{L+1}(\zeta \mathcal{M})u_+ + J_{L+2}(\zeta \mathcal{M})u_- \right].$$

Baryonic modes propagating in AdS space have two components: orbital L and L + 1.

• Hadronic mass spectrum determined from IR boundary conditions

$$\psi_{\pm} \left(\zeta = 1 / \Lambda_{\rm QCD} \right) = 0,$$

given by

$$\mathcal{M}_{\nu,k}^{+} = \beta_{\nu,k} \Lambda_{\text{QCD}}, \quad \mathcal{M}_{\nu,k}^{-} = \beta_{\nu+1,k} \Lambda_{\text{QCD}},$$

with a scale independent mass ratio.

SCGT December 8, 2009

AdS/QCD and LF Holography

Fig: Light baryon orbital spectrum for Λ_{QCD} = 0.25 GeV in the HW model. The **56** trajectory corresponds to L even P = + states, and the **70** to L odd P = - states.

SCGT December 8, 2009

AdS/QCD and LF Holography

Non-Conformal Extension of Algebraic Structure (Soft Wall Model)

• We write the Dirac equation

$$(\alpha \Pi(\zeta) - \mathcal{M}) \,\psi(\zeta) = 0,$$

in terms of the matrix-valued operator Π

$$\Pi_{\nu}(\zeta) = -i\left(\frac{d}{d\zeta} - \frac{\nu + \frac{1}{2}}{\zeta}\gamma_5 - \kappa^2\zeta\gamma_5\right),\,$$

and its adjoint $\Pi^\dagger,$ with commutation relations

$$\left[\Pi_{\nu}(\zeta), \Pi_{\nu}^{\dagger}(\zeta)\right] = \left(\frac{2\nu+1}{\zeta^2} - 2\kappa^2\right)\gamma_5.$$

• Solutions to the Dirac equation

$$\psi_{+}(\zeta) \sim z^{\frac{1}{2}+\nu} e^{-\kappa^{2}\zeta^{2}/2} L_{n}^{\nu}(\kappa^{2}\zeta^{2}),$$

$$\psi_{-}(\zeta) \sim z^{\frac{3}{2}+\nu} e^{-\kappa^{2}\zeta^{2}/2} L_{n}^{\nu+1}(\kappa^{2}\zeta^{2}).$$

• Eigenvalues

$$\mathcal{M}^2 = 4\kappa^2(n+\nu+1)$$

SCGT December 8, 2009

AdS/QCD and LF Holography

 $4\kappa^2$ for $\Delta n = 1$ $4\kappa^2$ for $\Delta L = 1$ $2\kappa^2$ for $\Delta S = 1$

 \mathcal{M}^2

Parent and daughter **56** Regge trajectories for the N and Δ baryon families for $\kappa = 0.5$ GeV

SCGT December 8, 2009

AdS/QCD and LF Holography

E. Klempt *et al.*: Δ^* resonances, quark models, chiral symmetry and AdS/QCD

H. Forkel, M. Beyer and T. Frederico, JHEP 0707 (2007) 077.
H. Forkel, M. Beyer and T. Frederico, Int. J. Mod. Phys. E 16 (2007) 2794.

SCGT December 8, 2009

AdS/QCD and LF Holography

83

SU(6)	S	L	Baryon State
56	$\frac{1}{2}$	0	$N\frac{1}{2}^{+}(939)$
	$\frac{2}{3}$	0	$\Delta \frac{3}{2}^{+}(1232)$
70	$\frac{1}{2}$	1	$N\frac{1}{2}^{-}(1535) N\frac{3}{2}^{-}(1520)$
	$\frac{3}{2}$	1	$N\frac{1}{2}^{-}(1650) N\frac{3}{2}^{-}(1700) N\frac{5}{2}^{-}(1675)$
	$\frac{1}{2}$	1	$\Delta \frac{1}{2}^{-}(1620) \ \Delta \frac{3}{2}^{-}(1700)$
56	$\frac{1}{2}$	2	$N\frac{3}{2}^{+}(1720) N\frac{5}{2}^{+}(1680)$
	$\frac{3}{2}$	2	$\Delta \frac{1}{2}^{+}(1910) \ \Delta \frac{3}{2}^{+}(1920) \ \Delta \frac{5}{2}^{+}(1905) \ \Delta \frac{7}{2}^{+}(1950)$
70	$\frac{1}{2}$	3	$N\frac{5}{2}^{-}$ $N\frac{7}{2}^{-}$
	$\frac{3}{2}$	3	$N\frac{3}{2}^{-}$ $N\frac{5}{2}^{-}$ $N\frac{7}{2}^{-}(2190)$ $N\frac{9}{2}^{-}(2250)$
	$\frac{1}{2}$	3	$\Delta \frac{5}{2}^{-}(1930) \ \Delta \frac{7}{2}^{-}$
56	$\frac{1}{2}$	4	$N\frac{7}{2}^+$ $N\frac{9}{2}^+(2220)$
	$\frac{3}{2}$	4	$\Delta \frac{5}{2}^+$ $\Delta \frac{7}{2}^+$ $\Delta \frac{9}{2}^+$ $\Delta \frac{11}{2}^+$ (2420)
70	$\frac{1}{2}$	5	$N\frac{9}{2}^{-}$ $N\frac{11}{2}^{-}(2600)$
	$\frac{3}{2}$	5	$N\frac{7}{2}^{-} \qquad N\frac{9}{2}^{-} \qquad N\frac{11}{2}^{-} \qquad N\frac{13}{2}^{-}$

SCGT December 8, 2009

Space-Like Dirac Proton Form Factor

• Consider the spin non-flip form factors

$$F_{+}(Q^{2}) = g_{+} \int d\zeta J(Q,\zeta) |\psi_{+}(\zeta)|^{2},$$

$$F_{-}(Q^{2}) = g_{-} \int d\zeta J(Q,\zeta) |\psi_{-}(\zeta)|^{2},$$

where the effective charges g_+ and g_- are determined from the spin-flavor structure of the theory.

- Choose the struck quark to have $S^z = +1/2$. The two AdS solutions $\psi_+(\zeta)$ and $\psi_-(\zeta)$ correspond to nucleons with $J^z = +1/2$ and -1/2.
- For SU(6) spin-flavor symmetry

$$F_1^p(Q^2) = \int d\zeta J(Q,\zeta) |\psi_+(\zeta)|^2,$$

$$F_1^n(Q^2) = -\frac{1}{3} \int d\zeta J(Q,\zeta) \left[|\psi_+(\zeta)|^2 - |\psi_-(\zeta)|^2 \right],$$

where $F_1^p(0) = 1$, $F_1^n(0) = 0$.

SCGT December 8, 2009

AdS/QCD and LF Holography

• Scaling behavior for large Q^2 : $Q^4 F_1^p(Q^2) \rightarrow \text{constant}$ Prote

Proton
$$\tau = 3$$

SW model predictions for $\kappa = 0.424$ GeV. Data analysis from: M. Diehl *et al.* Eur. Phys. J. C **39**, 1 (2005).

SCGT December 8, 2009

AdS/QCD and LF Holography

Scaling behavior for large Q^2 : $Q^4 F_1^n(Q^2) \rightarrow \text{constant}$

SW model predictions for $\kappa = 0.424$ GeV. Data analysis from M. Diehl *et al.* Eur. Phys. J. C **39**, 1 (2005).

SCGT December 8, 2009

AdS/QCD and LF Holography

87

Stan Brodsky

Neutron $\tau = 3$

Spacelike Pauli Form Factor

Preliminary

From overlap of L = 1 and L = 0 LFWFs

December 8, 2009

AdS/QCD and LF Holography

SI AC

Light-Front QCD

Heisenberg Matrix Formulation

$$L^{QCD} \to H_{LF}^{QCD}$$

Physical gauge: $A^+ = 0$

$$H_{LF}^{QCD}|\Psi_h\rangle = \mathcal{M}_h^2|\Psi_h\rangle$$

Eigenvalues and Eigensolutions give Hadron Spectrum and Light-Front wavefunctions

Light-Front QCD Heisenberg Equation

 $H_{LC}^{QCD} |\Psi_h\rangle = \mathcal{M}_h^2 |\Psi_h\rangle$

	n	Sector	1 qq	2 gg	3 qq g	4 qā qā	5 99 9	6 qq gg	7 qq qq g	8 qq qq qq	99 99 9	10 qq gg g	11 qq qq gg	12 qq qq qq g	13 ବବିବବିବବିବବି
ζ _{k,λ}	1	qq				1 ×	•		•	•	•	•	•	•	•
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2	gg		X	~	•	~~~{``		•	•		•	•	•	•
p,s' p,s	3	qq g	>-	>		~~<	+	~~~<		•	•	Tr.	٠	•	•
(a)	4	qq qq	K+↓	٠	>		•		-	Y Y	•	•		•	•
¯p,s' k,λ	5	gg g	•	<u></u>		•		~~<	•	•	~~~<		•	•	•
wit	6	qq gg	₹ 		<u>}</u> ~~		$\rightarrow$		~~<	•		-		•	•
k̄,λ΄ p,s	7	qq qq g	٠	٠	<b>**</b>	>-	•	>		~	٠		-	1 X	•
(2)	8 (	qā dā dā	•	٠	•		•	•	>		٠	•		-	Y.
p,s' p,s	9	gg gg	•		•	•	<u></u>		•	•		~~<	•	•	•
	10	qq gg g	•	٠		•		>		•	>		~	•	•
	11 (	qā dā ga	•	•	•		•		>-		٠	>		~~<	•
(c)	12 q	q dd dd d	•	•	•	•	•	٠	>	>-	•	•	>		~~<
L	13 qā	ସି ସସି ସସି ସସି	•	•	•	•	•	•	•	K	•	•	•	>	

Use AdS/QCD basis functions

SCGT December 8, 2009



Use AdS/CFT orthonormal LFWFs as a basis for diagonalizing the QCD LF Hamiltonian

- Good initial approximant
- Better than plane wave basis Pauli, Hornbostel, Hiller, McCartor, sjb
- DLCQ discretization -- highly successful 1+1
- Use independent HO LFWFs, remove CM motion

Vary, Harinandrath, Maris, sjb

• Similar to Shell Model calculations

SCGT December 8, 2009

AdS/QCD and LF Holography

# New Perspectives for QCD from AdS/CFT

- LFWFs: Fundamental frame-independent description of hadrons at amplitude level
- Holographic Model from AdS/CFT : Confinement at large distances and conformal behavior at short distances
- Model for LFWFs, meson and baryon spectra: many applications!
- New basis for diagonalizing Light-Front Hamiltonian
- Physics similar to MIT bag model, but covariant. No problem with support 0 < x < 1.
- Quark Interchange dominant force at short distances

SCGT December 8, 2009



## Running Coupling from Modified AdS/QCD

### Deur, de Teramond, sjb

• Consider five-dim gauge fields propagating in AdS $_5$  space in dilaton background  $arphi(z)=\kappa^2 z^2$ 

$$S = -\frac{1}{4} \int d^4x \, dz \, \sqrt{g} \, e^{\varphi(z)} \, \frac{1}{g_5^2} \, G^2$$

• Flow equation

$$\frac{1}{g_5^2(z)} = e^{\varphi(z)} \frac{1}{g_5^2(0)} \quad \text{or} \quad g_5^2(z) = e^{-\kappa^2 z^2} g_5^2(0)$$

where the coupling  $g_5(z)$  incorporates the non-conformal dynamics of confinement

- YM coupling  $\alpha_s(\zeta) = g_{YM}^2(\zeta)/4\pi$  is the five dim coupling up to a factor:  $g_5(z) \to g_{YM}(\zeta)$
- Coupling measured at momentum scale Q

$$\alpha_s^{AdS}(Q) \sim \int_0^\infty \zeta d\zeta J_0(\zeta Q) \,\alpha_s^{AdS}(\zeta)$$

Solution

$$\alpha_s^{AdS}(Q^2) = \alpha_s^{AdS}(0) e^{-Q^2/4\kappa^2}.$$

where the coupling  $\alpha_s^{AdS}$  incorporates the non-conformal dynamics of confinement

Running Coupling from Light-Front Holography and AdS/QCD normalization



Deur, de Teramond, sjb, (preliminary)



Deur, de Teramond, sjb, (preliminary)



Deur, de Teramond, sjb, (preliminary)

### Conjectured behavior of the full $\beta$ -function of QCD

$$\beta(Q \to 0) = \beta(Q \to \infty) = 0, \tag{1}$$

$$\beta(Q) < 0, \text{ for } Q > 0, \tag{2}$$

$$\frac{d\beta}{dQ}\big|_{Q=Q_0} = 0,\tag{3}$$

$$\frac{d\beta}{dQ} < 0, \text{ for } Q < Q_0, \quad \frac{d\beta}{dQ} > 0, \text{ for } Q > Q_0.$$
(4)

- 1. QCD is conformal in the far UV and deep IR
- 2. Anti-screening behavior of QCD which leads to asymptotic freedom
- 3. Hadronic-partonic transition: the minimum is an absolute minimum
- 4. Since there is only one transition (4) follows from the above

### Running Coupling for Static Potential from AdS/QCD



Applications of Nonperturbative Running Coupling from AdS/QCD

- Sivers Effect in SIDIS, Drell-Yan
- Double Boer-Mulders Effect in DY
- Diffractive DIS
- Heavy Quark Production at Threshold

All ínvolve gluon exchange at small momentum transfer

SCGT December 8, 2009

**AdS/QCD and LF Holography** 

Stan Brodsky

100



SCGT December 8, 2009

AdS/QCD and LF Holography

Fínal-State Interactions Produce Pseudo T-Odd (Sívers Effect)

- Leading-Twist Bjorken Scaling!
- Requires nonzero orbital angular momentum of quark
- Arises from the interference of Final-State QCD Coulomb phases in S- and P- waves;
- Wilson line effect -- gauge independent
- Relate to the quark contribution to the target proton anomalous magnetic moment and final-state QCD phases
- QCD phase at soft scale! Nonperturbative QCD
- New window to QCD coupling and running gluon mass in the IR
- QED S- and P-wave Coulomb phases infinite -- difference of phases finite!

SCGT December 8, 2009





## Features of Soft-Wall AdS/QCD

- Single-variable frame-independent radial Schrodinger equation
- Massless pion (m_q = 0)
- Regge Trajectories: universal slope in n and L
- Valid for all integer J & S. Spectrum is independent of S
- Dimensional Counting Rules for Hard Exclusive Processes
- Phenomenology: Space-like and Time-like Form Factors
- LF Holography: LFWFs; broad distribution amplitude
- No large Nc limit
- Add quark masses to LF kinetic energy
- Systematically improvable -- diagonalize H_{LF} on AdS basis

SCGT December 8, 2009



## Features of AdS/QCD LF Holography

- Based on Conformal Scaling of Infrared QCD Fixed Point
- Conformal template: Use isometries of AdS5
- Interpolating operator of hadrons based on twist, superfield dimensions
- Finite Nc = 3: Baryons built on 3 quarks -- Large Nc limit not required
- Break Conformal symmetry with dilaton
- Dilaton introduces confinement -- positive exponent
- Origin of Linear and HO potentials: Stochastic arguments (Glazek); General 'classical' potential for Dirac Equation (Hoyer)
- Effective Charge from AdS/QCD
- Conformal Dimensional Counting Rules for Hard Exclusive Processes
- Use CRF (LF Constituent Rest Frame) to reconstruct 3D Image of Hadrons (Glazek, de Teramond, sjb)

SCGT December 8, 2009



Formation of Relativistic Anti-Hydrogen

### Measured at CERN-LEAR and FermiLab



**Coalescence of** Off-shell **co-moving positron and antiproton** 

Wavefunction maximal at small impact separation and equal rapidity

"Hadronization" at the Amplitude Level

SCGT December 8, 2009

AdS/QCD and LF Holography

Hadronization at the Amplitude Level



### **Construct helicity amplitude using Light-Front Perturbation theory; coalesce quarks via LFWFs**

SCGT December 8, 2009

AdS/QCD and LF Holography

## Hadronization at the Amplitude Level



## Features of LF T-Matrix Formalism "Event Amplitude Generator"

• Coalesce color-singlet cluster to hadronic state if

$$\mathcal{M}_n^2 = \sum_{i=1}^n \frac{k_{\perp i}^2 + m_i^2}{x_i} < \Lambda_{QCD}^2$$

- The coalescence probability amplitude is the LF wavefunction  $\Psi_n(x_i, \vec{k}_{\perp i}, \lambda_i)$
- No IR divergences: Maximal gluon and quark wavelength from confinement

$$x_i P^+, x_i \vec{P}_{\perp} + \vec{k}_{\perp i}$$

$$P^+, \vec{P}_{\perp}$$

$$P^+ = P^0 + P^z$$
SCGT
AdS/QCD and LF Holography
$$P^+ = P^0 + P^z$$
Stan Brodsky
SLAC

## Features of LF T-Matrix Formalism "Event Amplitude Generator"

- Same principle as antihydrogen production: off-shell coalescence
- coalescence to hadron favored at equal rapidity, small transverse momenta
- leading heavy hadron production: D and B mesons produced at large z
- hadron helicity conservation if hadron LFWF has L^z =0
- Baryon AdS/QCD LFWF has aligned and anti-aligned quark spin



### Baryon can be made directly within hard subprocess



December 8, 2009

110

SI AC



III

Power-law exponent  $n(x_T)$  for  $\pi^0$  and h spectra in central and peripheral Au+Au collisions at  $\sqrt{s_{NN}} = 130$  and 200 GeV

S. S. Adler, et al., PHENIX Collaboration, Phys. Rev. C 69, 034910 (2004) [nucl-ex/0308006].



Proton production dominated by color-transparent direct high n_{eff} subprocesses

SCGT December 8, 2009

AdS/QCD and LF Holography



#### Anne Sickles



## Chiral Symmetry Breaking in AdS/QCD

We consider the action of the X field which encodes the effects of CSB in AdS/QCD:

$$S_X = \int d^4x dz \sqrt{g} \left( g^{\ell m} \partial_\ell X \partial_m X - \mu_X^2 X^2 \right), \tag{1}$$

with equations of motion

Erlich, Katz, Son, Stephanov **Babington**, Erdmenger, Evans, Kirsch, Guralnik, Thelfall

$$z^{3}\partial_{z}\left(\frac{1}{z^{3}}\partial_{z}X\right) - \partial_{\rho}\partial^{\rho}X - \left(\frac{\mu_{X}R}{z}\right)^{2}X = 0.$$

(2)

The zero mode has no variation along Minkowski coordinates

$$\partial_{\mu}X(x,z) = 0,$$

thus the equation of motion reduces to

$$\left[z^2 \partial_z^2 - 3z \,\partial_z + 3\right] X(z) = 0. \tag{3}$$

for  $(\mu_X R)^2 = -3$ , which corresponds to scaling dimension  $\Delta_X = 3$ . The solution is

$$X(z) = \langle X \rangle = Az + Bz^3, \tag{4}$$

where A and B are determined by the boundary conditions.

de Teramond, Shrock, sjb

$$A \propto m_q$$
  $B \propto < \bar{\psi}\psi >$  Expectation value taken inside hadron

SCGT **December 8, 2009** 



# Chiral Symmetry Breaking in AdS/QCD

**Erlich et** 

al.

• Chiral symmetry breaking effect in AdS/QCD depends on weighted z² distribution, not constant condensate

$$\delta M^2 = -2m_q < \bar{\psi}\psi > \times \int dz \ \phi^2(z)z^2$$

- z² weighting consistent with higher Fock states at periphery of hadron wavefunction
- AdS/QCD: confined condensate
- Suggests "In-Hadron" Condensates

### de Teramond, Shrock, sjb



AdS/QCD and LF Holography

## "One of the gravest puzzles of theoretical physics"

#### DARK ENERGY AND THE COSMOLOGICAL CONSTANT PARADOX

A. ZEE  $\,$ 

Department of Physics, University of California, Santa Barbara, CA 93106, USA Kavil Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA zee@kitp.ucsb.edu

$$(\Omega_{\Lambda})_{QCD} \sim 10^{45}$$
  
 $\Omega_{\Lambda} = 0.76(expt)$   
 $(\Omega_{\Lambda})_{EW} \sim 10^{56}$ 

QCD Problem Solved if Quark and Gluon condensates reside within hadrons, not LF vacuum

Shrock, sjb

#### VOLUME 9, NUMBER 2

#### Chiral magnetism (or magnetohadrochironics)

Aharon Casher and Leonard Susskind Tel Aviv University Ramat Aviv, Tel-Aviv, Israel (Received 20 March 1973)

#### I. INTRODUCTION

The spontaneous breakdown of chiral symmetry in hadron dynamics is generally studied as a vacuum phenomenon.¹ Because of an instability of the chirally invariant vacuum, the real vacuum is "aligned" into a chirally asymmetric configuration.

On the other hand an approach to quantum field theory exists in which the properties of the vacuum state are not relevant. This is the parton or constituent approach formulated in the infinitemomentum frame.² A number of investigations have indicated that in this frame the vacuum may be regarded as the structureless Fock-space vacuum. Hadrons may be described as nonrelativistic collections of constituents (partons). In this framework the spontaneous symmetry breakdown must be attributed to the properties of the hadron's wave function and not to the vacuum.³

Líght-Front (Front Form) Formalísm



Use Dyson-Schwinger Equation for bound-state quark propagator: find confined condensate

 $< \overline{b}|\overline{q}q|\overline{b} > \text{not} < 0|\overline{q}q|0 >$ 

SCGT December 8, 2009

AdS/QCD and LF Holography

#### Pion mass and decay constant.

Pieter Maris, Craig D. Roberts (Argonne, PHY), Peter C. Tandy (Kent State U.). ANL-PHY-8753-TH-97, KSUCNR-103-97, Jul 1997. 12pp. Published in Phys.Lett.B420:267-273,1998. e-Print: nucl-th/9707003

#### **Pi- and K meson Bethe-Salpeter amplitudes.**

Pieter Maris, Craig D. Roberts (Argonne, PHY) . ANL-PHY-8788-TH-97, Aug 1997. 34pp. Published in Phys.Rev.C56:3369-3383,1997. e-Print: nucl-th/9708029

#### Concerning the quark condensate.

K. Langfeld (Tubingen U.), H. Markum (Vienna, Tech. U.), R. Pullirsch (Regensburg U.), C.D. Roberts (Argonne, PHY & Rostock U.), S.M. Schmidt (Tubingen U. & HGF, Bonn). ANL-PHY-10460-TH-2002, MPG-VT-UR-239-02, Jan 2003. 7pp. Published in Phys.Rev.C67:065206,2003. e-Print: nucl-th/0301024

 $-\langle \bar{q}q \rangle_{\zeta}^{\pi} = f_{\pi} \langle 0 | \bar{q}\gamma_5 q | \pi \rangle \,.$ 

Valid even for  $m_q \to 0$  $f_{\pi}$  nonzero

SCGT December 8, 2009

**AdS/QCD** and LF Holography

#### de Teramond, Sjb

In presence of quark masses the Holographic LF wave equation is  $(\zeta = z)$ 

$$\left[-\frac{d^2}{d\zeta^2} + V(\zeta) + \frac{X^2(\zeta)}{\zeta^2}\right]\phi(\zeta) = \mathcal{M}^2\phi(\zeta),\tag{1}$$

and thus

$$\delta M^2 = \left\langle \frac{X^2}{\zeta^2} \right\rangle. \tag{2}$$

The parameter a is determined by the Weisberger term

$$a = \frac{2}{\sqrt{x}}.$$

Thus

$$X(z) = \frac{m}{\sqrt{x}} z - \sqrt{x} \langle \bar{\psi}\psi \rangle z^3,$$
(3)

and

$$\delta M^2 = \sum_i \left\langle \frac{m_i^2}{x_i} \right\rangle - 2 \sum_i m_i \langle \bar{\psi}\psi \rangle \langle z^2 \rangle + \langle \bar{\psi}\psi \rangle^2 \langle z^4 \rangle, \tag{4}$$

where we have used the sum over fractional longitudinal momentum  $\sum_{i} x_{i} = 1$ .

Mass shift from dynamics inside hadronic boundary

SCGT December 8, 2009



### Quark and Gluon condensates reside within

### hadrons, not LF vacuum

- Bound-State Dyson-Schwinger Equations
- Spontaneous Chiral Symmetry Breaking within infinitecomponent LFWFs

Maris, Roberts, Tandy

> Casher Susskind

- Finite size phase transition infinite # Fock constituents
- AdS/QCD Description -- CSB is in-hadron Effect
- Analogous to finite-size superconductor!
- Phase change observed at RHIC within a single-nucleus-nucleus collisions-- quark gluon plasma!
- Implications for cosmological constant -- reduction by 45 orders of magnitude!
   Shrock, sjb

"Confined QCD Condensates"

SCGT December 8, 2009

**AdS/QCD** and LF Holography

- Casher & Susskind model shows that spontaneous chiral symmetry breaking can occur in the finite domain of a hadronic LFWF
- Infinite number of partons required, but this is a feature of QCD LFWFs --
- Regge behavior of DIS due to  $x^{-\alpha_R}$  behavior of structure functions (LFWFs squared )
- A.H. Mueller: BFKL Pomeron derived from the multi-gluon Fock States of the quarkonium LFWF
- F. Antonuccio, S. Dalley, sjb: Construct soft-gluon LFWF via ladder operators
- LF Vacuum Trivial up to zero modes



- Color Confinement: Maximum Wavelength of Quark and Gluons
- Conformal symmetry of QCD coupling in IR
- Conformal Template (BLM, CSR, ...)
- Motivation for AdS/QCD
- QCD Condensates inside of hadronic LFWFs
- Technicolor: confined condensates inside of technihadrons -- alternative to Higgs
- Simple physical solution to cosmological constant conflict with Standard Model

Shrock and sjb

SCGT December 8, 2009

AdS/QCD and LF Holography

# Líght-Front Holography and AdS/QCD: A New Approximation to QCD





## SCGT09

2009 Nagoya Global COE Workshop "Strong Coupling Gauge Theories in LHC Era"

### **Stan Brodsky**



**December 9, 2009**