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1 Introduction: Gauge/Gravity Correspondence and QCD

• Most challenging problem of strong interaction dynamics: determine the composition of hadrons in

terms of their fundamental QCD quark and gluon degrees of freedom

• Recent developments inspired by the AdS/CFT correspondence [Maldacena (1998)] between string

states in AdS space and conformal field theories in physical space-time have led to analytical insights

into the confining dynamics of QCD

• Description of strongly coupled gauge theory using a dual gravity description!

• Strings describe spin-J extended objects (no quarks). QCD degrees of freedom are pointlike particles

and hadrons have orbital angular momentum: how can they be related?

IPhT-CEA-Saclay, October 9, 2009 Page 3



• AdS5 metric:

ds2︸︷︷︸
LAdS

=
R2

z2

(
ηµνdx

µdxν︸ ︷︷ ︸
LMinkowski

−dz2
)

• A distance LAdS shrinks by a warp factor z/R

as observed in Minkowski space (dz = 0):

LMinkowski ∼
z

R
LAdS

• Different values of z correspond to different scales at which the hadron is examined

• Since xµ → λxµ, z → λz, short distances xµx
µ → 0 maps to UV conformal AdS5 boundary

z → 0, which corresponds to the Q→∞ UV zero separation limit

• Large confinement dimensions xµx
µ ∼ 1/Λ2

QCD maps to large IR region of AdS5, z ∼ 1/ΛQCD,

thus there is a maximum separation of quarks and a maximum value of z at the IR boundary

• Local operators likeO and LQCD defined in terms of quark and gluon fields at the AdS5 boundary

• Use the isometries of AdS to map the local interpolating operators at the UV boundary of AdS into the

modes propagating inside AdS
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• Nonconformal metric dual to a confining gauge theory

ds2 =
R2

z2
e2A(z)

(
ηµνdx

µdxν− dz2
)
, A(z→0)→0

• Non-conformal metric dual to a confining gauge theory

• Consider a warp factor 2A(z) = ±κ2z2 and follow

an object in AdS as it falls to the infrared region

• Gravitational potential energy in GR

V (z) = mc2√g00 = mc2R
eA(z)

z

Confining solution:

Warp factor: e+κ2z2

z0 = 1
κ
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Infrared Running Coupling From Holography With A. Deur and S. J. Brodsky

• Consider the propagation of the gluon field in AdS in presence of a dilaton background ϕ(z)

S = −1
4

∫
d4x dz

√
g eϕ(z) 1

g2
5

G2

instead of modifying AdS metrics:
√
g = (R/z)5

• Dilaton ϕ(z) = ±κ2z2 leads to Regge trajectoriesM2 ∼ J [Karch, Katz, Son and Stephanov]

• Define efective coupling g5(z)

S = −1
4

∫
d4x dz

√
g

1
g2

5(z)
G2

• Thus the flow equation

1
g2

5(z)
= eϕ(z) 1

g2
5(0)

or g2
5(z) = e−κ

2z2g2
5(0)

• Coupling measured at momentum scale Q

αs(Q) ∼
∫ ∞

0
dzJ0(zQ)αs(z)

where αs(z) = e−κ
2z2αs(0) ∼ g2

5(z)

IPhT-CEA-Saclay, October 9, 2009 Page 6



• Define normalization αeffs (Q2)/π → 1 as Q2 → 0 (BJ sum rule)

αeffs (Q)
π

= e−Q
2/8κ2

I0

(
Q2

8κ2

)
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• Beta function With A. Deur and S. J. Brodsky

βeff (Q2) =
d

d log(Q2)
αeffs (Q2) = −πQ

2

8κ2
e−Q

2/8κ2

[
I0

(
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− I1

(
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)]
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2 Light-Front Quantization of QCD and AdS/CFT

• Light-front (LF) quantization is the ideal framework to describe hadronic structure in terms of quarks

and gluons: simple vacuum structure allows unambiguous definition of the partonic content of a

hadron, exact formulae for form factors, physics of angular momentum of constituents ...

• Frame-independent LF Hamiltonian equation PµP
µ|P 〉 =M2|P 〉 similar structure of AdS EOM

• First semiclassical approximation to the bound-state LF Hamiltonian equation in QCD is equivalent to

equations of motion in AdS and can be systematically improved GdT and S. J. Brodsky, PRL 102, 081601

(2009)
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• Different possibilities to parametrize space-time [Dirac (1949)]

• Parametrizations differ by the hypersurface on which the initial conditions are specified. Each evolve

with different “times” and has its own Hamiltonian, but should give the same physical results

• Instant form: hypersurface defined by t = 0, the familiar one

• Front form: hypersurface is tangent to the light cone at τ = t+ z/c = 0

x+ = x0 + x3 light-front time

x− = x0 − x3 longitudinal space variable

k+ = k0 + k3 longitudinal momentum (k+ > 0)

k− = k0 − k3 light-front energy

k · x = 1
2 (k+x− + k−x+)− k⊥ · x⊥

On shell relation k2 = m2 leads to dispersion relation k− = k2
⊥+m2

k+
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• QCD Lagrangian

LQCD = − 1
4g2

Tr (GµνGµν) + iψDµγ
µψ +mψψ

• LF Momentum Generators P = (P+, P−,P⊥) in terms of dynamical fields ψ, A⊥

P− =
1
2

∫
dx−d2x⊥ψ γ+ (i∇⊥)2+m2

i∂+
ψ + interactions

P+ =
∫
dx−d2x⊥ ψ γ+i∂+ψ

P⊥ =
1
2

∫
dx−d2x⊥ ψ γ+i∇⊥ψ

• LF Hamiltonian P− generates LF time translations[
ψ(x), P−

]
= i

∂

∂x+
ψ(x)

and the generators P+ and P⊥ are kinematical
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Light-Front Partonic Representation

• Dirac field ψ, expanded in terms of ladder operators on the initial surface x+ = x0 + x3

ψ(x−,x⊥)α =
∑
λ

∫
q+>0

dq+√
2q+

d2q⊥
(2π)3

[
bλ(q)uα(q, λ)e−iq·x + dλ(q)†vα(q, λ)eiq·x

]
• LF Generators P = (P+, P−,P⊥) in terms of constituents with momentum q = (q+, q−,q⊥)

P− =
∑
λ

∫
dq+d2q⊥

(2π)3

(q2
⊥ +m2

q+

)
b†λ(q)bλ(q) + interactions

P+ =
∑
λ

∫
dq+d2q⊥

(2π)3
q+ b†λ(q)bλ(q)

P⊥ =
∑
λ

∫
dq+d2q⊥

(2π)3
q⊥ b

†
λ(q)bλ(q)
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Light-Front Bound State Hamiltonian Equation

• Construct light-front invariant Hamiltonian for the composite system: HLF = PµP
µ = P−P+−P2

⊥

HLF |ψH〉 =M2
H |ψH〉

• State |ψH(P+,P⊥, Jz)〉 is expanded in multi-particle Fock states |n〉 of the free LF Hamiltonian:

|ψH〉 =
∑
n

ψn/H |n〉, |n〉 =


|uud〉

|uudg〉

|uudqq〉 · · ·

where k2
i = m2

i , ki = (k+
i , k

−
i ,k⊥i), for each component i

• Fock components ψn/H(xi,k⊥i, λzi ) are independent of P+ and P⊥ and depend only on relative

partonic coordinates: momentum fraction xi = k+
i /P

+, transverse momentum k⊥i and spin λzi
n∑
i=1

xi = 1,
n∑
i=1

k⊥i = 0.
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• ComputeM2 from hadronic matrix element

〈ψH(P ′)|HLF |ψH(P )〉=M2
H〈ψH(P ′)|ψH(P )〉

• Find

M2
H =

∑
n

∫ [
dxi
][
d2k⊥i

]∑
`

(k2
⊥` +m2

`

xq

) ∣∣ψn/H(xi,k⊥i)
∣∣2 + interactions

• Phase space normalization of LFWFs∑
n

∫ [
dxi
] [
d2k⊥i

] ∣∣ψn/h(xi,k⊥i)
∣∣2 = 1

• In terms of n−1 independent transverse impact coordinates b⊥j , j = 1, 2, . . . , n−1,

M2
H =

∑
n

n−1∏
j=1

∫
dxjd

2b⊥jψ∗n/H(xi,b⊥i)
∑
`

(−∇2
b⊥`

+m2
`

xq

)
ψn/H(xi,b⊥i)+interactions

• Normalization ∑
n

n−1∏
j=1

∫
dxjd

2b⊥j |ψn(xj ,b⊥j)|2 = 1
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3 Semiclassical Approximation to QCD

• Consider a two-parton hadronic bound state in transverse impact space in the limit mq → 0

M2 =
∫ 1

0

dx

1− x

∫
d2b⊥ ψ∗(x,b⊥)

(
−∇2

b⊥

)
ψ(x,b⊥) + interactions

• Functional dependence of Fock state |n〉 given by invariant mass

M2
n =

( n∑
a=1

kµa

)2
=
∑
a

k2
⊥a +m2

a

xa
→

k2
⊥

x(1− x)
(1)

the off-energy shell of the bound stateM2−M2
n

• In impact space the relevant variable is ζ2 = x(1− x)b2
⊥

• To first approximation LF dynamics depend only on the invariant variable Mn or ζ, and hadronic

properties are encoded in the hadronic mode φ(ζ) from

ψ(x, ζ, ϕ) = eiMϕX(x)
φ(ζ)√
2πζ

(2)

factoring out angular ϕ, longitudinal X(x) and transverse mode φ(ζ)
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• Find (L = |M |)

M2 =
∫
dζ φ∗(ζ)

√
ζ

(
− d2

dζ2
− 1
ζ

d

dζ
+
L2

ζ2

)
φ(ζ)√
ζ

+
∫
dζ φ∗(ζ)U(ζ)φ(ζ)

where the confining forces from the interaction terms is summed up in the effective potential U(ζ)

• Ultra relativistic limit mq → 0 longitudinal modes X(x) decouple and LF eigenvalue equation

HLF |φ〉 =M2|φ〉 is a LF wave equation for φ

(
− d2

dζ2
− 1− 4L2

4ζ2︸ ︷︷ ︸
kinetic energy of partons

+ U(ζ)︸ ︷︷ ︸
confinement

)
φ(ζ) =M2φ(ζ)

• Effective light-front Schrödinger equation: relativistic, frame-independent and analytically tractable

• Eigenmodes φ(ζ) determine the hadronic mass spectrum and represent the probability amplitude to

find n-massless partons at transverse impact separation ζ within the hadron at equal light-front time

• Semiclassical approximation to light-front QCD does not account for particle creation and absorption

but can be implemented in the LF Hamiltonian EOM or by applying the L-S formalism
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Hard-Wall Model

• Consider the potential (hard wall)

U(ζ) =

 0 if ζ ≤ 1
ΛQCD

∞ if ζ > 1
ΛQCD

• If L2 ≥ 0 the Hamiltonian is positive definite 〈φ
∣∣HL

LF

∣∣φ〉 ≥ 0 and thusM2 ≥ 0

• If L2 < 0 the Hamiltonian is not bounded from below ( “Fall-to-the-center” problem in Q.M.)

• Critical value of the potential corresponds to L = 0, the lowest possible stable state

• Solutions:

φL(ζ) = CL
√
ζJL (ζM)

• Mode spectrum from boundary conditions

φ

(
ζ =

1
ΛQCD

)
= 0

Thus

M2 = βLkΛQCD
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• Excitation spectrum hard-wall model: Mn,L ∼ L+ 2n

Light-meson orbital spectrum ΛQCD = 0.32 GeV
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Holographic Mapping

• Holographic mapping found originally by matching expressions of EM and gravitational form factors of

hadrons in AdS and LF QCD [Brodsky and GdT (2006, 2008)]

• Substitute Φ(ζ) ∼ ζ3/2φ(ζ), ζ → z in the conformal LFWE(
− d2

dζ2
− 1− 4L2

4ζ2

)
φ(ζ) =M2φ(ζ)

• Find: [
z2∂2

z − 3z ∂z + z2M2 − (µR)2
]

Φ(z) = 0

with (µR)2 = −4 + L2, the wave equation of string mode in AdS5 !

• Isomorphism of SO(4, 2) group of conformal QCD with generators Pµ,Mµν, D,Kµ with the group

of isometries of AdS5 space: xµ → λxµ, z → λz

ds2 =
R2

z2
(ηµνdxµdxν − dz2)

• AdS Breitenlohner-Freedman bound (µR)2 ≥ −4 equivalent to LF QM stability condition L2 ≥ 0

• Conformal dimension ∆ of AdS mode Φ given in terms of 5-dim mass by (µR)2 = ∆(∆−4). Thus

∆ = 2 + L in agreement with the twist scaling dimension of a two parton object in QCD
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4 Higher-Spin Bosonic Modes

Hard-Wall Model

• AdSd+1 metric x` = (xµ, z):

ds2 = g`mdx
`dxm =

R2

z2
(ηµνdxµdxν − dz2)

• Action for gravity coupled to scalar field in AdSd+1

S =
∫
dd+1x

√
g
( 1
κ2

(R− 2Λ)︸ ︷︷ ︸
SG

+
1
2
(
g`m∂`Φ∂mΦ− µ2Φ2

)
︸ ︷︷ ︸

SM

)
• Equations of motion for SM

z3∂z

( 1
z3
∂zΦ

)
− ∂ρ∂ρΦ−

(µR
z

)2
Φ = 0

• Physical AdS modes ΦP (x, z) ∼ e−iP ·x Φ(z) are plane waves along the Poincaré coordinates

with four-momentum Pµ and hadronic invariant mass states PµP
µ =M2

• Factoring out dependence of string mode ΦP (x, z) along xµ-coordinates[
z2∂2

z − (d− 1)z ∂z + z2M2 − (µR)2
]

Φ(z) = 0
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• Spin J -field on AdS represented by rank-J totally symmetric tensor field Φ(x, z)`1···`J [Fronsdal;

Fradkin and Vasiliev]

• Action in AdSd+1 for spin-J field

SM =
1
2

∫
dd+1x

√
g
(
∂`Φ`1···`J∂

`Φ`1···`J − µ2Φ`1···`J Φ`1···`J + . . .
)

• Each hadronic state of total spin J is dual to a normalizable string mode

ΦP (x, z)µ1···µJ = e−iP ·x Φ(z)µ1···µJ

with four-momentum Pµ, spin polarization indices along the 3+1 physical coordinates and hadronic

invariant mass PµP
µ =M2

• For string modes with all indices along Poincaré coordinates, Φzµ2···µJ = Φµ1z···µJ = · · · = 0
and appropriate subsidiary conditions system of coupled differential equations from SM reduce to a

homogeneous wave equation for Φ(z)µ1···µJ
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• Obtain spin-J mode Φµ1···µJ with all indices along 3+1 coordinates from Φ by shifting dimensions

ΦJ(z) =
( z
R

)−J
Φ(z)

• Normalization [Hong, Yoon and Strassler (2006)]

Rd−2J−1

∫ zmax

0

dz

zd−2J−1
Φ2
J(z) = 1

• Substituting in the AdS scalar wave equation for Φ[
z2∂2

z − (d−1−2J)z ∂z + z2M2− (µR)2
]
ΦJ = 0

upon fifth-dimensional mass rescaling (µR)2 → (µR)2 − J(d− J)

• Conformal dimension of J -mode

∆ =
1
2

(
d+
√

(d− 2J)2 + 4µ2R2
)

and thus (µR)2 = (∆− J)(∆− d+ J)
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• Upon substitution z→ζ and

φJ(ζ)∼ζ−3/2+JΦJ(ζ)

we recover the QCD LF wave equation (d = 4)

(
− d2

dζ2
− 1− 4L2

4ζ2

)
φµ1···µJ =M2φµ1···µJ

with (µR)2 = −(2− J)2 + L2

• J -decoupling in the HW model

• ForL2 ≥ 0 the LF Hamiltonian is positive definite 〈φJ |HLF |φJ〉 ≥ 0 and we find the stability bound

(µR)2 ≥ −(2− J)2

• The scaling dimensions are ∆ = 2 + L independent of J in agreement with the twist scaling dimen-

sion of a two parton bound state in QCD
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Soft-Wall Model

• Soft-wall model [Karch, Katz, Son and Stephanov (2006)] retain conformal AdS metrics but introduce

smooth cutoff wich depends on the profile of a dilaton background field ϕ(z) = ±κ2z2

S =
∫
ddx dz

√
g eϕ(z)L,

• Equation of motion for scalar field L = 1
2

(
g`m∂`Φ∂mΦ− µ2Φ2

)
[
z2∂2

z −
(
d− 1∓ 2κ2z2

)
z ∂z + z2M2 − (µR)2

]
Φ(z) = 0

with (µR)2 ≥ −4.

• LH holography requires ‘plus dilaton’ ϕ = +κ2z2. Lowest possible state (µR)2 = −4

M2 = 0, Φ(z) ∼ z2e−κ
2z2 , 〈r2〉 ∼ 1

κ2

A chiral symmetric bound state of two massless quarks with scaling dimension 2: the pion
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• Action in AdSd+1 for spin J -field

SM =
1
2

∫
ddx dz

√
g eκ

2z2
(
∂`Φ`1···`J∂

`Φ`1···`J − µ2Φ`1···`J Φ`1···`J + . . .
)

• Obtain spin-J mode Φµ1···µJ with all indices along 3+1 coordinates from Φ by shifting dimensions

ΦJ(z) =
( z
R

)−J
Φ(z)

• Normalization

Rd−2J−1

∫ ∞
0

dz

zd−2J−1
eκ

2z2Φ2
J(z) = 1.

• Substituting in the AdS scalar wave equation for Φ[
z2∂2

z −
(
d−1−2J − 2κ2z2

)
z ∂z + z2M2− (µR)2

]
ΦJ = 0

upon mass rescaling (µR)2 → (µR)2 − J(d− J) andM2 →M2 − 2Jκ2
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• Upon substitution z→ζ (Jz = Lz + Sz) we find for d = 4

φJ(ζ)∼ζ−3/2+Jeκ
2ζ2/2 ΦJ(ζ), (µR)2 = −(2− J)2 + L2

(
− d2

dζ2
− 1− 4L2

4ζ2
+ κ4ζ2 + 2κ2(L+ S − 1)

)
φµ1···µJ =M2φµ1···µJ

• Eigenfunctions

φnL(ζ) = κ1+L

√
2n!

(n+L)!
ζ1/2+Le−κ

2ζ2/2LLn(κ2ζ2)

• Eigenvalues

M2
n,L,S = 4κ2

(
n+ L+

S

2

)
4κ2 for ∆n = 1
4κ2 for ∆L = 1
2κ2 for ∆S = 1 0

0 4 8

2

4

6

Φ(z)

2-2007
8721A20 z

-5

0

5

0 4 8
z

Φ(z)

2-2007
8721A21

Orbital and radial states: 〈ζ〉 increase with L and n
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1−− 2++ 3−− 4++ JPC

M2

L

Parent and daughter Regge trajectories for the I = 1 ρ-meson family (red)

and the I = 0 ω-meson family (black) for κ = 0.54 GeV
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5 Higher-Spin Fermionic Modes

Hard-Wall Model

From Nick Evans• Action for massive fermionic modes on AdSd+1:

S[Ψ,Ψ] =
∫
ddx dz

√
gΨ(x, z)

(
iΓ`D` − µ

)
Ψ(x, z)

• Equation of motion:
(
iΓ`D` − µ

)
Ψ(x, z) = 0[

i

(
zη`mΓ`∂m +

d

2
Γz

)
+ µR

]
Ψ(x`) = 0

• Solution (µR = ν + 1/2, d = 4)

Ψ(z) = Cz5/2 [Jν(zM)u+ + Jν+1(zM)u−]

• Hadronic mass spectrum determined from IR boundary conditions ψ± (z = 1/ΛQCD) = 0

M+ = βν,k ΛQCD, M− = βν+1,k ΛQCD

with scale independent mass ratio

• Obtain spin-J mode Φµ1···µJ−1/2
, J > 1

2 , with all indices along 3+1 from Ψ by shifting dimensions
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SU(6) S L Baryon State

56 1
2 0 N 1

2

+(939)
3
2 0 ∆ 3

2

+(1232)

70 1
2 1 N 1

2

−(1535) N 3
2

−(1520)
3
2 1 N 1

2

−(1650) N 3
2

−(1700) N 5
2

−(1675)
1
2 1 ∆ 1

2

−(1620) ∆ 3
2

−(1700)

56 1
2 2 N 3

2

+(1720) N 5
2

+(1680)
3
2 2 ∆ 1

2

+(1910) ∆ 3
2

+(1920) ∆ 5
2

+(1905) ∆ 7
2

+(1950)

70 1
2 3 N 5

2

−
N 7

2

−

3
2 3 N 3

2

−
N 5

2

−
N 7

2

−(2190) N 9
2

−(2250)
1
2 3 ∆ 5

2

−(1930) ∆ 7
2

−

56 1
2 4 N 7

2

+
N 9

2

+(2220)
3
2 4 ∆ 5

2

+ ∆ 7
2

+ ∆ 9
2

+ ∆ 11
2

+(2420)

70 1
2 5 N 9

2

−
N 11

2

−(2600)
3
2 5 N 7

2

−
N 9

2

−
N 11

2

−
N 13

2

−
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• Excitation spectrum for baryons in the hard-wall model: M∼ L+ 2n

Light baryon orbital spectrum for ΛQCD = 0.25 GeV in the HW model. The 56 trajectory corresponds to L even

P = + states, and the 70 to L odd P = − states: (a) I = 1/2 and (b) I = 3/2
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Soft-Wall Model

• Equivalent to Dirac equation in presence of a holographic linear confining potential[
i

(
zη`mΓ`∂m +

d

2
Γz

)
+ µR+ κ2z

]
Ψ(x`) = 0.

• Solution (µR = ν + 1/2, d = 4)

Ψ+(z) ∼ z
5
2

+νe−κ
2z2/2Lνn(κ2z2)

Ψ−(z) ∼ z
7
2

+νe−κ
2z2/2Lν+1

n (κ2z2)

• Eigenvalues

M2 = 4κ2(n+ ν + 1)

• Obtain spin-J mode Φµ1···µJ−1/2
, J > 1

2 , with all indices along 3+1 from Ψ by shifting dimensions
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4κ2 for ∆n = 1
4κ2 for ∆L = 1

2κ2 for ∆S = 1

M2

L

Parent and daughter 56 Regge trajectories for the N and ∆ baryon families for κ = 0.5 GeV
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6 New and Future Applications of Light-Front Holography

• Introduction of massive quarks (heavy and heavy-light quark systems)

• Systematic improvement of LF semiclassical approximation: QCD Coulomb forces, higher Fock states

(HFS) from Lippmann-Schwinger equation . . .

• Quantum effects and evolution equations

• Derivation of effective effective potential U(z) from higher Fock gluonic states (dynamical quarks in

stochastically averaged gluon medium from HFS)

• Pauli Form Factor

• Transition form factor in AdS

• Multicomponent vector meson state in AdS (DKP equation)

• Connect dilaton to string physics in AdS, non-perturbative derivation of αs

• . . .
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Contribution of HFS to Pion Form-Factor Fπ(Q
2) With S. J. Brodsky

PRELIMINARY

|π〉 = ψqq/π|qq〉+ ψqqqq/π|qqqq〉

Mρ
2 → 4κ2(n+ 1/2)

κ =
√

2× 0.375 ' 0.54 GeV

Γρ = 130, Γρ′ = 400, Γρ′′ = 300 MeV

Pqqqq = 13 %
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Pion Transition Form-Factor Fπ→γγ∗(Q
2) With F-G Cao and S. J. Brodsky
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