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Motivation: Holographic QCD

e Strings describe extended objects (no quarks). QCD degrees of freedom are pointlike particles: how

can they be related? How can we map string states into partons?

e Precise mapping of string amplitudes to light-front wavefuntions of hadrons in the light-front for strongly

coupled QCD in the conformal limit — effective gravity description (Stan’s talk).

e Holographic duality requires a higher dimensional warped space. Space with negative curvature and
a 4-dim boundary: AdSs.

e Eigenvalues of normalizable modes inside AdS give the hadronic spectrum. AdS modes represent

also the probability amplitude for distribution of quarks at a given scale.

e To each state of the gauge theory should correspond a normalized mode in AdS. The lowest stable

mode should correspond to the lowest state of the QCD Hamiltonian.

e Non-normalizable modes are related to external currents: they probe the cavity interior. Also couple to

boundary QCD interpolating operators.
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1

The Holographic Correspondence

In the semi-classical approximation to QCD with massless quarks and no quantum loops the (3 function

is zero and the approximate theory is scale and conformal invariant.
Isomorphism of SO(4, 2) of conformal QCD with the group of isometries of AdS space

), I

ds® = —
Z2

(Muvdatdz” — dz?).

Semi-classical correspondence as a first approximation to QCD (strongly coupled at all scales).
xt — Axt, z — Az, maps scale transformations into the holographic coordinate z.

Different values of z correspond to different scales at which the hadron is examined: AdS boundary at

z — 0 correspond to the () — o0, UV zero separation limit.
There is a maximum separation of quarks and a maximum value of z at the IR boundary

Truncated AdS/CFT model: cut-off at zg = 1 / AQCD breaks conformal invariance and allows the
introduction of the QCD scale (Hard Wall Model)
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Conformal QCD Window in Exclusive Processes

e Does a5 develop an IR fixed point? D-S Equation Alkofer, Fischer, LLanes-Estrada, Deur . ..

e Recent lattice simulations: evidence that a3 becomes constant and not small in the infrared
Furui and Nakajima, hep-1at/0612009 (Green dashed curve: DSE)
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e Phenomenological success of dimensional scaling laws for exclusive processes
-2
do/dt ~1/s"7* n=mns+ng+nc-+np,

implies QCD is a strongly coupled conformal theory at moderate but not asymptotic energies
Brodsky and Farrar (1973); Matveev et al. (1973).

e Derivation of counting rules for gauge theories with mass gap dual to string theories in warped space

(hard behavior instead of soft behavior characteristic of strings) Polchinski and Strassler (2001).
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e Example: Dirac proton form factor:  Fy(Q?) ~ [1/@2}n_1 , n=23

Q4Fp(Q2) [GeV4

5 10 15 20 25 30 35

Q* [GeV?]

From: M. Diehl et al. Eur. Phys. J. C 39, 1 (2005).
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Semi-Classical Correspondence and Interpolating Operators

Precise statement of duality between a gravity theory in AdS;41 and the strong coupling limit of a

conformal field theory at the z = 0 boundary Gubser, Klebanov and Polyakov (1998); Witten (1998) :

e d + 1-dim gravity partition function for scalar field in AdSg11: P(x, 2)
Ziponl (. 2)) = 5191 = [ Do)

e d-dim generating functional in presence of external source @

Zerr[®o(x)] = eWerr®ol — <eXp (z / dda:CI)Q(a:)O(a:))> .

with O a hadronic interpolating operator (O = GZ,,G‘“W, o)

e Boundary condition:
Zgrav |P(x,2 =0) = ®o(z)] = Zgcp [Po] -

e Semi-Classical Approximation

Werr (o] = Sepp | (2, 2)] =0 = Po(z)]

on—shell’
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e Near the boundary of AdS;1 space z — 0:
D(z,2) — 250, () + 272D _(2).

e O_(x) is the boundary limit of non-normalizable mode (source): ®_ = &
° <I>+(:13) is the boundary limit of the normalizable mode (physical states)

e Using the equations of motion AdS action reduces to a UV surface term

Rd—l

1
Seff = I lim [ d%

Ld—1

$0,P,

® S. sy is identified with the boundary functional W¢ pr

_ OWerr  0Ses
<O><IDO _ 5@0 _ 5(1)0 @4_(33),

Balasubramanian et. al. (1998), Klebanov and Witten (1999).

e Physical AdS modes ®(x, z) ~ e_iP'xCI)P(z) are plane waves along the Poincaré coordinates with

four-momentum PP# and hadronic invariant mass states P, P# = M2,

e For small-z ®(2) ~ z2. The scaling dimension A of a normalizable string mode, is the same
dimension of the interpolating operator O which creates a hadron out of the vacuum: (P|O|0) # 0.
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2 Bosonic Modes

ds? = ggmdxgdwm, zt = (x#, 2), gom — (RQ/ZQ) Wm)

e Action for massive scalar modes on AdS 4 1:

1
S[P] = 5 /ddﬂzz: g3 [gem(‘?ﬂ)@m@ — ,u2<1>2] . Vg — (R/2)4,
e Equation of motion
1 m 0
N (fge = @) + e =0.

e Factor out dependence along z#-coordinates , ®(x, z) = e~ 2@ (2), P, P = M?:
[2283 —(d—1)20, + 2°M? — (,uR)Z] d(z) = 0.

e Solution:

d(x,2) = e_ip'xz%CJA_g (zM), A= %(d +\/d? + 442 R? ) :
2
e Normalization

. [Maep dz
Rdlfo dl(I) o(2) = 1.
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Holographic Light-Front Representation (Hard Wall Model)

e We can represent the EOM in AdS space in light-cone Hamiltonian form in physical 3+1 space-time
2
HLC|¢h> =M |¢h>7

e We can identify a light-cone variable ( in 3+1 space with the fifth dimension 2z of AdS space: { = z.

e ( represents the invariant transverse separation between pointlike constituents
SJB and GdT, PRL 96, 201601 (2006) [hep-ph/0602252]

e Substitute in AdS EOM:  ¢(() = (C/R)_g/Qq)(C)

e Result:

d? — 412
[_ dC2 o ! 4C2V ] Qb(C) - M2¢(C)7

e AdS/CFT equation as effective Schrodinger equation: relativistic, covariant and analytically tractable.
lts eigenmodes ¢h(C) determine the hadronic mass spectrum and represent the probability amplitude
to find n-partons at transverse impact separation { = z.

e Impact (-representation Ifwf ¢, (() = ((|®p) normalized by

(n|on) = /dC [(Clen)]* =1,
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Algebraic Structure and Stability Conditions

e If 2 > (0 the Hamiltonian is written as a bilinear form
Hio(¢) = IL(OIL(C), v* >0,

in terms of the operator

and its adjoint

with commutation relations

2v + 1

Q0] =

e For v2 > () the Hamiltonian is positive definite
(0 1Hiol6) = [ d o) = 0
and thus M? > 0.
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e Forv? <0

2
(6| HY | ) > 2 / dc%.

and the Hamiltonian is not bounded from below ( “Fall-to-the-center” problem in Q.M.)

e Critical value of the potential corresponds to = 0 with potential

1

‘/crit (C) — @ .

e The Q.M. stability conditions are equivalent to the Breitenlohner-Freedman stability conditions

d4
(uR)* > T

e Ford =4
(MR)2 — _4+V27

thus v = 0 correspond to the lowest stable solution.
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Ladder Construction of Orbital States

e Orbital excitations are constructed by the L-th application of the raising raising operator aTL = —11y:
a'|L) = cp|L + 1),
on the ground state.

e In the light-front (-representation

L
ér(C) = (CIL) = CrLy/¢ (=" (1i> Jo(CM)

¢ dg
= Cp\/{JL (EM)

e The solutions ¢y, are solutions of the light-front equation

9 72
| 92 = M),

with L = 0, 41,42, - - -.

e The effective wave equation in the two-dim transverse LF plane has the Casimir representation L?
corresponding to the SO(2) group of rotations. (The Casimir for SO(n) ~ S™ lis L(L +n — 2)).
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Higher Spin Bosonic Modes and ultraviolet Matching and Twist Operators

e Each hadronic state of integer spin S < 2 is dual to a normalizable string mode

_iP.
(2, 2)papops = Epapops € - PLs(2).

with four-momentum PM and spin polarization indices along the 3+1 physical coordinates.
The hadronic invariant mass is P, PH = M2

e Wave equation for spin S-mode W. S. I'Yi, Phys. Lett. B 448, 218 (1999)
(2202 — (d+1-285)20, + 2> M* —(uR)?*]| @5(z) = 0,
e Solution
F Z\° —iP.x 2
DQ(2) iy pgeeopg = <E> ®(2) g pg--ng = Ce 22 JA_g(z./\/l) €(P) i piopus s

Conformal dimension:

1
A = 5(d+ V(d—285)2 + 442 R?).
e Normalization:

A—]_
d—925— QCD  dz
R /0 a1 P5(2) = L.
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e Stable solutions satisfy a generalized B-F bound

(d —25)?

(nR)? = ———

For the ground state A = 2, independent of .S.

e Upon the substitution in the spin-S AdS wave equation (d = 4)

2t
¢(C>M1M2-“Ms — (E) (I)(C)m,ug---ug

e Find light-front equation

d> 1 —4I72
_d—CQ a 4—@] ¢M1M2“'MS — MQ(leW""“S’

where (uR)? = —(2 — S)? + L%

e Solution

¢(C)M1M2"'Ms = €pipo-ps ¢(C)7

where the profile function ¢(z) is the solution for the scalar mode !

e The lowest stable solution corresponds to L. = 0 for every spin mode.
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Consider the matrix element for the external source J(Q, z) = zQK1(2Q) :

F(Q?) = R? / g Bg(2)J(Q,2)Pg(2).

Since the external source is suppressed inside AdS for large (, the important contribution is from
z ~1/Q, where & ~ A,

Forlarge Q%: F(Q?) — [1/622

Shifted field couples to the interpolating operator D121 in the generating functional with scaling

A—-1 . . .
} (Dimensional counting! )

dimensions

~

(Oniis] = — [(I)iliz...is} — 941, 1)

thus the twist-dimension is 2 + L.

N 0.8

N I . I
5.2006 O 1 2 3 4 5
8721A16 z

Fig: Suppression of external modes for large () inside AdS. Red curves: J(Q, z) black: <I>(z)
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e Pseudoscalar meson interpolating operator O, = 5Dy, -+ Dy, 1q, L = Yol

e Vector-meson interpolating operator: O§+L = qu“D{gl e ng}q, L = Zyil l; .

e Mode spectrum from boundary conditions : ¢ (( = 1/Aqcp) =0

- f, (2050)
(@) ai (2040)

p (1700)
p5 (1690)

NA
2
a, (1450)
S a, (1320)
N f. (1285)
s g (1670)
o (1650)

f, (1270)
a, (1260)

1-2006
8694A12 L

Fig: Light meson orbital spectrum Agcp = 0.32 GeV
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Non-Conformal Extension of Algebraic Integrability

e Consider the generator (short-distance Coulombic and long-distance linear potential)

_ [ d V+% 2
Hu(g)__z<dc_ C _"ié.)a

and its adjoint H,JL with commutation relations

2v+1
(0 Q) = == — 2%
e Light-cone hamiltonian Hamiltonian Hyc = IILII, 4+ C is positive definite (¢|Hrc|¢ > 0 for
V2 > 0,and C > —4k2.

Orbital and radial excited states are constructed from the ladder operators from v = 0 state

2n!

it I} <1/2+Le—m2C2/2L£ (/4;2§2) .

or(¢) = K'tF

Identify the zero mode (C' = —4x?) with the pion M? = 4x?(n + L).

Similar model with background dilaton: Karch, Katz, Son and Stephanov (2006).
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1 1
2-2007 0 4 8
8721A21 Z

2-2007 0
8721A20

Pion orbital and radial modes in a soft wall model.

Pion Regge Trajectory ~ = 0.59 GeV
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Space-Like Pion Form Factor

Q°Fr(Q?)

e Bulk-to-boundary propagator J.(Q,z) = T’ (1 -+ Q—Z) U (Q—2 0,&22’2) — 2QK1(2Q), for
large Q% (k = 0.375 GeV).
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Space and Time-Like Pion Form Factor  Analytic continuation Q% — —Q?

log |F7T(Q2>’

k=0.375GeV, ¢>— ¢*+iMT, T,=110Mev PRELIMINARY

Baryons ’07, Seoul, June 11-15, 2007 Page 22



3 Fermionic Modes

e In the conformal limit fermionic spin-3 modes t(z) and spin-2 modes 1/,,(z) of are solutions of the

Dirac light-front equation
all(C)p(¢) = My(¢),

where H; - = all and the operator

[ d v+ 3
HV(C)__Z <d<_ C ’75)7

and its adjoint IL},(¢) satisfy the commutation relations

0. (0)] = s,

e In the Weyl representation (icv = 5 )

0 I ﬂOI I 0
-7 0}’ I 0 0 —1I
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e Baryon: twist-dimension 3 + L
Ospr =Dy ... DDy, ... Doy, L= L

e Solution to Dirac eigenvalue equation with UV matching boundary conditions

(€)= CV¢ [T (CM)ug + Jria(CM)u_].

Baryonic modes propagating in AdS space have two components: orbital L and L + 1.

e Hadronic mass spectrum determined from IR boundary conditions

(X (C — 1/AQCD) =0,

given by
M;Lk: = BveNqcep, M, = But1,kAqQeD,

with a scale independent mass ratio.
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SU6) S L Baryon State
1 1+
56 L 0 N3 (939)
5 0 A3T(1232)
70 1 N1 (1535) N2 (1520)
31 N3 (1650) N2 (1700) N3 (1675)
1 Az (1620) A3 (1700)
56 L 2 N37(1720) N37(1680)
3 2 ALT(1910) A3T(1920) A3T(1905) AZT(1950)
70 1 3 N3 NI
3 3 N3~ N3 NI (2190) N5 (2250)
1 3 A27(1930) AL~
1 7t 9+
56 s 4 N3 N3 (2220)
+ 7+ + +
3 4 A3 Al A% A5 (2420)
70 1 5 N% N4 (2600)
3 7= 9~ 11— 13—
5 5 N3 N3 N5 N3
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0

1-2006

8694A14

(@)

T T T T
N (2600),°
/

| =1/2 e (b) =372
pid + A (2420)
N (2250) i
— N (2190) — %
/7 /7
N (1700) s 7
N (1675) j(’
N (1650) ,
— N (1535) //’ N (2220) |
N (1520)
) e A (1232)
¢
— N (1720) B — 56
N (1680) ® A (1700) — 70
A (1620)
N (939)
| | | | | | | | |
0 2 4 0 4

Fig: Predictions for the light baryon orbital spectrum for AQCD = 0.25 GeV. The 56 trajectory corresponds to L

even P = -+ states, and the 70 to L odd P = — states.
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Non-Conformal Extension of Algebraic Structure and Linear Confinement (Soft Wall Model)

e We write the Dirac equation
(adI(¢) — M) ¥(C) =0,
in terms of the matrix-valued operator 11
d v+3
dg¢ S

HI/(C) = —1t (

and its adjoint IIT, with commutation relations

C‘Q

@] = (25 - 2 s

e Solutions to the Dirac equation

V() ~ 2ite R (52,

Yo(Q) ~ 2 teT WL (g2c?)

e Eigenvalues M? =42 (n +v +1).

Baryons ’07, Seoul, June 11-15, 2007

v5 — %2@5) :

Page 27



e Baryon: twist-dimension3 + L (v = L + 1)

Osyr =Dy, ... DypDy, .. Dy yto, L= 4.

e Define the zero point energy (identical as in the meson case) M? — M? — 4k2:

M? =4r*(n+ L +1).

M2,

Proton Regge Trajectory ~ = 0.49GeV

PRELIMINARY: stability conditions of fermionic modes
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Space-Like Dirac Proton Form Factor

Q4FP(Q2) [GeV4

1.

Data analysis from: M. Diehl et al. Eur. Phys. J. C 39, 1 (2005).

4

5 10 15

Q* [GeV?]

Baryons ’07, Seoul, June 11-15, 2007

20 25 30

k = 0.424 GeV

Page 29



Linear Holographic Confinement

e Dirac equation in AdS space In presence of a potential V (2)  (z* = (2#, 2))

[z’ (znemfg(?m + ng) + uR + V(z)] W(zh) = 0. (2)

e We consider the linear confining potential

V(2) = k2. (3)
e Writing the solution in the form

U(z,2) = e 2%0(2), (4)

we find
all(z)i(z) = Mip(z), (5)

with
(d v+3

I, (¢) = —i (dC L c 25 — HDZC%) : (6)

We identify uR = v + % to recover our previous results.
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