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Motivation: Holographic QCD

• Strings describe extended objects (no quarks). QCD degrees of freedom are pointlike particles: how

can they be related? How can we map string states into partons?

• Precise mapping of string amplitudes to light-front wavefuntions of hadrons in the light-front for strongly

coupled QCD in the conformal limit→ effective gravity description (Stan’s talk).

• Holographic duality requires a higher dimensional warped space. Space with negative curvature and

a 4-dim boundary: AdS5.

• Eigenvalues of normalizable modes inside AdS give the hadronic spectrum. AdS modes represent

also the probability amplitude for distribution of quarks at a given scale.

• To each state of the gauge theory should correspond a normalized mode in AdS. The lowest stable

mode should correspond to the lowest state of the QCD Hamiltonian.

• Non-normalizable modes are related to external currents: they probe the cavity interior. Also couple to

boundary QCD interpolating operators.
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1 The Holographic Correspondence

• In the semi-classical approximation to QCD with massless quarks and no quantum loops the β function

is zero and the approximate theory is scale and conformal invariant.

• Isomorphism of SO(4, 2) of conformal QCD with the group of isometries of AdS space

ds2 =
R2

z2
(ημνdxμdxν − dz2).

• Semi-classical correspondence as a first approximation to QCD (strongly coupled at all scales).

• xμ → λxμ, z → λz, maps scale transformations into the holographic coordinate z.

• Different values of z correspond to different scales at which the hadron is examined: AdS boundary at

z → 0 correspond to the Q →∞, UV zero separation limit.

• There is a maximum separation of quarks and a maximum value of z at the IR boundary

• Truncated AdS/CFT model: cut-off at z0 = 1/ΛQCD breaks conformal invariance and allows the

introduction of the QCD scale (Hard Wall Model)
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Conformal QCD Window in Exclusive Processes

• Does αs develop an IR fixed point? D-S Equation Alkofer, Fischer, LLanes-Estrada, Deur . . .

• Recent lattice simulations: evidence that αs becomes constant and not small in the infrared

Furui and Nakajima, hep-lat/0612009 (Green dashed curve: DSE)
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• Phenomenological success of dimensional scaling laws for exclusive processes

dσ/dt ∼ 1/sn−2, n = nA + nB + nC + nD,

implies QCD is a strongly coupled conformal theory at moderate but not asymptotic energies

Brodsky and Farrar (1973); Matveev et al. (1973).

• Derivation of counting rules for gauge theories with mass gap dual to string theories in warped space

(hard behavior instead of soft behavior characteristic of strings) Polchinski and Strassler (2001).
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• Example: Dirac proton form factor: F1(Q2) ∼ [
1/Q2

]n−1
, n = 3
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From: M. Diehl et al. Eur. Phys. J. C 39, 1 (2005).
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Semi-Classical Correspondence and Interpolating Operators

Precise statement of duality between a gravity theory in AdSd+1 and the strong coupling limit of a

conformal field theory at the z = 0 boundary Gubser, Klebanov and Polyakov (1998); Witten (1998) :

• d + 1-dim gravity partition function for scalar field in AdSd+1: Φ(x, z)

Zgrav[Φ(x, z)] = eiSeff [Φ] =
∫
D[Φ]eiS[Φ] .

• d-dim generating functional in presence of external source Φ0

ZCFT [Φ0(x)] = eiWCFT [Φ0] =
〈

exp
(

i

∫
ddxΦ0(x)O(x)

)〉
.

withO a hadronic interpolating operator (O = Ga
μνG

aμν , · · · )
• Boundary condition:

Zgrav [Φ(x, z = 0) = Φ0(x)] = ZQCD [Φ0] .

• Semi-Classical Approximation

WCFT [φ0] = Seff

[
Φ(x, z)|z=0 = Φ0(x)

]
on−shell

.

Baryons ’07, Seoul, June 11-15, 2007 Page 8



• Near the boundary of AdSd+1 space z → 0:

Φ(x, z) → zΔΦ+(x) + zd−ΔΦ−(x).

• Φ−(x) is the boundary limit of non-normalizable mode (source): Φ− = Φ0

• Φ+(x) is the boundary limit of the normalizable mode (physical states)

• Using the equations of motion AdS action reduces to a UV surface term

Seff =
Rd−1

4
lim
z→0

∫
ddx

1
zd−1

Φ∂zΦ,

• Seff is identified with the boundary functional WCFT

〈O〉Φ0
=

δWCFT

δΦ0
=

δSeff

δΦ0
∼ Φ+(x),

Balasubramanian et. al. (1998), Klebanov and Witten (1999).

• Physical AdS modes Φ(x, z) ∼ e−iP ·xΦP (z) are plane waves along the Poincaré coordinates with

four-momentum Pμ and hadronic invariant mass states PμPμ = M2.

• For small-z Φ(z) ∼ zΔ. The scaling dimension Δ of a normalizable string mode, is the same

dimension of the interpolating operatorO which creates a hadron out of the vacuum: 〈P |O|0〉 �= 0.
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2 Bosonic Modes

ds2 = g�mdx�dxm, x� = (xμ, z), g�m →
(
R2/z2

)
η�m

)
• Action for massive scalar modes on AdSd+1:

S[Φ] =
1
2

∫
dd+1x

√
g 1

2

[
g�m∂�Φ∂mΦ− μ2Φ2

]
,
√

g → (R/z)d+1.

• Equation of motion
1√
g

∂

∂x�

(√
g g�m ∂

∂xm
Φ
)

+ μ2Φ = 0.

• Factor out dependence along xμ-coordinates , Φ(x, z) = e−iP ·xΦP (z), PμPμ = M2 :[
z2∂2

z − (d− 1)z ∂z + z2M2 − (μR)2
]
Φ(z) = 0.

• Solution:

Φ(x, z) = e−iP ·xz
d
2 CJΔ− d

2
(zM) , Δ = 1

2

(
d +

√
d2 + 4μ2R2

)
.

• Normalization

Rd−1

∫ Λ−1
QCD

0

dz

zd−1
Φ2

S=0(z) = 1.

Baryons ’07, Seoul, June 11-15, 2007 Page 10



Holographic Light-Front Representation (Hard Wall Model)

• We can represent the EOM in AdS space in light-cone Hamiltonian form in physical 3+1 space-time

HLC |φh〉 = M2|φh〉,

• We can identify a light-cone variable ζ in 3+1 space with the fifth dimension z of AdS space: ζ = z.

• ζ represents the invariant transverse separation between pointlike constituents

SJB and GdT, PRL 96, 201601 (2006) [hep-ph/0602252]

• Substitute in AdS EOM: φ(ζ) = (ζ/R)−3/2Φ(ζ)

• Result : [
− d2

dζ2
− 1− 4ν2

4ζ2

]
φ(ζ) = M2φ(ζ),

• AdS/CFT equation as effective Schrödinger equation: relativistic, covariant and analytically tractable.

Its eigenmodes φh(ζ) determine the hadronic mass spectrum and represent the probability amplitude

to find n-partons at transverse impact separation ζ = z.

• Impact ζ-representation lfwf φh(ζ) = 〈ζ|φh〉 normalized by

〈φh|φh〉 =
∫

dζ |〈ζ|φh〉|2 = 1,
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Algebraic Structure and Stability Conditions

• If ν2 > 0 the Hamiltonian is written as a bilinear form

Hν
LC(ζ) = Π†ν(ζ)Πν(ζ), ν2 ≥ 0,

in terms of the operator

Πν(ζ) = −i

(
d

dζ
− ν + 1

2

ζ

)
,

and its adjoint

Π†ν(ζ) = −i

(
d

dζ
+

ν + 1
2

ζ

)
,

with commutation relations [
Πν(ζ), Π†ν(ζ)

]
=

2ν + 1
ζ2

.

• For ν2 ≥ 0 the Hamiltonian is positive definite

〈φ |Hν
LC |φ〉 =

∫
dζ |Πνφ(z)|2 ≥ 0

and thusM2 ≥ 0.
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• For ν2 < 0

〈φ |Hν
LC |φ〉 ≥ 2ν2

∫
dζ
|φ|2
ζ2

.

and the Hamiltonian is not bounded from below ( “Fall-to-the-center” problem in Q.M.)

• Critical value of the potential corresponds to ν = 0 with potential

Vcrit(ζ) =
1

4ζ2
.

• The Q.M. stability conditions are equivalent to the Breitenlohner-Freedman stability conditions

(μR)2 ≥ d4

4
.

• For d = 4

(μR)2 = −4 + ν2,

thus ν = 0 correspond to the lowest stable solution.
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Ladder Construction of Orbital States

• Orbital excitations are constructed by the L-th application of the raising raising operator a†L = −iΠL:

a†|L〉 = cL|L + 1〉,

on the ground state.

• In the light-front ζ-representation

φL(ζ) = 〈ζ|L〉 = CL

√
ζ (−ζ)L

(
1
ζ

d

dζ

)L

J0(ζM)

= CL

√
ζJL (ζM)

• The solutions φL are solutions of the light-front equation[
− d2

dζ2
− 1− L2

4ζ2

]
φ(z) = M2φ(ζ).

with L = 0,±1,±2, · · · .
• The effective wave equation in the two-dim transverse LF plane has the Casimir representation L2

corresponding to the SO(2) group of rotations. (The Casimir for SO(n) ∼ Sn−1 is L(L+n−2)).
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Higher Spin Bosonic Modes and ultraviolet Matching and Twist Operators

• Each hadronic state of integer spin S ≤ 2 is dual to a normalizable string mode

Φ(x, z)μ1μ2···μS = εμ1μ2···μS e−iP ·x ΦS(z).

with four-momentum Pμ and spin polarization indices along the 3+1 physical coordinates.

The hadronic invariant mass is PμPμ = M2 .

• Wave equation for spin S-mode W. S. l’Yi, Phys. Lett. B 448, 218 (1999)[
z2∂2

z − (d+1−2S)z ∂z + z2M2−(μR)2
]
ΦS(z) = 0,

• Solution

Φ̃(z)μ1μ2···μS =
( z

R

)S
Φ(z)μ1μ2···μS = Ce−iP ·xz

d
2 JΔ− d

2
(zM) ε(P )μ1μ2···μS ,

• Conformal dimension:

Δ =
1
2
(
d +

√
(d− 2S)2 + 4μ2R2

)
.

• Normalization:

Rd−2S−1

∫ Λ−1
QCD

0

dz

zd−2S−1
Φ2

S(z) = 1.
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• Stable solutions satisfy a generalized B-F bound

(μR)2 ≥ −(d− 2S)2

4
.

For the ground state Δ = 2, independent of S.

• Upon the substitution in the spin-S AdS wave equation (d = 4)

φ(ζ)μ1μ2···μS =
(

ζ

R

)−3/2+S

Φ(ζ)μ1μ2···μS

• Find light-front equation[
− d2

dζ2
− 1− 4L2

4ζ2

]
φμ1μ2···μS = M2φμ1μ2···μS ,

where (μR)2 = −(2− S)2 + L2.

• Solution

φ(ζ)μ1μ2···μS = εμ1μ2···μSφ(ζ),

where the profile function φ(z) is the solution for the scalar mode !

• The lowest stable solution corresponds to L = 0 for every spin mode.
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• Consider the matrix element for the external source J(Q, z) = zQK1(zQ) :

F (Q2) = R3

∫
dz

z3
Φ̃S(z)J(Q, z)Φ̃S(z).

• Since the external source is suppressed inside AdS for large Q, the important contribution is from

z ∼ 1/Q, where Φ̃ ∼ zΔ,

• For large Q2: F (Q2) → [
1/Q2

]Δ−1
(Dimensional counting! )

• Shifted field couples to the interpolating operator Oi1i2···iS in the generating functional with scaling

dimensions [Oi1i2···iS] = d−
[
Φ̃i1i2···iS

]
= 2 + L, (1)

thus the twist-dimension is 2 + L.
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Fig: Suppression of external modes for large Q inside AdS. Red curves: J(Q, z), black: Φ(z).
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• Pseudoscalar meson interpolating operatorO2+L = qγ5D{�1 · · ·D�m}q, L =
∑m

i=1 �i.

• Vector-meson interpolating operator: Oμ
2+L = qγμD{�1 · · ·D�m}q, L =

∑m
i=1 �i .

• Mode spectrum from boundary conditions : φ (ζ = 1/ΛQCD) = 0
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Fig: Light meson orbital spectrum ΛQCD = 0.32 GeV
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Non-Conformal Extension of Algebraic Integrability

• Consider the generator (short-distance Coulombic and long-distance linear potential)

Πν(ζ) = −i

(
d

dζ
− ν + 1

2

ζ
− κ2ζ

)
,

and its adjoint Π†ν with commutation relations[
Πν(ζ), Π†ν(ζ)

]
=

2ν + 1
ζ2

− 2κ2.

• Light-cone hamiltonian Hamiltonian HLC = Π†νΠν + C is positive definite 〈φ|HLC |φ ≥ 0 for

ν2 ≥ 0, and C ≥ −4κ2.

• Orbital and radial excited states are constructed from the ladder operators from ν = 0 state

φL(ζ) = κ1+L

√
2n!

(n + L)!
ζ1/2+Le−κ2ζ2/2LL

n

(
κ2ζ2

)
.

• Identify the zero mode (C = −4κ2) with the pionM2 = 4κ2(n + L).

• Similar model with background dilaton: Karch, Katz, Son and Stephanov (2006).
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Space-Like Pion Form Factor

Q2Fπ(Q2)
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• Bulk-to-boundary propagator Jκ(Q, z) = Γ
(
1 + Q2

4κ2

)
U

(
Q2

4κ2 , 0, κ2z2
)
→ zQK1(zQ), for

large Q2 (κ = 0.375 GeV).
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Space and Time-Like Pion Form Factor Analytic continuation Q2 → −Q2

log |Fπ(Q2)|

-10 -5 0 5 10

-3

-2

-1

0

1

2

Q2

0 0.2 0.4 0.6 0.8 1

2

3

4

5

6

7

8

κ = 0.375 GeV, q2 → q2 + iMΓ, Γρ= 110 MeV PRELIMINARY
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3 Fermionic Modes

• In the conformal limit fermionic spin-1
2 modes ψ(z) and spin-3

2 modes ψμ(z) of are solutions of the

Dirac light-front equation

αΠ(ζ)ψ(ζ) = Mψ(ζ),

where HLC = αΠ and the operator

Πν(ζ) = −i

(
d

dζ
− ν + 1

2

ζ
γ5

)
,

and its adjoint Π†ν(ζ) satisfy the commutation relations[
Πν(ζ), Π†ν(ζ)

]
=

2ν + 1
ζ2

γ5.

• In the Weyl representation (iα = γ5β)

iα =

⎛⎝ 0 I

−I 0

⎞⎠ , β =

⎛⎝0 I

I 0

⎞⎠ , γ5 =

⎛⎝I 0

0 −I

⎞⎠ .

Baryons ’07, Seoul, June 11-15, 2007 Page 23



• Baryon: twist-dimension 3 + L

O3+L = ψD{�1 . . . D�qψD�q+1 . . . D�m}ψ, L =
m∑

i=1

�i.

• Solution to Dirac eigenvalue equation with UV matching boundary conditions

ψ(ζ) = C
√

ζ [JL+1(ζM)u+ + JL+2(ζM)u−] .

Baryonic modes propagating in AdS space have two components: orbital L and L + 1.

• Hadronic mass spectrum determined from IR boundary conditions

ψ± (ζ = 1/ΛQCD) = 0,

given by

M+
ν,k = βν,kΛQCD, M−

ν,k = βν+1,kΛQCD,

with a scale independent mass ratio.
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Fig: Predictions for the light baryon orbital spectrum for ΛQCD = 0.25 GeV. The 56 trajectory corresponds to L

even P = + states, and the 70 to L odd P = − states.
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Non-Conformal Extension of Algebraic Structure and Linear Confinement (Soft Wall Model)

• We write the Dirac equation

(αΠ(ζ)−M) ψ(ζ) = 0,

in terms of the matrix-valued operator Π

Πν(ζ) = −i

(
d

dζ
− ν + 1

2

ζ
γ5 − κ2ζγ5

)
,

and its adjoint Π†, with commutation relations[
Πν(ζ), Π†ν(ζ)

]
=

(
2ν + 1

ζ2
− 2κ2

)
γ5.

• Solutions to the Dirac equation

ψ+(ζ) ∼ z
1
2
+νe−κ2ζ2/2Lν

n(κ2ζ2),

ψ−(ζ) ∼ z
3
2
+νe−κ2ζ2/2Lν+1

n (κ2ζ2), .

• Eigenvalues M2 = 4κ2(n + ν + 1).
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• Baryon: twist-dimension 3 + L (ν = L + 1)

O3+L = ψD{�1 . . . D�qψD�q+1 . . . D�m}ψ, L =
m∑

i=1

�i.

• Define the zero point energy (identical as in the meson case) M2 →M2 − 4κ2:

M2 = 4κ2(n + L + 1).

M2

0 1 2 3 4 5 6

1
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3

4

5

6

7

L

Proton Regge Trajectory κ = 0.49GeV

PRELIMINARY: stability conditions of fermionic modes
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Space-Like Dirac Proton Form Factor

Q4F p
1 (Q2) [GeV4]
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Data analysis from: M. Diehl et al. Eur. Phys. J. C 39, 1 (2005).
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Linear Holographic Confinement

• Dirac equation in AdS space In presence of a potential V (z)
(
x� = (xμ, z)

)
[
i

(
zη�mΓ�∂m +

d

2
Γz

)
+ μR + V (z)

]
Ψ(x�) = 0. (2)

• We consider the linear confining potential

V (z) = κ2z. (3)

• Writing the solution in the form

Ψ(x, z) = e−iP ·xz2ψ(z), (4)

we find

αΠ(z)ψ(z) = Mψ(z), (5)

with

Πν(ζ) = −i

(
d

dζ
− ν + 1

2

ζ
γ5 − κ2ζγ5

)
. (6)

We identify μR = ν + 1
2 , to recover our previous results.
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