AdS/QCD and Novel Heavy-Ion Phenomena Stan Brodsky, SLAC

Weizmann Institute November 17, 2008

• Light-Front Holography

 Light Front Wavefunctions: Schrödinger Wavefunctions of Hadron Physics

Weizmann Institute November 17, 2008 **Novel Heavy-Ion Phenomena**

Applications of AdS/CFT to QCD

Changes in physical length scale mapped to evolution in the 5th dimension z

in collaboration with Guy de Teramond

Weizmann Institute November 17, 2008 **Novel Heavy-Ion Phenomena**

Goal:

- Use AdS/CFT to provide an approximate, covariant, and analytic model of hadron structure with confinement at large distances, conformal behavior at short distances
- Analogous to the Schrodinger Theory for Atomic Physics
- Ads/QCD Light-Front Holography
- Hadronic Spectra and Light-Front Wavefunctions

Novel Heavy-Ion Phenomena

Weizmann Institute November 17, 2008

Conformal Theories are invariant under the Poincare and conformal transformations with

 $\mathbf{M}^{\mu\nu}, \mathbf{P}^{\mu}, \mathbf{D}, \mathbf{K}^{\mu},$

the generators of SO(4,2)

SO(4,2) has a mathematical representation on AdS5

Weizmann Institute November 17, 2008 **Novel Heavy-Ion Phenomena**

Scale Transformations

• Isomorphism of SO(4,2) of conformal QCD with the group of isometries of AdS space

$$ds^2 = \frac{R^2}{z^2} (dx^{\mu} dx_{\mu} - dz^2) \qquad \text{invariant measure}$$

 $x^{\mu} \rightarrow \lambda x^{\mu}, \ z \rightarrow \lambda z$, maps scale transformations into the holographic coordinate z.

- AdS mode in z is the extension of the hadron wf into the fifth dimension.
- Different values of z correspond to different scales at which the hadron is examined.

$$x^2 \to \lambda^2 x^2, z \to \lambda z$$

 $x^2 = x^{\mu} dx_{\mu}$: invariant separation between quarks

• The AdS boundary at $z \to 0$ correspond to the $Q \to \infty$, UV zero separation limit.

Novel Heavy-Ion Phenomena

Stan Brodsky SLAC

Weizmann Institute November 17, 2008

- Truncated AdS/CFT (Hard-Wall) model: cut-off at $z_0 = 1/\Lambda_{QCD}$ breaks conformal invariance and allows the introduction of the QCD scale (Hard-Wall Model) Polchinski and Strassler (2001).
- Smooth cutoff: introduction of a background dilaton field $\varphi(z)$ usual linear Regge dependence can be obtained (Soft-Wall Model) Karch, Katz, Son and Stephanov (2006).

We will consider both holographic models

Weizmann Institute November 17, 2008 Novel Heavy-Ion Phenomena

• Karch, Katz, Son, Stephanov

• de Teramond, sjb

Ads Schrödinger Equation for bound state of two scalar constituents:

$$\left[-\frac{d^2}{dz^2} - \frac{1 - 4L^2}{4z^2} + U(z)\right]\phi(z) = \mathcal{M}^2\phi(z)$$

$$U(z) = \kappa^{4} z^{2} + 2\kappa^{2} (L + S - 1)$$

Derived from variation of Action Dílaton-Modified AdS₅

Novel Heavy-Ion Phenomena

Stan Brodsky SLAC

Weizmann Institute November 17, 2008

Higher Spin Bosonic Modes SW

• Effective LF Schrödinger wave equation

$$-\frac{d^2}{dz^2} - \frac{1-4L^2}{4z^2} + \kappa^4 z^2 + 2\kappa^2 (L+S-1) \bigg] \phi_S(z) = \mathcal{M}^2 \phi_S(z)$$
with eigenvalues $\mathcal{M}^2 = 2\kappa^2 (2n+2L+S)$. Same slope in n and L

• Compare with Nambu string result (rotating flux tube): $M_n^2(L) = 2\pi\sigma\left(n+L+1/2
ight)$.

Vector mesons orbital (a) and radial (b) spectrum for $\kappa=0.54~{\rm GeV}.$

 Glueballs in the bottom-up approach: (HW) Boschi-Filho, Braga and Carrion (2005); (SW) Colangelo, De Facio, Jugeau and Nicotri(2007).

Novel Heavy-Ion Phenomena

Weizmann Institute November 17, 2008 Stan Brodsky SLAC

Soft-wall model

Fig: Orbital and radial AdS modes in the soft wall model for κ = 0.6 GeV .

chíral symmetry broken ínsíde hadron !

Soft Wall Model

Pion mass

automatically

zero!

 $m_q = 0$

Shrock, sjb

Light meson orbital (a) and radial (b) spectrum for $\kappa = 0.6$ GeV.

Novel Heavy-Ion Phenomena

Weizmann Institute November 17, 2008

Hard-wall model breaks chíral symmetry! Casher mechanism

Fig: Orbital and radial AdS modes in the hard wall model for Λ_{QCD} = 0.32 GeV .

Fig: Light meson and vector meson orbital spectrum $\Lambda_{QCD}=0.32~{
m GeV}$

Novel Heavy-Ion Phenomena

Weizmann Institute November 17, 2008

Light-Front Wavefunctions: rigorous representation of composite systems in quantum field theory

Weizmann Institute November 17, 2008 **Novel Heavy-Ion Phenomena**

Light-Front Wavefunctions

Dirac's Front Form: Fixed $\tau = t + z/c$

$$\Psi(x, k_{\perp})$$
 $x_i = \frac{k_i^+}{P^+}$

Invariant under boosts. Independent of P^{μ}

$$\mathbf{H}_{LF}^{QCD}|\psi>=M^{2}|\psi>$$

Remarkable new insights from AdS/CFT, the duality between conformal field theory and Anti-de Sitter Space

Novel Heavy-Ion Phenomena

Stan Brodsky SLAC

Weizmann Institute November 17, 2008

Light-Front Holography: Unique mapping derived from equality of LF and AdS formula for current matrix elements

Novel Heavy-Ion Phenomena

Weizmann Institute November 17, 2008

Weizmann Institute November 17, 2008

Derivation of the Light-Front Radial Schrodinger Equation directly from LF QCD

$$\mathcal{M}^2 = \int_0^1 dx \int \frac{d^2 \vec{k}_\perp}{16\pi^3} \frac{\vec{k}_\perp^2}{x(1-x)} \left| \psi(x, \vec{k}_\perp) \right|^2 + \text{interactions}$$
$$= \int_0^1 \frac{dx}{x(1-x)} \int d^2 \vec{b}_\perp \, \psi^*(x, \vec{b}_\perp) \left(-\vec{\nabla}_{\vec{b}_\perp \ell}^2 \right) \psi(x, \vec{b}_\perp) + \text{interactions.}$$

Change variables

ge
$$(\vec{\zeta},\varphi), \ \vec{\zeta} = \sqrt{x(1-x)}\vec{b}_{\perp}: \quad \nabla^2 = \frac{1}{\zeta}\frac{d}{d\zeta}\left(\zeta\frac{d}{d\zeta}\right) + \frac{1}{\zeta^2}\frac{\partial^2}{\partial\varphi^2}$$

$$\mathcal{M}^{2} = \int d\zeta \,\phi^{*}(\zeta) \sqrt{\zeta} \left(-\frac{d^{2}}{d\zeta^{2}} - \frac{1}{\zeta} \frac{d}{d\zeta} + \frac{L^{2}}{\zeta^{2}} \right) \frac{\phi(\zeta)}{\sqrt{\zeta}} + \int d\zeta \,\phi^{*}(\zeta) U(\zeta) \phi(\zeta)$$
$$= \int d\zeta \,\phi^{*}(\zeta) \left(-\frac{d^{2}}{d\zeta^{2}} - \frac{1 - 4L^{2}}{4\zeta^{2}} + U(\zeta) \right) \phi(\zeta)$$

Novel Heavy-Ion Phenomena

Weizmann Institute November 17, 2008

SLAC

Stan Brodsky

Hadronization at the Amplitude Level

Construct helicity amplitude using Light-Front Perturbation theory; coalesce quarks via LFWFs

Novel Heavy-Ion Phenomena

Weizmann Institute November 17, 2008

Formation of Relativistic Anti-Hydrogen

Measured at CERN-LEAR and FermiLab

Munger, Schmidt, sjb

Coalescence of Off-shell co-moving positron and antiproton.

Wavefunction maximal at small impact separation and equal rapidity

Novel Heavy-Ion Phenomena

Weizmann Institute November 17, 2008

Prediction from AdS/CFT: Meson LFWF

Novel Heavy-Ion Phenomena

$$\psi_M(x,k_{\perp}) = \frac{4\pi}{\kappa\sqrt{x(1-x)}} e^{-\frac{k_{\perp}^2}{2\kappa^2 x(1-x)}}$$

$$\phi_M(x,Q_0) \propto \sqrt{x(1-x)}$$

Weizmann Institute November 17, 2008

Soft Wall: Harmonic Oscillator Confinement

Hard Wall: Truncated Space Confinement

One parameter - set by pion decay constant.

Novel Heavy-Ion Phenomena

de Teramond, sjb See also: Radyushkin **Stan Brodsky**

SLAC

Weizmann Institute November 17, 2008

Features of Soft-Wall AdS/QCD

- Single-variable frame-independent radial Schrodinger equation
- Massless pion $(m_q = 0)$
- Regge Trajectories: universal slope in n and L
- Valid for all integer J & S.
- Dimensional Counting Rules for Hard Exclusive Processes
- Phenomenology: Space-like and Time-like Form Factors
- LF Holography: LFWFs; broad distribution amplitude
- No large Nc limit required
- Add heavy quark masses to LF kinetic energy; linear quark mass terms
- Systematically improvable -- diagonalize H_{LF} on AdS basis

Weizmann Institute November 17, 2008 **Novel Heavy-Ion Phenomena**

AdS5 Black hole simulation of temperature $ds^2 = \frac{R^2}{z^2} \left[-f(z)dt^2 + d\vec{x}^2 + \frac{dz^2}{f(z)} \right]$

$$f(z) = 1 - \frac{z^4}{z_0^4}$$

Hawking Temperature

$$T_H = \frac{r_0}{\pi R^2} = \frac{1}{\pi z_0}$$

 $z = \frac{R^2}{r}$

D. T. Son, et al

D. T. Son, et al $\frac{\eta}{s} = \frac{\hbar}{4\pi}$

- Gauge/gravity duality provides unexpected tools to compute the viscosity of some strongly coupled theories
- The class of theories with gravity dual description is limited, but contains very interesting theories with infinite coupling
- \checkmark The calculation of the viscosity is easy: viscosity \propto absorption cross section of low-energy gravitons by the black hole.
- In this class, the ratio η/s is equal to a universal number $\hbar/4\pi$, much smaller than in any other system in Nature
- The ratio η/s is the measure of perfectness of the QGP

sjb: AdS/CFT gives a model of perfect quantum coherence Temperature not due to classical beating

Are QGP phenomena actually due to Quantum Coherence?

- Large longitudinal coherence at high energies
- Coherence: LPM effect limits energy loss; Glauber theory of nuclear shadowing in DIS
- Color transparency in Diffractive dijets (Ashery)
- Laser cascade mechanism sets up coherent system in central heavy ion collisions
- Ridge: Coherence over large longitudinal momenta
- Large v₂: $\Delta p_x \sim \pi/\Delta x$
- Small $\eta/s \sim \hbar/4\pi$

Laser Cascade: Quantum Coherent Uncertainty principle: Narrow overlap -- peaked transverse momenta

$$\Delta p_x \sim \hbar / \Delta x$$

Additive rule for coalescing sideways transverse momenta: Flavor-independent?

Weizmann Institute November 17, 2008 **Novel Heavy-Ion Phenomena**

Weizmann Institute November 17, 2008

Probing Hot QCD Matter with Hard-Scattered Probes

John Harris (Yale) ISSP'06 Erice, Sicily, Italy, 29 Aug – 7 Sep 2006

The highly relativistic nucleus A hits the nucleus B at rest.

Heavy Ion Collísions in the Lab Frame

No Contraction of Rest-Frame Nucleus

Novel Heavy-Ion Phenomena

Stan Brodsky SLAC

Weizmann Institute November 17, 2008

$$p_A = (P^+, \frac{M_A^2 + \ell_{\perp}^2}{P^+}, \vec{\ell_{\perp}})$$

$$p_B = (P^+, \frac{M_B^2 + \ell_{\perp}^2}{P^+}, -\vec{\ell_{\perp}})$$

Both beams move along the positive z direction, and $s = (p_A + p_B)^2 = 2M_A^2 + 2M_B^2 + 4\ell_{\perp}^2$ is represented by the oppositely directed transverse momenta $\pm \vec{\ell}_{\perp}$ of the colliding nuclei.

Note that the value of P^+ is irrelevant.

As τ progresses, the constituents from A and B each interact as their coordinates σ_i and $\vec{b}_{\perp i}$ overlap.

Weizmann Institute November 17, 2008 **Novel Heavy-Ion Phenomena**

Light-Front Description of Heavy Ion Collisions

- Nuclear LFWFs are momentum independent
- No effects on wavefunction from boost
- Process independent
- Three-dimensional
- Small x gluons and sea quarks in any frame
- Dynamical effects arise from interactions
- Wilson line give ISI and FSI
- Nuclear shadowing and antishadowing not in nuclear wavefunction -- Glauber multistep diffractive interactions

Weizmann Institute November 17, 2008 **Novel Heavy-Ion Phenomena**

What is the dynamical mechanism which creates the QGP?

• How do the parameters of the QGP depend on the initial and final state conditions?

37

• A dynamical model: "Gluonic Laser"

Gluoníc Laser

Gluonic bremsstrahlung from initial hard scattering backscatters on nuclear ``mirrors"

Coherent

Novel Heavy-Ion Phenomena

Weizmann Institute November 17, 2008

Possible time sequence of a RHIC Ion-Ion Collision

- Nuclei collide; nucleons overlap within an ellipse
- Initial hard collision between quarks and/or gluons producing high $p_{\rm T}$ trigger hadron or photon
- Induced gluon radiation radiated from initial parton collision
- collinear radiation back-scatters on other incoming partons
- Cascading gluons creates multi-parton quark-gluon plasma within ellipse, thermalization
- Stimulated radiation contributes to energy loss of away-side jet
- Coherence creates hadronic momentum along minor axis
- Same final state for high p_T direct photons and mesons
- Baryons formed in higher-twist double-scattering process at high x_T; double induced radiation and thus double v₂.

Consequences of Gluon Laser Mechanism

Ridge created by trigger bias (Cronin effect) Momenta of initial colored partons biased towards trigger

Soft gluon radiation from initial state partons emitted in plane of production; fills rapidity

Quantum Coherent

Weizmann Institute November 17, 2008 **Novel Heavy-Ion Phenomena**