Light-Front Quantization Approach to the Gauge/Gravity Correspondence and the Hadron Spectrum

Guy F. de Teramond ´

University of Costa Rica

HADRON 2009: 13th **International Conference on Hadron Spectroscopy Florida State University, December 1, 2009**

GdT and Brodsky, PRL 102, 081601 (2009)

Outline

- 1. Introduction: Gauge/Gravity Correspondence and QCD
- 2. Light-Front Quantization of QCD
	- Light-Front Partonic Representation

Light-Front Bound State Hamiltonian Equation

3. Semiclassical Approximation to QCD

Hard-Wall Model

Holographic Mapping

Soft-Wall Model

4. Fermionic Modes

Hard-Wall Model

Soft-Wall Model

5. Non-Perturbative QCD Coupling From LF Holography

Conjectured behavior of the full β -function of QCD

1 Introduction: Gauge/Gravity Correspondence and QCD

- Most challenging problem of strong interaction dynamics: determine the composition of hadrons in terms of their fundamental QCD quark and gluon degrees of freedom
- Recent developments inspired by the AdS/CFT correspondence [Maldacena (1998)] between string states in AdS space and conformal field theories in physical space-time have led to analytical insights into the confining dynamics of QCD
- Description of strongly coupled gauge theory using a dual gravity description!
- Strings describe spin- J extended objects (no quarks). QCD degrees of freedom are pointlike particles and hadrons have orbital angular momentum: how can they be related?
- Isomorphism of $SO(4,2)$ group of conformal transformations with generators $P^{\mu}, M^{\mu\nu}, K^{\mu}, D,$ with the group of isometries of AdS_5 , a space of maximal symmetry, negative curvature and a four-dim boundary: Minkowski space

 \bullet AdS₅ metric:

$$
\underbrace{ds^2}_{L_{\text{AdS}}} = \frac{R^2}{z^2} \Big(\underbrace{\eta_{\mu\nu} dx^{\mu} dx^{\nu}}_{L_{\text{Minkowski}}} - dz^2 \Big)
$$

• A distance L_{AdS} shrinks by a warp factor z/R as observed in Minkowski space $(dz = 0)$:

$$
L_{\rm Minkowski} \sim \frac{z}{R}\,L_{\rm AdS}
$$

- Different values of z correspond to different scales at which the hadron is examined
- Since $x^\mu\, \to\, \lambda x^\mu,\, z\, \to\, \lambda z,$ short distances $x_\mu x^\mu\, \to\, 0$ maps to UV conformal AdS₅ boundary $z \to 0$, which corresponds to the $Q \to \infty$ UV zero separation limit
- $\bullet\,$ Large confinement dimensions $x_\mu x^\mu\sim 1/\Lambda_{\rm QCD}^2$ maps to large IR region of AdS $_5,$ $z\sim 1/\Lambda_{\rm QCD}$, thus there is a maximum separation of quarks and a maximum value of z at the IR boundary
- $\bullet\,$ Local operators like ${\cal O}$ and ${\cal L}_{\rm QCD}$ defined in terms of quark and gluon fields at the AdS $_5$ boundary
- Use the isometries of AdS to map the local interpolating operators at the UV boundary of AdS into the modes propagating inside AdS

2 Light-Front Quantization of QCD and AdS/CFT

- Light-front (LF) quantization is the ideal framework to describe hadronic structure in terms of quarks and gluons: simple vacuum structure allows unambiguous definition of the partonic content of a hadron, exact formulae for form factors, physics of angular momentum of constituents ...
- $\bullet\,$ Frame-independent LF Hamiltonian equation $P_\mu P^\mu|P\rangle={\cal M}^2|P\rangle$ similar structure of AdS EOM
- First semiclassical approximation to the bound-state LF Hamiltonian equation in QCD is equivalent to equations of motion in AdS and can be systematically improved GdT and S. J. Brodsky, PRL **102**, 081601 (2009)
- Different possibilities to parametrize space-time [Dirac (1949)]
- Parametrizations differ by the hypersurface on which the initial conditions are specified. Each evolve with different "times" and has its own Hamiltonian, but should give the same physical results
- *Instant form*: hypersurface defined by $t = 0$, the familiar one
- *Front form*: hypersurface is tangent to the light cone at $\tau = t + z/c = 0$

$$
x^{+} = x^{0} + x^{3}
$$
 lightfront time
\n
$$
x^{-} = x^{0} - x^{3}
$$
 longitudinal space variable
\n
$$
k^{+} = k^{0} + k^{3}
$$
 longitudinal momentum $(k^{+} > 0)$
\n
$$
k^{-} = k^{0} - k^{3}
$$
 lightfront energy

$$
k\cdot x=\tfrac{1}{2}\left(k^+x^-+k^-x^+\right)-\mathbf{k}_\perp\cdot\mathbf{x}_\perp
$$

On shell relation $k^2=m^2$ leads to dispersion relation $\;k^{-}=\frac{{\bf k}_{\perp}^2}{\,}$ $\frac{2}{1}+m^2$ $\overline{k^+}$

• QCD Lagrangian

$$
\mathcal{L}_{\text{QCD}} = -\frac{1}{4g^2} \text{Tr} \left(G^{\mu\nu} G_{\mu\nu} \right) + i \overline{\psi} D_{\mu} \gamma^{\mu} \psi + m \overline{\psi} \psi
$$

 $\bullet\,$ LF Momentum Generators $P=(P^+,P^-,{\bf P}_\perp)$ in terms of dynamical fields ψ , ${\bf A}_{\perp}$

$$
P^{-} = \frac{1}{2} \int dx^{-} d^{2} \mathbf{x}_{\perp} \overline{\psi} \gamma^{+} \frac{(i \nabla_{\perp})^{2} + m^{2}}{i \partial^{+}} \psi + \text{interactions}
$$

\n
$$
P^{+} = \int dx^{-} d^{2} \mathbf{x}_{\perp} \overline{\psi} \gamma^{+} i \partial^{+} \psi
$$

\n
$$
\mathbf{P}_{\perp} = \frac{1}{2} \int dx^{-} d^{2} \mathbf{x}_{\perp} \overline{\psi} \gamma^{+} i \nabla_{\perp} \psi
$$

• LF Hamiltonian P^- generates LF time translations

$$
[\psi(x), P^{-}] = i \frac{\partial}{\partial x^{+}} \psi(x)
$$

and the generators P^+ and ${\bf P}_\perp$ are kinematical

Light-Front Partonic Representation

 $\bullet\,$ Dirac field $\psi,$ expanded in terms of ladder operators on the initial surface $x^+=x^0+x^3$

$$
\psi(x^{-}, \mathbf{x}_{\perp})_{\alpha} = \sum_{\lambda} \int_{q^{+}>0} \frac{dq^{+}}{\sqrt{2q^{+}}} \frac{d^{2}\mathbf{q}_{\perp}}{(2\pi)^{3}} \left[b_{\lambda}(q) u_{\alpha}(q, \lambda) e^{-iq \cdot x} + d_{\lambda}(q)^{\dagger} v_{\alpha}(q, \lambda) e^{iq \cdot x} \right]
$$

 $\bullet\,$ LF Generators $P=(P^+,P^-,{\bf P}_\perp)$ in terms of constituents with momentum $q=(q^+,q^-,{\bf q}_\perp)$

$$
P^{-} = \sum_{\lambda} \int \frac{dq^{+} d^{2} \mathbf{q}_{\perp}}{(2\pi)^{3}} \left(\frac{\mathbf{q}_{\perp}^{2} + m^{2}}{q^{+}}\right) b_{\lambda}^{\dagger}(q) b_{\lambda}(q) + \text{interactions}
$$

\n
$$
P^{+} = \sum_{\lambda} \int \frac{dq^{+} d^{2} \mathbf{q}_{\perp}}{(2\pi)^{3}} q^{+} b_{\lambda}^{\dagger}(q) b_{\lambda}(q)
$$

\n
$$
\mathbf{P}_{\perp} = \sum_{\lambda} \int \frac{dq^{+} d^{2} \mathbf{q}_{\perp}}{(2\pi)^{3}} \mathbf{q}_{\perp} b_{\lambda}^{\dagger}(q) b_{\lambda}(q)
$$

Light-Front Bound State Hamiltonian Equation

 $\bullet\,$ Construct light-front invariant Hamiltonian for the composite system: $H_{LF}=P_{\mu}P^{\mu}=P^-P^+-{\bf P}^2_{\perp}$

$$
H_{LF} | \psi_H \rangle = \mathcal{M}_H^2 | \psi_H \rangle
$$

 $\bullet\,$ State $|\psi_H(P^+,{\bf P}_\perp,J_z)\rangle$ is expanded in multi-particle Fock states $\,|\,n\rangle$ of the free LF Hamiltonian:

$$
|\psi_H\rangle = \sum_n \psi_{n/H} |n\rangle, \qquad |n\rangle = \begin{cases} |uud\rangle \\ |uudg\rangle \\ |uud\overline{q}q\rangle & \cdots \end{cases}
$$

where k_i^2 $i^2 = m_i^2$, $k_i = (k_i^+$ $\dot{v}_i^+, k_i^-, {\bf k}_{\perp i}),$ for each component i

 $\bullet\,$ Fock components $\psi_{n/H}(x_i,{\bf k}_{\perp i},\lambda^z_i)$ are independent of P^+ and ${\bf P}_\perp$ and depend only on relative partonic coordinates: momentum fraction $x_i = k_i^{\pm}$ \mathbf{k}_i^+/P^+ , transverse momentum $\mathbf{k}_{\perp i}$ and spin λ_i^z i

$$
\sum_{i=1}^{n} x_i = 1, \quad \sum_{i=1}^{n} \mathbf{k}_{\perp i} = 0.
$$

• Compute \mathcal{M}^2 from hadronic matrix element

$$
\langle \psi_H(P')|H_{LF}|\psi_H(P)\rangle = \mathcal{M}_H^2 \langle \psi_H(P')|\psi_H(P)\rangle
$$

• Find

$$
\mathcal{M}_{H}^{2} = \sum_{n} \int \left[dx_{i} \right] \left[d^{2} \mathbf{k}_{\perp i} \right] \sum_{\ell} \left(\frac{\mathbf{k}_{\perp \ell}^{2} + m_{\ell}^{2}}{x_{q}} \right) \left| \psi_{n/H}(x_{i}, \mathbf{k}_{\perp i}) \right|^{2} + \text{interactions}
$$

• Phase space normalization of LFWFs

$$
\sum_{n} \int \left[dx_i \right] \left[d^2 \mathbf{k}_{\perp i} \right] \left| \psi_{n/h}(x_i, \mathbf{k}_{\perp i}) \right|^2 = 1
$$

 $\bullet \,$ In terms of $n\!-\!1$ independent transverse impact coordinates ${\bf b}_{\perp j}$, $j=1,2,\ldots,n\!-\!1,$

$$
\mathcal{M}_{H}^{2} = \sum_{n} \prod_{j=1}^{n-1} \int dx_{j} d^{2} \mathbf{b}_{\perp j} \psi_{n/H}^{*}(x_{i}, \mathbf{b}_{\perp i}) \sum_{\ell} \left(\frac{-\nabla_{\mathbf{b}_{\perp \ell}}^{2} + m_{\ell}^{2}}{x_{q}} \right) \psi_{n/H}(x_{i}, \mathbf{b}_{\perp i}) + \text{interactions}
$$

• Normalization

$$
\sum_{n} \prod_{j=1}^{n-1} \int dx_j d^2 \mathbf{b}_{\perp j} |\psi_n(x_j, \mathbf{b}_{\perp j})|^2 = 1
$$

3 Semiclassical Approximation to QCD

 $\bullet\,$ Consider a two-parton hadronic bound state in transverse impact space in the limit $m_q\to 0$

$$
\mathcal{M}^2 = \int_0^1 \frac{dx}{1-x} \int d^2 \mathbf{b}_\perp \, \psi^*(x, \mathbf{b}_\perp) \left(-\nabla^2_{\mathbf{b}_\perp} \right) \psi(x, \mathbf{b}_\perp) + \text{interactions}
$$

• Functional dependence of Fock state $|n\rangle$ given by invariant mass

$$
\mathcal{M}_n^2 = \Big(\sum_{a=1}^n k_a^\mu\Big)^2 = \sum_a \frac{\mathbf{k}_{\perp a}^2 + m_a^2}{x_a} \rightarrow \frac{\mathbf{k}_{\perp}^2}{x(1-x)}
$$

the off-energy shell of the bound state $\mathcal{M}^2 {-} \mathcal{M}_n^2$

- In impact space the relevant variable is $\zeta^2 = x(1-x)\mathbf{b}_\perp^2$ ⊥
- To first approximation LF dynamics depend only on the invariant variable \mathcal{M}_n or ζ , and hadronic properties are encoded in the hadronic mode $\phi(\zeta)$ from

$$
\psi(x,\zeta,\varphi) = e^{iM\varphi}X(x)\frac{\phi(\zeta)}{\sqrt{2\pi\zeta}}
$$

factoring out angular φ , longitudinal $X(x)$ and transverse mode $\phi(\zeta)$

• Find $(L = |M|)$

$$
\mathcal{M}^2 = \int d\zeta \, \phi^*(\zeta) \sqrt{\zeta} \left(-\frac{d^2}{d\zeta^2} - \frac{1}{\zeta} \frac{d}{d\zeta} + \frac{L^2}{\zeta^2} \right) \frac{\phi(\zeta)}{\sqrt{\zeta}} + \int d\zeta \, \phi^*(\zeta) \, U(\zeta) \, \phi(\zeta)
$$

where the confining forces from the interaction terms is summed up in the effective potential $U(\zeta)$

• Ultra relativistic limit $m_q\to 0$ longitudinal modes $X(x)$ decouple and LF eigenvalue equation $H_{LF} |\phi\rangle = {\cal M}^2 |\phi\rangle$ is a LF wave equation for ϕ

- Effective light-front Schrödinger equation: relativistic, frame-independent and analytically tractable
- Eigenmodes $\phi(\zeta)$ determine the hadronic mass spectrum and represent the probability amplitude to find n-massless partons at transverse impact separation ζ within the hadron at equal light-front time
- Semiclassical approximation to light-front QCD does not account for particle creation and absorption but can be implemented in the LF Hamiltonian EOM or by applying the L-S formalism

Hard-Wall Model

• Consider the potential (hard wall)

$$
U(\zeta) = \begin{cases} 0 & \text{if } \zeta \le \frac{1}{\Lambda_{\text{QCD}}} \\ \infty & \text{if } \zeta > \frac{1}{\Lambda_{\text{QCD}}} \end{cases}
$$

- $\bullet\,$ If $L^2\geq 0$ the Hamiltonian is positive definite $\bra{\phi}H^L_{LF}\ket{\phi}\geq 0$ and thus $\mathcal{M}^2\geq 0$
- If $L^2 < 0$ the Hamiltonian is not bounded from below ("Fall-to-the-center" problem in Q.M.)
- Critical value of the potential corresponds to $L=0$, the lowest possible stable state
- Solutions:

$$
\phi_L(\zeta) = C_L \sqrt{\zeta} J_L(\zeta \mathcal{M})
$$

• Mode spectrum from boundary conditions

$$
\phi\bigg(\zeta=\frac{1}{\Lambda_{\rm QCD}}\bigg)=0
$$

Thus

$$
\mathcal{M}^2 = \beta_{Lk} \Lambda_{\rm QCD}
$$

• Excitation spectrum hard-wall model: $\mathcal{M}_{n,L} \sim L + 2n$

Light-meson orbital spectrum $\Lambda_{QCD}=0.32$ GeV

Holographic Mapping

- Holographic mapping found originally by matching expressions of EM and gravitational form factors of hadrons in AdS and LF QCD [Brodsky and GdT (2006, 2008)]
- Substitute $\Phi(\zeta) \sim \zeta^{3/2} \phi(\zeta), \;\; \zeta \to z \;\;$ in the conformal LFWE

$$
\left(-\frac{d^2}{d\zeta^2} - \frac{1 - 4L^2}{4\zeta^2}\right)\phi(\zeta) = \mathcal{M}^2\phi(\zeta)
$$

• Find:

$$
\[z^2\partial_z^2 - 3z\,\partial_z + z^2\mathcal{M}^2 - (\mu R)^2\]\Phi(z) = 0\]
$$

with $(\mu R)^2=-4+L^2$, the wave equation of string mode in AdS $_5$!

$$
ds^2 = \frac{R^2}{z^2} (\eta_{\mu\nu} dx^{\mu} dx^{\nu} - dz^2)
$$

- AdS Breitenlohner-Freedman bound $(\mu R)^2\geq -4$ equivalent to LF QM stability condition $L^2\geq 0$
- $\bullet \,$ Conformal dimension Δ of AdS mode Φ given in terms of 5-dim mass by $(\mu R)^2 = \Delta (\Delta-4).$ Thus $\Delta = 2 + L$ in agreement with the twist scaling dimension of a two parton object in QCD

 $\bullet\,$ Obtain spin- J mode $\Phi_{\mu_1\cdots\mu_J}$ with all indices along 3+1 coordinates from Φ by shifting dimensions

$$
\Phi_J(z) = \left(\frac{z}{R}\right)^{-J} \Phi(z)
$$

• Substituting in the AdS scalar wave equation for Φ

$$
\left[z^2\partial_z^2 - (3-2J)z\,\partial_z + z^2\mathcal{M}^2 - (\mu R)^2\right]\Phi_J = 0
$$

with $(\mu R)^2 = (\Delta - J)(\Delta - 4 + J)$

• Upon substitution $z\rightarrow \zeta$ and

$$
\phi_J(\zeta) \sim \zeta^{-3/2+J} \Phi_J(\zeta)
$$

we recover the QCD LF wave equation

$$
\left[\left(-\frac{d^2}{d\zeta^2} - \frac{1 - 4L^2}{4\zeta^2} \right) \phi_{\mu_1 \cdots \mu_J} = \mathcal{M}^2 \phi_{\mu_1 \cdots \mu_J} \right]
$$

with
$$
(\mu R)^2 = -(2-J)^2 + L^2
$$

 \bullet J-decoupling in the HW model

Soft-Wall Model

• Soft-wall model [Karch, Katz, Son and Stephanov (2006)] retain conformal AdS metrics but introduce smooth cutoff wich depends on the profile of a dilaton background field $\varphi(z)=\pm \kappa^2 z^2$

$$
S = \int d^4x \, dz \, \sqrt{g} \, e^{\varphi(z)} \mathcal{L},
$$

• Equation of motion for scalar field $\mathcal{L} = \frac{1}{2}$ $\frac{1}{2} \big(g^{\ell m} \partial_\ell \Phi \partial_m \Phi - \mu^2 \Phi^2 \big)$

$$
\left[z^2\partial_z^2 - \left(3 \mp 2\kappa^2 z^2\right)z\partial_z + z^2\mathcal{M}^2 - (\mu R)^2\right]\Phi(z) = 0
$$

with $(\mu R)^2\geq -4.$

 $\bullet\,$ LH holography requires 'plus dilaton' $\varphi=+\kappa^2 z^2$. Lowest possible state $(\mu R)^2=-4$

$$
\mathcal{M}^2 = 0, \quad \Phi(z) \sim z^2 e^{-\kappa^2 z^2}, \quad \langle r^2 \rangle \sim \frac{1}{\kappa^2}
$$

A chiral symmetric bound state of two massless quarks with scaling dimension 2: the pion

 $\bullet\,$ Obtain spin- J mode $\Phi_{\mu_1\cdots\mu_J}$ with all indices along 3+1 coordinates from Φ by shifting dimensions

$$
\Phi_J(z) = \left(\frac{z}{R}\right)^{-J} \Phi(z)
$$

• Substituting in the AdS scalar wave equation for Φ

$$
\left[z^2\partial_z^2 - \left(3 - 2J - 2\kappa^2 z^2\right)z\partial_z + z^2\mathcal{M}^2 - (\mu R)^2\right]\Phi_J = 0
$$

• Upon substitution $z\rightarrow \zeta$

$$
\phi_J(\zeta) \sim \zeta^{-3/2+J} e^{\kappa^2 \zeta^2/2} \Phi_J(\zeta)
$$

we find the LF wave equation

$$
\left[\left(-\frac{d^2}{d\zeta^2} - \frac{1 - 4L^2}{4\zeta^2} + \kappa^4 \zeta^2 + 2\kappa^2 (L + S - 1) \right) \phi_{\mu_1 \cdots \mu_J} = \mathcal{M}^2 \phi_{\mu_1 \cdots \mu_J} \right]
$$

• Eigenfunctions

$$
\phi_{nL}(\zeta) = \kappa^{1+L} \sqrt{\frac{2n!}{(n+L)!}} \zeta^{1/2+L} e^{-\kappa^2 \zeta^2/2} L_n^L(\kappa^2 \zeta^2)
$$

• Eigenvalues

Parent and daughter Regge trajectories for the $I = 1$ ρ -meson family (red) and the $I = 0$ ω -meson family (black) for $\kappa = 0.54$ GeV

4 Fermionic Modes

Hard-Wall Model

• Action for massive fermionic modes on AdS_5 : \bullet Action for massive fermionic modes on AdS_5 :

$$
S[\overline{\Psi}, \Psi] = \int d^4x \, dz \sqrt{g} \, \overline{\Psi}(x, z) \left(i\Gamma^\ell D_\ell - \mu \right) \Psi(x, z)
$$

 $\bullet\,$ Equation of motion: $\,\,\left(i\Gamma^\ell D_\ell-\mu\right)\Psi(x,z)=0$

$$
\left[i\left(z\eta^{\ell m}\Gamma_{\ell}\partial_{m}+\frac{d}{2}\Gamma_{z}\right)+\mu R\right]\Psi(x^{\ell})=0
$$

• Solution ($\mu R = \nu + 1/2$)

$$
\Psi(z) = C z^{5/2} \left[J_{\nu}(z\mathcal{M})u_{+} + J_{\nu+1}(z\mathcal{M})u_{-} \right]
$$

• Hadronic mass spectrum determined from IR boundary conditions ψ_{\pm} $(z = 1/\Lambda_{\rm QCD}) = 0$

$$
\mathcal{M}^+ = \beta_{\nu,k} \Lambda_{\rm QCD}, \quad \mathcal{M}^- = \beta_{\nu+1,k} \Lambda_{\rm QCD}
$$

with scale independent mass ratio

 $\bullet\,$ Obtain spin- J mode $\Phi_{\mu_1\cdots\mu_{J-1/2}},\,J>\frac12,$ with all indices along 3+1 from Ψ by shifting dimensions

• Excitation spectrum for baryons in the hard-wall model: $\mathcal{M} \sim L + 2n$

Light baryon orbital spectrum for Λ_{QCD} = 0.25 GeV in the HW model. The ${\bf 56}$ trajectory corresponds to L even $P = +$ states, and the 70 to L odd $P = -$ states: (a) $I = 1/2$ and (b) $I = 3/2$

Soft-Wall Model

• Equivalent to Dirac equation in presence of a holographic linear confining potential

$$
\[i\left(z\eta^{\ell m}\Gamma_{\ell}\partial_{m}+\frac{d}{2}\Gamma_{z}\right)+\mu R+\kappa^{2}z\right]\Psi(x^{\ell})=0.
$$

• Solution
$$
(\mu R = \nu + 1/2, d = 4)
$$

$$
\Psi_{+}(z) \sim z^{\frac{5}{2}+\nu} e^{-\kappa^2 z^2/2} L_n^{\nu}(\kappa^2 z^2)
$$

$$
\Psi_{-}(z) \sim z^{\frac{7}{2}+\nu} e^{-\kappa^2 z^2/2} L_n^{\nu+1}(\kappa^2 z^2)
$$

• Eigenvalues

$$
\mathcal{M}^2 = 4\kappa^2(n+\nu+1)
$$

 $\bullet\,$ Obtain spin- J mode $\Phi_{\mu_1\cdots\mu_{J-1/2}},\,J>\frac12,$ with all indices along 3+1 from Ψ by shifting dimensions

Parent and daughter 56 Regge trajectories for the N and Δ baryon families for $\kappa = 0.5$ GeV

• ∆ spectrum identical to Forkel and Klempt, Phys. Lett. B **679**, 77 (2009)

 $4\kappa^2$ for $\Delta n=1$

Parent **70** Regge trajectories for the N family for $\kappa = 0.5$ GeV

• Not so well described by one parameter model: requires additional attraction (smaller hadronic size) Forkel and Klempt, Phys. Lett. B **679**, 77 (2009)

5 Non-Perturbative QCD Coupling From LF Holography

With A. Deur and S. J. Brodsky

 $\bullet\,$ Consider five-dim gauge fields propagating in AdS $_5$ space in dilaton background $\varphi(z)=\kappa^2 z^2$

$$
S = -\frac{1}{4} \int d^4x \, dz \, \sqrt{g} \, e^{\varphi(z)} \, \frac{1}{g_5^2} \, G^2
$$

• Flow equation

$$
\frac{1}{g_5^2(z)} = e^{\varphi(z)} \frac{1}{g_5^2(0)} \text{ or } g_5^2(z) = e^{-\kappa^2 z^2} g_5^2(0)
$$

where the coupling $g_5(z)$ incorporates the non-conformal dynamics of confinement

- $\bullet\,$ YM coupling $\alpha_s(\zeta)=g_{YM}^2(\zeta)/4\pi$ is the five dim coupling up to a factor: $g_5(z)\to g_{YM}(\zeta)$
- Coupling measured at momentum scale Q

$$
\alpha_s^{AdS}(Q) \sim \int_0^\infty \zeta d\zeta J_0(\zeta Q) \,\alpha_s^{AdS}(\zeta)
$$

• Solution

$$
\alpha_s^{AdS}(Q^2) = \alpha_s^{AdS}(0) e^{-Q^2/4\kappa^2}.
$$

where the coupling α_s^{AdS} s^{AaS} incorporates the non-conformal dynamics of confinement

• Non-perturbative AdS/QCD running coupling

Effective coupling from LF holography for $\kappa=0.54~{\rm GeV}$

Effective coupling from LF holography for $\kappa = 0.54 \text{ GeV}$

Conjectured behavior of the full β**-function of QCD**

$$
\beta(Q \to 0) = \beta(Q \to \infty) = 0,\tag{1}
$$

$$
\beta(Q) < 0, \text{ for } Q > 0,\tag{2}
$$

$$
\frac{d\beta}{dQ}\Big|_{Q=Q_0} = 0,\tag{3}
$$

$$
\frac{d\beta}{dQ} < 0, \text{ for } Q < Q_0, \quad \frac{d\beta}{dQ} > 0, \text{ for } Q > Q_0. \tag{4}
$$

- 1. QCD is conformal in the far UV and deep IR
- 2. Anti-screening behavior of QCD which leads to asymptotic freedom
- 3. Hadronic-partonic transition: the minimum is an absolute minimum
- 4. Since there is only one transition (4) follows from the above