

SLAC Two-Mile Linear Accelerator

Novel ep and eA QCD Phenomena

DIS2008 London, April 9, 2008

1967 SLAC Experiment: Scatter 20 GeV/c Electrons on protons $ep \to e'X$ ín a Hydrogen Target Discovery of the Quark Structure of Matter Proton Electron DETECTOR (b) PIVOT INCIDENT BEAM ELEVATION VIEW **Discovery of quarks!** 1.6 GeV FARADAY SPECTROME TER CUP TOROIDS 70 m TO BEAM DUMP ORI 082 8 GeV SPECTROMETER 881 **B82** COUNTER Deep inelastic scattering: Experiments on the proton and the observation of scaling.

Friedman, Kendall, Taylor: Nobel Prize

DIS2008 London, April 9, 2008 Novel ep and eA QCD Phenomena

3

 $Q^2 = \vec{q}^2 - \nu^2$

No intrinsic length scale !

Measure rate as a function of energy loss ν and momentum transfer QScaling at fixed $x_{Bjorken} = \frac{Q^2}{2M_p\nu} = \frac{1}{\omega}$

Díscovery of Bjorken Scaling Electron scatters on point-like quarks!

Key Probe of QCD: Lepton-Nucleon, Lepton-Nucleus Scattering

Novel ep and eA QCD Phenomena

DIS2008 London, April 9, 2008

Unitarity Bound? Saturation?

DIS2008 London, April 9, 2008

Novel ep and eA QCD Phenomena

5

Gluon distribution inferred from charm production, etc.

Two Pictures of High Energy Lepton-Proton Collisions

Proton Rest Frame

Color-Dipole Model

Color Dipole of Virtual Photon Scatters on a Complex Static Proton

DIS2008 London, April 9, 2008 Novel ep and eA QCD Phenomena

Deep Inelastic Electron-Proton Scattering

Simple Virtual Photon Probes Complex Evolved Proton

DIS2008 No London, April 9, 2008

Novel ep and eA QCD Phenomena

8

DIS2008 London, April 9, 2008 Novel ep and eA QCD Phenomena

9

Deep Inelastic Electron-Proton Scattering

Off-shell Effect: Breakdown of DGLAP at x~1!

Modifications from FSI !

DIS2008 London, April 9, 2008 Novel ep and eA QCD Phenomena

Two Pictures of High Energy Lepton-Proton Collisions

Infinite momentum frame Parton Model

Simple Virtual Photon Probes Complex Evolved Proton

Proton Rest Frame

Color-Dipole Model

Color Dipole of Virtual Photon Scatters on a Complex Static Proton

DIS2008 London, April 9, 2008 Novel ep and eA QCD Phenomena

Color Dipole of Virtual Photon Scatters on a Complex Static Proton

DIS2008 London, April 9, 2008 Novel ep and eA QCD Phenomena

 $\sigma(\gamma p \to V p)[nb]$

DIS2008 London, April 9, 2008 Novel ep and eA QCD Phenomena

14

Odderon-Pomeron Interference!

$$\mathscr{A}\left(t \approx 0, M_X^2, z_c\right) \approx 0.45 \left(\frac{s_{\gamma p}}{M_X^2}\right)^{-0.25} \frac{2 z_c - 1}{z_c^2 + (1 - z_c)^2}$$

Measure charm asymmetry in photon fragmentation region

Merino, Rathsman, sjb

Three Pictures of High Energy Lepton-Proton Collisions

Infinite momentum frameParton ModelSimple Virtual Photon Probes Complex Evolved Proton

 Proton Rest Frame
 Color-Dipole Model

 Color Dipole of Virtual Photon Scatters on a Static Proton

Frame-IndependentLight-Front
HamiltonianTheoryCollision of Light-Front Wavefunctions
of Virtual Photon and ProtonDIS2008
London, April 9, 2008Novel ep and eA QCD Phenomena
I6Stan Brodsky, SLAC

DIS2008 London, April 9, 2008 Novel ep and eA QCD Phenomena

17

DIS2008 London, April 9, 2008 Novel ep and eA QCD Phenomena

18

$$p_A = (P^+, \frac{M_A^2 + \ell_\perp^2}{P^+}, \vec{\ell_\perp})$$

$$p_B = (P^+, \frac{M_B^2 + \ell_{\perp}^2}{P^+}, -\vec{\ell_{\perp}})$$

Both beams move along the positive z direction, and $s = (p_A + p_B)^2 = 2M_A^2 + 2M_B^2 + 4\ell_{\perp}^2$ is represented by the oppositely directed transverse momenta $\pm \vec{\ell}_{\perp}$ of the colliding nuclei.

Note that the value of P^+ is irrelevant.

As τ progresses, the constituents from A and B each interact as their coordinates σ_i and $\vec{b}_{\perp i}$ overlap.

DIS2008 Novel London, April 9, 2008

Novel ep and eA QCD Phenomena

19

Past and Future ep Facilities

JLab and BNL Plans

LHeC: $\sqrt{s_{ep}} > 1$ TeV

The TeV Scale [2008-2033..]

e[±] Linac - p/A Ring

		ring-linac		ring-linac, cw,	
		pulsed		~99% energy	
				recovery	
	units	e-	р	e-	р
energy	GeV	70	7000	70	7000
punch	10 ¹⁰	2	17	2	17
population					
σz	cm	0.03	7.55	0.03	7.55
beam current	mA	101	858	101	858
(pulsed)					
emittance $\varepsilon_{x,y}$	nm	0.5, 0.5			
$\beta^*_{x,v}$	cm	15, 15			
spacing	ns	25			
e-linac/ring	km	3.5		7 (2 linacs)	
length					
e- pulse length		1 ms		cw	
repetition rate		5 Hz		continuous	
e- beam power	MW	35		7000	
peak	10 ³²	0.6		2x110	
luminosity	cm ⁻² s ⁻¹				

S. Chattopadhyay (Cockcroft), F.Zimmermann (CERN), et al.

Inclusive Higgs Electroproduction at the LHeC from the Neutral Current

Inclusive Higgs Electroproduction at the LHeC from the Charged Current

Inclusive Top Electroproduction at the LHeC

Inclusive Higgs Electroproduction at the LHeC

Inclusive Higgs Electroproduction at the LHeC

Diffractive Higgs Electroproduction at the LHeC

Kopeliovich, Schmidt, sjb