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Transversity 

Angular Momentum Structure, and 
the  Spin Dynamics of  Hadrons

• Test Fundamentals of Gauge Structure of QCD 

• Fundamental Measures of Hadron Structure

• Angular Momentum of Confined Quarks and Gluons

• Breakdown of Conventional Wisdom

• Breakdown of Factorization Ideas

• Crucial Experiment Tests, Measurements  

Remarkable array of theory and experimental talks
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Unexpected 

spin-spin

correlation in pp 

elastic scattering

pp→ Λc(cud)D0(cu)p

p

σ(pp→ cX)

Total open charm cross section at threshold

σ(pp→ cX) � 1µb

needed to explain Krisch ANN

Compare with strangeness channels

pp→ Λ(sud)K+(su)p

pp→ Λc(cud)D0(cu)p
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σ(pp→ cX)

Total open charm cross section at threshold
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Compare with strangeness channels

pp→ Λ(sud)K+(su)p

polarizations normal to scattering plane

↑ ↑

• Measure Elastic Proton-Proton Scattering

dσ
dt (pp → pp) at large pT .

Test PQCD AdS/CFT conformal scaling:
twist = dimension - spin = 12

M(s, t) ∼ F (t/s)
s4

dσ
dt (pp → pp) ∼ |F (t/s)|2

s10

↑ ↑

• Measure Elastic Proton-Proton Scattering

dσ
dt (pp → pp) at large pT .

Test PQCD AdS/CFT conformal scaling:
twist = dimension - spin = 12

M(s, t) ∼ F (t/s)
s4

dσ
dt (pp → pp) ∼ |F (t/s)|2

s10

Krisch
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Ideas for CarlFest

May 4, 2005

Spin Correlations in Elastic p− p Scattering
RNN

pT

Collisions Between Spinning Protons (A. D. Krisch)
Scientific American, 255, 42-50 (August, 1987).
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Ratio reaches 4:1 !
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polarization normal to scattering plane

A. Krisch, Sci. Am. 257 (1987) 
“The results challenge the prevailing theory that describes the 

proton’s structure and forces”

dσ↑↑/dt

dσ↓↓/dt
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[112]

Exclusive Processes in QCD and Light-Front Wavefunctions

S. Brodsky

   

Return

Strangeness Charm

p Δ
√

s = 5 GeV

Ann =
dσ↑↑/dt− dσ↓↓/dt

dσ↓↓/dt + dσ↓↓/dt
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5-2005
8717A3

QCD 
Schwinger-Sommerfeld 
Enhancement at Heavy 

Quark Threshold

Hebecker, Kuhn, sjb
S. J. Brodsky and G. F. de Teramond, “Spin
Correlations, QCD Color Transparency And
Heavy Quark Thresholds In Proton Proton
Scattering,” Phys. Rev. Lett. 60, 1924 (1988).

Quark Interchange + 8-Quark Resonance

|uuduudcc̄ > Strange and Charm Octoquark!

M = 3 GeV, M = 5 GeV.

J = L = S = 1, B = 2

Production of  
uud c c uud 

octoquark resonance

J=L=S=1, C=-, P=- state

8 quarks in S-wave: odd parity

Ann = 1!
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Quark Interchange + 8-Quark Resonance

|uuduudcc̄ > Strange and Charm Octoquark!

M = 3 GeV, M = 5 GeV.

J = L = S = 1, B = 2

S. J. Brodsky and G. F. de Teramond, “Spin
Correlations, QCD Color Transparency And
Heavy Quark Thresholds In Proton Proton
Scattering,” Phys. Rev. Lett. 60, 1924 (1988).

Quark Interchange + 8-Quark Resonance

|uuduudcc̄ > Strange and Charm Octoquark!

M = 3 GeV, M = 5 GeV.

J = L = S = 1, B = 2

|uuduudss̄ > |uuduudcc̄ >
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Spin-dependence at large-PT (90°cm):
Hard scattering takes place 

only with spins ↑↑

A. Krisch, Sci. Am. 257 (1987) 
“The results challenge the prevailing theory that describes 

the proton’s structure and forces”

Heppelmann et al:  Quenching of Color 
Transparency

 Charm and Strangeness Thresholds

“Exclusive 
Transversity”

  B=2 Octoquark Resonances?

Ideas for CarlFest

May 4, 2005

Spin Correlations in Elastic p− p Scattering
RNN

pT

Collisions Between Spinning Protons (A. D. Krisch)
Scientific American, 255, 42-50 (August, 1987).
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dσ↑↑/dt

dσ↓↓/dt
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Mueller, sjb
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Sivers
dσ

dt
(pp→ pp) � f(θcm)

s10

pp→ pp

Huge Number of Tests of 
Transversity in Exclusive 

Reactions
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Conventional wisdom:  
Final-state interactions of struck quark can be neglected
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Final-State QCD 
Interaction
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T-OddPseudo-

11-2001 
8624A06

S

current 
quark jet

final state 
interaction

spectator 
system

proton

e– 

!*

e– 

quark

Single-spin 
asymmetries

Leading Twist 
Sivers Effect

�Sp ·�q×�pq

 Hwang,  
Schmidt, sjb

Light-Front Wavefunction  
S and P- Waves!

QCD S- and P-
Coulomb Phases

--Wilson Line

“Lensing Effect”

16

i

Collins, Burkardt, Ji, 
Yuan. Pasquini, ...

Leading-Twist 
Rescattering 
Violates pQCD 
Factorization!

Sign reversal in DY!
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N.C.R. Makins, NNPSS, July 28, 2006
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• First evidence for non-zero 
Sivers function!

• ⇒ presence of non-zero quark

orbital angular momentum!

• Positive for !+... 

Consistent with zero for !"...

• Systematic error bands include 

acceptance and smearing effects, 

and contributions from unpolarized 

<cos(2!)> and    <cos(!)>  moments 

It exists too!
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The Leading-Twist Sivers Function: Can it Exist in DIS?

A T-odd function like f⊥1T must arise from
interference ... but a distribution function

is just a forward scattering amplitude,
how can it contain an interference?

q

P

2

~
q q

P P

Im

Brodsky, Hwang, & Schmidt 2002

can interfere

with

and produce
a T-odd effect!

(also need Lz �= 0)

It looks like higher-twist ... but no , these are soft gluons
= “gauge links” required for color gauge invariance

Such soft-gluon reinteractions with the soft wavefunction are

final (or initial) state interactions ... and may be

process dependent ! new universality issues e.g. Drell-Yan

Gamberg: Hermes
data compatible with BHS 

model

Schmidt, Lu: 
Asymmetry ratios should follow 

quark contributions to anomalous 
moment
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In the context of the quark-parton model, the virtual-photon asymmetry Ah
UT can be

represented in terms of parton distribution and fragmentation functions [7]:

Ah
UT (φ, φS) ∝ sin(φ + φS)

∑

q

e2
q I

[
hq

1T (x, p2
T ) H⊥,q

1 (z, k2
T )

]

+ sin(φ − φS)
∑

q

e2
q I

[
f⊥,q

1T (x, q2
T ) Dq

1(z, k
2
T )

]
+ . . . (3)

Here eq is the charge of the quark species q, f⊥,q
1T (x, q2

T ) the Sivers distribution func-
tion, H⊥,q

1 (z, k2
T ) the Collins fragmentation function, hq

1T (x, p2
T ) a twist-2 relative of the

transversity distribution function [7] and Dq
1(z, k

2
T ) is the usual unpolarized fragmentation

function.
The appearance in Eq. 3 of the convolution integral I[. . .] over initial (pT ) and final

(kT ) quark transverse momenta implies that the different functions involved can not be
readily extracted in a model-independent way from the measured asymmetry. It is under
theoretical debate to what extent weighting of the measured asymmetries makes the
involved distribution and fragmentation functions appear factorized.

The data were taken since 2002 using the Hermes forward spectrometer [10] at Desy
in conjunction with a transversely polarized hydrogen target [11]. All presently available
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final results are summarized in Ref. [9], de-
tails of the analysis can be found in Ref. [12].
The kinematics coverage of the measure-
ment is 0.023 < x < 0.4 and 0.2 < z < 0.7,
and the corresponding average values of the
kinematic parameters are 〈x〉 = 0.09, 〈z〉 =
0.36, 〈y〉 = 0.54, 〈Q2〉 = 2.41 GeV2 and
〈Pπ⊥〉 = 0.41 GeV. The x and z-dependence
of the extracted moments is shown in Fig.2.
The statistical correlation in the fit between
the Collins and Sivers harmonic components
ranges between -0.5 and -0.6.

Figure 2. Top (middle) panel: Fitted
virtual-photon Collins (Sivers) moments for
charged pions, as a function of x (left) and z
(right). The error bars represent the statis-
tical uncertainties, the moments have an 8%
scale uncertainty. The bottom panel shows
the relative contribution to the measured
pion yield from exclusive vector meson pro-
duction, based on a Monte Carlo simulation.
The figure was taken from Ref.[9].

W.-D. Nowak / Nuclear Physics A 755 (2005) 325c–328c 327c

Sivers asymmetry from HERMES

3. INTERPRETATION

The Collins moment for π+, averaged over acceptance, is positive: Aπ+
C = 0.042 ±

0.014stat.. This agrees with expectations for the transversity distributions hq
1(x), derived

from the similarities to the well measured valence helicity distributions g q
1(x) [13], namely

positive hu
1(x) and negative hd

1(x). The acceptance averaged Collins moment for π− is
large and negative, especially at large x: Aπ−

C = −0.076 ± 0.0016stat.. This comes as a
surprise, as neither u nor d flavor dominates π− production and also |hd

1(x)| < |hu
1(x)| is

expected. This observation may be explained if the disfavored Collins function was larger
and opposite in sign, as e.g. suggested by the string fragmentation model of Ref. [14].
Note that little dependence on z is seen for the Collins moments.

The Sivers moments averaged over acceptance are Aπ+
S = 0.034 ± 0.008stat. and Aπ−

S =
−0.004 ± 0.010stat., i.e. positive for π+ and consistent with zero for π−. The former
result is the first indication for the existence of a non-zero Sivers distribution function
f⊥,u

1T . However, this conclusion has to be taken with caution, as presently an unknown
systematic uncertainty has to be attributed to this result, due to the yet unmeasured
asymmetry in the pion yield from exclusive ρ0 production. More data is presently collected
at Hermes, both for semi-inclusive pion and exclusive vector meson production, which
is hoped to allow a firm conclusion on the existence of a non-zero Sivers function.
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final results are summarized in Ref. [9], de-
tails of the analysis can be found in Ref. [12].
The kinematics coverage of the measure-
ment is 0.023 < x < 0.4 and 0.2 < z < 0.7,
and the corresponding average values of the
kinematic parameters are 〈x〉 = 0.09, 〈z〉 =
0.36, 〈y〉 = 0.54, 〈Q2〉 = 2.41 GeV2 and
〈Pπ⊥〉 = 0.41 GeV. The x and z-dependence
of the extracted moments is shown in Fig.2.
The statistical correlation in the fit between
the Collins and Sivers harmonic components
ranges between -0.5 and -0.6.

Figure 2. Top (middle) panel: Fitted
virtual-photon Collins (Sivers) moments for
charged pions, as a function of x (left) and z
(right). The error bars represent the statis-
tical uncertainties, the moments have an 8%
scale uncertainty. The bottom panel shows
the relative contribution to the measured
pion yield from exclusive vector meson pro-
duction, based on a Monte Carlo simulation.
The figure was taken from Ref.[9].

W.-D. Nowak / Nuclear Physics A 755 (2005) 325c–328c 327c
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!+

! significantly positive

! clear rise with z 

! rise at low Ph!, plateau at high Ph!

! dominated by scattering off u-quark:

 

! u-quark Sivers DF<0

!non-zero orbital angular momentum

!0

! slightly positive

! -

! consistent with 0

! u- and d-quark cancellation

! d-quark Sivers DF>0

� −f⊥,u
1T (x, p2T )⊗w Du→π+

1 (z, k2T )

fu
1 (x, p

2
T )⊗Du→π+

1 (z, k2T )

Ami Rostomyan                                                                      Transversity 2011, Veli Lo!inj, Croatia

2�sin(φ− φs)�UT = −
�

q e
2
qf

⊥,q
1T (x, p2T )⊗w Dq

1(z, k
2
T )�

q e
2
qf

q
1 (x, p

2
T )⊗Dq

1(z, k
2
T )

Sivers amplitudes for pions
Hermes
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Sivers amplitudes for kaons

Ami Rostomyan                                                                      Transversity 2011, 

K+

! significantly positive

! clear rise with z 

! rise at low Ph!, plateau at high Ph!

K-

! slightly positive

∝ − f⊥,u
1T (x,p2

T)⊗w Du→π+/K+

1 (z,k2
T)

fu1 (x,p
2
T)⊗Du→π+/K+

1 (z,k2
T)

! similar to ! + , K+ dominated by scattering 
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Final-State Interactions Produce 
Pseudo T-Odd  (Sivers Effect)

• Leading-Twist Bjorken Scaling!

• Requires nonzero orbital angular momentum of quark

• Arises from the interference of Final-State QCD Coulomb phases in S- and P- waves; 

• Burkardt: “Lens Effect”

• Wilson line effect  --  gauge independent

• Relate to the quark contribution to the target proton                                                

anomalous magnetic moment and final-state QCD phases!

• QCD phase at soft scale!

• New window to QCD coupling and running gluon mass in the IR

• QED S and P Coulomb phases infinite -- difference of phases finite!

• Alternate: Retarded and Advanced Gauge: Augmented LFWFs

�S ·�p jet×�q

�S ·�p jet×�qi

11-2001 
8624A06

S

current 
quark jet

final state 
interaction

spectator 
system

proton

e– 

!*

e– 

quark
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 Pasquini, Xiao, Yuan, sjb

 Hwang, Schmidt, sjb
Collins

Mulders, Boer Qiu, Sterman
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Running Coupling from Light-Front Holography and AdS/QCD

αAdS
s (Q)/π = e−Q2/4κ2

αs(Q)
π

Deur,  de Teramond, sjb

κ = 0.54 GeV

Analytic, defined at all scales, IR Fixed Point

Q (GeV)

s(Q
)/

g1/  (pQCD)
g1/  world data

/  OPAL

AdS
Modified AdS

Lattice QCD (2004) (2007)
g1/  Hall A/CLAS
g1/  JLab CLAS

F3/GDH limit
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Mechanism FSI produce phase in TSSAs-Leading Twist

Brodsky, Hwang, Schmidt PLB: 2002

SIDIS w/ transverse polarized nucleon target SIDIS

Ji, Yuan PLB: 2002 -Sivers fnct. FSI emerge from Color Gauge-links

∆σ ∼ D⊗∆f⊥⊗σ̂Born

Ji, Ma, Yuan: PLB, PRD 2004, 2005 Extend factorization of CS-NPB: 81

Collins, Metz: PRL 2005 Universality & Factorization “Maximally” Correlated in Frag.

Collins, Qui PRD 08 Factorization in jeopardy for H H → h h X at high PT

11

   LG, Goldstein, Oganessyan, Schlegel  2002, 2003 2008 Boer-Mulders Fnct, and Sivers -spectator model

LG, M. Schlegel, PLB 2010 & arXiv:1012.3395   B-M, Sivers  sum FSIs  w/color Chromo Lensing M. Schegel

FSI phases in TSSAs unsuppressed

Explanation, pT ∼ k⊥ << Q2 TSSAs thru “T -Odd”TMD

• Sivers PRD: 1990 TSSA is “T -odd” correlation transverse spin and
momenta

∆σpp↑→πX ∼ D ⊗ f⊗∆f⊥⊗σ̂Born ⇒ iST · (P × k⊥) → f⊥
1T (x, k⊥)

• Collins NPB: 1993

∆σep↑→eπX ∼ ∆D⊥ ⊗ f ⊗ σ̂Born ⇒ isT · (P × p⊥) → H⊥
1 (x, p⊥)

8

∆f⊥(x, k⊥) = iST · (P × k⊥)

Collins PLB 2002- Gauge link Sivers function doesn’t vanish 

Unsuppressed reaction mech.  Boer PRD 1999 context of DY @ RHIC

Brodsky Hwang Schmidt PLB 2002- SIDIS w/ transverse polarized target 

Figure 1: The amplitude W including FSIs between re-scattered eikonalized quark

and antiquark. The FSIs are described by a non-perturbative scattering amplitude M that

is calculated in a generalized ladder approximation. Gluon interactions as shown in the

second diagram are not taken into account (see text).

non-perturbative eikonal methods [70, 71] to calculate higher-

order soft gluon contributions from the gauge link and study

how these soft gluons impact Eq. (5). Up till now the relation

(5) was used to predict the sign of T-odd TMDs in conjunc-

tion with numbers for the u- and d-quark contributions to the

anomalous magnetic moment of the nucleon and the assump-

tion that FSIs are attractive [66]. We will also investigate the

latter assumption.

3. TMD-GPD Relation for a Pion

We focus our attention on a pion in a valence quark configu-

ration that one expects for relatively large Bjorken x. Working

in the spectator framework [35, 36, 38, 72, 73] and inserting

a complete set of states, 1 =
∑
x |X〉〈X| in the quark corre-

lation function Eq. (1), we truncate this sum to an antiquark

and neglect multi-particle intermediate states. The usefulness

of this approach is twofold: First, we are able to improve on

the one gluon exchange approximation for FSIs to studying T-

odd PDFs by including higher order gluonic contributions and

color degrees of freedom. Second we are able to explore to

what extent transverse polarization effects due to T-odd PDFs
can be described in terms of factorization of FSIs and a spatial

distortion of impact parameter space including higher gluonic

corrections [46, 48] with color. Thus, we express the pion Boer-

Mulders function (1) in the following way

εi j
T
k
j

T
h⊥1 (x,"k

2
T ) =

mπ

8(2π)3(1 − x)P+
∑

σ,d

W̄iσi+γ5W, (6)

with the matrix elementW given by

W
α,δ
i
(P, k;σ) = 〈P − k,σ, δ| [∞n ; 0]αβ qβ

i
(0) |P〉. (7)

where σ and δ represent the helicity and color of the interme-
diate spectator antiquark. We model (7) by the diagram shown

in Fig. 1, where the FSIs – generated by the gauge link in (7)

– are described by a non-perturbative amputated scattering am-

plitude (M)
αβ
γδ with β, α (γ, δ) color indices of incoming and

outgoing quark (antiquark). In the next section we calculate

the scattering amplitude using non-perturbative eikonal meth-

ods thereby considering a subclass of possible diagrams with

interactions between quark and antiquark. We neglect classes

of gluon exchanges in the second diagram in Fig. 1 represented

by the red rungs since they would be attributed to the “inter-

action” between the quark fields and the operator I in (2) and

lead to terms which break the relation (5). We also neglect real

gluon emission and (self)-interactions of quark and antiquark

lines the second diagram in Fig. 1 since they represent radiative

corrections of the GPD and are effectively modeled in terms of
spectator masses and a phenomenological vertex function.

The pion-quark vertex is modeled with the interaction La-

grangian

L = − gπ√
Nc
δαβq̄αγ5"τ · "ϕqβ, (8)

where we allow the coupling gπ to depend on the momentum of

the active quark in order to take into account the compositeness

of the hadron and to suppress large quark virtualities [42, 43,

73]. Applying the Feynman rules we obtain an expression for

the matrix elementW in (7) from the first diagram in Fig. 1

W
αβ
i,σ(P, k) =

−iτ√
Nc


δ
αβgπ(k

2)

[
( /k+mq)v(Ps,σ)

]
i

k2−m2q+i0
+

∫
d4q

(2π)4

gπ
(
(P−q)2

) [
( /P− /q+mq)γ5( /q−ms) (M)

αδ
δβ (q, Ps)v(Ps,σ)

]
i

[
n · (Ps−q) + i0

] [
(P−q)2−m2q+i0

] [
q2−m2s+i0

]


, (9)

where Ps ≡ P − k is the spectator momentum. The first term
in (9) represents the contribution without FSIs while the sec-

ond term corresponds to the first diagram in Fig. 1. We then

express the FSIs through the amputated quark - antiquark scat-

tering amplitude M. Here both incoming quark and antiquark

are subject to the eikonal approximation (see, e.g. [74] and ref-

erences therein). While the active quark undergoes a natural

eikonalization for a massless fermion since it represents the

gauge link contribution, the eikonalization for a massive spec-

tator fermion is a simplification that is justified by the phys-

ical picture of partons in an infinite momentum frame. The

eikonalization of a massive fermion can be traced back to the

Nordsieck-Bloch approximation [75] which describes a highly

energetic helicity conserving fermion undergoingmultiple scat-

tering with very small momentum transfer. In this approxi-

mation the Dirac vertex structure ū(p1)γµu(p2) ∼ pµ/m ≡ vµ
where (p1 + p2)/2 ≡ p. For a massive anti-fermion one iden-

tifies the velocity vµ = −pµ/m, and the numerator of a fermion
propagator becomes i(− /p + m)→ i(−v · p + m).
We proceed by performing a contour-integration of the light-

cone loop-momentum q− in Eq. (9) where we consider poles
which originate from the denominators in (9). This assumes

that the scattering amplitude M does not contain poles in q−

and the integrand is well behaved on the contour in q −. Be-
fore we proceed, it is important to point out that one-loop cal-

culations of T-odd functions were performed in a scalar di-

quark model [33, 35, 38] and a quark target model [76] where

there are no contributions from a pole in q− in the exchanged

3

Bacchetta, Schaefer, Yang, PLB 2004, Bacchetta Conti Radici ... 2008,2010,2011 PRD  

Burkardt  Sivers chromdynamic lensing NPA 2004

Many more model calcs.
talk of A. Bacchetta

Gamberg

“Handbag” 
diagram invalid!
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Single Spin Asymmetry In the Drell Yan Process
�Sp ·�p×�qγ∗
Quarks Interact in the Initial State
Interference of Coulomb Phases for S and P states
Produce Single Spin Asymmetry [Siver’s Effect]Proportional

to the Proton Anomalous Moment and αs.
Opposite Sign to DIS! No Factorization

Collins 

Hwang 
Schmidt 

sjb

Predict Opposite Sign SSA in DY !
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Sivers

BHS  
approach
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“Generalized Universality” Fund. Prediction of  QCD Factorization
T-Odd Effects From Color Gauge Inv. via Wilson Line

• Leading twist Gauge Invariant Distribution Functions

Boer, Mulders: NPB 2000, & Pijlman (BPM) NPB 2003, Belitsky Ji Yuan NPB 2003

dσ = LµνWµν ⇒

∆

. . .
Φ

Φ̄

. . .
Φ

SIDIS Hadronic Tensor Drell-Yan Hadronic Tensor
(ξ−, 0, ξ⊥)

ξ− Φ[+] futurepointing

ξT (ξ−, 0, ξ⊥)

ξ−

ξT

Φ[−] pastpointing

Process Dependence Collins PLB 02, Brodsky, Hwang, Schmidt NPB 02

P&T

Process Dependence Collins PLB 02, Brodsky, Hwang, Schmidt NPB 02

f⊥
1TSIDIS

(x, kT ) = −f⊥
1TDY

(x, kT )

Φ[+]∗(x, pT ) = iγ1γ3Φ[−](x, pT )iγ1γ3

∆[+]∗(x, pT ) "= iγ1γ3∆[−](x, pT )iγ1γ3

Gauge link for TMDs

ξ−

ξT

Φij(x, pT ) =
�

dξ−d2ξT

8π3
eip·ξ�P |ψ̄j(0)U[0,ξ]ψi(ξ)|P �

����
ξ+=0

ξ−

ξT

ξ−

ξT

!"#"!

#$%&&'()*

!!+,-+.)/$-*0

U[+]

U[−]

U[�]U[+]

1+0%2%$)&+-,.%$0

"#$%#&'()*+,-./'(012+$34'(05"(678(9:;<(

Gauge link for TMDs

ξ−

ξT

Φij(x, pT ) =
�

dξ−d2ξT

8π3
eip·ξ�P |ψ̄j(0)U[0,ξ]ψi(ξ)|P �

����
ξ+=0
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ξT
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#$%&&'()*

!!+,-+.)/$-*0
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U[−]

U[�]U[+]
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"#$%#&'()*+,-./'(012+$34'(05"(678(9:;<(

Gauge link for TMDs

ξ−

ξT

Φij(x, pT ) =
�

dξ−d2ξT

8π3
eip·ξ�P |ψ̄j(0)U[0,ξ]ψi(ξ)|P �

����
ξ+=0

ξ−

ξT

ξ−

ξT

!"#"!

#$%&&'()*

!!+,-+.)/$-*0

U[+]

U[−]

U[�]U[+]
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Gauge link for TMDs

ξ−

ξT

Φij(x, pT ) =
�

dξ−d2ξT

8π3
eip·ξ�P |ψ̄j(0)U[0,ξ]ψi(ξ)|P �

����
ξ+=0

ξ−

ξT

ξ−
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!"#"!
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EIC  conjunction with DY exp. E906-Fermi, RHIC II, Compass,  JPARC  

Process Dependence,  Collins PLB 02, Brodsky et al. NPB 02, Boer Mulders Pijlman Bomhoff 03, 04 ...

f⊥1T sidis
(x, kT ) = −f⊥1T DY

(x, kT ) pT ∼ kT <<
�

Q2

SIDIS DY

Gamberg
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11

Sivers amplitudes for kaons
K+

! significantly positive

! clear rise with z 

! rise at low Ph!, plateau at high Ph!

K-

! slightly positive

∝ − f⊥,u
1T (x,p2

T)⊗w Du→π+/K+

1 (z,k2
T)

fu1 (x,p
2
T)⊗Du→π+/K+

1 (z,k2
T)

! similar to ! + , K+ dominated by scattering 
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Sivers amplitudes for kaons
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! significantly positive

! clear rise with z 
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! non-trivial role of sea quarks

! different kT dependence of fragmentation 
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! higher-twist effects
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Sivers amplitudes for kaons

Ami Rostomyan                                                                      Transversity 2011, 

K+

! significantly positive

! clear rise with z 

! rise at low Ph!, plateau at high Ph!

K-

! slightly positive
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! similar to ! + , K+ dominated by scattering 
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Sea quarks carry orbital angular momentum 

�S ·�p jet×�q

27

Sivers effect for π−(dū) reduced by Lū at low x

Gardner, sjb

Sivers effect for π+(ud̄) reduced by Ld̄ at low x
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Sivers effect for K+(us̄) increased by Ls̄ !
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Orbital functions Song parameters This paper 

u  quark 0.150 0.197! 0.02 

d  quark 0.025 -0.012! 0.01 

s  quark 0.025 0.015! 0.005 

Sum of quarks 0.200 0.200! 0.02 

   

 

The normalization of the antiquark orbital distributions is then given at this scale from 

equarions (3.19)-(2.21) 

 

 

Orbital functions Song parameters This paper 

u  antiquark 0.017 0.015! 0.002 

d  antiquark 0.058 0.053! 0.006 

s  antiquark 0.025 0.022! 0.002 

Sum of antiquarks 0.100 0.090! 0.01 

 

 

The values for the mean orbital angular momenta are very similar.  The main difference 

between the models involves objects that Song makes no attempt to calculate but that 

help us have confidence in the application presented here of normalizing the orbital 

distributions.  The normalization of the Boer-Mulders distributions from eq’s. (3.25)-

(3.27) at this scale can then be given as 

 

 

Boer-Mulders functions Song parameters This paper 

u  quark -0.100 -0.160! 0.02 

d  quark -0.125 -0.125! 0.01 

s   quark -0.075 -0.045! 0.004 

Sum of quarks -0.300 -0.330! 0.03 

 

At scales higher that  we expect the evolution of these values  to be given by 

perturbative QCD.  Our goal here has been to use the Chiral quark model and a small set 

of assumptions to generate a consistent set for normalizations for the 

2 2GeV" #
2

$% - odd 

distribution functions at this initial scale.  The normalization of the gluon orbital 

distribution 
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is not set by the model itself but by indirect arguments concerning consistency.  We 

believe that the total package represents a consistent starting point but at this stage it can 

be no more than that.  The dynamical content of the chiral transitions (3.1)-(3.4) can be 
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Chiral Mechanisms Leading to Orbital Quantum Structures in the Nucleon.
Dennis Sivers (Portland Phys. Inst. & Michigan U.) . Apr 2007. 28pp. 
e-Print: arXiv:0704.1791 [hep-ph]

Estimate of < Lq >
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8 leading-twist spin-k┴ dependent distribution 
functions 
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General remarks about orbital angular mo-
mentum
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FF(∆)

GTMD(x,!k⊥, ∆)

GPD(x, ∆)TMD(x,!k⊥)

PDF(x)TMSD(!k⊥)

TMFF

Charge

∆ = 0
∫
dx

∫
d2k⊥

(!k⊥, ∆)

Figure 1. Representation of the projections of the GTMDs into parton distributions and form factors.

The arrows correspond to different reductions in the hadron and quark momentum space: the solid (red)

arrows give the forward limit in the hadron momentum, the dotted (black) arrows correspond to integrating

over the quark transverse-momentum and the dashed (blue) arrows project out the longitudinal momentum

of quarks. The different objects resulting from these links are explained in the text.

quark (3Q) contribution to nucleon GTMDs, postponing to future works the inclusion of

higher-Fock space components. In this way, we can express the GTMDs in a compact

formula as overlap of LCWFs describing the quark content of the nucleon in the most

general momentum and polarization states. Then, using the projections illustrated in

figure 1, we can discuss the complementary aspects encoded in the different distributions

and form factors.

The plan of the paper is as follows. In section 2, we discuss the formal derivation of

the LCWF overlap representation of the quark contribution to GTMDs, specializing the

results to two light-cone quark models, namely the chiral quark-soliton model (χQSM) and

the light-cone constituent quark model (LCCQM). In section 3, we focus the discussion on

the TMDs, GPDs, PDFs, FFs and charges. In particular, we derive the general formulas

obtained from the projections of GTMDs, and then we discuss and compare the predictions

from both the χQSM and the LCCQM. In the last section, we draw our conclusions.

Technical details and explanations about the derivation of the formulas are collected in

three appendices.

2 Formalism

2.1 Parton Correlation Functions

The maximum amount of information on the quark distributions inside the nucleon is

contained in the fully-unintegrated quark-quark correlator W̃ for a spin-1/2 hadron [2–5],

– 3 –

Wigner distributions
(x,�k⊥,�b⊥)

Transverse charge
densities (�b⊥)

Impact-parameter
distributions (x,�b⊥)

C. Lorcé, B. Pasquini, M. Vanderhaeghen, JHEP 1105 (11)

See talk by C. Lorcé

Tuesday, 30 August 2011
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Light-Front Wavefunctions

General remarks about orbital angular mo-
mentum
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General remarks about orbital angular mo-
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Fixed τ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

ψ(σ, b⊥)

β = dαs(Q2)
d lnQ2 < 0

u

Invariant under boosts!  Independent of Pμ 
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Light-Front Wavefunctions:  rigorous representation of 
composite systems in quantum field theory

x =
k+

P+
=

k0 + k3

P 0 + P 3
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 Hoyer 

Paul Hoyer Losjin 2 September 2011

6

A hadron state of momentum P+ = P0 + P3 can at fixed x+ = x0 + x3

be expanded in terms its quark and gluon Fock states as

The LF wave functions !n(xi, ki,"i) are independent of  P+, P# . 

Hadrons can be (trivially) boosted.

This removes objection II: Boosting hadron wave functions.

|P+,P⊥,λ�x+=0 =
�

n,λi
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�� 1

0

dxi√
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�
d2ki

16π3
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xi) δ(2)(
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i

ki)

×ψn(xi,ki,λi) |n; xiP
+, xiP⊥ + ki,λi�x+=0

Boosting to the Infinite Momentum Frame (II)

P+ = P0 + Pz

Fixed τ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

ψ(σ, b⊥)

β = dαs(Q2)
d lnQ2 < 0

u
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HQCD
LF |ψ >=M2|ψ >

Dirac’s Front Form: Fixed τ = t+ z/c

Light-Front Wavefunctions

xi =
k+
i

P+

0 < xi < 1

n�

i=1
xi = 1Remarkable new insights from AdS/CFT,              

the duality between conformal field theory       
and Anti-de Sitter Space 

Invariant under boosts.   Independent of Pμ
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Direct connection to QCD Lagrangian!

General remarks about orbital angular mo-
mentum

Ψn(xi,�k⊥i, λi)

�n
i=1(xi

�R⊥+�b⊥i) = �R⊥

xi
�R⊥+�b⊥i

�n
i
�b⊥i = �0⊥

�n
i xi = 1



Light-Front Holography and 
Proton  Transversity  Stan Brodsky,  SLACTransversity 2011  

Braun, Gardi

Lepage, sjb
Efremov, Radyushkin

Sachrajda, Frishman Lepage, sjb

φM (x,Q) =
� Q

d2�k ψqq̄(x,�k⊥)
P+ = P0 + Pz

Fixed τ = t + z/c

xi = k+

P+ = k0+k3
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β = dαs(Q2)
d lnQ2 < 0

u
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Lepage, sjb

Hadron Distribution Amplitudes

• Fundamental gauge invariant non-perturbative input to hard 
exclusive processes, heavy hadron decays. Defined for 
Mesons, Baryons

• Evolution Equations from PQCD, OPE

• Conformal Invariance

• Compute from valence light-front wavefunction in light-
cone gauge

36



 
 Stan Brodsky,  SLACTransversity 2011  Light-Front Holography and 

Proton  Transversity

!"#$%&%'(")'*+,%-.%/$"/&"01(,/$ 2.,3+.3,'

41,./$ 5/5'$.35

(%*.,%63.%/$*

781*.%+"&/,5"&1+./,*

9'18":/5-./$

*+1..',%$;"1."<%;<"."

)''-8=">%,.318"?'*/$"

-,/(3+.%/$

)''-8=">%,.318"

:/5-./$"2+1..',%$;

!"#$

Light Front Wavefunctions

37

General remarks about orbital angular mo-
mentum
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PDF’s in terms of LF wave functions

×δ(x− xk)|ψn(xi,ki,λi)|2

Note: 1. Parton distributions factorize at leading twist (Q2 ! ").

The probability interpretation of PDF’s is 
expressed in terms of LF wave functions:

2. The above expression is approximate, since rescattering of  
    the struck parton (the Wilson line) is neglected.
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Abstract 

We develop simple analytic representations of the polarized quark and gluon distributions in 
the nucleon at low Q2 which incorporate general constraints obtained from the requirements of 
color coherence of gluon couplings at x ~ 0 and the helicity retention properties of perturbative 
QCD couplings at x ~ 1. The unpolarized predictions are similar to the D~ distributions given by 
Martin, Roberts, and Stirling. The predictions for the quark helicity distributions are compared 
with polarized structure functions measured by the E142 experiment at SLAC and the SMC 
experiment at CERN. 

I. Introduction 

Measurements of polarization correlations in high momentum transfer reactions can 
provide highly sensitive tests of the underlying structure and dynamics of hadrons. The 
most direct information on the light-cone momentum distributions of helicity-aligned 
and helicity-anti-aligned quarks in nucleons is obtained from deep inelastic scattering of 
polarized leptons on polarized targets. Recent fixed-target measurements, including the 
CERN SMC muon-deuteron experiment [1], the electron-He 3 and electron-proton 
experiments E142 and E143 at SLAC [2], and the SMC muon-proton experiment [3] are 
now providing important new constraints on the proton and neutron helicity-dependent 
structure functions. 

Work supported in part by the Department of Energy, contracts DE-AC03-76SF00515 and DE-AC02- 
76ER03069, and by the Fondo Nacional de Investigaci6n Cientifica y Teenol6gica, Chile, contract 1931120. 
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0550-3213/95/$09.50 © 1995 Elsevier Science B.V. All rights reserved 
SSDI 0550-3213(95)00009-7  
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minimally connected tree graphs. For example, in the case of the nucleon structure 
functions, the dominant amplitude is derived from graphs where the three valence quarks 
exchange two hard gluons. The tree amplitude is then convoluted with the nucleon 
distribution amplitude qb(x i, k 2) which is obtained by integrating the valence three-quark 
nucleon wavefunction ~t3(Xi, k± i, Ai), over transverse momenta up to the scale k 2 [7]. 
The dk± d~b azimuthal loop integrations project out only the L z = 0 component of the 
three-quark nucleon wavefunction. Thus, in amplitudes controlled by the short distance 
structure of the hadron's valence wavefunction, orbital angular momentum can be 
ignored, and the valence quark helicities sum to the hadron helicity. 

The limiting power-law behavior at x ~ 1 of the helicity-dependent distributions 
derived from the minimally connected graphs is 

Gq/n ~ ( 1 - x )  p, 

where 

p =  2 n -  1 + 2AS,. 

Here n is the minimal number of spectator quark lines, and ASz = IS q - S~ I = 0 or 1 
for parallel or anti-parallel quark and proton helicities, respectively [5]. This counting 
rule reflects the fact that the valence Fock states with the minimum number of 
constituents give the leading contribution to structure functions when one quark carries 
nearly all of the light-cone momentum; just on phase-space grounds alone, Fock states 
with a higher number of partons must give structure functions which fall off faster at 
x ~ 1. The helicity dependence of the counting rule also reflects the helicity retention 
properties of the gauge couplings: a quark with a large momentum fraction of the hadron 
also tends to carry its helicity. The anti-parallel helicity quark is suppressed by a relative 
factor (1 - x) 2. Similarly, in the case of a splitting function such as q ~ qg or g ~ ~lq, 
the sign of the helicity of the parent patton is transferred to the constituent with the 
largest momentum fraction [8]. The counting rule for valence quarks can be combined 
with the splitting functions to predict the x ~ 1 behavior of gluon and non-valence 
quark distributions. In particular, the gluon distribution of non-exotic hadrons must fall 
by at least one power faster than the respective quark distributions. 

The counting rules for the end-point behavior of quark and gluon helicity distribu- 
tions can also be derived from duality, i.e., continuity between the physics of exclusive 
and inclusive channels at fixed invariant mass [9]. As shown by Drell and Yan [10], a 
quark structure function Gq/H ~ (1 - x) 2n- 1 at x -~ 1 if the corresponding form factor 
F(Q 2) ,-, (1 /Q2)  n at large Q2. Recent measurements of elastic electron-proton scatter- 
ing at SLAC [11] are compatible with the perturbative QCD predictions [12] for both the 
helicity-conserving FI(Q 2) and helicity-changing Fz(Q 2) form factors: Q4FI(Q2) and 
Q6F2(Q2) become approximately constant at large Qz. The power-law fall-off of the 
form factors corresponds to the helicity-parallel and helicity-anti-parallel quark distribu- 
tions behaving at x ~ 1 as (1 - x) 3 and (1 - x) s, respectively, in agreement with the 
counting rules. The leading exponent for quark distributions is odd in the case of 
baryons and even for mesons in agreement with the Gribov-Lipatov crossing rule [13]. 

S.J. Brodsky et al. / Nuclear Physics B441 (1995) 197-214 209 

~ xO(X)MRS 
21 ~\ Ag(x) 

0 0.5 1.0 
X 

Fig. 2. Predictions for the non-perturbative polarized AG(x)=  G+(x)  - G - ( x )  and unpolarized gluon 
xG(x ) = x[ G + ( x )+  G-  (x)] distributions in the proton. The polynomial forms satisfy sum rule and dynamical 
constraints. The leading Regge behavior at x ---> 0 has the intercept Otg = 1.12. Comparison with the MRS D~ 
parameterization for the unpolarized gluon distributions [27] is also shown. 

Because of the probabilistic interpretation of parton distribution functions, s+(x) and 
s - (x )  must both be non-negative functions of  x, which implies the rather stringent 
bounds 

0.7067 < C s < 1.2013. 

Within these bounds, gl(x) is practically independent of Cs; to be definite, we chose 
Cs = 1. (We could have taken any other value consistent with the inequalities 4.) We 
compare our simple parameterization to the MRS D~ parameterization in Fig. lc. The 
MRS distribution which gives an approximate realization of the data rises faster at low x 
than our model. This could be attributed to the need to impose a higher Pomeron 
intercept, or the the effects of  QCD evolution. 

We can also find parameterizations for the polarized gluon distributions which are 
consistent with the x ---> 0 and x ~ 1 helicity constraints, as well as the MRS unpolar- 
ized gluon distribution: 

1 
G + ( x ) = - - [ a g ( 1 - x )  4 + Bg(1 - x)5] ,  (3 .17)  XOtg 

1 
G - ( x )  = - - [ A g ( 1  - x )  6 + B g ( 1  - x ) 7 ] .  (3 .18)  

Xag 

This form automatically incorporates the coherence constraint, Eq. (2.4). We shall 
assume that ag = c~ = 1.12 so that the pomeron intercept is identical for quark and gluon 
distributions. The parameters set Ag = 2 and Bg = - 1 . 2 5  gives an unpolarized gluon 
distribution G(x)= G+(x)+ G-(x)  similar to the phenomenological D~ gluon distri- 
bution given by MRS (see Fig. 2). The momentum carried by the gluons in the nucleon 
using the above simple form is (Xg)  = 0.42. (The gluon and light quark and anti-quark 
distributions then almost saturate the momentum sum rule.) The gluon helicity content 

4 For an alternative parameterization of the strange quark distributions, see Ref. [35]. 
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Nucleon Form Factors

• Light Front Holographic Approach [Brodsky and GdT]

• EM hadronic matrix element in AdS space from non-local coupling of external EM field in AdS with

fermionic mode ΨP (x, z)
�

d4x dz
√

g eϕ(z) ΨP (x, z) eM
A ΓAAM (x, z)ΨP (x, z)

∼ (2π)4δ4
�
P �− P

�
�µ�ψ(P �), σ�|Jµ|ψ(P ), σ�

• Effective AdS/QCD model: additional term in the 5-dim action

[Abidin and Carlson, Phys. Rev. D79, 115003 (2009)]

η

�
d4x dz

√
g eϕ(z) Ψ eM

A eN
B

�
ΓA,ΓB

�
FMNΨ

Couplings η determined by static quantities

• Generalized Parton Distributions in gauge/gravity duals

[Vega, Schmidt, Gutsche and Lyubovitskij, Phys.Rev. D83 (2011) 036001]

[Nishio and Watari, arXiv:1105.290]
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N-1N+1

N N

NN

Light-Front Wave Function Overlap Representation

See also: Diehl, Feldmann, Jakob, Kroll
DGLAP
region

DGLAP
region

ERBL
region

Diehl, Hwang, sjb,  NPB596, 2001
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DVCS/GPD

 Bakker & JI
Lorce
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encode all of the bound state quark and gluon properties of hadrons, including their

momentum, spin and flavor correlations, in the form of universal process- and frame-

independent amplitudes.

The deeply virtual Compton amplitude can be evaluated explicitly by starting from the

Fock state representation for both the incoming and outgoing proton, using the boost

properties of the light-cone wavefunctions, and evaluating the matrix elements of the

currents for a quark target. One can also directly evaluate the non-local current matrix

elements (16) in the same framework. In the following we will concentrate on the

generalized Compton form factors H and E. Formulae analogous to our results can be

obtained for H̃ and Ẽ.

For the n → n diagonal term (∆n = 0), the relevant current matrix element at quark

level is
∫
dy−

8π
eixP+y−/2

〈
1;x ′

1P
′+, $p′

⊥1,λ
′
1

∣∣ψ̄(0)γ +ψ(y)
∣∣1;x1P

+, $p⊥1,λ1
〉∣∣

y+=0,y⊥=0

=
√

x1x
′
1

√
1− ζδ(x − x1)δλ′

1λ1
, (38)

where for definiteness we have labeled the struck quark with the index i = 1. We thus

obtain formulae for the diagonal (parton-number-conserving) contributions to H and E in

the domain ζ ! x ! 1 [17]:
√
1− ζ

1− ζ
2

H(n→n)(x, ζ, t) − ζ 2

4
(
1− ζ

2

)√
1− ζ

E(n→n)(x, ζ, t)

=
(√
1− ζ

)2−n
∑

n,λi

∫ n∏

i=1

dxi d
2$k⊥i

16π3
16π3δ

(

1−
n∑

j=1
xj

)

δ(2)

(
n∑

j=1
$k⊥j

)

× δ(x − x1)ψ
↑∗
(n)

(
x ′
i ,

$k′
⊥i ,λi

)
ψ

↑
(n)

(
xi, $k⊥i ,λi

)
, (39)

1√
1− ζ

∆1 − i∆2

2M
E(n→n)(x, ζ, t)

= (√
1− ζ

)2−n
∑

n,λi

∫ n∏

i=1

dxi d
2$k⊥i

16π3
16π3δ

(

1−
n∑

j=1
xj

)

δ(2)

(
n∑

j=1
$k⊥j

)

× δ(x − x1)ψ
↑∗
(n)

(
x ′
i ,

$k′
⊥i ,λi

)
ψ

↓
(n)

(
xi, $k⊥i ,λi

)
, (40)

where the arguments of the final-state wavefunction are given by

x ′
1 = x1 − ζ

1− ζ
, $k′

⊥1 = $k⊥1 − 1− x1

1− ζ
$∆⊥ for the struck quark,

x ′
i = xi

1− ζ
, $k′

⊥i = $k⊥i + xi

1− ζ
$∆⊥ for the spectators i = 2, . . . , n.

(41)

One easily checks that
∑n

i=1 x ′
i = 1 and

∑n
i=1 $k′

⊥i = $0⊥. In Eqs. (39) and (40) one has to
sum over all possible combinations of helicities λi and over all parton numbers n in the

Fock states. We also imply a sum over all possible ways of numbering the partons in the

n-particle Fock state so that the struck quark has the index i = 1.
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Example of LFWF representation of 
GPDs  (n => n)

Diehl, Hwang, sjb
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Quark angular momentum (Ji’s sum rule)

X. Ji, Phy.Rev.Lett.78,610(1997)  
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Verified using LFWFs

Diehl, Hwang, sjb
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Features of DVCS

• Imaginary part constrained by unitarity: DIS!

• Reggeon Exchange determined by small x DIS

• Phase from C=+ Reggeon Signature Factor

• J=0 Fixed Pole

• Interference with Bethe-Heitler

Close, Gunion, sjb (1972, 1973)
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Origin of Regge Behavior of        
Deep Inelastic Structure Functions

46

Antiquark interacts with target nucleus at
energy ŝ ∝ 1

xbj

Regge contribution: σq̄N ∼ ŝαR−1

Shadowing of σq̄M produces shadowing of
nuclear structure function.

c

c̄

g

Antiquark interacts with target nucleus at
energy ŝ ∝ 1

xbj

Regge contribution: σq̄N ∼ ŝαR−1

Shadowing of σq̄M produces shadowing of
nuclear structure function.

c

c̄

g

Antiquark interacts with target nucleus at
energy ŝ ∝ 1

xbj

Regge contribution: σq̄N ∼ ŝαR−1

Shadowing of σq̄M produces shadowing of
nuclear structure function.

c

c̄

g

Antiquark interacts with target nucleus at
energy ŝ ∝ 1

xbj

Regge contribution: σq̄N ∼ ŝαR−1 gives F2N ∼
x1−αR

Nonsinglet Kuti-Weisskoff F2p − F2n ∝
√

xbj
at small xbj.

Shadowing of σq̄M produces shadowing of
nuclear structure function.

c

Landshoff, 
Polkinghorne, Short

Close, Gunion, sjb

Schmidt, Yang,  Lu, 
sjb

F2p(x)− F2n(x) ∝ x1/2
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Non-singlet 
Reggeon 
Exchange

x0.5

Kuti-Weisskopf 
behavior

47



 

Hard Reggeon 
Domain

Deeply Virtual Compton Scattering

p

γ∗

βR(t) ∼ 1
t2

Reflects elementary coupling of two photons to quarks

s >> −t, Q2 >> Λ2
QCD

γ∗p→ γp

p

αR(t)→ 0

T (γ∗(q)p→ γ(k) + p) ∼ � · ��
�

R

sα
R(t)βR(t)

dσ
dt ∼

1
s2

1
t4 ∼

1
s6 at fixed Q2

s , t
s48



Light-Front Holography and 
Proton  Transversity  Stan Brodsky,  SLACTransversity 2011  

J=0 Fixed Pole  Contribution to DVCS

p

γ∗ γ

p�

γ∗ γ

p�
p

• J=0 fixed pole -- direct test of QCD locality -- from seagull or instantaneous 
contribution to Feynman propagator

Szczepaniak, Llanes-Estrada, sjb

Real amplitude, independent of Q2 at fixed t

Close, Gunion, sjb

49
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J=0 Fixed pole in real and virtual Compton scattering

Damashek, Gilman;
Close, Gunion, sjb

Llanes-Estrada, 
Szczepaniak, sjb

• Effective two-photon contact term 

•  Seagull for scalar quarks

• Real phase

• Independent of Q2 at fixed t

• <1/x> Moment: Related to Feynman-Hellman Theorem

• Fundamental test of local gauge theory

s2 dσ

dt
(γ∗p→ γp) = F 2(t)

Q2-independent contribution to Real DVCS amplitude

γ

p p

γ∗(q)

M = s0
�

e2
qFq(t)

No ambiguity in D-term

50



 

αR(t)

t

0.5
1.0

-1

T (γ∗p→ π+n) ∼ � · pi

�

R

sα
R(t)βR(t)

βR(t) ∼ 1
t2

Fundamental test of QCD

Regge domain  

s >> −t, Q2

-0.5

αR(t)→ 0 at t→ −∞

αR(t)→ 0 at t→ −∞

Reflects elementary coupling 
of two photons to quarks

dσ
dt (γ∗p→ γp)→ 1

s2 β2
R(t) ∼ 1

s2t4 ∼
1
s6 at fixed t

s , Q2

s

J=0 fixed pole
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Exclusive Electroproduction

ep→ e�π+n

p

γ∗
π

n

αR(t)→ −1

T (γ∗p→ π+n) ∼ � · pi

�

R

sα
R(t)βR(t)

βR(t) ∼ 1
t2

Hard Reggeon 
Domain

Reflects elementary exchange of quarks in t-channel

dσ
dt ∼

1
s7 at fixed Q2

s , t
s

s >> −t, Q2 >> Λ2
QCD
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αR(t)

t

0.5
1.0

-1
αR(t)→ −1 dσ

dt
(γ∗p→ π+n)→ 1

s3
β2

R(t)

T (γ∗p→ π+n) ∼ � · pi

�

R

sα
R(t)βR(t)

βR(t) ∼ 1
t2

Fundamental test of QCD

Reflects elementary exchange
 of quarks in t-channel

Regge domain  

s >> −t, Q2

αR(t)→ −1 at t→ −∞

Gunion, Blankenbecler, Savit, sjb

dσ
dt ∼

1
s3

1
t4 ∼

1
s7 at fixed Q2

s , t
s
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Each element of 
flash photograph  

illuminated  
at same LF time

τ = t + z/c

Eigenstate -- independent of τ

Evolve in LF time

P− = i
d

dτ
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General remarks about orbital angular mo-
mentum

�R⊥

xi
�R⊥+�b⊥i

�n
i
�b⊥i = �0⊥

�n
i xi = 1

�n
i=1(xi

�P⊥+ �k⊥i) = �P⊥

xi
�P⊥+ �k⊥i

�n
i

�k⊥i = �0⊥

�n
i xi = 1

General remarks about orbital angular mo-
mentum

Ψn(xi,�k⊥i, λi)

�n
i=1(xi

�R⊥+�b⊥i) = �R⊥

xi
�R⊥+�b⊥i

�n
i
�b⊥i = �0⊥

�n
i xi = 1

P+, �P+

xiP
+, xi

�P⊥+ �k⊥i

ẑ

�L = �R× �P

�Li = (xi
�R⊥+�b⊥i)× �P

��i = �b⊥i × �k⊥i

��i = �Li − xi
�R⊥ × �P = �b⊥i × �P

A(σ,∆⊥) = 1
2π

�
dζe

i
2σζM(ζ,∆⊥)

P+, �P⊥

xiP
+, xi

�P⊥+ �k⊥i

ζ = Q2

2p·q

ẑ

�L = �R× �P

�Li = (xi
�R⊥+�b⊥i)× �P

P+ = P0 + Pz

Fixed τ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

ψ(σ, b⊥)

β = dαs(Q2)
d lnQ2 < 0

u

Invariant under boosts!  Independent of Pμ 
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Light-Front Wavefunctions:  rigorous representation of 
composite systems in quantum field theory

x =
k+

P+
=

k0 + k3

P 0 + P 3
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Dirac’s Amazing  Idea: 
The Front Form

Fig. 1. Dirac’s three forms of Hamiltonian dynamics.

2.4. Forms of Hamiltonian dynamics

Obviously, one has many possibilities to parametrize space—time by introducing some general-
ized coordinates xJ (x). But one should exclude all those which are accessible by a Lorentz
transformation. Those are included anyway in a covariant formalism. This limits considerably the
freedom and excludes, for example, almost all rotation angles. Following Dirac [123] there are no
more than three basically different parametrizations. They are illustrated in Fig. 1, and cannot be
mapped on each other by a Lorentz transform. They differ by the hypersphere on which the fields
are initialized, and correspondingly one has different “times”. Each of these space—time parametriz-
ations has thus its own Hamiltonian, and correspondingly Dirac [123] speaks of the three forms of
Hamiltonian dynamics: The instant form is the familiar one, with its hypersphere given by t"0. In
the front form the hypersphere is a tangent plane to the light cone. In the point form the time-like
coordinate is identified with the eigentime of a physical system and the hypersphere has a shape of
a hyperboloid.

Which of the three forms should be prefered? The question is difficult to answer, in fact it is
ill-posed. In principle, all three forms should yield the same physical results, since physics should
not depend on how one parametrizes the space (and the time). If it depends on it, one has made
a mistake. But usually one adjusts parametrization to the nature of the physical problem to
simplify the amount of practical work. Since one knows so little on the typical solutions of a field
theory, it might well be worth the effort to admit also other than the conventional “instant” form.

The bulk of research on field theory implicitly uses the instant form, which we do not even
attempt to summarize. Although it is the conventional choice for quantizing field theory, it has

S.J. Brodsky et al. / Physics Reports 301 (1998) 299—486 315

Instant Form Front Form 

z0 = 1
ΛQCD

z∆

∆ = 3 + L: conformal dimension of meson

P+ = P0 + Pz

Fixed τ = t + z/c

σ = ct− z

z0 = 1
ΛQCD

z∆

∆ = 3 + L: conformal dimension of meson

P+ = P0 + Pz

Fixed τ = t + z/c

σ = ct− z

Evolve in 
light-front time!

Evolve in 
ordinary time

P.A.M Dirac, Rev. Mod. Phys. 21, 392 (1949)
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"Working with a "ont is a process that is unfamiliar to physicists. 

But sti# I feel that the mathematical simplification that it introduces is a#-
important. 

I consider the method to be promising and have recently been making an extensive 
study of it. 

It offers new opportunities, while the familiar instant form seems to be played out " - 
P.A.M. Dirac (1977) 



 

|p,Sz>= ∑
n=3

ψn(xi, �k⊥i,λi)|n;k⊥i,λi>|p,Sz>= ∑
n=3

Ψn(xi,�k⊥i,λi)|n;�k⊥i,λi>

|p,Sz>= ∑
n=3

Ψn(xi,�k⊥i,λi)|n;�k⊥i,λi>

The Light Front Fock State Wavefunctions

Ψn(xi,�k⊥i,λi)

are boost invariant; they are independent of the hadron’s energy
and momentum Pµ.
The light-cone momentum fraction

xi =
k+
i
p+ =

k0i + kzi
P0+Pz

are boost invariant.
n

∑
i
k+
i = P+,

n

∑
i
xi = 1,

n

∑
i

�k⊥i =�0⊥.

sum over states with n=3, 4, ...constituents

Fixed LF time
Intrinsic heavy quarks    s̄(x) �= s(x)

φM(x, Q0) ∝
�

x(1− x)

ψM(x, k2
⊥)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

ep→ eπ+n

Pπ/p � 30%

Violation of Gottfried sum rule

ū(x) �= d̄(x)

Does not produce (C = −) J/ψ,Υ

Produces (C = −) J/ψ,Υ

Same IC mechanism explains A2/3

c(x), b(x) at high x !
Hidden Color!Mueller:  gluon Fock states                   BFKL Pomeron58
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Heisenberg Matrix 
FormulationLight-Front QCD

Eigenvalues and Eigensolutions give Hadron 
Spectrum and Light-Front wavefunctions!

H
QCD
LF |Ψh >= M2

h|Ψh >

H
QCD
LF =

�

i

[
m

2 + k
2
⊥

x
]i + H

int
LF

Fig. 6. A few selected matrix elements of the QCD front form Hamiltonian H"P
!

in LB-convention.

10. For the instantaneous fermion lines use the factor ¼
"

in Fig. 5 or Fig. 6, or the corresponding
tables in Section 4. For the instantaneous boson lines use the factor ¼

#
.

The light-cone Fock state representation can thus be used advantageously in perturbation
theory. The sum over intermediate Fock states is equivalent to summing all x!-ordered diagrams
and integrating over the transverse momentum and light-cone fractions x. Because of the restric-
tion to positive x, diagrams corresponding to vacuum fluctuations or those containing backward-
moving lines are eliminated.

3.4. Example 1: ¹he qqN -scattering amplitude

The simplest application of the above rules is the calculation of the electron—muon scattering
amplitude to lowest non-trivial order. But the quark—antiquark scattering is only marginally more
difficult. We thus imagine an initial (q, qN )-pair with different flavors fOfM to be scattered off each
other by exchanging a gluon.

Let us treat this problem as a pedagogical example to demonstrate the rules. Rule 1: There are
two time-ordered diagrams associated with this process. In the first one the gluon is emitted by the
quark and absorbed by the antiquark, and in the second it is emitted by the antiquark and
absorbed by the quark. For the first diagram, we assign the momenta required in rule 2 by giving
explicitly the initial and final Fock states

!q, qN "" 1

!n
$

%$

!
$!"

b!
$"

(k
&
, #

&
)d!

$"M
(k

&N
, #

&N
)!0" , (3.29)

!q$, qN $"" 1

!n
$

%$
!
$!"

b!
$"

(k$
&
, #$

&
)d!

$"M
(k$

&N
, #$

&N
)!0" , (3.30)

338 S.J. Brodsky et al. / Physics Reports 301 (1998) 299—486

L
QCD → H

QCD
LF

H
int
LF : Matrix in Fock Space

Physical gauge: A+ = 0
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number of coupled integral eigenvalue equations, 

- - 

where V is the interaction part of HLC. Diagrammatically, V involves completely 

irreducible interactions--i.e. diagrams having no internal propagators-coupling 

Fock states (Fig. 5). These equations determine the hadronic spectrum and 

xJ= 
: 3 II 

- - 
0 
. . . 

. 

I- . 
1 II 

0 l . . f 

- - IL 7 - - . . . . . . 
Figure 5. Coupled eigenvalue equations for the light-cone wa.vefunctious of a 

pion. 

wave functions. Although the potential is essentially trivial, the many channels 

required to describe an hadronic state make these equations very difficult to solve. 

Nevertheless the first attempts at a direct solution have been made. 

The bulk of the probability for a nonrelativistic system is in a single Fock 

state-e.g. (eE> for positronium, or Ibb) for the r meson. For such systems it 

is useful to replace the full set of multi-channel eigenvalue equations by a single 

equation for the dominant wavefunction. To see how this can be done, note that 

the bound state equation, say for positronium, can be rewritten as two equations 

using the projection operator P onto the subspace spanned by eE states, and its 

complement & E 1 - P: 

Hpp IPs)~ + HPQ IPs)~ = h4” IPs)p 

(29) 

H&p [Ps)~ + HQQ jP& = hf” h)g 

where H~Q E PHQ.. ., and lPsjp E P jPs) . . . . Solving the second of these 

equations for IPs)~ and substituting the result into the first equation, we obtain 

a single equation for the ee or valence part of the positronium state: 

Her [Ps)~ = Al2 IPS)P (30) 
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LIGHT-FRONT SCHRODINGER EQUATION

G.P. Lepage, sjb
A+ = 0

Υ→ ggg → d̄X

Υ→ ggg → p̄n̄X

R = Γ(Υ→d̄X)
Γ(Υ→p̄n̄X)

R = C

ū(x) �= d̄(x)

s̄(x) �= s(x)
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In terms of the hadron four-momentum P =

(P
+

, P
−

, �P⊥) with P
±

= P
0 ± P

3
, the light-

front frame independent Hamiltonian for a

hadronic composite system H
QCD

LC
= PµP

µ
=

P
−

P
+− �P

2

⊥, has eigenvalues given in terms of

the eigenmass M squared corresponding to

the mass spectrum of the color-singlet states

in QCD,

H
QCD

LC
|Ψh� =M2

h
|Ψh�

Fig. 6. A few selected matrix elements of the QCD front form Hamiltonian H"P
!

in LB-convention.

10. For the instantaneous fermion lines use the factor ¼
"

in Fig. 5 or Fig. 6, or the corresponding
tables in Section 4. For the instantaneous boson lines use the factor ¼

#
.

The light-cone Fock state representation can thus be used advantageously in perturbation
theory. The sum over intermediate Fock states is equivalent to summing all x!-ordered diagrams
and integrating over the transverse momentum and light-cone fractions x. Because of the restric-
tion to positive x, diagrams corresponding to vacuum fluctuations or those containing backward-
moving lines are eliminated.

3.4. Example 1: ¹he qqN -scattering amplitude

The simplest application of the above rules is the calculation of the electron—muon scattering
amplitude to lowest non-trivial order. But the quark—antiquark scattering is only marginally more
difficult. We thus imagine an initial (q, qN )-pair with different flavors fOfM to be scattered off each
other by exchanging a gluon.

Let us treat this problem as a pedagogical example to demonstrate the rules. Rule 1: There are
two time-ordered diagrams associated with this process. In the first one the gluon is emitted by the
quark and absorbed by the antiquark, and in the second it is emitted by the antiquark and
absorbed by the quark. For the first diagram, we assign the momenta required in rule 2 by giving
explicitly the initial and final Fock states

!q, qN "" 1

!n
$

%$

!
$!"

b!
$"

(k
&
, #

&
)d!

$"M
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&N
, #

&N
)!0" , (3.29)
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b!
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(k$
&
, #$

&
)d!

$"M
(k$

&N
, #$

&N
)!0" , (3.30)
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Fig. 2. The Hamiltonian matrix for a SU(N)-meson. The matrix elements are represented by energy diagrams. Within
each block they are all of the same type: either vertex, fork or seagull diagrams. Zero matrices are denoted by a dot ( ) ).
The single gluon is absent since it cannot be color neutral.

mass or momentum scale Q. The corresponding wavefunction will be indicated by corresponding
upper scripts,

!!""
!#"

(x
#
, k

!
, !

#
) or !!$"

!#"
(x

#
, k

!
, !

#
) . (3.15)

Consider a pion in QCD with momentum P"(P%, P
!
) as an example. It is described by

"# : P$" $
!
!%&
!d[%

!
]"n : x

#
P%, k

!#
#x

#
P
!
, !

#
$!

!#!(x#
, k

!#
, !

#
) , (3.16)

where the sum is over all Fock space sectors of Eq. (3.7). The ability to specify wavefunctions
simultaneously in any frame is a special feature of light-cone quantization. The light-cone
wavefunctions !

!#! do not depend on the total momentum, since x
#
is the longitudinal momentum

fraction carried by the i"# parton and k
!#

is its momentum “transverse” to the direction of the
meson; both of these are frame-independent quantities. They are the probability amplitudes to find
a Fock state of bare particles in the physical pion.

More generally, consider a meson in SU(N). The kernel of the integral equation (3.14) is
illustrated in Fig. 2 in terms of the block matrix &n : x

#
, k

!#
, !

#
"H"n' : x'

#
, k'

!#
, !'

#
$. The structure of this

matrix depends of course on the way one has arranged the Fock space, see Eq. (3.7). Note that most
of the block matrix elements vanish due to the nature of the light-cone interaction as defined in
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Heisenberg Equation

Light-Front QCD
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HQCD
LF |ψ >=M2|ψ >

Dirac’s Front Form: Fixed τ = t+ z/c

Light-Front Wavefunctions

xi =
k+
i

P+

0 < xi < 1

n�

i=1
xi = 1Remarkable new insights from AdS/CFT,              

the duality between conformal field theory       
and Anti-de Sitter Space 

Invariant under boosts.   Independent of Pμ

62

Direct connection to QCD Lagrangian

General remarks about orbital angular mo-
mentum

Ψn(xi,�k⊥i, λi)

�n
i=1(xi

�R⊥+�b⊥i) = �R⊥

xi
�R⊥+�b⊥i

�n
i
�b⊥i = �0⊥

�n
i xi = 1
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Sivers



 

QCD and the LF Hadron Wavefunctions

DVCS, GPDs. TMDs

Baryon Decay

Distribution amplitude
ERBL Evolution

Heavy Quark Fock States
Intrinsic Charm

Gluonic properties
DGLAP

Quark & Flavor Struct

Coordinate space 
representation

Quark & Flavor Structure

Baryon Excitations

General remarks about orbital angular mo-
mentum

Ψn(xi,�k⊥i, λi)

�n
i=1(xi

�R⊥+�b⊥i) = �R⊥

xi
�R⊥+�b⊥i

�n
i
�b⊥i = �0⊥

�n
i xi = 1

Initial and Final State 
Rescattering

DDIS, DDIS, T-Odd

Non-Universal Antishadowing

Nuclear Modifications
Baryon Anomaly

Color Transparency

Hard Exclusive Amplitudes
Form Factors

Counting Rules

φp(x1, x2, Q
2)

AdS/QCD
Light-Front Holography

LF Schrodinger Eqn.

LF Overlap, incl ERBL

J=0 Fixed Pole

Orbital Angular Momentum
Spin, Chiral Properties

Crewther Relation

Hadronization at 
Amplitude Level
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Burkardt, Schmidt, sjb
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moment vanishes [22]. The light-cone formalism also properly incorporatesWigner boosts.

Thus this model of composite systems can serve as a useful theoretical laboratory to

interrelate hadronic properties and check the consistency of formulae proposed for the

study of hadron substructure.

7. Spin and orbital angular momentum composition of light-cone wavefunctions

In general the light-cone wavefunctions satisfy conservation of the z projection of

angular momentum:

J z =
n∑

i=1
sz
i +

n−1∑

j=1
lzj . (62)

The sum over sz
i represents the contribution of the intrinsic spins of the n Fock state

constituents. The sum over orbital angular momenta lzj = −i
(
k1j

∂
∂k2j

− k2j
∂

∂k1j

)
derives from

the n−1 relative momenta. This excludes the contribution to the orbital angularmomentum
due to the motion of the center of mass, which is not an intrinsic property of the hadron.

We can see how the angular momentum sum rule Eq. (62) is satisfied for the

wavefunctions Eqs. (20) and (23) of the QED model system of two-particle Fock states.

In Table 1 we list the fermion constituent’s light-cone spin projection sz
f = 1

2
λf, the boson

constituent spin projection sz
b = λb, and the relative orbital angular momentum lz for each

contributing configuration of the QED model system wavefunction.

Table 1 is derived by calculating the matrix elements of the light-cone helicity operator

γ +γ 5 [29] and the relative orbital angular momentum operator−i
(
k1 ∂

∂k2
− k2 ∂

∂k1

)
[16,30,

31] in the light-cone representation. Each configuration satisfies the spin sum rule: J z =
sz
f + sz

b + lz.

For a better understanding of Table 1, we look at the non-relativistic and ultra-relativistic

limits. At the non-relativistic limit, the transversal motions of the constituent can be

neglected and we have only the | + 1
2
〉 → | − 1

2
+ 1〉 configuration which is the non-

relativistic quantum state for the spin-half system composed of a fermion and a spin-1

boson constituents. The fermion constituent has spin projection in the opposite direction

to the spin J z of the whole system. However, for ultra-relativistic binding in which the

transversal motions of the constituents are large compared to the fermion masses, the

Table 1

Spin decomposition of the J z = + 1
2
electron

Configuration Fermion spin sz
f

Boson spin sz
b

Orbital ang. mom. lz

∣∣+ 1
2

〉
→

∣∣+ 1
2

+ 1
〉

+ 1
2

+1 −1
∣∣+ 1

2

〉
→

∣∣− 1
2

+ 1
〉

− 1
2

+1 0
∣∣+ 1

2

〉
→

∣∣+ 1
2

− 1
〉

+ 1
2

−1 +1

Conserved by every 
interaction

LF Fock state by Fock State
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n-1 orbital angular momenta

Angular Momentum on the Light-Front

Nonzero Anomalous Moment -->Nonzero orbital angular momentum
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• LF Helicity and chirality refer to z direction, 
not the particle’s 3-momentum p

•  LF spinors are eigenstates of

• Gluon polarization vectors are eigenstates 
with

Special Features of LF Spin

Sz = ±1
2

Sz = ±1

kµ�µ = 0

�µ = (�+, �−,��⊥) = (0, 2
��⊥ · �k⊥

k+
,��⊥)

��±⊥ = ∓ 1√
2
(x̂± iŷ)



 
 Stan Brodsky,  SLACTransversity 2011  Light-Front Holography and 

Proton  Transversity
67

G. P. Lepage and sjb

Melosh not 
needed
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Angular Momentum on the Light-Front

+
1
2

Lz = −1
0

+
1
2

P-Wave Decay
Spin-0 coupling 
to fermion pair

z1,�k⊥1

z2,�k⊥2

z3,�k⊥3

Lz = +1
0

−1
2

−1
2

spinor overlap

Identity

< ij >=< i− |j+ >= −
�

2zizj��
+
⊥ · (

�k⊥i

zi
−

�k⊥j

zj
)

[ij] =< i+|j− >=
�

2zizj��
(−) ·

��k⊥i

zi
−

�k⊥j

zj

�

< ij > [ij] = zizj

��k⊥i

zi
−

�k⊥j

zj

�2 =M2
ij

f

f̄
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Angular Momentum on the Light-Front

+1 +1
+1Lz = −1

z1,�k⊥1
z2,�k⊥2

z3,�k⊥3

1,�0 x, ��⊥

1− x,−��⊥

gz1��
+
⊥ · �v23 = gz1��

+
⊥ · (

�k⊥2

z2
−

�k⊥3

z3
)

gz1��
+
⊥ · �v23 = g��+⊥ ·

��⊥
x(1− x)

< ij >= −
�

2zizj��
+
⊥ · (

�k⊥i

zi
−

�k⊥j

zj
)

Triple-Gluon Coupling



 

-

+
+

+
+

... n-1

Vanishes  Because Maximum  |Lz| = n− 2

M(−1→ −1 + 1 + 1 + 1 · · · + 1) ∝ gn−2 = 0

-
Jz = −1 =

n�

i=1

Sz
i + Lz = (n− 2) + Lz

Lz = −(n− 1)

Light Front Analog of  MHV  rules

G. de Teramond and sjb
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x,�k⊥ x,�k⊥ + �q⊥

ψ(xi,�k
�
⊥i)ψ(xi,�k⊥i)

p

γ∗

�k�⊥i = �k⊥i + (1− xi)�q⊥struck
�k�⊥i = �k⊥i − xi�q⊥spectators

< p + q|j+(0)|p >= 2p+F (q2)

p + q

�q⊥q+ = 0

q2
⊥ = Q2 = −q2

P+ = P0 + Pz

Fixed τ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

ψ(σ, b⊥)

β = dαs(Q2)
d lnQ2 < 0

u

Form Factors are 
Overlaps of LFWFs

Interaction 
picture

Drell &Yan, West
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For leptons, such as the electron or neutrino, it is convenient to employ the electron

mass for M , so that the magnetic moment is given in Bohr magnetons.

Now we turn to the evaluation of the helicity-conserving and helicity-flip vector-

current matrix elements in the light-front formalism. In the interaction picture, the

current Jµ
(0) is represented as a bilinear product of free fields, so that it has an

elementary coupling to the constituent fields [13, 14, 15]. The Dirac form factor can

then be calculated from the expression

F1(q
2
) =

�

a

�
[dx][d

2k⊥]
�

j

ej

�
ψ↑∗

a (xi,k
�
⊥i, λi) ψ↑

a(xi,k⊥i, λi)

�
, (10)

whereas the Pauli and electric dipole form factors are given by

F2(q2
)

2M
=

�

a

�
[dx][d

2k⊥]
�

j

ej
1

2
× (11)

�
− 1

qL
ψ↑∗

a (xi,k
�
⊥i, λi) ψ↓

a(xi,k⊥i, λi) +
1

qR
ψ↓∗

a (xi,k
�
⊥i, λi) ψ↑

a(xi,k⊥i, λi)

�
,

F3(q2
)

2M
=

�

a

�
[dx][d

2k⊥]
�

j

ej
i

2
× (12)

�
− 1

qL
ψ↑∗

a (xi,k
�
⊥i, λi) ψ↓

a(xi,k⊥i, λi)−
1

qR
ψ↓∗

a (xi,k
�
⊥i, λi) ψ↑

a(xi,k⊥i, λi)

�
.

The summations are over all contributing Fock states a and struck constituent charges

ej. Here, as earlier, we refrain from including the constituents’ color and flavor

dependence in the arguments of the light-front wave functions. The phase-space

integration is

�
[dx] [d

2k⊥] ≡
�

λi,ci,fi

�
n�

i=1

�� �
dxi d

2k⊥i

2(2π)3

��

16π3δ

�

1−
n�

i=1

xi

�

δ(2)

�
n�

i=1

k⊥i

�

, (13)

where n denotes the number of constituents in Fock state a and we sum over the

possible {λi}, {ci}, and {fi} in state a. The arguments of the final-state, light-front

wave function differentiate between the struck and spectator constituents; namely, we

have [13, 15]

k�
⊥j = k⊥j + (1− xj)q⊥ (14)

for the struck constituent j and

k�
⊥i = k⊥i − xiq⊥ (15)

for each spectator i, where i �= j. Note that because of the frame choice q+
= 0, only

diagonal (n�
= n) overlaps of the light-front Fock states appear [14].

6

For leptons, such as the electron or neutrino, it is convenient to employ the electron

mass for M , so that the magnetic moment is given in Bohr magnetons.

Now we turn to the evaluation of the helicity-conserving and helicity-flip vector-

current matrix elements in the light-front formalism. In the interaction picture, the

current Jµ
(0) is represented as a bilinear product of free fields, so that it has an

elementary coupling to the constituent fields [13, 14, 15]. The Dirac form factor can

then be calculated from the expression

F1(q
2
) =

�

a

�
[dx][d

2k⊥]
�

j

ej

�
ψ↑∗

a (xi,k
�
⊥i, λi) ψ↑

a(xi,k⊥i, λi)

�
, (10)

whereas the Pauli and electric dipole form factors are given by

F2(q2
)

2M
=

�

a

�
[dx][d

2k⊥]
�

j

ej
1

2
× (11)

�
− 1

qL
ψ↑∗

a (xi,k
�
⊥i, λi) ψ↓

a(xi,k⊥i, λi) +
1

qR
ψ↓∗

a (xi,k
�
⊥i, λi) ψ↑

a(xi,k⊥i, λi)

�
,

F3(q2
)

2M
=

�

a

�
[dx][d

2k⊥]
�

j

ej
i

2
× (12)

�
− 1

qL
ψ↑∗

a (xi,k
�
⊥i, λi) ψ↓

a(xi,k⊥i, λi)−
1

qR
ψ↓∗

a (xi,k
�
⊥i, λi) ψ↑

a(xi,k⊥i, λi)

�
.

The summations are over all contributing Fock states a and struck constituent charges

ej. Here, as earlier, we refrain from including the constituents’ color and flavor

dependence in the arguments of the light-front wave functions. The phase-space

integration is

�
[dx] [d

2k⊥] ≡
�

λi,ci,fi

�
n�

i=1

�� �
dxi d

2k⊥i

2(2π)3

��

16π3δ

�

1−
n�

i=1

xi

�

δ(2)

�
n�

i=1

k⊥i

�

, (13)

where n denotes the number of constituents in Fock state a and we sum over the

possible {λi}, {ci}, and {fi} in state a. The arguments of the final-state, light-front

wave function differentiate between the struck and spectator constituents; namely, we
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Drell, sjb
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-

β = 0
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x
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Nonzero Proton Anomalous Moment -->
Nonzero orbital  quark angular momentum
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Connection between the Sivers function and the anomalous magnetic moment
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The same light-front wave functions of the proton are involved in both the anomalous magnetic moment
of the nucleon and the Sivers function. Using the diquark model, we derive a simple relation between the
anomalous magnetic moment and the Sivers function, which should hold in general with good approxi-
mation. This relation can be used to provide constraints on the Sivers single spin asymmetries from the
data on anomalous magnetic moments. Moreover, the relation can be viewed as a direct connection
between the quark orbital angular momentum and the Sivers function.
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The quark orbital angular momentum [1] (or quark
transverse motion) plays an important role for understand-
ing the spin and quark structure of the nucleon, since as
shown by many studies [2–7], it is the missing block of the
total nucleon spin. Also many interesting phenomena or
observables require the presence of quark orbital motion,
among which the Sivers function [8] has attracted a lot of
interest, since it is an essential piece in our understanding
of the single spin asymmetries (SSA) observed in semi-
inclusive deeply inelastic scattering (SIDIS). These SSAs
have been measured recently by both the HERMES [9,10]
and COMPASS [11,12] Collaborations. Denoted as
f?1T"x;k2

?#, the Sivers function describes the unpolarized
distribution of the quark inside a transversely polarized
nucleon, which comes from a correlation of the nucleon
transverse spin and the quark transverse momentum.
Although this is a T-odd type correlation, it has been found
that final state interaction [13] (FSI) between the struck
quark and the spectator system can produce the necessary
phase for a nonzero Sivers function, and its QCD definition
[14–17] has just been worked out. Besides the single spin
asymmetry, another important feature of the Sivers func-
tion is that it encodes the parton’s orbital angular momen-
tum (Lz) inside the nucleon. This comes from the fact that
the Sivers function requires the nucleon helicity to be
flipped from the initial to the final state, while the quark
helicity remains unchanged. A convenient tool to study this
kind of single spin asymmetry (or the corresponding Sivers
function) is the light-front formalism [18], which can ex-
press the Sivers function as the overlap integration of light-
front wave functions differing by !Lz $ %1 [13,19]. The
same kind of overlap integration [20–22] of light-front
wave functions (with Jz $ %1=2 in the initial and final
states) also appears in the anomalous magnetic moment of
the nucleon, which apparently encodes the quark orbital
angular momentum [21]. Therefore, it is interesting to find
relations between the Sivers function and the anomalous

magnetic moment of the nucleon, which is the main goal of
this work. With such a relation one can constrain the Sivers
function and the related asymmetries from data on nucleon
anomalous magnetic moments, and vice versa. Also, the
relation can be viewed as a direct connection between the
quark orbital angular momentum distribution and the
Sivers function.

The proton state can be expanded in a series of Fock
states jn; xiP&;k?;!ii with coefficients  n=p"xi;k?;!i#,
which are the light-front wave functions of the proton:

 "p"P&; P!; 0?# $
X
n
 n"xi;k?;!i#jn; xiP&;k?;!ii:

(1)

Here xi $ k&i
P& is the light-front momentum fraction of the

quark, !i denotes the helicity, and k? its transverse mo-
mentum. The wave functions are Lorentz-invariant func-
tions of the kinematics of the constituents of nucleon, xi
and k?i, with

Pn
i xi $ 1 and

Pn
i k?i $ 0?.

As pointed out before, the Sivers function requires that
the nucleon wave functions in the initial and final state
differ by one unit of orbital angular momentum, and final
state interactions play a crucial role. It describes the inter-
ference of two amplitudes which have different initial
proton spin Jz $ % 1

2 but couple to the same final state:
Im'M("Jz $ &1=2 ! F#M"Jz $ !1=2 ! F#). This can
be realized by a gluon exchange between the struck quark
and the spectator system. There have been already attempts
[19,23], using the proton light-front wave functions, to find
a formula to calculate the Sivers functions. In those papers
the final state interaction phase needed for Sivers functions
has been incorporated into the wave functions. Another
possibility is to express the Sivers function as the product
of wave functions and the final state interactions term:

 f?1T /
X
n
 "(
n "xi;k?;!i#G"xi; x0i;k?;i;k0

?;i# #
n"x0i;k0

?;!
0
i#;

(2)

whereG"x0i;k0
?;i; xi;k?;i# is the final state interaction term,

and the light-front wave functions in this equation are the
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 !q!x" # Eq!x; 0; 0": (23)

Thus in the scalar diquark model, f?;q
1T !x" is proportional to

Eq!x; 0; 0". According to Ji’s sum rule [4] (Jq is the total
angular momentum carried by quark flavor q):

 

Z
dxx!Hq!x;"; t" $ Eq!x;"; t"" # 1

2Jq!t"; (24)

which also holds in the forward limit. We see that the
Sivers function is related to the angular momentum of
the parton inside the nucleon, and therefore it is in fact
sensitive to the orbital angular momentum of the quark.
There is then the possibility to get information of the quark
orbital angular momentum from the Sivers functions.

Although the relation given in (20) and (21) is a simple
result based on the approximation of the scalar diquark
model, we can still apply the relation to given some pre-
diction on the Sivers asymmetry of the meson production
in SIDIS processes, such as the ratio of the asymmetries
between different final mesons, since in this case the model
dependence is reduced. The Sivers asymmetry is propor-
tional to

 ASiv
UT / hPa e2af?a

1T D
a
1i

hPa e2afa1D
a
1i

; (25)

which can be extracted by the weighting function sin!#%
#S", here # and #S denote, respectively, the azimuthal
angles of the produced hadron and of the nucleon spin
polarization, with respect to the lepton scattering plane, Da

1
is the unpolarized fragmentation function. We will focus
on the large z regime that the valence quark contribution
dominates, and the disfavored fragmentation function can
be ignored.

Since the Sivers function and the anomalous magnetic
moment ‘‘share’’ the same set of the proton wave func-
tions, as shown in Figs. 1 and 2, one can start from the data
of the anomalous magnetic moment to provide constraints
on the proton wave functions, and then on the Sivers
function. Similar methods have been used in Ref. [19],
where a small Sivers asymmetry on a deuteron target has
been predicted, and Ref. [39], where the sign of the Sivers
asymmetries for different hadron targets combining differ-
ent fragmenting hadrons has been classified.

As figured out in Ref. [19], the quark contribution
dominates over the gluon contribution in the case of
Sivers functions [40], which is also the result of an argu-
ment based on large Nc considerations [41]. There are also
phenomenological supports of this conclusion from the
SIDIS experiment from COMPASS of CERN [11], as
pointed out in Ref. [19], and the analysis on hadron pro-
duction of $ given in Ref. [42]. Therefore in this work we
only consider the quark contribution to the Sivers functions
and the corresponding asymmetry.

One can constrain the proton wave functions by normal-
izing each u and d quarks contributions to the anomalous

moments !p # 1:79, !n # %1:91. Isospin symmetry im-
plies

 !d=n # !u=p; (26)

 !u=n # !d=p: (27)

In the valence quark approximation we have

 !p # !2"!2=3"!u=p $ !%1=3"!d=p; (28)

 !n # !2"!%1=3"!u=p $ !2=3"!d=p: (29)

Thus one has !u=p # 0:835, !d=p # %2:03. In the follow-
ing we use !u and !d to represent !u=p and !d=p,
respectively.

Then we can write the ratio of the asymmetries between
$$ and $% at large z:

 

ASiv
UT!$$"

ASiv
UT!$%" & 2e2uf?u

1T D
$$=u
1

e2df
?d
1T D

$%=d
1

& 2e2u!u

e2d!d
# %3:3: (30)

Also we have

 

ASiv
UT!$0"

ASiv
UT!$%" & 2e2uf?u

1T D
$0=u
1 $ e2df

?d
1T D

$0=d
1

e2df
?d
1T D

$%=d
1

& 2e2u!u $ e2d!d

2e2d!d
# %1:15; (31)

 

ASiv
UT!K$"

ASiv
UT!K0" & 2e2uf?u

1T D
K$=u
1

e2df
?d
1T D

K0=d
1

& 4e2u!u

e2d!d
# %6:6: (32)

For the above result we used isospin symmetry for the
quark fragmentation functions:

 D$$=u
1 # D$%=d

1 # 2D$0=u
1 # 2D$0=d

1 ; (33)

 DK$=u
1 # 2DK0=d

1 : (34)

The results show that in the large z region, the Sivers
asymmetry of $$ is 3 times larger than that of $% and with
opposite sign, which is consistent with the recent
HERMES result [10] where at z' 0:6 a 4 times larger
asymmetry of $$ is measured; the asymmetries of $0 and
$% are similar in size; the asymmetry of K$ is much larger
than that of K0, nearly 1 order of magnitude; and
ASiv
UT!K0" ' 0 since !s # 0 in valence approximation.
In summary, both the formula for calculating Sivers

function and that for calculating the anomalous magnetic
moment of the proton, can be expressed in terms of the
same set of the light-front wave functions, with helicity
flipped from initial state to final states. Using the overlap
representations of both Sivers functions as well as the
anomalous magnetic moment, we give a simple relation
between these two observables, in the approximation of the
scalar diquark model. This relation is applied to provide
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asymmetry of $$ is 3 times larger than that of $% and with
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HERMES result [10] where at z' 0:6 a 4 times larger
asymmetry of $$ is measured; the asymmetries of $0 and
$% are similar in size; the asymmetry of K$ is much larger
than that of K0, nearly 1 order of magnitude; and
ASiv
UT!K0" ' 0 since !s # 0 in valence approximation.
In summary, both the formula for calculating Sivers

function and that for calculating the anomalous magnetic
moment of the proton, can be expressed in terms of the
same set of the light-front wave functions, with helicity
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representations of both Sivers functions as well as the
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Paul Hoyer Losjin 2 September 2011
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in neutron 

data : Bradford, Bodek, Budd, Arrington (2006)

induced EDM : dy = - F2n (0) . e / (2 MN)

+

+

by

bx

by

bx

!0(b)

!x(b)

Using measured form factors, find the
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Carlson and Vanderhaeghen (2008)
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graviton

Anomalous gravitomagnetic moment  B(0)

B(0) = 0 Each Fock State

sum over constituents

75

Hwang, Schmidt, sjb; 
Donoghue,Holstein 

Terayev, Okun:  B(0) Must vanish because of 
Equivalence Theorem 

A Transversity Theorem!

LF formalism essential
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Wick Theorem
Feynman diagram = 

single  front-form time-ordered diagram!

ae =
ge − 2

2
=

α

2π
Also P →∞ observer frame (Weinberg)

Choose q+ = 0
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Calculation of proton form factor in Instant Form 

• Need to boost proton wavefunction from p 
to p+q:  Extremely complicated dynamical 
problem; particle number changes

• Need to couple to all currents arising from 
vacuum

• Each time-ordered contribution is frame-
dependent

• Divide by disconnected vacuum diagrams

< p + q|Jµ(0)|p >

p + qp
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Calculation of Hadron Form Factors 
Instant Form

• Current matrix elements of hadron include interactions with 
vacuum-induced currents arising from infinitely-complex 
vacuum

• Pair creation from vacuum occurs at any time before probe 
acts  --  acausal

• Knowledge of hadron wavefunction insufficient to compute 
current matrix elements

• Requires dynamical boost of hadron wavefunction -- 
unknown except at weak binding                                                       
Hoyer,  Vantinnen, Primack, sjb

• Complex vacuum even for QED

• None of these complications occur for quantization at fixed 
LF time (front form)

 

 

zero for q+ = 0

20
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Measure single-spin asymmetry AN

in Drell-Yan reactions

�S · �q × �p correlation

pp↑ → �+�−X

Q2 = x1x2s

Q2 = 4 GeV2, s = 80 GeV2

x1x2 = .05, xF = x1 − x2

Measure single-spin asymmetry AN

in Drell-Yan reactions

�S · �q × �p correlation

pp↑ → �+�−X

Q2 = x1x2s

Q2 = 4 GeV2, s = 80 GeV2

x1x2 = .05, xF = x1 − x2

Measure single-spin asymmetry AN

in Drell-Yan reactions

�S · �q × �p correlation

pp↑ → �+�−X

Q2 = x1x2s

Q2 = 4 GeV2, s = 80 GeV2

x1x2 = .05, xF = x1 − x2

Measure single-spin asymmetry AN

in Drell-Yan reactions

Leading-twist Bjorken-scaling AN

from S, P -wave

initial-state gluonic interactions

�S · �q × �p correlation

AN(DY ) = −AN(DIS): Opposite in sign!

pp↑ → �+�−X

Measure single-spin asymmetry AN

in Drell-Yan reactions

Leading-twist Bjorken-scaling AN

from S, P -wave

initial-state gluonic interactions

�S · �q × �p correlation

Predict: AN(DY ) = −AN(DIS)

Opposite in sign!

pp↑ → �+�−X

Collins; 
Hwang, Schmidt. 

sjb
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B. Seitz - Dept. of Physics & Astronomy - University of Glasgow

Drell-Yan angular distribution

• Experimentally, a violation of the 
Lam-Tung sum rule is observed by 
sizeable cos2! moments

• Several model explanations

• higher twist

• spin correlation due to non-trival 
QCD vacuum

• Non-zero Boer Mulders function

1

σ

dσ

dΩ
=

3

4π

1

λ + 3

�
1 + λcos2θ + µsin2θcosφ +

ν

2
sin2θcos2φ

�

NLO pQCD : λ ≈ 1 µ ≈ 0 ν ≈ 0

experiment : ν ≈ 0.3

Lam− Tung SR : 1− λ = 2ν

B. Seitz

Unpolarized DY

Experiment: ν � 0.6
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 DY               correlation at leading twist from double ISI

the differential cross section is written as

1

!

d!

d"
!
3

4#

1

$"3

#! 1"$ cos2%"& sin2% cos'"
(

2
sin2% cos 2' " .

)1*

These angular dependencies1 can all be generated by pertur-

bative QCD corrections where, for instance, initial quarks

radiate off high energy gluons into the final state. Such a

perturbative QCD calculation at next-to-leading order leads

to $+1,&+0,(+0 at a very small transverse momentum of

the lepton pair. More generally, the Lam-Tung relation 1

$$$2(!0 ,17- is expected to hold at order .s and the

relation is hardly modified by next-to-leading order (.s
2) per-

turbative QCD corrections ,18-. However, this relation is not
satisfied by the experimental data ,13,14-. The Drell-Yan
data show remarkably large values of ( , reaching values of
about 30% at transverse momenta of the lepton pair between

2 and 3 GeV )for Q2!m/*
2 !(4$12 GeV)2 and extracted in

the Collins-Soper frame ,19- to be discussed below*. These
large values of ( are not compatible with $+1 as also seen
in the data.

A number of explanations have been put forward, such as

a higher twist effect ,20,21-, following the ideas of Berger
and Brodsky ,22-. In Ref. ,20- the higher twist effect is mod-
eled using an asymptotic pion distribution amplitude, and it

appears to fall short in explaining the large values of ( .
In Ref. ,18- factorization-breaking correlations between

the incoming quarks are assumed and modeled in order to

account for the large cos 2' dependence. Here the correla-

tions are both in the transverse momentum and the spin of

the quarks. In Ref. ,6- this idea was applied in a factorized
approach ,23- involving the chiral-odd partner of the Sivers
effect, which is the transverse momentum dependent distri-

bution function called h1
! . From this point of view, the large

cos 2' azimuthal dependence can arise at leading order, i.e.

it is unsuppressed, from a product of two such distribution

functions. It offers a natural explanation for the large cos 2'
azimuthal dependence, but at the same time also for the

small cos' dependence, since chiral-odd functions can only

occur in pairs. The function h1
! is a quark helicity-flip matrix

element and must therefore occur accompanied by another

helicity flip. In the unpolarized Drell-Yan process this can

only be a product of two h1
! functions. Since this implies a

change by two units of angular momentum, it does not con-

tribute to a cos' asymmetry. In the present paper we will

discuss this scenario in terms of initial-state interactions,

which can generate a nonzero function h1
! .

We would also like to point out the experimental obser-

vation that the cos 2' dependence as observed by the NA10

Collaboration does not seem to show a strong dependence on

A, i.e. there was no significant difference between the deute-

rium and tungsten targets. Hence, it is unlikely that the asym-

metry originates from nuclear effects, and we shall assume it

to be associated purely with hadronic effects. We refer to

Ref. ,24- for investigations of nuclear enhancements.
We compute the function h1

!(x ,p!
2 ) and the resulting

cos 2' asymmetry explicitly in a quark-scalar diquark model
for the proton with an initial-state gluon interaction. In this

model h1
!(x ,p!

2 ) equals the T-odd )chiral-even* Sivers effect
function f 1T

! (x ,p!
2 ). Hence, assuming the cos 2' asymmetry

of the unpolarized Drell-Yan process does arise from non-

zero, large h1
! , this asymmetry is expected to be closely

related to the single-spin asymmetries in the SIDIS and the

Drell-Yan process, since each of these effects can arise from

the same underlying mechanism.

The Fermilab Tevatron and BNL Relativistic Heavy Ion

Collider )RHIC* should both be able to investigate azimuthal
asymmetries such as the cos 2' dependence. Since polarized
proton beams are available, RHIC will be able to measure

single-spin asymmetries as well. Unfortunately, one might

expect that the cos 2' dependence in pp→!!̄X )measurable
at RHIC* is smaller than for the process #$N→&"&$X ,

since in the former process there are no valence antiquarks

present. In this sense, the cleanest extraction of h1
! would be

from pp̄→!!̄X .

III. CROSS SECTION CALCULATION

In this section we will assume nonzero h1
! and discuss the

calculation of the leading order unpolarized Drell-Yan cross

section )given in Ref. ,6- with slightly different notation*

d!)h1h2→!!̄X *

d"dx1dx2d
2q!

!
.2

3Q2 0
a , ā

ea
2# A)y *F , f 1 f̄ 1-

"B)y *cos)2'*F $ )2ĥ•p!ĥ•k!

$p!•k!*
h1

!h̄1
!

M 1M 2
% & . )2*

This is expressed in the so-called Collins-Soper frame ,19-,
for which one chooses the following set of normalized vec-

tors )for details see, e.g. ,25-*:

t̂1q/Q , )3*

ẑ1
x1

Q
P̃1$

x2

Q
P̃2, )4*

ĥ1q! /Q!!)q$x1P1$x2P2*/Q! , )5*

where P̃ i1Pi$q/(2xi), Pi are the momenta of the two in-

coming hadrons and q is the four momentum of the virtual

photon or, equivalently, of the lepton pair. This can be related

to standard Sudakov decompositions of these momenta

1We neglect sin' and sin 2' dependencies, since these are of

higher order in .s ,15,16- and are expected to be small.
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2 ). This suggests
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I. INTRODUCTION

Single-spin asymmetries in hadronic reactions have been

among the most challenging phenomena to understand from

basic principles in QCD. Several such asymmetries have

been observed experimentally, and a number of theoretical

mechanisms have been suggested $1–6%. Recently, a new
way of producing single-spin asymmetries in semi-inclusive

deep inelastic scattering !SIDIS" and the Drell-Yan process
has been put forward $7,8%. It was shown that the exchange
of a gluon, viewed as initial- or final-state interactions, could

produce the necessary phase leading to a single transverse

spin asymmetry. The main new feature is that, despite the

presence of an additional gluon, this asymmetry occurs with-

out suppression by a large energy scale appearing in the pro-

cess under consideration. It has been recognized since then

$9% that this mechanism can be viewed as the so-called Sivers
effect $1,10%, which was thought to be forbidden by time-
reversal invariance $4%. Apart from generating Sivers effect

asymmetries, the mechanism offers new insight regarding the
role of orbital angular momentum of quarks in a hadron and

their spin-orbit couplings; in fact, the same S•! L! matrix ele-
ments enter the anomalous magnetic moment of the proton
$7%. The new mechanism for single target-spin asymmetries
in SIDIS necessarily requires noncollinear quarks and glu-
ons, and in the Sivers asymmetry the quarks carry no polar-
ization on average. As such it is very different from mecha-

nisms involving transversity !often denoted by h1 or &q),
which correlates the spin of the transversely polarized hadron
with the transverse polarization of its quarks.
In further contrast, the exchange of a gluon can also lead

to transversity of quarks inside an unpolarized hadron. This
chiral-odd partner of the Sivers effect has been discussed in
Refs. $6,11%, and in this paper we will show explicitly how
initial-state interactions generate this effect. Goldstein and

Gamberg reported recently that h1
!(x ,p!

2 ) is proportional to

f 1T
! (x ,p!

2 ) in the quark-scalar diquark model $12%. We con-
firm this and find that these two distribution functions are in
fact equal in this model. Although this property is not ex-
pected to be satisfied in general, nevertheless, one may ex-
pect these functions to be comparable in magnitude, since
both functions can be generated by the same mechanism. We
investigate the consequences of the present model result for
the unpolarized Drell-Yan process. We obtain an expression
for the cos 2# asymmetry in the lepton pair angular distribu-
tion. Here # is the angle between the lepton plane and the
plane of the incident hadrons in the lepton pair center of
mass. This asymmetry was measured a long time ago $13,14%
and was found to be large. Several theoretical explanations
!some of which will be briefly discussed below" have been
put forward, but we will show that a natural explanation can
come from initial-state interactions which are unsuppressed
by the invariant mass of the lepton pair.

II. THE UNPOLARIZED DRELL-YAN PROCESS

The unpolarized Drell-Yan process cross section has been
measured in pion-nucleon scattering: '"N→(!("X , with
N deuterium or tungsten and a '" beam with energy of 140,
194, 286 GeV $13% and 252 GeV $14%. Conventionally

*Email address: dboer@nat.vu.nl
†Email address: sjbth@slac.stanford.edu
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We report a measurement of the angular distributions of Drell-Yan dimuons produced using an
800 GeV/c proton beam on a deuterium target. The muon angular distributions in polar angle
θ and azimuthal angle φ have been measured over the kinematic range 4.5 < mµµ < 15 GeV/c2,
0 < pT < 4 GeV/c, and 0 < xF < 0.8. No significant cos2φ dependence is found in these proton-
induced Drell-Yan data, in contrast to the situation for pion-induced Drell-Yan. The data are
compared with expectations from models which attribute the cos2φ distribution to a QCD vacuum
effect or to the presence of the transverse-momentum-dependent Boer-Mulders structure function
h⊥

1 . Constraints on the magnitude of the sea-quark h⊥
1 structure functions are obtained.

PACS numbers: 13.85.Qk, 14.20.Dh, 24.85.+p, 13.88.+e

The Drell-Yan process [1], in which a charged lepton
pair is produced in a high-energy hadron-hadron interac-
tion via the qq̄ → l+l− process, has been a testing ground
for perturbative QCD and a unique tool for probing par-
ton distributions of hadrons. The Drell-Yan production
cross sections can be well described by next-to-leading
order QCD calculations [2]. This provides a firm theo-
retical framework for using the Drell-Yan process to de-
termine the antiquark content of nucleons and nuclei [3],
as well as the quark distributions of pions, kaons, and
antiprotons [4].

Despite the success of perturbative QCD in describing
the Drell-Yan cross sections, it remains a challenge to un-
derstand the angular distributions of the Drell-Yan pro-
cess. Assuming dominance of the single-photon process,
a general expression for the Drell-Yan angular distribu-
tion is [5]

dσ

dΩ
∝ 1 + λ cos2 θ + µ sin 2θ cosφ +

ν

2
sin2 θ cos 2φ, (1)

where θ and φ denote the polar and azimuthal angle,
respectively, of the l+ in the dilepton rest frame. In
the “naive” Drell-Yan model, where the transverse mo-

mentum of the quark is ignored and no gluon emission
is considered, λ = 1 and µ = ν = 0 are obtained.
QCD effects [6] and non-zero intrinsic transverse mo-
mentum of the quarks [7] can both lead to λ #= 1 and
µ, ν #= 0. However, λ and ν should still satisfy the rela-
tion 1 − λ = 2ν [5]. This so-called Lam-Tung relation,
obtained as a consequence of the spin-1/2 nature of the
quarks, is analogous to the Callan-Gross relation [8] in
Deep-Inelastic Scattering. While QCD effects can signif-
icantly modify the Callan-Gross relation, the Lam-Tung
relation is predicted to be largely unaffected by QCD
corrections [9].

The first measurement of the Drell-Yan angular dis-
tribution was performed by the NA10 Collaboration for
π− + W at 140, 194, and 286 GeV/c, with the highest
statistics at 194 GeV/c [10]. The cos 2φ angular depen-
dences showed a sizable ν, increasing with dimuon trans-
verse momentum (pT ) and reaching a value of ≈ 0.3 at
pT = 2.5 GeV/c (see Fig. 1). The observed behavior of ν
could not be described by perturbative QCD calculations
which predict much smaller values of ν [6]. The Fermilab
E615 Collaboration subsequently performed a measure-
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We report a measurement of the angular distributions of Drell-Yan dimuons produced using an
800 GeV/c proton beam on a deuterium target. The muon angular distributions in polar angle
θ and azimuthal angle φ have been measured over the kinematic range 4.5 < mµµ < 15 GeV/c2,
0 < pT < 4 GeV/c, and 0 < xF < 0.8. No significant cos2φ dependence is found in these proton-
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The Drell-Yan process [1], in which a charged lepton
pair is produced in a high-energy hadron-hadron interac-
tion via the qq̄ → l+l− process, has been a testing ground
for perturbative QCD and a unique tool for probing par-
ton distributions of hadrons. The Drell-Yan production
cross sections can be well described by next-to-leading
order QCD calculations [2]. This provides a firm theo-
retical framework for using the Drell-Yan process to de-
termine the antiquark content of nucleons and nuclei [3],
as well as the quark distributions of pions, kaons, and
antiprotons [4].

Despite the success of perturbative QCD in describing
the Drell-Yan cross sections, it remains a challenge to un-
derstand the angular distributions of the Drell-Yan pro-
cess. Assuming dominance of the single-photon process,
a general expression for the Drell-Yan angular distribu-
tion is [5]

dσ

dΩ
∝ 1 + λ cos2 θ + µ sin 2θ cosφ +

ν

2
sin2 θ cos 2φ, (1)

where θ and φ denote the polar and azimuthal angle,
respectively, of the l+ in the dilepton rest frame. In
the “naive” Drell-Yan model, where the transverse mo-

mentum of the quark is ignored and no gluon emission
is considered, λ = 1 and µ = ν = 0 are obtained.
QCD effects [6] and non-zero intrinsic transverse mo-
mentum of the quarks [7] can both lead to λ #= 1 and
µ, ν #= 0. However, λ and ν should still satisfy the rela-
tion 1 − λ = 2ν [5]. This so-called Lam-Tung relation,
obtained as a consequence of the spin-1/2 nature of the
quarks, is analogous to the Callan-Gross relation [8] in
Deep-Inelastic Scattering. While QCD effects can signif-
icantly modify the Callan-Gross relation, the Lam-Tung
relation is predicted to be largely unaffected by QCD
corrections [9].

The first measurement of the Drell-Yan angular dis-
tribution was performed by the NA10 Collaboration for
π− + W at 140, 194, and 286 GeV/c, with the highest
statistics at 194 GeV/c [10]. The cos 2φ angular depen-
dences showed a sizable ν, increasing with dimuon trans-
verse momentum (pT ) and reaching a value of ≈ 0.3 at
pT = 2.5 GeV/c (see Fig. 1). The observed behavior of ν
could not be described by perturbative QCD calculations
which predict much smaller values of ν [6]. The Fermilab
E615 Collaboration subsequently performed a measure-

3

TABLE I: Mean values of the λ, µ, ν parameters and the quan-
tity 2ν − (1 − λ) for three Drell-Yan measurements. The pT

dependence of these quantities is shown in Fig. 1.

p + d π− + W π− + W

800 GeV/c 194 GeV/c 252 GeV/c

(E866) (NA10) (E615)

〈λ〉 1.07 ± 0.07 0.83 ± 0.04 1.17 ± 0.06

〈µ〉 0.003 ± 0.013 0.008 ± 0.010 0.09 ± 0.02

〈ν〉 0.027 ± 0.010 0.091 ± 0.009 0.169 ± 0.019

〈2ν − (1 − λ)〉 0.12 ± 0.07 0.01 ± 0.04 0.51 ± 0.07

Several settings of the currents in the three dipole mag-
nets (SM0, SM12, SM3) were used in order to optimize
acceptance for different dimuon mass regions. Data col-
lected with the “low mass” and “high mass” settings [26]
on liquid deuterium and empty targets were used in this
analysis. The detector system consisted of four track-
ing stations and a momentum analyzing magnet (SM3).
Tracks reconstructed by the drift chambers were extrapo-
lated to the target using the momentum determined from
the bend angle in SM3. The target position was used to
refine the parameters of each muon track.

From the momenta of the µ+ and µ−, kinematic vari-
ables of the dimuons (xF , mµµ, pT ) were readily recon-
structed. The muon angles θ and φ in the Collins-Soper
frame [27] were also calculated. To remove the quarko-
nium background, only events with 4.5 < mµµ < 9
GeV/c2 or mµµ > 10.7 GeV/c2 were analyzed. A total
of 118,000 p + d Drell-Yan events covering the decay an-
gular range −0.5 < cos θ < 0.5 and −π < φ < π remain.
Detailed Monte-Carlo simulations for the experiment us-
ing the MRST98 parton distribution functions [28] for
NLO Drell-Yan cross sections have shown good agree-
ments with the data for a variety of measured quantities.

Figure 1 shows the angular distribution parameters
λ, µ, and ν vs. pT . To extract these parameters, the
Drell-Yan data were grouped into 5 bins in cos θ and 8
bins in φ for each pT bin. A least-squares fit to the data
using Eq. 1 to describe the angular distribution was per-
formed. Only statistical errors are shown in Fig. 1. The
primary contributions to the systematic errors are the
uncertainties of the incident beam angles on target. The
analysis has been performed allowing the beam angles to
vary within their ranges of uncertainty. From this study,
we found that the systematic errors are comparable to the
statistical errors for each individual pT bin. However, the
pT averaged values 〈λ〉, 〈µ〉, and 〈ν〉, are dominatd by the
statistical errors.

For comparison with the p + d Drell-Yan data, the
NA10 π− +W data at 194 GeV/c and the E615 π− +W
data at 252 GeV/c are also shown in Fig. 1. To test the
validity of the Lam-Tung relation, also shown in Fig. 1
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FIG. 2: Parameter ν vs. pT in the Collins-Soper frame for
three Drell-Yan measurements. Fits to the data using Eq. 3
and MC = 2.4 GeV/c2 are also shown.

is the quantity, 2ν − (1 − λ), for all three experiments.
For p + d at 800 GeV/c, Fig. 1 shows that λ is consis-
tent with 1, in agreement with previous studies [3, 25],
while µ and ν deviate only slightly from zero. This is in
contrast to the pion-induced Drell-Yan results, in which
much larger values of ν are found. Table I lists the mean
values of λ, µ, ν and 2ν − (1 − λ) for these three experi-
ments. Again, the qualitatively different behavior of the
azimuthal angular distributions for p + d versus π− + W
is evident. It is also interesting to note that while E615
clearly establishes the violation of the Lam-Tung rela-
tion, the NA10 and the p + d data are largely consistent
with the Lam-Tung relation.

In an attempt to extract information on the magnitude
of the h⊥

1 function from the NA10 data, Boer [17] as-
sumed that h⊥

1 is proportional to the spin-averaged par-
ton distribution function f1:

h⊥
1 (x, k2

T ) = CH
αT

π

MCMH

k2
T + M2

C

e−αT k2

T f1(x), (2)

where kT is the quark transverse momentum, MH is the
mass of the hadron H (pion or nucleon), and MC and
CH are constant fitting parameters. A Gaussian trans-
verse momentum dependence of e−αT k2

T with αT = 1
(GeV/c)−2 was assumed. The cos 2φ dependence then
results from the convolution of the pion h⊥

1 /f1 term with
the nucleon h⊥

1 /f1 term, and the parameter ν is given as

ν = 16κ1

p2
T M2

C

(p2
T + 4M2

C)2
, (3)

where κ1 = CH1
CH2

/2, and H1, H2 denote the two inter-
acting hadrons. As shown in Fig. 2, a good description
of the NA10 data is obtained with κ1 = 0.47 ± 0.14 and
MC = 2.4 ± 0.5 GeV/c2. A fit to the E615 ν data at
252 GeV/c using MC = 2.4 GeV/c2, also shown in Fig.
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TABLE I: Mean values of the λ, µ, ν parameters and the quan-
tity 2ν − (1 − λ) for three Drell-Yan measurements. The pT

dependence of these quantities is shown in Fig. 1.
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Several settings of the currents in the three dipole mag-
nets (SM0, SM12, SM3) were used in order to optimize
acceptance for different dimuon mass regions. Data col-
lected with the “low mass” and “high mass” settings [26]
on liquid deuterium and empty targets were used in this
analysis. The detector system consisted of four track-
ing stations and a momentum analyzing magnet (SM3).
Tracks reconstructed by the drift chambers were extrapo-
lated to the target using the momentum determined from
the bend angle in SM3. The target position was used to
refine the parameters of each muon track.

From the momenta of the µ+ and µ−, kinematic vari-
ables of the dimuons (xF , mµµ, pT ) were readily recon-
structed. The muon angles θ and φ in the Collins-Soper
frame [27] were also calculated. To remove the quarko-
nium background, only events with 4.5 < mµµ < 9
GeV/c2 or mµµ > 10.7 GeV/c2 were analyzed. A total
of 118,000 p + d Drell-Yan events covering the decay an-
gular range −0.5 < cos θ < 0.5 and −π < φ < π remain.
Detailed Monte-Carlo simulations for the experiment us-
ing the MRST98 parton distribution functions [28] for
NLO Drell-Yan cross sections have shown good agree-
ments with the data for a variety of measured quantities.

Figure 1 shows the angular distribution parameters
λ, µ, and ν vs. pT . To extract these parameters, the
Drell-Yan data were grouped into 5 bins in cos θ and 8
bins in φ for each pT bin. A least-squares fit to the data
using Eq. 1 to describe the angular distribution was per-
formed. Only statistical errors are shown in Fig. 1. The
primary contributions to the systematic errors are the
uncertainties of the incident beam angles on target. The
analysis has been performed allowing the beam angles to
vary within their ranges of uncertainty. From this study,
we found that the systematic errors are comparable to the
statistical errors for each individual pT bin. However, the
pT averaged values 〈λ〉, 〈µ〉, and 〈ν〉, are dominatd by the
statistical errors.

For comparison with the p + d Drell-Yan data, the
NA10 π− +W data at 194 GeV/c and the E615 π− +W
data at 252 GeV/c are also shown in Fig. 1. To test the
validity of the Lam-Tung relation, also shown in Fig. 1

0
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1

0 0.5 1 1.5 2 2.5 3 3.5 4

p
T
 (GeV/c)

!
"

-
 + W at 194 GeV/c

"
-
 + W at 252 GeV/c

p + d at 800 GeV/c

FIG. 2: Parameter ν vs. pT in the Collins-Soper frame for
three Drell-Yan measurements. Fits to the data using Eq. 3
and MC = 2.4 GeV/c2 are also shown.

is the quantity, 2ν − (1 − λ), for all three experiments.
For p + d at 800 GeV/c, Fig. 1 shows that λ is consis-
tent with 1, in agreement with previous studies [3, 25],
while µ and ν deviate only slightly from zero. This is in
contrast to the pion-induced Drell-Yan results, in which
much larger values of ν are found. Table I lists the mean
values of λ, µ, ν and 2ν − (1 − λ) for these three experi-
ments. Again, the qualitatively different behavior of the
azimuthal angular distributions for p + d versus π− + W
is evident. It is also interesting to note that while E615
clearly establishes the violation of the Lam-Tung rela-
tion, the NA10 and the p + d data are largely consistent
with the Lam-Tung relation.

In an attempt to extract information on the magnitude
of the h⊥

1 function from the NA10 data, Boer [17] as-
sumed that h⊥

1 is proportional to the spin-averaged par-
ton distribution function f1:

h⊥
1 (x, k2

T ) = CH
αT

π

MCMH

k2
T + M2

C

e−αT k2

T f1(x), (2)

where kT is the quark transverse momentum, MH is the
mass of the hadron H (pion or nucleon), and MC and
CH are constant fitting parameters. A Gaussian trans-
verse momentum dependence of e−αT k2

T with αT = 1
(GeV/c)−2 was assumed. The cos 2φ dependence then
results from the convolution of the pion h⊥

1 /f1 term with
the nucleon h⊥

1 /f1 term, and the parameter ν is given as

ν = 16κ1

p2
T M2

C

(p2
T + 4M2

C)2
, (3)

where κ1 = CH1
CH2

/2, and H1, H2 denote the two inter-
acting hadrons. As shown in Fig. 2, a good description
of the NA10 data is obtained with κ1 = 0.47 ± 0.14 and
MC = 2.4 ± 0.5 GeV/c2. A fit to the E615 ν data at
252 GeV/c using MC = 2.4 GeV/c2, also shown in Fig.

Huge Effect in

πW → µ+µ−X
Negligible Effect in

pd→ µ+µ−X
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ANOMALOUS DRELL-YAN ASYMMETRY FROM

HADRONIC OR QCD VACUUM EFFECTS ∗

DANIËL BOER

Dept. of Physics and Astronomy,
Vrije Universiteit Amsterdam,

De Boelelaan 1081, 1081 HV Amsterdam,
The Netherlands

E-mail: D.Boer@few.vu.nl

The anomalously large cos(2φ) asymmetry measured in the Drell-Yan process is
discussed. Possible origins of this large deviation from the Lam-Tung relation are
considered with emphasis on the comparison of two particular proposals: one that
suggests it arises from a QCD vacuum effect and one that suggests it is a hadronic
effect. Experimental signatures distinguishing these effects are discussed.

1. Introduction

Azimuthal asymmetries in the unpolarized Drell-Yan (DY) process differ-
ential cross section arise only in the following way

1

σ

dσ

dΩ
∝

(

1 + λ cos2 θ + µ sin 2θ cosφ +
ν

2
sin2 θ cos 2φ

)

, (1)

where φ is the angle between the lepton and hadron planes in the lepton
center of mass frame (see Fig. 3 of Ref.1). In the parton model (order α0

s)
quark-antiquark annihilation yields λ = 1, µ = ν = 0. The leading order
(LO) perturbative QCD corrections (order α1

s) lead to µ "= 0, ν "= 0 and
λ "= 1, such that the so-called Lam-Tung relation 1 − λ − 2ν = 0 holds.
Beyond LO, small deviations from the Lam-Tung relation will arise. If one
defines the quantity κ ≡ − 1

4 (1 − λ − 2ν) as a measure of the deviation

from the Lam-Tung relation, it has been calculated2,3 that at order α2
s κ

is small and negative: −κ <
∼ 0.01, for values of the muon pair’s transverse

momentum QT of up to 3 GeV/c.
Surprisingly, the data is incompatible with the Lam-Tung relation and

with its small order-α2
s modification as well3. These data from CERN’s

NA10 Collaboration4,5 and Fermilab’s E615 Collaboration6 are for π−N →
µ+µ−X , with N = D and W . The π−-beam energies range from 140 GeV

∗Talk presented at the International Workshop on Transverse Polarization Phenomena
in Hard Processes (Transversity 2005), Villa Olmo, Como, Italy, September 7-10, 2005
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4

Nachtmann & Mirkes3 demonstrated that the diagonal elements H11 and
H22 can give rise to a deviation from the Lam-Tung relation:

κ ≡ −
1

4
(1 − λ − 2ν) ≈

〈

H22 − H11

1 + H33

〉

. (5)

A simple assumption for the transverse momentum dependence of (H22 −
H11)/(1 + H33) produced a good fit to the data:

κ = κ0
Q4

T

Q4
T + m4

T

, with κ0 = 0.17 and mT = 1.5 GeV. (6)

Note that for this Ansatz κ approaches a constant value (κ0) for large QT .
In other words, the vacuum effect could persist out to large values of QT .
The Q2 dependence of the vacuum effect is not known, but there is also no
reason to assume that the spin correlation due to the QCD vacuum effect
has to decrease with increasing Q2.

3. Explanation as a hadronic effect

Usually if one assumes that factorization of soft and hard energy scales in
a hard scattering process occurs, one implicitly also assumes factorization
of the spin density matrix. In the present section this will indeed be as-
sumed, but another common assumption will be dropped, namely that of
collinear factorization. It will be investigated what happens if one allows for
transverse momentum dependent parton distributions (TMDs). The spin
density matrix of a noncollinear quark inside an unpolarized hadron can
be nontrivial. In other words, the transverse polarization of a noncollinear
quark inside an unpolarized hadron in principle can have a preferred direc-
tion and the TMD describing that situation is called h⊥

1
10. As pointed out

in Ref.1 nonzero h⊥
1 leads to a deviation from Lam-Tung relation. It offers

a parton model explanation of the DY data (i.e. with λ = 1 and µ = 0):
κ = ν

2 ∝ h⊥
1 (π)h⊥

1 (N) . In this way a good fit to data was obtained
by assuming Gaussian transverse momentum dependence. The reason for
this choice of transverse momentum dependence is that in order to be con-
sistent with the factorization of the cross section in terms of TMDs, the
transverse momentum of partons should not introduce another large scale.
Therefore, explaining the Lam-Tung relation within this framework neces-
sarily implies that κ = ν

2 → 0 for large QT . This offers a possible way to
distinguish between the hadronic effect and the QCD vacuum effect.

It may be good to mention that not only a fit of h⊥
1 to data has been

made (under certain assumptions), also several model calculations of h⊥
1

5

and some of its resulting asymmetries have been performed11,12,13, based
on the recent insight that T-odd TMDs like h⊥

1 arise from the gauge link.
In order to see the parton model expectation κ = ν

2 → 0 at large QT in
the data, one has to keep in mind that the pQCD contributions (that grow
as QT increases) will have to be subtracted. For κ perturbative corrections
arise at order α2

s, but for ν already at order αs. To be specific, at large QT

hard gluon radiation (to first order in αs) gives rise to14

ν(QT ) =
Q2

T

Q2 + 3
2Q2

T

. (7)

Due to this growing large-QT perturbative contribution the fall-off of the
h⊥

1 contribution will not be visible directly from the behavior of ν at large
QT . Therefore, in order to use ν as function of QT to differentiate between
effects, it is necessary to subtract the calculable pQCD contributions. In
Fig. 3 an illustration of this point is given. The dashed curve corresponds

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 1 2 3 4 5 6 7 8
QT

Figure 3. Impression of possible contributions to ν as function of QT compared to DY
data of NA10 (for Q = 8 GeV). Dashed curve: contribution from perturbative one-gluon
radiation. Dotted curve: contribution from a nonzero h⊥

1 . Solid curve: their sum.

to the contribution of Eq. (7) at Q = 8 GeV. The dotted line is a pos-
sible, parton model level, contribution from h⊥

1 with Gaussian transverse
momentum dependence. Together these contributions yield the solid curve
(although strictly speaking it is not the case that one can simply add them,
since one is a noncollinear parton model contribution expected to be valid
for small QT and the other is an order-αs result within collinear factor-
ization expected to be valid at large QT ). The data are from the NA10
Collaboration for a pion beam energy of 194 GeV/c 5.

The Q2 dependence of the h⊥
1 contribution is not known to date. Only

the effect of resummation of soft gluon radiation on the h⊥
1 contribution to

function. Here we do not intend to give a full demonstration

of this in the Drell-Yan process; a generalized factorization

theorem which includes transverse momentum dependent

functions and initial- or final-state interactions remains to be

proven !27". Instead we present how to arrive at an effective
# from initial- and/or final-state interactions and use this

effective # in Fig. 2. Also, for simplicity we will perform

the explicit calculation in QED. Our analysis can be gener-

alized to the corresponding calculation in QCD. The final-

state interaction from gluon exchange has the strength

!e1e2!/4$→CF%s(&
2), where ei are the photon couplings to

the quark and diquark.

The diagram in Fig. 3 coincides with Fig. 6'a( of Ref. !28"
used for the evaluation of a twist-4 contribution ()1/Q2) to

the unpolarized Drell-Yan cross section. The differences

compared to Ref. !28" are that in the present case there is
nonzero transverse momentum of the partons, and the as-

sumption that the matrix elements are nonvanishing in case

the gluon has a vanishing light-cone momentum fraction 'but
nonzero transverse momentum(. This results in an unsup-
pressed asymmetry which is a function of the transverse mo-

mentum Q! of the lepton pair with respect to the initial

hadrons. If this transverse momentum is integrated over, then

the unsuppressed asymmetry will average to zero and the

diagrams will only contribute at order 1/Q2 as in Ref. !28".

First we will calculate the # matrix to lowest order

'called #L
%*) in the quark-scalar diquark model which was

used in Ref. !7". 'Although the model is based on a point-like
coupling of a scalar diquark to elementary fermions, it can be

softened to simulate a hadronic bound state by differentiating

the wave function formally with respect to a parameter such

as the proton mass.( As indicated earlier, no nonzero f 1T
! and

h1
! will arise from #L

%* . Next we will include an additional

gluon exchange to model the initial- and/or final-state inter-

actions 'relevant for timelike or spacelike processes( to cal-
culate # I/F

%* and do obtain nonzero values for f 1T
! and h1

! .

Our results agree with those recently obtained in the same

model by Goldstein and Gamberg !12". We can then obtain
an expression for the cos 2+ asymmetry from Eq. '16( and
perform a numerical estimation of the asymmetry.

A. ! matrix in the lowest order „!
L

"#…
As indicated in Fig. 4 the initial proton has its momentum

given by P&!(P",P#,P!)!(P
",M 2/P" ,0!), and the fi-

nal diquark P!&!(P!",P!#,P!! )!„P"(1#,),(-2

"r!
2 )/P"(1#,),r!…. We use the convention a$!a0$a3,

a•b!1/2 (a"b#"a#b")#a!•b! .
We will first calculate the # matrix to lowest order (#L

%*)

in the quark-scalar diquark model used in Ref. !7". By cal-
culation of Fig. 4 one readily obtains

#L
%*!ag2" ū'P ,S (

r”"m

r2#m2#*" r”"m

r2#m2
u'P ,S (#%

1

P"'1#,(

!ag2! ū'P ,S ('r”"m ("*!'r”"m (u'P ,S ("%
1

P"'1#,(

%$ 1

,$M 2#
m2"r!

2

,
#

-2"r!
2

1#, % % 2

, '17(

with a constant a!1/!2(2$)3" . The normalization is fixed
by the condition

& d,d2r! f 1', ,r!(!1. '18(

In Eq. '17( we used the relation

FIG. 2. The leading-order contribution to the Drell-Yan process.

FIG. 3. The initial-state interaction contribution to the Drell-Yan

process.

FIG. 4. Diagram which gives the lowest order # 'called #L
%*).

BOER, BRODSKY, AND HWANG PHYSICAL REVIEW D 67, 054003 '2003(

054003-4

Double Initial-State Interactions 
generate anomalous  

the differential cross section is written as

1

!

d!

d"
!
3

4#

1

$"3

#! 1"$ cos2%"& sin2% cos'"
(

2
sin2% cos 2' " .

)1*

These angular dependencies1 can all be generated by pertur-

bative QCD corrections where, for instance, initial quarks

radiate off high energy gluons into the final state. Such a

perturbative QCD calculation at next-to-leading order leads

to $+1,&+0,(+0 at a very small transverse momentum of

the lepton pair. More generally, the Lam-Tung relation 1

$$$2(!0 ,17- is expected to hold at order .s and the

relation is hardly modified by next-to-leading order (.s
2) per-

turbative QCD corrections ,18-. However, this relation is not
satisfied by the experimental data ,13,14-. The Drell-Yan
data show remarkably large values of ( , reaching values of
about 30% at transverse momenta of the lepton pair between

2 and 3 GeV )for Q2!m/*
2 !(4$12 GeV)2 and extracted in

the Collins-Soper frame ,19- to be discussed below*. These
large values of ( are not compatible with $+1 as also seen
in the data.

A number of explanations have been put forward, such as

a higher twist effect ,20,21-, following the ideas of Berger
and Brodsky ,22-. In Ref. ,20- the higher twist effect is mod-
eled using an asymptotic pion distribution amplitude, and it

appears to fall short in explaining the large values of ( .
In Ref. ,18- factorization-breaking correlations between

the incoming quarks are assumed and modeled in order to

account for the large cos 2' dependence. Here the correla-

tions are both in the transverse momentum and the spin of

the quarks. In Ref. ,6- this idea was applied in a factorized
approach ,23- involving the chiral-odd partner of the Sivers
effect, which is the transverse momentum dependent distri-

bution function called h1
! . From this point of view, the large

cos 2' azimuthal dependence can arise at leading order, i.e.

it is unsuppressed, from a product of two such distribution

functions. It offers a natural explanation for the large cos 2'
azimuthal dependence, but at the same time also for the

small cos' dependence, since chiral-odd functions can only

occur in pairs. The function h1
! is a quark helicity-flip matrix

element and must therefore occur accompanied by another

helicity flip. In the unpolarized Drell-Yan process this can

only be a product of two h1
! functions. Since this implies a

change by two units of angular momentum, it does not con-

tribute to a cos' asymmetry. In the present paper we will

discuss this scenario in terms of initial-state interactions,

which can generate a nonzero function h1
! .

We would also like to point out the experimental obser-

vation that the cos 2' dependence as observed by the NA10

Collaboration does not seem to show a strong dependence on

A, i.e. there was no significant difference between the deute-

rium and tungsten targets. Hence, it is unlikely that the asym-

metry originates from nuclear effects, and we shall assume it

to be associated purely with hadronic effects. We refer to

Ref. ,24- for investigations of nuclear enhancements.
We compute the function h1

!(x ,p!
2 ) and the resulting

cos 2' asymmetry explicitly in a quark-scalar diquark model
for the proton with an initial-state gluon interaction. In this

model h1
!(x ,p!

2 ) equals the T-odd )chiral-even* Sivers effect
function f 1T

! (x ,p!
2 ). Hence, assuming the cos 2' asymmetry

of the unpolarized Drell-Yan process does arise from non-

zero, large h1
! , this asymmetry is expected to be closely

related to the single-spin asymmetries in the SIDIS and the

Drell-Yan process, since each of these effects can arise from

the same underlying mechanism.

The Fermilab Tevatron and BNL Relativistic Heavy Ion

Collider )RHIC* should both be able to investigate azimuthal
asymmetries such as the cos 2' dependence. Since polarized
proton beams are available, RHIC will be able to measure

single-spin asymmetries as well. Unfortunately, one might

expect that the cos 2' dependence in pp→!!̄X )measurable
at RHIC* is smaller than for the process #$N→&"&$X ,

since in the former process there are no valence antiquarks

present. In this sense, the cleanest extraction of h1
! would be

from pp̄→!!̄X .

III. CROSS SECTION CALCULATION

In this section we will assume nonzero h1
! and discuss the

calculation of the leading order unpolarized Drell-Yan cross

section )given in Ref. ,6- with slightly different notation*

d!)h1h2→!!̄X *

d"dx1dx2d
2q!

!
.2

3Q2 0
a , ā

ea
2# A)y *F , f 1 f̄ 1-

"B)y *cos)2'*F $ )2ĥ•p!ĥ•k!

$p!•k!*
h1

!h̄1
!

M 1M 2
% & . )2*

This is expressed in the so-called Collins-Soper frame ,19-,
for which one chooses the following set of normalized vec-

tors )for details see, e.g. ,25-*:

t̂1q/Q , )3*

ẑ1
x1

Q
P̃1$

x2

Q
P̃2, )4*

ĥ1q! /Q!!)q$x1P1$x2P2*/Q! , )5*

where P̃ i1Pi$q/(2xi), Pi are the momenta of the two in-

coming hadrons and q is the four momentum of the virtual

photon or, equivalently, of the lepton pair. This can be related

to standard Sudakov decompositions of these momenta

1We neglect sin' and sin 2' dependencies, since these are of

higher order in .s ,15,16- and are expected to be small.
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Drell-Yan planar correlations

Double ISI

Hard gluon radiation
ν(QT )

Q = 8GeV

Conformal behavior: Q4F1(Q2)→ const

Conformal behavior: Q2Fπ(Q2)→ const

αs(Q2) � constant at small Q2.

Q4F1(Q2) � constant

If αs(Q∗2) � constant

ν(QT )

Q = 8GeV

Conformal behavior: Q4F1(Q2)→ const

Conformal behavior: Q2Fπ(Q2)→ const

αs(Q2) � constant at small Q2.

Q4F1(Q2) � constant

If αs(Q∗2) � constant

ν(QT )

Q = 8GeV

πN → µ+µ−X NA10

Conformal behavior: Q4F1(Q2)→ const

Conformal behavior: Q2Fπ(Q2)→ const

αs(Q2) � constant at small Q2.

Q4F1(Q2) � constant

Violates Lam-Tung relation!

Boer, Hwang, sjb

ar
X

iv
:h

ep
-p

h
/0

5
1
1
0
2
5
 v

1
  
 3

 N
o
v
 2

0
0
5

ANOMALOUS DRELL-YAN ASYMMETRY FROM

HADRONIC OR QCD VACUUM EFFECTS ∗
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The anomalously large cos(2φ) asymmetry measured in the Drell-Yan process is
discussed. Possible origins of this large deviation from the Lam-Tung relation are
considered with emphasis on the comparison of two particular proposals: one that
suggests it arises from a QCD vacuum effect and one that suggests it is a hadronic
effect. Experimental signatures distinguishing these effects are discussed.

1. Introduction

Azimuthal asymmetries in the unpolarized Drell-Yan (DY) process differ-
ential cross section arise only in the following way

1

σ

dσ

dΩ
∝

(

1 + λ cos2 θ + µ sin 2θ cosφ +
ν

2
sin2 θ cos 2φ

)

, (1)

where φ is the angle between the lepton and hadron planes in the lepton
center of mass frame (see Fig. 3 of Ref.1). In the parton model (order α0

s)
quark-antiquark annihilation yields λ = 1, µ = ν = 0. The leading order
(LO) perturbative QCD corrections (order α1

s) lead to µ "= 0, ν "= 0 and
λ "= 1, such that the so-called Lam-Tung relation 1 − λ − 2ν = 0 holds.
Beyond LO, small deviations from the Lam-Tung relation will arise. If one
defines the quantity κ ≡ − 1

4 (1 − λ − 2ν) as a measure of the deviation

from the Lam-Tung relation, it has been calculated2,3 that at order α2
s κ

is small and negative: −κ <
∼ 0.01, for values of the muon pair’s transverse

momentum QT of up to 3 GeV/c.
Surprisingly, the data is incompatible with the Lam-Tung relation and

with its small order-α2
s modification as well3. These data from CERN’s

NA10 Collaboration4,5 and Fermilab’s E615 Collaboration6 are for π−N →
µ+µ−X , with N = D and W . The π−-beam energies range from 140 GeV

∗Talk presented at the International Workshop on Transverse Polarization Phenomena
in Hard Processes (Transversity 2005), Villa Olmo, Como, Italy, September 7-10, 2005

1

PQCD Factorization (Lam Tung):

Model: Boer,

83



 Stan Brodsky,  SLACTransversity 2011  Light-Front Holography and 
Proton  Transversity

Anomalous effect from Double ISI in 
Massive Lepton Production

• Leading Twist, valence quark dominated

• Violates Lam-Tung Relation!

• Not obtained from standard PQCD subprocess analysis

• Normalized to the square of the single spin asymmetry in semi-inclusive 
DIS

• No polarization required 

• Challenge to standard picture of PQCD Factorization

Boer, Hwang, sjb
ν(QT )

cos 2φ correlation

Q = 8GeV

πN → µ+µ−X NA10

Conformal behavior: Q4F1(Q2)→ const

Conformal behavior: Q2Fπ(Q2)→ const

αs(Q2) � constant at small Q2.

function. Here we do not intend to give a full demonstration

of this in the Drell-Yan process; a generalized factorization

theorem which includes transverse momentum dependent

functions and initial- or final-state interactions remains to be

proven !27". Instead we present how to arrive at an effective
# from initial- and/or final-state interactions and use this

effective # in Fig. 2. Also, for simplicity we will perform

the explicit calculation in QED. Our analysis can be gener-

alized to the corresponding calculation in QCD. The final-

state interaction from gluon exchange has the strength

!e1e2!/4$→CF%s(&
2), where ei are the photon couplings to

the quark and diquark.

The diagram in Fig. 3 coincides with Fig. 6'a( of Ref. !28"
used for the evaluation of a twist-4 contribution ()1/Q2) to

the unpolarized Drell-Yan cross section. The differences

compared to Ref. !28" are that in the present case there is
nonzero transverse momentum of the partons, and the as-

sumption that the matrix elements are nonvanishing in case

the gluon has a vanishing light-cone momentum fraction 'but
nonzero transverse momentum(. This results in an unsup-
pressed asymmetry which is a function of the transverse mo-

mentum Q! of the lepton pair with respect to the initial

hadrons. If this transverse momentum is integrated over, then

the unsuppressed asymmetry will average to zero and the

diagrams will only contribute at order 1/Q2 as in Ref. !28".

First we will calculate the # matrix to lowest order

'called #L
%*) in the quark-scalar diquark model which was

used in Ref. !7". 'Although the model is based on a point-like
coupling of a scalar diquark to elementary fermions, it can be

softened to simulate a hadronic bound state by differentiating

the wave function formally with respect to a parameter such

as the proton mass.( As indicated earlier, no nonzero f 1T
! and

h1
! will arise from #L

%* . Next we will include an additional

gluon exchange to model the initial- and/or final-state inter-

actions 'relevant for timelike or spacelike processes( to cal-
culate # I/F

%* and do obtain nonzero values for f 1T
! and h1

! .

Our results agree with those recently obtained in the same

model by Goldstein and Gamberg !12". We can then obtain
an expression for the cos 2+ asymmetry from Eq. '16( and
perform a numerical estimation of the asymmetry.

A. ! matrix in the lowest order „!
L

"#…
As indicated in Fig. 4 the initial proton has its momentum

given by P&!(P",P#,P!)!(P
",M 2/P" ,0!), and the fi-

nal diquark P!&!(P!",P!#,P!! )!„P"(1#,),(-2

"r!
2 )/P"(1#,),r!…. We use the convention a$!a0$a3,

a•b!1/2 (a"b#"a#b")#a!•b! .
We will first calculate the # matrix to lowest order (#L

%*)

in the quark-scalar diquark model used in Ref. !7". By cal-
culation of Fig. 4 one readily obtains

#L
%*!ag2" ū'P ,S (

r”"m

r2#m2#*" r”"m

r2#m2
u'P ,S (#%

1

P"'1#,(

!ag2! ū'P ,S ('r”"m ("*!'r”"m (u'P ,S ("%
1

P"'1#,(

%$ 1

,$M 2#
m2"r!

2

,
#

-2"r!
2

1#, % % 2

, '17(

with a constant a!1/!2(2$)3" . The normalization is fixed
by the condition

& d,d2r! f 1', ,r!(!1. '18(

In Eq. '17( we used the relation

FIG. 2. The leading-order contribution to the Drell-Yan process.

FIG. 3. The initial-state interaction contribution to the Drell-Yan

process.

FIG. 4. Diagram which gives the lowest order # 'called #L
%*).
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               correlation for quarkonium production at 
leading twist from double ISI

the differential cross section is written as

1

!

d!

d"
!
3

4#

1

$"3

#! 1"$ cos2%"& sin2% cos'"
(

2
sin2% cos 2' " .

)1*

These angular dependencies1 can all be generated by pertur-

bative QCD corrections where, for instance, initial quarks

radiate off high energy gluons into the final state. Such a

perturbative QCD calculation at next-to-leading order leads

to $+1,&+0,(+0 at a very small transverse momentum of

the lepton pair. More generally, the Lam-Tung relation 1

$$$2(!0 ,17- is expected to hold at order .s and the

relation is hardly modified by next-to-leading order (.s
2) per-

turbative QCD corrections ,18-. However, this relation is not
satisfied by the experimental data ,13,14-. The Drell-Yan
data show remarkably large values of ( , reaching values of
about 30% at transverse momenta of the lepton pair between

2 and 3 GeV )for Q2!m/*
2 !(4$12 GeV)2 and extracted in

the Collins-Soper frame ,19- to be discussed below*. These
large values of ( are not compatible with $+1 as also seen
in the data.

A number of explanations have been put forward, such as

a higher twist effect ,20,21-, following the ideas of Berger
and Brodsky ,22-. In Ref. ,20- the higher twist effect is mod-
eled using an asymptotic pion distribution amplitude, and it

appears to fall short in explaining the large values of ( .
In Ref. ,18- factorization-breaking correlations between

the incoming quarks are assumed and modeled in order to

account for the large cos 2' dependence. Here the correla-

tions are both in the transverse momentum and the spin of

the quarks. In Ref. ,6- this idea was applied in a factorized
approach ,23- involving the chiral-odd partner of the Sivers
effect, which is the transverse momentum dependent distri-

bution function called h1
! . From this point of view, the large

cos 2' azimuthal dependence can arise at leading order, i.e.

it is unsuppressed, from a product of two such distribution

functions. It offers a natural explanation for the large cos 2'
azimuthal dependence, but at the same time also for the

small cos' dependence, since chiral-odd functions can only

occur in pairs. The function h1
! is a quark helicity-flip matrix

element and must therefore occur accompanied by another

helicity flip. In the unpolarized Drell-Yan process this can

only be a product of two h1
! functions. Since this implies a

change by two units of angular momentum, it does not con-

tribute to a cos' asymmetry. In the present paper we will

discuss this scenario in terms of initial-state interactions,

which can generate a nonzero function h1
! .

We would also like to point out the experimental obser-

vation that the cos 2' dependence as observed by the NA10

Collaboration does not seem to show a strong dependence on

A, i.e. there was no significant difference between the deute-

rium and tungsten targets. Hence, it is unlikely that the asym-

metry originates from nuclear effects, and we shall assume it

to be associated purely with hadronic effects. We refer to

Ref. ,24- for investigations of nuclear enhancements.
We compute the function h1

!(x ,p!
2 ) and the resulting

cos 2' asymmetry explicitly in a quark-scalar diquark model
for the proton with an initial-state gluon interaction. In this

model h1
!(x ,p!

2 ) equals the T-odd )chiral-even* Sivers effect
function f 1T

! (x ,p!
2 ). Hence, assuming the cos 2' asymmetry

of the unpolarized Drell-Yan process does arise from non-

zero, large h1
! , this asymmetry is expected to be closely

related to the single-spin asymmetries in the SIDIS and the

Drell-Yan process, since each of these effects can arise from

the same underlying mechanism.

The Fermilab Tevatron and BNL Relativistic Heavy Ion

Collider )RHIC* should both be able to investigate azimuthal
asymmetries such as the cos 2' dependence. Since polarized
proton beams are available, RHIC will be able to measure

single-spin asymmetries as well. Unfortunately, one might

expect that the cos 2' dependence in pp→!!̄X )measurable
at RHIC* is smaller than for the process #$N→&"&$X ,

since in the former process there are no valence antiquarks

present. In this sense, the cleanest extraction of h1
! would be

from pp̄→!!̄X .

III. CROSS SECTION CALCULATION

In this section we will assume nonzero h1
! and discuss the

calculation of the leading order unpolarized Drell-Yan cross

section )given in Ref. ,6- with slightly different notation*

d!)h1h2→!!̄X *

d"dx1dx2d
2q!

!
.2

3Q2 0
a , ā

ea
2# A)y *F , f 1 f̄ 1-

"B)y *cos)2'*F $ )2ĥ•p!ĥ•k!

$p!•k!*
h1

!h̄1
!

M 1M 2
% & . )2*

This is expressed in the so-called Collins-Soper frame ,19-,
for which one chooses the following set of normalized vec-

tors )for details see, e.g. ,25-*:

t̂1q/Q , )3*

ẑ1
x1

Q
P̃1$

x2

Q
P̃2, )4*

ĥ1q! /Q!!)q$x1P1$x2P2*/Q! , )5*

where P̃ i1Pi$q/(2xi), Pi are the momenta of the two in-

coming hadrons and q is the four momentum of the virtual

photon or, equivalently, of the lepton pair. This can be related

to standard Sudakov decompositions of these momenta

1We neglect sin' and sin 2' dependencies, since these are of

higher order in .s ,15,16- and are expected to be small.
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8

FIG. 8: The exchange of two extra gluons, as in this graph,
will tend to give non-factorization in unpolarized cross sec-
tions.

FIG. 9: In a conventional perturbative QCD calculation for
an unpolarized partonic cross section, non-factorization by
the mechanisms discussed in this paper would first appear in
graphs of this order.

culations. Normally one performs calculations with on-
shell massless quarks and gluons, and extracts collinear
divergences that are grouped with parton densities and
fragmentation functions; any remaining divergences can-
cel between graphs. Non-factorization in the hadronic
cross section corresponds to uncanceled divergences in
quark-gluon calculations. The lowest order in which the
mechanisms we have discussed could possible give an un-
canceled divergence in unpolarized partonic cross sec-
tions is NNNLO, as in Fig. 9. The region for the un-
canceled divergence is where the lower gluon is collinear
to the lower incoming quark, and two of the exchanged
gluons are soft. This graph is at least one order beyond
all standard perturbative QCD calculations.

Because our calculations directly concern cross sec-
tions that use transverse-momentum-dependent parton
densities, a certain amount of care is needed in inter-
preting the results. The natural direction for the Wilson
lines is light-like, as from Eq. (3.8). However light-like
Wilson lines give divergences in transverse-momentum-
dependent densities [7]. These are due to rapidity di-
vergences [20] in integrals over gluon momentum; they
cancel [7] in conventional parton densities only because
of an integral over all transverse momentum in integrated

parton densities. The solution adopted by Collins, Soper
and Sterman [7] (CSS) was to define parton densities
without Wilson lines but in a non-light-like axial gauge.
The gauge-fixing vector introduces a cut-off on gluon ra-
pidity, and then an evolution equation with respect to
the cut-off was derived. The non-perturbative functions
involved in this CSS evolution equation have been mea-
sured (e.g., [21]) in fits to DY cross sections, and would
be an essential ingredient in testing non-factorization.

However, there are some unsatisfactory features of the
use of axial gauges, which are made particularly evident
in polarized cross sections. This includes complications
concerning gauge links at infinity [22], when a Wilson line
formalism is used. A much better definition is to use a
non-light-like Wilson line. This again obeys an equation
of the CSS form. It is also possible to use a subtractive
formalism [20, 23] with light-like Wilson lines but with
generalized renormalization factors involving vacuum ex-
pectation values of Wilson lines, which also implement a
rapidity cutoff, and lead to a CSS equation.

To test the predicted non-factorization, we simply need
predictions of high-pT hadrons in hadron-hadron colli-
sions, made on the basis of fits to parton densities in
DIS and DY and to fragmentation functions in e+e− and
SIDIS [24]. Probing the SSA would be particularly inter-
esting, and such measurements are underway at RHIC
[25, 26]. The same physics is probed in the transverse
shape of jets, and would be worth investigating.

Our counterexample applies in a kinematic region
where the normal intuitive ideas of the parton model
appear quite appropriate, even with a generalization to
kT -factorization. Therefore it forces us to question un-
der what conditions factorization is actually valid and to
what extent it has actually been demonstrated. It cannot
be assumed that naive extensions of apparently estab-
lished results are applicable beyond the cases to which
the actual proofs explicitly apply.

For hadron-hadron collisions, factorization has been
proved [5, 6] for the Drell-Yan process integrated over
transverse momentum or at large transverse momentum
(of order Q). These proofs apply in the presence of gluon
exchanges of the kind that we discuss in the present pa-
per. But these papers do not go beyond this, to the pro-
duction of hadrons. Because factorization is important to
all aspects of hadron-collider phenomenology, it is critical
to solve this problem for the hadroproduction of high-pT

hadrons. Given our counterexample to kT -factorization,
a proof of factorization can only succeed in a situation
where conventional collinear factorization is appropriate.
For dihadron production this is when the hadron-pair has
itself large transverse momentum or when the pair’s out-
of-plane transverse momentum is integrated over a wide
range.

In fact, Nayak, Qiu and Sterman [27] have recently
given strong arguments that collinear factorization does
indeed hold in such a situations. The graphs examined
are similar to ours. They apply Ward identities to prove
an eikonalization generalizing our specific calculations.
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Factorization is violated in production of high-transverse-momentum particles in
hadron-hadron collisions
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We show that hard-scattering factorization is violated in the production of high-pT hadrons in
hadron-hadron collisions, in the case that the hadrons are back-to-back, so that kT factorization
is to be used. The explicit counterexample that we construct is for the single-spin asymmetry
with one beam transversely polarized. The Sivers function needed here has particular sensitivity
to the Wilson lines in the parton densities. We use a greatly simplified model theory to make the
breakdown of factorization easy to check explicitly. But the counterexample implies that standard
arguments for factorization fail not just for the single-spin asymmetry but for the unpolarized cross
section for back-to-back hadron production in QCD in hadron-hadron collisions. This is unlike
corresponding cases in e+e− annihilation, Drell-Yan, and deeply inelastic scattering. Moreover, the
result endangers factorization for more general hadroproduction processes.

PACS numbers: 12.38.Bx, 12.39.St, 13.85.Ni, 13.87.-a, 13.88.+e

I. INTRODUCTION

The great importance of hard-scattering factorization
in high-energy phenomenology hardly needs emphasis.
Essential to its application and predictiveness is the uni-
versality of parton densities (and fragmentation func-
tions, etc) between different reactions. However, as can
be seen from [1, 2, 3, 4], process-dependent Wilson lines
appear to be needed in the inclusive production of two
high-transverse-momentum particles in hadron-hadron
collisions, i.e., in the process

H1 + H2 → H3 + H4 + X. (1.1)

In this paper we will show that this situation definitively
leads to a breakdown of factorization.

The standard expectation is that the cross section is
a convolution of a hard scattering coefficient dσ̂, par-
ton densities, fragmentation functions and a possible soft
function:

E3E4

dσ

d3p3d3p4

=
∑

∫

dσ̂i+j→k+l+X fi/1 fj/2 d3/k d4/l

+ power-suppressed correction.
(1.2)

Here the sum and integral are over the flavors and mo-
menta of the partons of the hard scattering, fi/H denotes
a parton density, and dH/i a fragmentation function.

It is noteworthy that the classic published proofs for
factorization in hadron-hadron scattering [5, 6] only con-
cerned the Drell-Yan process. There are a number of

∗Electronic address: collins@phys.psu.edu
†Electronic address: jwq@iastate.edu

difficult issues in the proof that are highly non-trivial
to extend to other reactions in hadron-hadron collisions,
even though Eq. (1.2) is a standard expectation.

We will examine the case that the produced hadrons
are almost back-to-back. Then the appropriate factoriza-
tion property is kT -factorization, which entails [7] the use
of transverse-momentum dependent (TMD) parton den-
sities and fragmentation functions. However, the issues
raised by our counterexample to factorization are suffi-
ciently general that they create a need to examine very
carefully the arguments for factorization in hadropro-
duction of hadrons even in situations where ordinary
collinear factorization with integrated densities is appro-
priate. In the case of kT -factorization with TMD den-
sities, the factorization formula needs the insertion of a
soft factor S, not shown in Eq. (1.2).

The problems concern gluon exchanges between differ-
ent kinds of collinear line, as in Fig. 7 below. To obtain
factorization, the gluon attachments must be converted
to Wilson lines in gauge-invariant definitions of the par-
ton densities and fragmentation functions. This relies [6]
on the use of Ward identities applied to approximations
to the amplitudes. But the approximations are only valid
after certain contour deformations on the loop momenta.

Bacchetta, Bomhof, Mulders and Pijlman [1, 2, 3, 4]
argued that because of the complicated combination of
initial- and final-state interactions, the Wilson lines must
be modified. What is not so clear is the interpretation of
their result. So in the present paper we present an argu-
ment to make fully explicit the failure of factorization.

Since the issue is one of factorization in general, and
not just specifically in QCD, we clarify the issue by ex-
amining a particular process in a model field theory. The
process is a transverse single-spin asymmetry of the kind
controlled by a Sivers function. This is a case where prob-

John Collins, Jian-Wei Qiu . ANL-HEP-PR-07-25, May 2007.
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c

c̄

g

Q4F1(Q2)→ const

x→ 1 ≡ kz → −∞

α(t) = α(0)
1−Π(t)

2πρ(x, b, Q)

c

c̄

g

Q4F1(Q2)→ const

x→ 1 ≡ kz → −∞

α(t) = α(0)
1−Π(t)

2πρ(x, b, Q)

Problem for factorization when both ISI and FSI occur

g
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p

p

π

Important Corrections from Initial and Final State Corrections

Sivers & Collins Odd-T Spin Effects, Co-planarity Correlations
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• Crucial point: Sivers function in inclusive single 
particle production contains both ISI and FSI

• Color factors entirely due to color structure 
of the partonic subprocess

•  consider channel   

Observation

qq� → qq�
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Diffractive Deep Inelastic Lepton-Proton Scattering

DDIS FNAL: 
Goulianas



                       

Diffractive Structure Function F2
D  
de Roeck

10% to 15% of DIS events are diffractive !
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QCD Mechanism for Rapidity Gaps

Wilson Line: ψ(y)
Z y

0
dx eiA(x)·dx ψ(0)

P

92

Reproduces lab-frame color dipole approach

Hoyer, Marchal, Peigne, Sannino, sjb
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Feynman Gauge Light-Cone Gauge

Result is Gauge Independent

Final State Interactions in QCD 
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Integration over on-shell domain produces phase i

Need Imaginary Phase to Generate Pomeron and DDIS

Need Imaginary Phase to Generate T-
Odd Single-Spin Asymmetry

Physics of FSI not in Wavefunction of Target!
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FIG. 2: (Color online) Comparison with experimental ratios
R = F A

2 /F D
2 . The ordinate indicates the fractional differences

between experimental data and theoretical values: (Rexp −

Rtheo)/Rtheo.
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FIG. 3: (Color online) Comparison with experimental data of
R = F A

2 /F C,Li
2

. The ratios (Rexp − Rtheo)/Rtheo are shown.

ters cannot be determined easily by the present data.
The χ2 analysis results are shown in comparison with

the data. First, χ2 values are listed for each nuclear
data set in Table III. The total χ2 divided by the degree
of freedom is 1.58. Comparison with the actual data is
shown in Figs. 2, 3, and 4 for the FA

2 /FD
2 , FA

2 /FC,Li
2 ,

and Drell-Yan (σpA
DY /σpA′

DY ) data, respectively. These ra-
tios are denoted Rexp for the experimental data and Rtheo

for the parametrization calculations. The deviation ra-
tios (Rexp−Rtheo)/Rtheo are shown in these figures. The
NPDFs are evolved to the experimental Q2 points, then
the ratios (Rexp − Rtheo)/Rtheo are calculated.
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FIG. 5: (Color online) Parametrization results are compared
with the data of F2 ratios F Ca

2 /F D
2 and Drell-Yan ratios

σpCa
DY /σpD

DY . The theoretical curves and uncertainties are cal-
culated at Q2=5 GeV2 for the F2 ratios and at Q2=50 GeV2

for the Drell-Yan ratios.

As examples, actual data are compared with the
parametrization results in Fig. 5 for the ratios FCa

2 /FD
2

and σpCa
DY /σpD

DY . The shaded areas indicate the ranges of
NPDF uncertainties, which are calculated at Q2=5 GeV2

for the F2 ratios and at Q2=50 GeV2 for the Drell-Yan
ratios. The experimental data are well reproduced by the
parametrization, and the the data errors agree roughly
with the uncertainty bands. We should note that the
parametrization curves and the uncertainties are calcu-
lated at at Q2=5 and 50 GeV2, whereas the data are
taken at various Q2 points. In Fig. 5, the smallest-
x data at x=0.0062 for FCa

2 /FD
2 seems to deviate from

the parametrization curve. However, the deviation comes
simply from a Q2 difference. In fact, if the theoretical ra-
tio is estimated at the experimental Q2 point, the data
point agrees with the parametrization as shown in Fig.
2.
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Anti-Shadowing

Shadowing
M. Hirai, S. Kumano and T. H. Nagai,

“Nuclear parton distribution functions

and their uncertainties,”

Phys. Rev. C 70, 044905 (2004)

[arXiv:hep-ph/0404093].
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Nuclear Shadowing in QCD 

Nuclear  Shadowing not included in nuclear LFWF ! 

 Dynamical effect due to virtual photon interacting in nucleus

Stodolsky
Pumplin, sjb

Gribov

Shadowing depends on understanding leading twist-diffraction in DIS
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The one-step and two-step processes in DIS
on a nucleus.

Coherence at small Bjorken xB :
1/MxB = 2ν/Q2 ≥ LA.

If the scattering on nucleon N1 is via pomeron
exchange, the one-step and two-step ampli-
tudes are opposite in phase, thus diminishing
the q flux reaching N2.

→ Shadowing of the DIS nuclear structure
functions.

  Observed HERA DDIS produces nuclear shadowing

97
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Integration over on-shell domain produces phase i

Need Imaginary Phase to Generate Pomeron
Need Imaginary Phase to Generate T-

Odd Single-Spin Asymmetry

Physics of FSI not in Wavefunction of Target

Shadowing depends on leading-
twist DDIS

98

Antishadowing (Reggeon exchange) is not universal!

Schmidt, Yang, sjb
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The one-step and two-step processes in DIS
on a nucleus.

Coherence at small Bjorken xB :
1/MxB = 2ν/Q2 ≥ LA.

If the scattering on nucleon N1 is via pomeron
exchange, the one-step and two-step ampli-
tudes are opposite in phase, thus diminishing
the q flux reaching N2.

→ Shadowing of the DIS nuclear structure
functions.

99

Reggeon

increasing

 Anti-

Schmidt, Yang, sjb



 
 Stan Brodsky,  SLACTransversity 2011  Light-Front Holography and 

Proton  Transversity

Non-singlet 
Reggeon 
Exchange

x0.5

Kuti-Weisskopf 
behavior
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Phase of two-step amplitude relative to one
step:

1√
2
(1− i)× i = 1√

2
(i + 1)

Constructive Interference

Depends on quark flavor!

Thus antishadowing is not universal

Different for couplings of γ∗, Z0, W±

Reggeon 
Exchange

Critical test: Tagged Drell-Yan
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Figure 9: The nuclear shadowing and antishadowing effects at 〈Q2〉 = 1 GeV2. The
experimental data are taken from Refs. [47, 48].

interactions.

3 Nuclear effects on extraction of sin
2 θW

The observables measured in neutrino DIS experiments are the ratios of neutral cur-

rent (NC) to charged current (CC) current events; these are related via Monte Carlo

simulations to sin2 θW . In order to examine the possible impact of nuclear shadowing

and antishadowing corrections on the extraction of sin2 θW , one is usually interested

in the following ratios

Rν
A =

σ(νµ + A → νµ + X)

σ(νµ + A → µ− + X)
, (38)

Rν
A =

σ(νµ + A → νµ + X)

σ(νµ + A → µ+ + X)
(39)

of NC to CC neutrino (anti-neutrino) cross sections for a nuclear target A. As is well

known, if nuclear effects are neglected for an isoscalar target, one can extract the

24

S. J. Brodsky, I. Schmidt and J. J. Yang,
“Nuclear Antishadowing in
Neutrino Deep Inelastic Scattering,”
Phys. Rev. D 70, 116003 (2004)
[arXiv:hep-ph/0409279].
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Predicted nuclear shadowing and and antishadowing at 

< xF >= 0.33

Q
2 = 1 GeV2

pp → p + H + p

H, Z
0
, ηb

b⊥ ∼ 1/Q

Must have ∆Lz = ±1 to have nonzero F2

Use charge radius R
2 = −6F

�
1(0)
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Figure 1: Nuclear correction factor R according to Eq. 1
for the differential cross section d2σ/dx dQ2 in charged
current neutrino-Fe scattering at Q2 = 5 GeV2. Results
are shown for the charged current neutrino (solid lines)
and anti-neutrino (dashed lines) scattering from iron.
The upper (lower) pair of curves shows the result of our
analysis with the Base-2 (Base-1) free-proton PDFs.

Figure 2: Predictions (solid and dashed line) for the
structure function ratio F F e

2 /F D
2 using the iron PDFs

extracted from fits to NuTeV neutrino and anti-neutrino
data. The SLAC/NMC parameterization is shown with
the dot-dashed line. The structure function F D

2 in the
denominator has been computed using either the Base-2
(solid line) or the Base-1 (dashed line) PDFs.

(significant) dependence on the energy scale Q, the atomic number A, or the specific observable.
The increasing precision of both the experimental data and the extracted PDFs demand that the
applied nuclear correction factors be equally precise as these contributions play a crucial role in
determining the PDFs. In this study we reexamine the source and size of the nuclear corrections
that enter the PDF global analysis, and quantify the associated uncertainty. Additionally, we
provide the foundation for including the nuclear correction factors as a dynamic component of
the global analysis so that the full correlations between the heavy and light target data can be
exploited.

A recent study 1 analyzed the impact of new data sets from the NuTeV 3, Chorus, and E-
866 Collaborations on the PDFs. This study found that the NuTeV data set (together with the
model used for the nuclear corrections) pulled against several of the other data sets, notably the
E-866, BCDMS and NMC sets. Reducing the nuclear corrections at large values of x reduced
the severity of this pull and resulted in improved χ2 values. These results suggest on a purely
phenomenological level that the appropriate nuclear corrections for ν-DIS may well be smaller
than assumed.

To investigate this question further, we use the high-statistics ν-DIS experiments to perform
a dedicated PDF fit to neutrino–iron data.2 Our methodology for this fit is parallel to that of
the previous global analysis,1 but with the difference we use only Fe data and that no nuclear
corrections are applied to the analyzed data; hence, the resulting PDFs are for a bound proton
in an iron nucleus. Specifically, we determine iron PDFs using the recent NuTeV differential
neutrino (1371 data points) and anti-neutrino (1146 data points) DIS cross section data,3 and
we include NuTeV/CCFR dimuon data (174 points) which are sensitive to the strange quark
content of the nucleon. We impose kinematic cuts of Q2 > 2 GeV and W > 3.5 GeV, and obtain
a good fit with a χ2 of 1.35 per data point.2

2 Nuclear Correction Factors

We now compare our iron PDFs with the free-proton PDFs (appropriately scaled) to infer the
proper heavy target correction which should be applied to relate these quantities. Within the

Extrapolations from  NuTeV

SLAC/NMC data

Q2 = 5 GeV2

Scheinbein, Yu, Keppel, Morfin, Olness, Owens
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No anti-shadowing in deep inelastic neutrino scattering !
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Nuclear Antishadowing not universal !
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Schmidt, Yang; sjb
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Shadowing and Antishadowing  of DIS 
Structure Functions

S. J. Brodsky, I. Schmidt and J. J. Yang, “Nuclear Antishadowing in
Neutrino Deep Inelastic Scattering,” Phys. Rev. D 70, 116003 (2004)
[arXiv:hep-ph/0409279].

S. J. Brodsky, I. Schmidt and J. J. Yang,
“Nuclear Antishadowing in
Neutrino Deep Inelastic Scattering,”
Phys. Rev. D 70, 116003 (2004)
[arXiv:hep-ph/0409279].
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Modifies
NuTeV extraction of 

sin2 θW

Test in flavor-tagged 
lepton-nucleus collisions
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Shadowing and Antishadowing in Lepton-Nucleus Scattering

• Shadowing: Destructive Interference

of Two-Step and One-Step Processes

Pomeron Exchange

• Antishadowing: Constructive Interference

of Two-Step and One-Step Processes!

Reggeon and Odderon Exchange

• Antishadowing is Not Universal!

Electromagnetic and weak currents:

different nuclear effects !

Potentially significant for NuTeV Anomaly}
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Jian-Jun Yang
Ivan Schmidt

Hung Jung Lu
sjb

Can explain NuTeV result!



 
 Stan Brodsky,  SLACTransversity 2011  Light-Front Holography and 

Proton  Transversity

Figure 1: Nuclear correction factor R according to Eq. 1
for the differential cross section d2σ/dx dQ2 in charged
current neutrino-Fe scattering at Q2 = 5 GeV2. Results
are shown for the charged current neutrino (solid lines)
and anti-neutrino (dashed lines) scattering from iron.
The upper (lower) pair of curves shows the result of our
analysis with the Base-2 (Base-1) free-proton PDFs.

Figure 2: Predictions (solid and dashed line) for the
structure function ratio F F e

2 /F D
2 using the iron PDFs

extracted from fits to NuTeV neutrino and anti-neutrino
data. The SLAC/NMC parameterization is shown with
the dot-dashed line. The structure function F D

2 in the
denominator has been computed using either the Base-2
(solid line) or the Base-1 (dashed line) PDFs.

(significant) dependence on the energy scale Q, the atomic number A, or the specific observable.
The increasing precision of both the experimental data and the extracted PDFs demand that the
applied nuclear correction factors be equally precise as these contributions play a crucial role in
determining the PDFs. In this study we reexamine the source and size of the nuclear corrections
that enter the PDF global analysis, and quantify the associated uncertainty. Additionally, we
provide the foundation for including the nuclear correction factors as a dynamic component of
the global analysis so that the full correlations between the heavy and light target data can be
exploited.

A recent study 1 analyzed the impact of new data sets from the NuTeV 3, Chorus, and E-
866 Collaborations on the PDFs. This study found that the NuTeV data set (together with the
model used for the nuclear corrections) pulled against several of the other data sets, notably the
E-866, BCDMS and NMC sets. Reducing the nuclear corrections at large values of x reduced
the severity of this pull and resulted in improved χ2 values. These results suggest on a purely
phenomenological level that the appropriate nuclear corrections for ν-DIS may well be smaller
than assumed.

To investigate this question further, we use the high-statistics ν-DIS experiments to perform
a dedicated PDF fit to neutrino–iron data.2 Our methodology for this fit is parallel to that of
the previous global analysis,1 but with the difference we use only Fe data and that no nuclear
corrections are applied to the analyzed data; hence, the resulting PDFs are for a bound proton
in an iron nucleus. Specifically, we determine iron PDFs using the recent NuTeV differential
neutrino (1371 data points) and anti-neutrino (1146 data points) DIS cross section data,3 and
we include NuTeV/CCFR dimuon data (174 points) which are sensitive to the strange quark
content of the nucleon. We impose kinematic cuts of Q2 > 2 GeV and W > 3.5 GeV, and obtain
a good fit with a χ2 of 1.35 per data point.2

2 Nuclear Correction Factors

We now compare our iron PDFs with the free-proton PDFs (appropriately scaled) to infer the
proper heavy target correction which should be applied to relate these quantities. Within the

Extrapolations from  NuTeV

SLAC/NMC data

Q2 = 5 GeV2

Scheinbein, Yu, Keppel, Morfin, Olness, Owens
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No anti-shadowing in deep inelastic neutrino scattering !
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• Square of Target LFWFs                 Modified by Rescattering: ISI & FSI

• No Wilson Line                             Contains Wilson Line, Phases

• Probability Distributions                 No Probabilistic Interpretation

• Process-Independent                      Process-Dependent - From Collision

• T-even Observables                        T-Odd (Sivers, Boer-Mulders, etc.)

• No Shadowing,  Anti-Shadowing      Shadowing,  Anti-Shadowing, Saturation

• Sum Rules: Momentum and Jz               Sum Rules Not Proven

• DGLAP Evolution; mod. at large x   DGLAP Evolution

• No Diffractive DIS                         Hard Pomeron and Odderon Diffractive DIS

Static                           Dynamic

General remarks about orbital angular mo-
mentum
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Yuan, sjb
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Hoyer 

 Lensing
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Hadronization at the Amplitude Level
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Construct helicity amplitude using Light-Front Perturbation 
theory;   coalesce quarks via LFWFs
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Hadronization at the Amplitude Level
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• Same principle as antihydrogen production: off-shell coalescence

• coalescence to hadron favored at equal rapidity, small transverse 
momenta

• leading heavy hadron production:  D and B mesons produced at large z

• hadron helicity conservation if  hadron LFWF has Lz =0

• Baryon AdS/QCD LFWF has aligned and anti-aligned quark spin

• Color Transparency

• Lensing

Features of  LF T-Matrix Formalism
“Event Amplitude Generator”
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Hadronization at the Amplitude Level!
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Crucial Test of Leading -Twist QCD:
Scaling at fixed xT

Oberwölz

α(Q2) � 4π
β0

1
logQ2/Λ2

QCD

E dσ
d3p

(pN → pX) = F (xT ,θCM)

pneff
T

E dσ
d3p

(pN → πX) = F (xT ,θCM)

pneff
T

E dσ
d3p

(pN → pX) = F (xT ,θCM)
p2N
T

Parton model:    neff  = 4

As fundamental as Bjorken scaling  in DIS

scaling law: neff  =  2 nactive - 4

xT =
2pT√

s

Bjorken, Kogut, Soper;  Blankenbecler, Gunion, sjb; 
Blankenbecler,Schmidt
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neff = 4
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neff = 2nactive -  4

u

p
gu→ γu

pp→ γX

gu→ γu

pp→ γX
gu→ γu

pp→ γX

E dσ
d3p

(pp→ γX) = F (θcm,xT )
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Figure 9: (left) xT scaling [52] of direct photon data in p-p and p-p̄ collisions. The quantity plotted is

(
√
s)n×Ed3!/dp3(xT ) with n = 5.0. (right) xT scaling of jet cross sections measured in p-p̄ collisions by

CDF and D0 [55]. The quantity plotted is the ratio of p4T times the invariant cross section as a function of

xT for
√
s= 630 and 1800 GeV. Note that the theory curves are plotted in the same way in order to avoid as

much as possible uncertainties from the various parton distribution functions used.

of approximately 15 GeV/fm3. The theory curve appears to show a reduction in suppression with

increasing pT , while, as noted above, the data appear to be flat to within the errors, which clearly

could still be improved.

It is unreasonable to believe that the properties of the medium have been determined by a

theorist’s line through the data which constrains a few parameters of a model. The model and

the properties of the medium must be able to be verified by more detailed and differential mea-

surements. All models of medium induced energy loss [60] predict a characteristic dependence of

the average energy loss on the length of the medium traversed. This is folded into the theoretical

calculations with added complications that the medium expands during the time of the collision,

etc [61]. In an attempt to separate the effects of the density of the medium and the path length

traversed, PHENIX [33, 62] has studied the dependence of the #0 yield as a function of the an-

gle ($% ) to the reaction plane in Au+Au collisions (see Fig. 12). For a given centrality, variation

of $% gives a variation of the path-length traversed for fixed initial conditions, while varying the

centrality allows the initial conditions to vary. Clearly these data reveal much more activity than

the reaction-plane-integrated RAA (Fig. 11) and merit further study by both experimentalists and

theorists.

The point-like scaling of direct photon production in Au+Au collisions indicated by the ab-

13

E dσ
d3p

(pp→ γX)

√
snE dσ

d3p
(pp→ γX) at fixed xT

β ∝ Q2

m2

dσ
dxF

(pA→ J/ψX)

dσ
dxF

(πA→ J/ψX)

xF

xT-scaling of direct 
photon production: 

consistent with 
PQCD

Review of hard scattering and jet analysis Michael J. Tannenbaum

a given
√
s fall below the asymptote at successively lower values of xT with increasing

√
s, cor-

responding to the transition region from hard to soft physics in the pT region of about 2 GeV/c.

Although xT -scaling provides a rather general test of the validity QCD without reference to details,

the agreement of the PHENIX measurement of the invariant cross section for !0 production in p-p

collisions at
√
s= 200 GeV [30] with NLO pQCD predictions over the range 2.0≤ pT ≤ 15 GeV/c

(Fig. 4) is, nevertheless, impressive.
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Figure 4: (left) PHENIX [30] !0 invariant cross section at mid-rapidity from p-p collisions at
√
s= 200GeV,

together with NLO pQCD predictions fromVogelsang [31, 32]. a) The invariant differential cross section for

inclusive !◦ production (points) and the results from NLO pQCD calculations with equal renormalization

and factorization scales of pT using the “Kniehl-Kramer-Pötter” (solid line) and “Kretzer” (dashed line) sets

of fragmentation functions. b) The relative statistical (points) and point-to-point systematic (band) errors.

c,d) The relative difference between the data and the theory using KKP (c) and Kretzer (d) fragmentation

functions with scales of pT /2 (lower curve), pT , and 2pT (upper curve). In all figures, the normalization

error of 9.6% is not shown. (right) e) p-p data from a) multiplied by the nuclear thickness function, TAA,

for Au+Au central (0-10%) collisions plotted on a log-log scale (open circles) together with the measured

semi-inclusive !0 invariant yield in Au+Au central collisions at
√
sNN = 200 GeV [33]

3.1 The importance of the power law

A log-log plot of the !0 spectrum from Fig. 4a in p-p collisions, shown in Fig. 4e along with

corresponding data from Au+Au collisions [33], illustrates that the inclusive single particle hard-

scattering cross section is a pure power law for pT ≥ 3 GeV/c. The invariant cross section for !0

production can be fit to the form

Ed3#/dp3 & p−nT (3.3)

7
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RHIC/LHC predictions

PHENIX results

Scaling exponents from
√

s = 500 GeV preliminary data
[ A. Bezilevsky, APS Meeting ]

Magnitude of ∆ and its x
⊥
-dependence consistent with predictions

Francois Arleo (LAPTH) Higher-twist in hadron production Moriond QCD 2010 11 / 15117
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and fragmentation functions. In Fig. 5(a), the new 7 TeV measurement is compared to the em-

pirical scaling observed over a range of lower p̄p collision energies by plotting
√

sn E d3σ/dp3.

The exponent n = 5.1 ± 0.2 that results from a global fit to all data, including
√

s = 7 TeV,

is slightly lower than the value n = 5.5 found in Ref. [3] from the global fit to all previous

measurements. For the purpose of reporting the CMS result as a differential cross-section, the

recorded luminosity for the analyzed data sample was measured with an 11% uncertainty, as

described in Ref. [10]. Also, to compare with the published results from the CDF experiment

at
√

s = 0.63, 1.8, and 1.96 TeV, the pseudorapidity range has been restricted to |η| < 1.0. As

indicated in the figure, the UA1 cross sections are for |η| < 2.5, although the difference is not

expected to be large.

Our results are consistent over the accessible xT range with the empirical xT-scaling given in

Eq. 4 established at lower energies. This is presented more clearly in Fig. 5(b), which shows

the ratio of the various differential cross sections times
√

s5.1
to the result of a global power-law

fit to the lower center-of-mass energy data shown in Fig. 5(a). The function is of the form

p0 · [1 + (xT/p1)]p2 , where p0, p1, and p2 are free parameters and the region below pT =
2 GeV/c has been excluded to avoid complications from soft-particle production. Consider-

ing the somewhat naı̈ve power-law function and the expected non-scaling effects [33], the new

measurement is in reasonable agreement to within a factor of 2 with the global power-law fit

result over its full pT range.
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Figure 7: (left) p/! and p̄/! ratio as a function of pT and centrality from Au+Au collisions at
√
sNN = 200

GeV [45]. Open (filled) points are for !± (!0), respectively. (right) Invariant yield of p and p̄, from the

same data, as a function of centrality scaled by the number of binary-collisions (Ncoll)

there is direct and unbiased access to one of the interacting constituents, the photon, which can be

measured to high precision, and production is predominantly via a single subprocess [50]:

g+q→ "+q , (4.3)

with q+ q̄→ " + g contributing on the order of 10%. However, the measurement is difficult ex-

perimentally due to the huge background of photons from !0 → "+ " and # → "+ " decays. This

background can be calculated using Eq. 3.4 and can be further reduced by ‘tagging’—eliminating

direct-photon candidates which reconstruct to the invariant mass of a !0 when combined with

other photons in the detector, and/or by an isolation cut—e.g. requirement of less than 10% ad-

ditional energy within a cone of radius $r =
√

($#)2+($%)2 = 0.5 around the candidate photon

direction—since the direct photons emerge from the constituent reaction with no associated frag-

ments.

The exquisite segmentation of the PHENIX Electromagnetic calorimeter ($#×$% ∼ 0.01×
0.01) required in order to operate in the high multiplicity environment of RHI collisions also pro-

vides excellent " and !0 separation out to pT ∼ 25 GeV/c. This will be useful in making spin-

asymmetry measurements of direct photons in polarized p-p collisions for determination of the

gluon spin structure function [51], but, in the meanwhile, has provided a new direct photon mea-

surement in p-p collisions which clarifies a longstanding puzzle between theory and experiment in

this difficult measurement. In Fig. 8-(left) the new measurement of the direct photon cross sec-

tion in p-p collisions at
√
s = 200 GeV from PHENIX [52] is shown compared to a NLO pQCD

calculation, with excellent agreement for pT > 3 GeV/c. This data has resolved a longstanding

discrepancy in extracting the gluon structure function from previous direct photon data [53, 54]

(see Fig. 8-(right)) by its agreement with ISR data and the theory at low xT .

4.3 xT -scaling in direct photon, jet and identified proton production in p-p collisions

The new direct photon measurement also shows nice xT scaling with previous measurements

(Fig. 9-(left)) with a value n(xT ,
√
s) = 5.0. This is closer to the asymptotic value of n(xT ,

√
s) = 4
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GeV [45]. Open (filled) points are for !± (!0), respectively. (right) Invariant yield of p and p̄, from the

same data, as a function of centrality scaled by the number of binary-collisions (Ncoll)

there is direct and unbiased access to one of the interacting constituents, the photon, which can be

measured to high precision, and production is predominantly via a single subprocess [50]:

g+q→ "+q , (4.3)

with q+ q̄→ " + g contributing on the order of 10%. However, the measurement is difficult ex-

perimentally due to the huge background of photons from !0 → "+ " and # → "+ " decays. This

background can be calculated using Eq. 3.4 and can be further reduced by ‘tagging’—eliminating

direct-photon candidates which reconstruct to the invariant mass of a !0 when combined with

other photons in the detector, and/or by an isolation cut—e.g. requirement of less than 10% ad-

ditional energy within a cone of radius $r =
√

($#)2+($%)2 = 0.5 around the candidate photon

direction—since the direct photons emerge from the constituent reaction with no associated frag-

ments.

The exquisite segmentation of the PHENIX Electromagnetic calorimeter ($#×$% ∼ 0.01×
0.01) required in order to operate in the high multiplicity environment of RHI collisions also pro-

vides excellent " and !0 separation out to pT ∼ 25 GeV/c. This will be useful in making spin-

asymmetry measurements of direct photons in polarized p-p collisions for determination of the

gluon spin structure function [51], but, in the meanwhile, has provided a new direct photon mea-

surement in p-p collisions which clarifies a longstanding puzzle between theory and experiment in

this difficult measurement. In Fig. 8-(left) the new measurement of the direct photon cross sec-

tion in p-p collisions at
√
s = 200 GeV from PHENIX [52] is shown compared to a NLO pQCD

calculation, with excellent agreement for pT > 3 GeV/c. This data has resolved a longstanding

discrepancy in extracting the gluon structure function from previous direct photon data [53, 54]

(see Fig. 8-(right)) by its agreement with ISR data and the theory at low xT .

4.3 xT -scaling in direct photon, jet and identified proton production in p-p collisions

The new direct photon measurement also shows nice xT scaling with previous measurements

(Fig. 9-(left)) with a value n(xT ,
√
s) = 5.0. This is closer to the asymptotic value of n(xT ,

√
s) = 4
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derived from Eq. 3.2, for peripheral and central collisions, by taking the ratio of Ed3!/dp3 at a

given xT for
√
sNN = 130 and 200 GeV, in each case. The "0’s exhibit xT scaling, with the same
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Figure 6: Power-law exponent n(xT ) for "0 and h spectra in central and peripheral Au+Au collisions at
√
sNN = 130 and 200 GeV [44].

value of n = 6.3 as in p-p collisions, for both Au+Au peripheral and central collisions, while the

non-identified charged hadrons xT -scale with n = 6.3 for peripheral collisions only. Notably, the

(h+ +h−)/2 in Au+Au central collisions exhibit a significantly larger value of n(xT ,
√
s), indicat-

ing different physics, which will be discussed below. The xT scaling establishes that high-pT "0

production in peripheral and central Au+Au collisions and (h+ + h−)/2 production in peripheral

Au+Au collisions follow pQCD as in p-p collisions, with parton distributions and fragmentation

functions that scale with xT , at least within the experimental sensitivity of the data. The fact that

the fragmentation functions scale for "0 in Au+Au central collisions indicates that the effective

energy loss must scale, i.e. S(pT )/pT = is constant, which is consistent with the parallel spectra

on Fig. 4e and the constant value of RAA as noted in the discussion above.

The deviation of (h+ +h−)/2 from xT scaling in central Au+Au collisions is indicative of and

consistent with the strong non-scaling modification of particle composition of identified charged-

hadrons observed in Au+Au collisions compared to that of p-p collisions in the range 2.0 ≤ pT ≤
4.5 GeV/c, where particle production is the result of jet-fragmentation. As shown in Fig. 7-(left)

the p/"+ and p̄/"− ratios as a function of pT increase dramatically to values ∼1 as a function
of centrality in Au+Au collisions at RHIC [45] which was totally unexpected and is still not fully

understood. Interestingly, the p and p̄ in this pT range appear to follow the Ncoll scaling expected

for point-like processes (Fig 7-(right)), while the "0 are suppressed, yet this effect is called the

‘baryon anomaly’, possibly because of the non-xT scaling. An elegant explanation of this effect as

due to coalescence of quarks from a thermal distribution [46, 47, 48], which would be prima facie

evidence of a Quark Gluon Plasma, is not in agreement with the jet correlations observed in both

same and away-side particles associated with both meson and baryon triggers [49] (see discussion

of Fig. 24 below).

4.2 Direct photon production

Direct photon production is one of the best reactions to study QCD in hadron collisions, since
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derived from Eq. 3.2, for peripheral and central collisions, by taking the ratio of Ed3!/dp3 at a

given xT for
√
sNN = 130 and 200 GeV, in each case. The "0’s exhibit xT scaling, with the same

T
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Figure 6: Power-law exponent n(xT ) for "0 and h spectra in central and peripheral Au+Au collisions at
√
sNN = 130 and 200 GeV [44].

value of n = 6.3 as in p-p collisions, for both Au+Au peripheral and central collisions, while the

non-identified charged hadrons xT -scale with n = 6.3 for peripheral collisions only. Notably, the

(h+ +h−)/2 in Au+Au central collisions exhibit a significantly larger value of n(xT ,
√
s), indicat-

ing different physics, which will be discussed below. The xT scaling establishes that high-pT "0

production in peripheral and central Au+Au collisions and (h+ + h−)/2 production in peripheral

Au+Au collisions follow pQCD as in p-p collisions, with parton distributions and fragmentation

functions that scale with xT , at least within the experimental sensitivity of the data. The fact that

the fragmentation functions scale for "0 in Au+Au central collisions indicates that the effective

energy loss must scale, i.e. S(pT )/pT = is constant, which is consistent with the parallel spectra

on Fig. 4e and the constant value of RAA as noted in the discussion above.

The deviation of (h+ +h−)/2 from xT scaling in central Au+Au collisions is indicative of and

consistent with the strong non-scaling modification of particle composition of identified charged-

hadrons observed in Au+Au collisions compared to that of p-p collisions in the range 2.0 ≤ pT ≤
4.5 GeV/c, where particle production is the result of jet-fragmentation. As shown in Fig. 7-(left)

the p/"+ and p̄/"− ratios as a function of pT increase dramatically to values ∼1 as a function
of centrality in Au+Au collisions at RHIC [45] which was totally unexpected and is still not fully

understood. Interestingly, the p and p̄ in this pT range appear to follow the Ncoll scaling expected

for point-like processes (Fig 7-(right)), while the "0 are suppressed, yet this effect is called the

‘baryon anomaly’, possibly because of the non-xT scaling. An elegant explanation of this effect as

due to coalescence of quarks from a thermal distribution [46, 47, 48], which would be prima facie

evidence of a Quark Gluon Plasma, is not in agreement with the jet correlations observed in both

same and away-side particles associated with both meson and baryon triggers [49] (see discussion

of Fig. 24 below).

4.2 Direct photon production

Direct photon production is one of the best reactions to study QCD in hadron collisions, since

10

Peripheral 

Central 
h+ includes protons
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Proton power changes with centrality !
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John Koster talk 

AN in p↑p → ! X, the big challenge

AN ≡ dσ↑ − dσ↑

dσ↑ + dσ↑

Contributions from 
Direct Processes? 

Reggeon Exchange?
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Chicago-Princeton
Collaboration

xπ = xq̄

The p/π+
and p̄/π− ratios as a function of

pT increase dramatically to values ∼ 1 as a

function of centrality in Au + Au collisions

at RHIC which was totally unexpected and

is still not fully understood.

E dσ
d3p

(pp→ γX)

E dσ
d3p

(pp→ π0X)

√
snE dσ

d3p
(pp→ γX) at fixed xT

Dramatic change in angular 
distribution at large x

Direct Subprocess Prediction

 Phys.Rev.Lett.55:2649,1985

Example of a higher-twist 
direct subprocess

Q2 = M2

xπ = xq̄

The p/π+
and p̄/π− ratios as a function of

pT increase dramatically to values ∼ 1 as a

function of centrality in Au + Au collisions

at RHIC which was totally unexpected and

is still not fully understood.

E dσ
d3p

(pp→ γX)

E dσ
d3p

(pp→ π0X)

√
snE dσ

d3p
(pp→ γX) at fixed xT
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! N " µ+ µ- X at high xF

xF " 1

In the limit where (1-xF)Q2 is fixed as Q2 " # :

µ+

µ-

!

N

q Soft scattering of stopped

quark in target affects hard 

process

Entire pion wf

contributes to

hard process

Virtual photon is 

longitudinally 

polarized

Berger and Brodsky, PRL 42 (1979) 940

x " 0

x " 1
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! N " µ+ µ- X at high xF

xF " 1

In the limit where (1-xF)Q2 is fixed as Q2 " # :

µ+

µ-

!

N

q Soft scattering of stopped

quark in target affects hard 

process

Entire pion wf

contributes to

hard process

Virtual photon is 

longitudinally 

polarized

Berger and Brodsky, PRL 42 (1979) 940

x " 0

x " 1

“Direct” Subprocess

Berger, sjb 
Khoze, Brandenburg, Muller, sjb

Hoyer Vanttinen

Distribution amplitude from AdS/CFT

Similar higher twist terms in jet 
hadronization at large z



 
 Stan Brodsky,  SLACTransversity 2011  Light-Front Holography and 

Proton  Transversity

Berger, Lepage, sjb
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Pion appears directly in subprocess at large xF
All of the pion’s momentum is transferred to the lepton pair

Lepton Pair is produced longitudinally polarized

Initial State 
Interaction
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Chicago-Princeton
Collaboration

xπ = xq̄

The p/π+
and p̄/π− ratios as a function of

pT increase dramatically to values ∼ 1 as a

function of centrality in Au + Au collisions

at RHIC which was totally unexpected and

is still not fully understood.

E dσ
d3p

(pp→ γX)

E dσ
d3p

(pp→ π0X)

√
snE dσ

d3p
(pp→ γX) at fixed xT

Dramatic change in angular 
distribution at large xF

Direct Subprocess Prediction

 Phys.Rev.Lett.55:2649,1985

Example of a higher-twist 
direct subprocess

Q2 = M2
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Light-Front Holography and Non-Perturbative QCD

Exploring QCD, Cambridge, August 20-24, 2007 Page 9

Goal:   
Use AdS/QCD duality to construct 

a first approximation to QCD
Hadron Spectrum  

Light-Front Wavefunctions,
Running coupling in IR

General remarks about orbital angular mo-
mentum

Ψn(xi,�k⊥i, λi)

�n
i=1(xi

�R⊥+�b⊥i) = �R⊥

xi
�R⊥+�b⊥i

�n
i
�b⊥i = �0⊥

�n
i xi = 1

in collaboration with 
Guy de Teramond
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Central problem  for strongly-coupled gauge theories
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• As Simple as Schrödinger Theory in Atomic Physics

• Relativistic, Frame-Independent, Color-Confining

• QCD Coupling at all scales

• Hadron Spectroscopy

• Light-Front Wavefunctions

• Form Factors, Hadronic Observables,         
Constituent Counting Rules

• Transversity

• Insight into QCD Condensates

• Systematically improvable de Teramond, sjb

Goal: an analytic first approximation to QCD
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Applications of AdS/CFT  to QCD 

in collaboration with Guy de Teramond

Changes in 
physical

length scale 
mapped to 

evolution in the 
5th dimension z 
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AdS Soft-Wall Schrodinger Equation for 
bound state  of  two scalar constituents:

Derived from variation of Action  
Dilaton-Modified AdS5

�
− d2

dz2
− 1− 4L2

4z2
+ U(z)

�
φ(z) =M2φ(z)

U(z) = κ4z2 + 2κ2(L + S − 1)

• de Teramond, sjb

eΦ(z) = e+κ2z2
Positive-sign dilaton
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Nearly Conformal QCD and AdS/CFT G. F. de Téramond, UCR

• Propagation of external perturbation suppressed inside AdS.

• At large enoughQ ∼ r/R2, the interaction occurs in the large-r conformal region. Important

contribution to the FF integral from the boundary near z ∼ 1/Q.

J(Q, z), Φ(z)

1 2 3 4 5

0.2

0.4

0.6

0.8

1

z

• Consider a specific AdS mode Φ(n) dual to an n partonic Fock state |n�. At small z, Φ(n)

scales as Φ(n) ∼ z∆n . Thus:

F (Q2) →
�

1
Q2

�τ−1

,

where τ = ∆n − σn, σn =
�n

i=1 σi. The twist is equal to the number of partons, τ = n.

Quark-Hadron Duality, Frascati, 6-8 June 2005 Page 22

Dimensional Quark Counting Rules:
General result from 

AdS/CFT and Conformal Invariance

133

Hadron Form Factors from AdS/CFT 

Polchinski, Strassler
de Teramond, sjb

D(z) ∼ (1− z)2Nspect−1

zD(z) = F (x = 1/z)

zD(z)c→pX = Fp→cX(x = 1/z)

zi ∝ m⊥i =
�

m2
i + k2

⊥

X = cūd̄ū

F (Q2)I→F =
� dz

z3ΦF (z)J(Q, z)ΦI(z)

J(Q, z) = zQK1(zQ)

αs(Q2)

β(Q2) = dαs(Q2)
d logQ2 → 0

Π(Q2)→ α
15π

Q2

m2

Q2 << 4m2

A

High Q2 
from 

small z  ~ 1/Q

J(Q, z) Φ(z)

high Q2
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• Hadronic gravitational form-factor in AdS space

Aπ(Q2) = R
3
�

dz

z3
H(Q2

, z) |Φπ(z)|2 ,

where H(Q2
, z) = 1

2Q
2
z
2
K2(zQ)

• Use integral representation for H(Q2
, z)

H(Q2
, z) = 2

� 1

0
x dxJ0

�
zQ

�
1− x

x

�

• Write the AdS gravitational form-factor as

Aπ(Q2) = 2R
3
� 1

0
x dx

�
dz

z3
J0

�
zQ

�
1− x

x

�
|Φπ(z)|2

• Compare with gravitational form-factor in light-front QCD for arbitrary Q

���ψ̃qq/π(x, ζ)
���
2

=
R

3

2π
x(1− x)

|Φπ(ζ)|2

ζ4
,

which is identical to the result obtained from the EM form-factor

From String to Things, INT, Seattle, April 10, 2008 Page 31

Abidin & Carlson 

Gravitational Form Factor in AdS space

Identical  to LF Holography obtained from electromagnetic current
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ψ(x,�b⊥) = ψ(ζ)

φ(z)

ζ =
�

(x(1− x)|b⊥|

z

z∆

z0 = 1
ΛQCD

γd→ np

ψ(x,�b⊥) = ψ(ζ)

φ(z)

ζ =
�

x(1− x)�b2⊥

z

z∆

z0 = 1
ΛQCD

γd→ np

ψ(x,�b⊥) = ψ(ζ)

φ(z)

ζ =
�

x(1− x)�b2⊥

z

z∆

z0 = 1
ΛQCD

γd→ np

x (1− x) �b⊥

ψ(x,�b⊥) = ψ(ζ)

φ(z)

ζ =
�

x(1− x)�b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) �b⊥

ψ(x,�b⊥) = ψ(ζ)

φ(z)

ζ =
�

x(1− x)�b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) �b⊥

ψ(x,�b⊥) = ψ(ζ)

φ(z)

ζ =
�

x(1− x)�b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) �b⊥

ψ(x,�b⊥) = ψ(ζ)

φ(z)

ζ =
�

x(1− x)�b2⊥

z

z∆

z0 = 1
ΛQCD

LF(3+1)                AdS5
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Light Front Holography: Unique mapping derived from equality of LF 
and AdS  formula for current matrix elements

ψ(x, ζ) =
�

x(1− x)ζ−1/2φ(ζ)

de Teramond, sjb



 

HQED

[− ∆2

2mred
+ Veff(�S,�r)] ψ(�r) = E ψ(�r)

[− 1
2mred

d2

dr2
+

1
2mred

�(� + 1)
r2

+ Veff(r, S, �)] ψ(r) = E ψ(r)

(H0 + Hint) |Ψ >= E |Ψ > Coupled Fock states

Effective two-particle equation

 Spherical Basis r, θ,φ

Coulomb  potential 

Includes Lamb Shift, quantum corrections

Bohr Spectrum
Veff → VC(r) = −α

r

QED atoms: positronium and 
muonium

Semiclassical first approximation to QED 136
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Derivation of the Light-Front Radial Schrodinger Equation  directly 
from LF QCD

M2 =
� 1

0
dx

�
d2�k⊥
16π3

�k2
⊥

x(1− x)

���ψ(x,�k⊥)
���
2

+ interactions

=
� 1

0

dx

x(1− x)

�
d2�b⊥ ψ∗(x,�b⊥)

�
−�∇2

�b⊥�

�
ψ(x,�b⊥) + interactions.

(�ζ,ϕ), �ζ =
�

x(1− x)�b⊥:Change 
variables ∇2 =

1
ζ

d

dζ

�
ζ

d

dζ

�
+

1
ζ2

∂2

∂ϕ2

M2 =
�

dζ φ∗(ζ)
�

ζ

�
− d2

dζ2
− 1

ζ

d

dζ
+

L2

ζ2

�
φ(ζ)√

ζ

+
�

dζ φ∗(ζ)U(ζ)φ(ζ)

=
�

dζ φ∗(ζ)
�
− d2

dζ2
− 1− 4L2

4ζ2
+ U(ζ)

�
φ(ζ)



 

HQED

Coupled Fock states

Effective two-particle equation

 Azimuthal  Basis

Confining AdS/QCD  
potential 

QCD Meson SpectrumH
LF
QCD

(H0
LF + H

I
LF )|Ψ >= M

2|Ψ >

[
�k2
⊥ + m2

x(1− x)
+ V LF

eff ] ψLF (x,�k⊥) = M2 ψLF (x,�k⊥)

[− d2

dζ2
+
−1 + 4L2

ζ2
+ U(ζ, S, L)] ψLF (ζ) = M2 ψLF (ζ) ζ,φ

ζ2 = x(1− x)b2
⊥

Semiclassical first approximation to QCD 138

U(ζ, S, L) = κ4ζ2 + κ2(L + S − 1/2)
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soft wall
confining potential:

Light-Front Holography: 
Map AdS/CFT  to  3+1 LF Theory

�
− d2

d2ζ
+ V (ζ)

�
=M2φ(ζ)

�
− d2

dζ2 + V (ζ)
�
=M2φ(ζ)

ζ2 = x(1− x)b2
⊥.

Jz = Sz
p =

�n
i=1 Sz

i +
�n−1

i=1 �z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Relativistic LF radial equation

G. de Teramond, sjb 

x (1− x) �b⊥

ψ(x,�b⊥) = ψ(ζ)

φ(z)

ζ =
�

x(1− x)�b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) �b⊥

ψ(x,�b⊥) = ψ(ζ)

φ(z)

ζ =
�

x(1− x)�b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) �b⊥

ψ(x,�b⊥) = ψ(ζ)

φ(z)

ζ =
�

x(1− x)�b2⊥

z

z∆

z0 = 1
ΛQCD

Frame Independent

�
− d2

dζ2
+

1− 4L2

4ζ2
+ U(ζ)

�
φ(ζ) =M2φ(ζ)
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U(ζ) = κ4ζ2 + 2κ2(L + S − 1)
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Fig: Orbital and radial AdS modes in the soft wall model for κ = 0.6 GeV .
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Light meson orbital (a) and radial (b) spectrum for κ = 0.6 GeV.

Exploring QCD, Cambridge, August 20-24, 2007 Page 26

S = 0 S = 0

Soft Wall 
Model
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• Obtain spin-J mode Φµ1···µJ with all indices along 3+1 coordinates from Φ by shifting dimensions

ΦJ(z) =
� z

R

�−J
Φ(z)

• Substituting in the AdS scalar wave equation for Φ
�
z2∂2

z −
�
3−2J − 2κ2z2

�
z ∂z + z2M2− (µR)2

�
ΦJ = 0

• Upon substitution z→ζ

φJ(ζ)∼ζ−3/2+Jeκ2ζ2/2 ΦJ(ζ)

we find the LF wave equation

�
− d2

dζ2
− 1− 4L2

4ζ2
+ κ4ζ2 + 2κ2(L + S − 1)

�
φµ1···µJ =M2φµ1···µJ

with (µR)2 = −(2− J)2 + L2

Hadron 2009, FSU, Tallahassee, December 1, 2009 Page 18

General-Spin Hadrons
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equation is similar to the celebrated Schrödinger radial wave equation at fixed t which

describes the quantum-mechanical structure of atomic systems. Internal orbital angular

momentum L and its effect on quark kinetic energy plays an explicit role. Thus by using

the AdS/CFT correspondence one obtains a relativistic wave equation applicable to hadron

physics, where the light-front coordinate ζ plays the role of the radial variable r of the

nonrelativistic theory. For example, the meson eigenvalue equation is

�
− d2

dζ2
− 1− 4L2

4ζ2
+ U(ζ)

�
φ(ζ) =M2φ(ζ), (1)

where the vast complexity of the QCD interactions among constituents is summed up in

the addition of the effective potential U(ζ), which is then modeled to enforce confinement.

For example, in the soft wall model the potential is U(ζ) = κ4ζ2 + 2κ2(J − 1) where J is

the total angular momentum of the hadron. The corresponding wavefunctions of a pion

describe the probability distribution of its constituents for the different orbital and radial

states. The separation of the constituent quark and antiquark in AdS space get larger as

the orbital angular momentum increases. Orbital excitations are also located deeper inside

AdS space (Fig. ??).
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Figure 2: Meson wavefunctions is AdS space in the soft-wall holographic model of

confinement: (a) orbital modes and (b) radial modes. Constituent quark and antiquark

fly away from each other as the orbital and radial quantum number increases.

Hadronic spectrum. Thus AdS/CFT and light-front holography provide a quantum

mechanical wave equation formalism for hadron physics. The soft-wall model, in particular,

appears to provide a very useful first approximation to QCD. The solutions of the light-

front equation determine the masses of the hadrons, given the total internal spin S, the

orbital angular momenta L of the constituents, and the index n, the number of nodes of

the wavefunction in ζ. For example, if the total quark spin S is zero, the meson bound
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Bosonic Modes and Meson Spectrum
4κ2

for ∆n = 1
4κ2

for ∆L = 1
2κ2

for ∆S = 1
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Regge trajectories for the π (κ = 0.6 GeV) and the I =1 ρ-meson and I =0 ω-meson families (κ = 0.54 GeV)

KITPC, Beijing, October 19, 2010 Page 20

Same slope in n and L

S = 0 S = 1

M2 = 4κ2(n + J/2 + L/2)→ 4κ2(n + L + S/2)
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String Theory

AdS/CFT

Semi-Classical QCD / Wave Equations

Mapping of  Poincare’ and Conformal SO
(4,2) symmetries of 3+1 space 

to  AdS5 space

Integrable!

Boost Invariant 3+1 Light-Front Wave Equations

Hadron Spectra, Wavefunctions, Dynamics

AdS/QCD

Conformal behavior at short distances
+ Confinement at large distance

Counting rules for Hard Exclusive 
Scattering

Regge Trajectories

Holography

Integrable! J =0,1,1/2,3/2 plus L

Goal: First Approximant to QCD

QCD at the Amplitude Level
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Light-Front Holography and 
Proton  Transversity  Stan Brodsky,  SLACTransversity 2011  

Features of Soft-Wall AdS/QCD

• Single-variable frame-independent radial Schrodinger equation

• Massless pion (mq =0)

• Regge Trajectories: universal slope in  n and L

• Valid for all integer J & S.   

• Dimensional Counting Rules for Hard Exclusive Processes

• Phenomenology: Space-like and Time-like Form Factors

• LF Holography: LFWFs;  broad distribution amplitude

• No large Nc limit required

• Add quark masses to LF kinetic energy

• Systematically  improvable -- diagonalize HLF on AdS basis
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Linear particle trajectories

Plot of spins of families of particles against their squared masses:

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8

• 4 degenerate familes of particles: α(t) ≈ 1
2 + 0.9t

The particles in square brackets are listed in the data tables, but there is some
uncertainty about whether they exist.

The function α(t) is called a Regge trajectory.

Linear particle trajectories

Plot of spins of families of particles against their squared masses:

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8

• 4 degenerate familes of particles: α(t) ≈ 1
2 + 0.9t

The particles in square brackets are listed in the data tables, but there is some
uncertainty about whether they exist.

The function α(t) is called a Regge trajectory.

AdS/QCD Soft Wall Model -- Reproduces  Linear Regge Trajectories

146



 
 Stan Brodsky,  SLACTransversity 2011  Light-Front Holography and 

Proton  Transversity
147

4 Fermionic Modes

Hard-Wall Model

From Nick Evans• Action for massive fermionic modes on AdS5:

S[Ψ,Ψ] =
�

d4x dz
√

g Ψ(x, z)
�
iΓ�D� − µ

�
Ψ(x, z)

• Equation of motion:
�
iΓ�D� − µ

�
Ψ(x, z) = 0

�
i

�
zη�mΓ�∂m +

d

2
Γz

�
+ µR

�
Ψ(x�) = 0

• Solution (µR = ν + 1/2)

Ψ(z) = Cz5/2 [Jν(zM)u+ + Jν+1(zM)u−]

• Hadronic mass spectrum determined from IR boundary conditions ψ± (z = 1/ΛQCD) = 0

M+ = βν,k ΛQCD, M− = βν+1,k ΛQCD

with scale independent mass ratio

• Obtain spin-J mode Φµ1···µJ−1/2
, J > 1

2 , with all indices along 3+1 from Ψ by shifting dimensions

Hadron 2009, FSU, Tallahassee, December 1, 2009 Page 21

2 Fermionic Modes

From Nick Evans

• Baryons Spectrum in ”bottom-up” holographic QCD

GdT and Brodsky: hep-th/0409074, hep-th/0501022.

• Conformal metric x� = (xµ, z):

ds2 = g�mdx�dxm

=
R2

z2
(ηµνdxµdxν − dz2).

• Action for massive fermionic modes on AdSd+1:

S[Ψ,Ψ] =
�

dd+1x
√

g Ψ(x, z)
�
iΓ�D� − µ

�
Ψ(x, z).

• Equation of motion:
�
iΓ�D� − µ

�
Ψ(x, z) = 0

�
i

�
zη�mΓ�∂m +

d

2
Γz

�
+ µR

�
Ψ(x�) = 0.

Helmholtz Institut, Bonn, Oct 16, 2007 Page 20

Baryons in Ads/CFT

Hard Wall



 

Fermionic Modes and Baryon Spectrum
[GdT and S. J. Brodsky, PRL 94, 201601 (2005)]

From Nick Evans

• Action for Dirac field in AdSd+1 in presence of dilaton background ϕ(z) [Abidin and Carlson (2009)]

S =
�

dd+1√geϕ(z)
�
iΨeM

A ΓADMΨ + h.c + ϕ(z)ΨΨ− µΨΨ
�

• Factor out plane waves along 3+1: ΨP (xµ, z) = e−iP ·xΨ(z)
�
i
�
zη�mΓ�∂m + 2Γz

�
+ µR + κ2z

�
Ψ(x�) = 0.

• Solution (ν = µR− 1
2 , ν = L + 1)

Ψ+(z) ∼ z
5
2+νe−κ2z2/2Lν

n(κ2z2), Ψ−(z) ∼ z
7
2+νe−κ2z2/2Lν+1

n (κ2z2)

• Eigenvalues (how to fix the overall energy scale, see arXiv:1001.5193)

M2 = 4κ2(n + L + 1)

• Obtain spin-J mode Φµ1···µJ−1/2
, J > 1

2 , with all indices along 3+1 from Ψ by shifting dimensions

• Large NC : M2 = 4κ2(NC + n + L− 2) =⇒ M ∼
√

NC ΛQCD

Escuela de Fı́sica, UCR, December 1, 2010 Page 25

GdT and sjb, PRL 94, 201601 (2005)

positive parity

Yukawa interaction 
in 5 dimensions 
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Non-Conformal Extension of Algebraic Structure (Soft Wall Model)

• We write the Dirac equation

(αΠ(ζ)−M)ψ(ζ) = 0,

in terms of the matrix-valued operator Π

Πν(ζ) = −i

�
d

dζ
−

ν + 1
2

ζ
γ5 − κ2ζγ5

�
,

and its adjoint Π†, with commutation relations

�
Πν(ζ),Π†

ν(ζ)
�

=
�

2ν + 1
ζ2

− 2κ2

�
γ5.

• Solutions to the Dirac equation

ψ+(ζ) ∼ z
1
2+νe−κ2ζ2/2Lν

n(κ2ζ2),

ψ−(ζ) ∼ z
3
2+νe−κ2ζ2/2Lν+1

n (κ2ζ2).

• Eigenvalues

M2 = 4κ2(n + ν + 1).

Exploring QCD, Cambridge, August 20-24, 2007 Page 49

ν = L + 1

Soft Wall
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Fermionic Modes and Baryon Spectrum
[Hard wall model: GdT and S. J. Brodsky, PRL 94, 201601 (2005)]

[Soft wall model: GdT and S. J. Brodsky, (2005), arXiv:1001.5193]

From Nick Evans

• Nucleon LF modes

ψ+(ζ)n,L = κ2+L

�
2n!

(n + L)!
ζ3/2+Le−κ2ζ2/2LL+1

n

�
κ2ζ2

�

ψ−(ζ)n,L = κ3+L 1√
n + L + 2

�
2n!

(n + L)!
ζ5/2+Le−κ2ζ2/2LL+2

n

�
κ2ζ2

�

• Normalization �
dζ ψ2

+(ζ) =
�

dζ ψ2
−(ζ) = 1

• Eigenvalues

M2
n,L,S=1/2 = 4κ2 (n + L + 1)

• “Chiral partners”

MN(1535)

MN(940)
=
√

2

LC 2011 2011, Dallas, May 23, 2011 Page 13
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Glazek and Schaden [Phys. Lett. B 198, 42 (1987)]: (ωB/ωM )2 = 5/8 4κ2 for ∆n = 1
4κ2 for ∆L = 1

2κ2 for ∆S = 1

M2

L

Parent and daughter 56 Regge trajectories for the N and ∆ baryon families for κ = 0.5 GeV

2009 JLab Users Group Meeting, June 8, 2009 Page 26151

• ∆ spectrum identical to Forkel and Klempt, Phys. Lett. B 679, 77 (2009)

Same multiplicity of states for mesons and baryons!
4κ2 for ∆n = 1
4κ2 for ∆L = 1
2κ2 for ∆S = 1

0

2

4

(a) (b)
6

0 1 2 3 4
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L

0 1 2 3 4

L

N(1710)

N(1440)

N(940)

N(1680)
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N(1720) Δ(1600)

Δ(1950)

Δ(2420)

Δ(1905)

Δ(1920)

Δ(1910)

Δ(1232)

n=3 n=2 n=1 n=0

n=3 n=2 n=1 n=0

Regge trajectories for positive parity N and ∆ baryon families (κ = 0.5 GeV)

LC 2011 2011, Dallas, May 23, 2011 Page 14
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6 E. Klempt et al.: ∆∗ resonances, quark models, chiral symmetry and AdS/QCD
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Fig. 2. Regge trajectory for ∆∗ resonances as a function of the leading intrinsic orbital angular momentum L and the radial
excitation quantum number N (corresponding to n1 + n2 in quark models). The line represents a prediction of the metric-soft-
wall AdS/QCD model [18,19]. Resonances with N = 0 and N = 1 are listed above or below the trajectory. The mass predictions
are 1.27, 1.64, 1.92, 2.20, 2.43, 2.64, 2.84GeV. The two states reported in [20,21] are indicated by arrows.

In [17], ∆(1930)D35 was interpreted as L = 3, S = 1/2

excitation. The new evidence for ∆(1940)D33 – which

seems to be a natural spin partner of ∆(1930)D35 – sug-

gests L = 1, S = 3/2, N = 1 quantum numbers for both,

and the two-star ∆(1900)S31 to be the natural third part-

ner to complete a spin triplet. In the interpretation of

[17], one could of course also argue that ∆(1900)S31 and

∆(1940)D33 have L = 1, S = 1/2, N = 1, and ∆(1930)D35

and a missing ∆G37 below 2GeV are L = 3, S = 1/2 ex-

citations.

At high masses, some problems remain. In particular

∆(2750)I3 13 is far from the solid line.

In conclusion, there are clear discrepancies between

hard-wall AdS/QCD and data in the 1.7 GeV region. Above

1.8GeV, some inconsistencies with the hard wall solution

exist, in particular the existence of ∆(1940)D33 [20,21]

and the non-observation of a ∆G37 candidate with mass

between 1.9 and 2GeV are difficult to reconcile with hard-

wall AdS/QCD. But overall, the trend of most established

states is reasonably reproduced.

In [18,19], the mass spectrum of light mesons and

baryons was predicted using AdS/QCD in the metric soft-

wall approximation. Relations between ground state masses

and trajectory slopes

M2
= 4λ2

(L + N + 1/2) for mesons

M2
= 4λ2

(L + N + 3/2) for baryons (A)

were derived. Using the slope of the ∆ trajectory, masses

were calculated. They are plotted as a function of L+N in

Fig. 2. The two states indicated by arrows are those found

in [20,21]. While the positive-parity ∆(1920)P33 has three

stars in the PDG rating, the negative-parity ∆(1940)D33

had one star only. Both states were not observed in the

latest analysis of Arndt et al. [3] on elastic πN scattering.

The four positive- and negative-parity states between

1.60 and 1.75 GeV (2,3) are predicted to have the same

mass (1.62 GeV)
1
; the seven states (4,5) should have 1.92

GeV. The predicted masses for L + N = 3 (6,7) and 4

(8,9) are 2.20 and 2.42GeV, respectively. The trajectory

continues with the calculated masses 2.64 for L + N = 5

and 2.84 GeV for L + N = 6. Experimentally, the highest

mass state is ∆(2950)K3 15 which requires L = 6. In this

interpretation, ∆(2750)I3 13 has L = 5, S = 3/2 and N =

1 and should be degenerate in mass with ∆(2950)K3 15.

Both are expected to have a mass of 2.84 GeV which is not

incompatible with the experimental findings even though

the mass difference of 200 MeV between the two states

does not support their expected mass degeneracy.

An early interpretation of strings was proposed by

Nambu [36]. He assumed that the gluon flux between the

two quarks is concentrated in a rotating flux tube or a

rotating string with a homogeneous mass density. Nambu

derived a linear relation between squared mass and or-

bital angular momentum, M2 ∝ L. This mechanical pic-

ture was further developed by Baker and Steinke [37] and

by Baker [38] to a field theoretical approach. For mesons,

the functional dependence (A) was derived.

The relation (A) between ∆∗
masses and L and N has

been derived earlier in a phenomenological analysis of the

baryon mass spectrum [35]. For octet and singlet baryons,

one term ascribed to instanton-induced interactions was

required to reproduce the full mass spectrum of all baryon

resonances having known spin and parity.

The striking agreement between the measured baryon

excitation spectrum and the predictions [18,19] based on

AdS/QCD and the success of the phenomenological mass

formula [35] pose new questions. In both cases, the baryon

masses depend on the number of orbital and radial exci-

tations just as mesons. But baryons have an extra degree

1 The ∆1/2+(1750) is tricky; it has L = 2 but both oscillators
are excited. Since they are orthogonal, the internal separations
increase less than for parallel angular momenta.
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Fig. 2. Regge trajectory for ∆∗ resonances as a function of the leading intrinsic orbital angular momentum L and the radial
excitation quantum number N (corresponding to n1 + n2 in quark models). The line represents a prediction of the metric-soft-
wall AdS/QCD model [18,19]. Resonances with N = 0 and N = 1 are listed above or below the trajectory. The mass predictions
are 1.27, 1.64, 1.92, 2.20, 2.43, 2.64, 2.84GeV. The two states reported in [20,21] are indicated by arrows.

In [17], ∆(1930)D35 was interpreted as L = 3, S = 1/2

excitation. The new evidence for ∆(1940)D33 – which

seems to be a natural spin partner of ∆(1930)D35 – sug-

gests L = 1, S = 3/2, N = 1 quantum numbers for both,

and the two-star ∆(1900)S31 to be the natural third part-

ner to complete a spin triplet. In the interpretation of

[17], one could of course also argue that ∆(1900)S31 and

∆(1940)D33 have L = 1, S = 1/2, N = 1, and ∆(1930)D35

and a missing ∆G37 below 2GeV are L = 3, S = 1/2 ex-

citations.

At high masses, some problems remain. In particular

∆(2750)I3 13 is far from the solid line.

In conclusion, there are clear discrepancies between

hard-wall AdS/QCD and data in the 1.7 GeV region. Above

1.8GeV, some inconsistencies with the hard wall solution

exist, in particular the existence of ∆(1940)D33 [20,21]

and the non-observation of a ∆G37 candidate with mass

between 1.9 and 2GeV are difficult to reconcile with hard-

wall AdS/QCD. But overall, the trend of most established

states is reasonably reproduced.

In [18,19], the mass spectrum of light mesons and

baryons was predicted using AdS/QCD in the metric soft-

wall approximation. Relations between ground state masses

and trajectory slopes

M2
= 4λ2

(L + N + 1/2) for mesons

M2
= 4λ2

(L + N + 3/2) for baryons (A)

were derived. Using the slope of the ∆ trajectory, masses

were calculated. They are plotted as a function of L+N in

Fig. 2. The two states indicated by arrows are those found

in [20,21]. While the positive-parity ∆(1920)P33 has three

stars in the PDG rating, the negative-parity ∆(1940)D33

had one star only. Both states were not observed in the

latest analysis of Arndt et al. [3] on elastic πN scattering.

The four positive- and negative-parity states between

1.60 and 1.75 GeV (2,3) are predicted to have the same

mass (1.62 GeV)
1
; the seven states (4,5) should have 1.92

GeV. The predicted masses for L + N = 3 (6,7) and 4

(8,9) are 2.20 and 2.42GeV, respectively. The trajectory

continues with the calculated masses 2.64 for L + N = 5

and 2.84 GeV for L + N = 6. Experimentally, the highest

mass state is ∆(2950)K3 15 which requires L = 6. In this

interpretation, ∆(2750)I3 13 has L = 5, S = 3/2 and N =

1 and should be degenerate in mass with ∆(2950)K3 15.

Both are expected to have a mass of 2.84 GeV which is not

incompatible with the experimental findings even though

the mass difference of 200 MeV between the two states

does not support their expected mass degeneracy.

An early interpretation of strings was proposed by

Nambu [36]. He assumed that the gluon flux between the

two quarks is concentrated in a rotating flux tube or a

rotating string with a homogeneous mass density. Nambu

derived a linear relation between squared mass and or-

bital angular momentum, M2 ∝ L. This mechanical pic-

ture was further developed by Baker and Steinke [37] and

by Baker [38] to a field theoretical approach. For mesons,

the functional dependence (A) was derived.

The relation (A) between ∆∗
masses and L and N has

been derived earlier in a phenomenological analysis of the

baryon mass spectrum [35]. For octet and singlet baryons,

one term ascribed to instanton-induced interactions was

required to reproduce the full mass spectrum of all baryon

resonances having known spin and parity.

The striking agreement between the measured baryon

excitation spectrum and the predictions [18,19] based on

AdS/QCD and the success of the phenomenological mass

formula [35] pose new questions. In both cases, the baryon

masses depend on the number of orbital and radial exci-

tations just as mesons. But baryons have an extra degree

1 The ∆1/2+(1750) is tricky; it has L = 2 but both oscillators
are excited. Since they are orthogonal, the internal separations
increase less than for parallel angular momenta.
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Other Applications of Light-Front Holography
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Space-Like Dirac Proton Form Factor

• Consider the spin non-flip form factors

F+(Q2) = g+

�
dζ J(Q, ζ)|ψ+(ζ)|2,

F−(Q2) = g−

�
dζ J(Q, ζ)|ψ−(ζ)|2,

where the effective charges g+ and g− are determined from the spin-flavor structure of the theory.

• Choose the struck quark to have Sz = +1/2. The two AdS solutions ψ+(ζ) and ψ−(ζ) correspond

to nucleons with Jz = +1/2 and−1/2.

• For SU(6) spin-flavor symmetry

F p
1 (Q2) =

�
dζ J(Q, ζ)|ψ+(ζ)|2,

Fn
1 (Q2) = −1

3

�
dζ J(Q, ζ)

�
|ψ+(ζ)|2 − |ψ−(ζ)|2

�
,

where F p
1 (0) = 1, Fn

1 (0) = 0.

Exploring QCD, Cambridge, August 20-24, 2007 Page 52
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Current Matrix Elements in AdS Space (SW)

• Propagation of external current inside AdS space described by the AdS wave equation
�
z2∂2

z − z
�
1 + 2κ2z2

�
∂z −Q2z2

�
Jκ(Q, z) = 0.

• Solution bulk-to-boundary propagator

Jκ(Q, z) = Γ
�

1 +
Q2

4κ2

�
U

�
Q2

4κ2
, 0, κ2z2

�
,

where U(a, b, c) is the confluent hypergeometric function

Γ(a)U(a, b, z) =
� ∞

0
e−ztta−1(1 + t)b−a−1dt.

• Form factor in presence of the dilaton background ϕ = κ2z2

F (Q2) = R3
�

dz

z3
e−κ2z2

Φ(z)Jκ(Q, z)Φ(z).

• For large Q2 � 4κ2

Jκ(Q, z)→ zQK1(zQ) = J(Q, z),

the external current decouples from the dilaton field.

Exploring QCD, Cambridge, August 20-24, 2007 Page 34

sjb and GdT 
Grigoryan and Radyushkin

Soft Wall 
Model
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for the elastic proton Dirac form factor and

F p
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) =

√
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M2
ρ

��
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Q2

M2
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Q2

M2

ρ
��

� , (29)

for the EM spin non-flip proton to Roper transition form factor. [59] The results (28) and (29), compared

with available data in Fig. 4, correspond to the valence approximation. The transition form factor (29)

is expressed in terms of the mass of the ρ vector meson and its first two radial excited states, with no

additional parameters.

7 Higher Fock Components in Light Front Holography

The LF Hamiltonian eigenvalue equation (1) is a matrix in Fock space which represents an infinite

number of coupled integral equations for the Fock components ψn = �n|ψ�. The resulting potential in

quantum field theory can be considered as an instantaneous four-point effective interaction in LF time,

similar to the instantaneous gluon exchange in the light-cone gauge A+
= 0, which leads to qq → qq,

qq → qq, q → qqq and q → qqq, thus creating Fock states with any number of extra quark-antiquark

pairs. In this approximation there is no mixing with the qqg Fock states (no dynamical gluons) from

the interaction term gsψγ · Aψ in QCD. Since models based on AdS/QCD are particularly successful

in the description of exclusive processes, [62] this may explain the dominance of quark interchange [63]

over quark annihilation or gluon exchange contributions in large angle elastic scattering. [64]

To show the relevance of higher Fock states we discuss a simple semi-phenomenological model of

the elastic form factor of the pion where we include the first two components in a Fock expansion of

the pion wave function |π� = ψqq/π|qq�τ=2 + ψqqqq|qqqq�τ=4 + · · · , where the JPC
= 0

−+
twist-two

and twist-4 states |qq� and |qqqq� are created by the interpolating operators qγ+γ5q and qγ+γ5qqq
respectively.
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Fig. 5 Structure of the space- and time-like pion form factor in light-front holography for a truncation of the
pion wave function up to twist four. Triangles are the data compilation from Baldini et al., [42] red squares
are JLAB 1 [43] and green squares are JLAB 2. [44]

It is apparent from (19) that the higher-twist components in the Fock expansion are relevant for

the computation of hadronic form factors, particularly for the time-like region which is particularly

sensitive to the detailed structure of the amplitudes. [65] Since the charge form factor is a diagonal

operator, the final expression for the form factor corresponding to the truncation up to twist four

is the sum of two terms, a monopole and a three-pole term. In the strongly coupled semiclassical
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Proton Form Factor: N = 3 [Eq. (6)].

FIG. 2. Q4F 1
p (Q2) in a negative (dashed line, κ = 0.3877 GeV) and positive dilaton backgrounds

(continuous line, κ = 0.5484 GeV). The data compilation is from Diehl.
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Proton Form Factor: N = 3 [Eq. (6)].

FIG. 2. Q4F 1
p (Q2) in a negative (dashed line, κ = 0.3877 GeV) and positive dilaton backgrounds

(continuous line, κ = 0.5484 GeV). The data compilation is from Diehl.

4

Q4F p
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• Scaling behavior for large Q2: Q4Fn
1 (Q2)→ constant Neutron τ = 3
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SW model predictions for κ = 0.424 GeV. Data analysis from M. Diehl et al. Eur. Phys. J. C 39, 1 (2005).

Helmholtz Institut, Bonn, Oct 16, 2007 Page 30
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Negative Dilaton Background exp (−κ2z2)

Form Factor in negative dilaton background:

[SJB and GdT, PRD 77, 056007(2008)]

F (Q2)=
1

1 + Q2

4κ2

, N = 2, (1)

F (Q2)=
2�

1 + Q2

4κ2

��
2 + Q2

4κ2

� , N = 3, (2)

· · ·

F (Q2)=
(N − 1)!�

1 + Q2

4κ2

� �
2 + Q2

4κ2

�
· · ·

�
N − 1 + Q2

4κ2

� , N, (3)

which is expressed as a N −1 product of poles, corresponding to the first N −1 states along

the vector meson radial trajectory.

Mass spectrum of radial excitations:

M2
n = 4κ2(n + 1) (4)

Negative dilaton exp (−κ2z2): κ = Mρ/2 = 0.3877 GeV

In terms of the ρ vector masses (n = N − 2)

F (Q2)=
1

1 + Q2

M2
ρ

, N = 2, (5)

F (Q2)=
1

�
1 + Q2

M2
ρ

� �
1 + Q2

M2
ρ�

� , N = 3, (6)

· · ·

F (Q2)=
1

�
1 + Q2

M2
ρ

� �
1 + Q2

M2
ρ�

�
· · ·

�
1 + Q2

M2
ρN−2

� , N, (7)

Positive Dilaton Background exp (+κ2z2)

M2
n = 4κ2(n + 1) → M2

n = 4κ2

�
n +

1

2

�
(8)

Negative dilaton exp (−κ2z2): κ = Mρ/2 = 0.3877 GeV

bf Positive dilaton exp (+κ2z2): κ = Mρ/
√

2 = 0.5484 GeV
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Nucleon Transition Form Factors

• Compute spin non-flip EM transition N(940)→ N∗(1440): Ψn=0,L=0
+ → Ψn=1,L=0

+

• Transition form factor

F1
p
N→N∗(Q2) = R4

�
dz

z4
Ψn=1,L=0

+ (z)V (Q, z)Ψn=0,L=0
+ (z)

• Orthonormality of Laguerre functions

�
F1

p
N→N∗(0) = 0, V (Q = 0, z) = 1

�

R4
�

dz

z4
Ψn�,L

+ (z)Ψn,L
+ (z) = δn,n�

• Find

F1
p
N→N∗(Q2) =

2
√

2
3

Q2

M2
P�

1 + Q2

M2
ρ

��
1 + Q2

M2
ρ�

��
1 + Q2

M2

ρ
��

�

withMρ
2
n → 4κ2(n + 1/2)

LC 2011 2011, Dallas, May 23, 2011 Page 21

de Teramond, sjb

Consistent with counting rule, twist 3
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Figure 2: Dirac proton form factors in light-front holographic QCD. Left: scaling of
proton elastic form factor Q4F p

1 (Q
2). Right: proton transition form factor F p

1 N→N∗(Q2)
to the first radial excited state. Data compilation from Diehl [32] (left) and JLAB [33]
(right).

transverse LF plane (µR)2 = −(2− J)2 + L2, L = |Lz|, [11] and thus a conserved EM
current corresponds to poles along the J = L = 1 radial trajectory. For the twist-3
computation of the space-like form factor, which involves the current J+, the poles do
not correspond to the physical poles of the twist-2 transverse current J⊥ present in the
annihilation channel, namely the J = 1, L = 0 radial trajectory. Consequently, the
location of the poles in the final result should be shifted to their physical positions.
When this is done, the results agree extremely well with the proton Dirac elastic and
transition form factor data shown in Fig. (2).

The proton has degenerate mass eigenstates with plus and minus components (2)
corresponding to Lz = 0 and Lz = +1 orbital components combined with spin com-
ponents Sz = +1/2 and Sz = −1/2 respectively. Likewise, we would expect that the
wave equation describing the propagation of a vector meson in AdS with Jz = +1
will account for three degenerate mass eigenstates with different LF orbital angular
momentum components: Lz = 0, Sz = +1; Lz = +1, Sz = 0 and Lz = +2, Sz = −1,
which is obviously not the case in the usual formulation of AdS wave equations. To
describe higher spin modes in AdS/QCD, properly incorporating the spin constituents,
the formalism has to be extended to account for multiple component wave equations
with degenerate mass eigenstates – as for the case of the nucleon – introducing cou-
pled linear equations in AdS similar to the Kemmer-Duffin-Petiau equations, a subject
worth pursuing.

6

Nucleon Elastic  and Transition Form Factors

3.1 Computing Nucleon Form Factors in Holographic QCD

In order to compute the separate features of the proton an neutron form factors one
needs to incorporate the spin-flavor structure of the nucleons, properties which are
absent in the usual models of the gauge/gravity correspondence. This can be readily
included in AdS/QCD by weighting the different Fock-state components by the charges
and spin-projections of the quark constituents; e.g., as given by the SU(6) spin-flavor
symmetry.

To simplify the discussion we shall consider the spin-non flip proton form factors
for the transition n, L → n′L. Using the SU(6) spin-flavor symmetry we obtain the
result [14]

F p
1 n,l→n′,L(Q

2) = R4

∫

dz

z4
Ψn′, L

+ (z)V (Q, z)Ψn,L
+ (z), (6)

where we have factored out the plane wave dependence of the AdS fields

Ψ+(z) =
κ2+L

R2

√

2n!

(n + L+ 1)!
z7/2+LLL+1

n

(

κ2z2
)

e−κ2z2/2. (7)

The bulk-to-boundary propagator is [34]

V (Q, z) = κ2z2
∫ 1

0

dx

(1− x)2
x

Q2

4κ2 e−κ2z2x/(1−x), (8)

with V (Q = 0, z) = V (Q, z = 0) = 1. The orthonormality of the Laguerre polynomials
in (7) implies that the nucleon form factor at Q2 = 0 is one if n = n′ and zero otherwise.
Using (8) in (6) we find

F p
1 (Q

2) =
1

(

1 + Q2

M2
ρ

)(

1 + Q2

M2
ρ′

) , (9)

for the elastic proton Dirac form factor and

F p
1 N→N∗(Q2) =

√
2

3

Q2

M2
ρ

(

1 + Q2

M2
ρ

)(

1 + Q2

M2
ρ′

)(

1 + Q2

M2

ρ
′′

) , (10)

for the EM spin non-flip proton to Roper transition form factor. The results (9) and
(10), compared with available data in Fig. 2, correspond to the valence approximation.
The transition form factor (10) is expressed in terms of the mass of the ρ vector meson
and its first two radial excited states, with no additional parameters.

To study the spin-flip nucleon form factors using holographic methods, Abidin and
Carlson [35] propose to introduce the ‘anomalous’ gauge invariant term

∫

d4x dz
√
g Ψ̄ eAM eBN [ΓA,ΓB]F

MNΨ (11)
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• Boost Invariant

• Trivial LF vacuum.

• Massless Pion

• Hadron Eigenstates have LF Fock components of different Lz

• Proton: equal probability

• Self-Dual Massive Eigenstates: Proton is its own chiral partner.

• Label State by minimum L as in Atomic Physics

• Minimum L dominates at short distances               

• AdS/QCD Dictionary: Match to Interpolating Operator Twist at z=0.

Chiral Features of Soft-Wall 
AdS/QCD Model

164

Sz = +1/2, Lz = 0;Sz = −1/2, Lz = +1

Jz = +1/2 :< Lz >= 1/2, < Sz
q = 0 >



• Exposed by timelike form factor through dressed 
current.

• Created by confining interaction

• Similar to QCD(1+1) in lcg

• No explicit gluons  - quark interchange dominates 
exlusive reactions

Higher Fock States

165

U(ζ2)

5 Confinement Interaction and Higher Fock States

[S. J. Brodsky and GdT (in progress)]

• Is the AdS/QCD confinement interaction responsible for quark pair creation?

• Only interaction in AdS/QCD is the confinement potential

• In QFT the resulting LF interaction is a 4-point effective interaction wich leads to qq → qq, q → qqq,

qq → qq and q → qqq

• Create Fock states with extra quark-antiquark pairs.

• No mixing with qqg Fock states (no dynamical gluons)

• Explain the dominance of quark interchange in large angle elastic scattering

[C. White et al. Phys. Rev D 49, 58 (1994)

• Effective confining potential can be considered as an instantaneous four-point interaction in LF time,

similar to the instantaneous gluon exchange in LC gauge A+ = 0. For example

P−confinement � κ4
�

dx−d2�x⊥
ψγ+T aψ

P+

1
(∂/∂⊥)4

ψγ+T aψ

P+

LC 2011 2011, Dallas, May 23, 2011 Page 23
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Light-Front Holography and 
Proton  Transversity  Stan Brodsky,  SLACTransversity 2011  

AdS/QCD and Light-Front Holography 

• Hadrons are composites of quark and anti-quark 
constituents

• Explicit gluons absent!

• Higher Fock states with extra quark/anti-quark pairs 
created by confining potential

• Dominance of Quark Interchange in Hard Exclusive 
Reactions

• Short-distance behavior matches twist of 
interpolating operator at short distance -- guarantees 
dimensional counting rules -- 
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Meson Transition Form-Factors

[S. J. Brodsky, Fu-Guang Cao and GdT, arXiv:1005.39XX]

• Pion TFF from 5-dim Chern-Simons structure [Hill and Zachos (2005), Grigoryan and Radyushkin (2008)]

�
d4x

�
dz �LMNPQAL∂MAN∂P AQ

∼ (2π)4δ(4) (pπ + q − k) Fπγ(q2)�µνρσ�µ(q)(pπ)ν�ρ(k)qσ

• Take Az ∝ Φπ(z)/z, Φπ(z) =
�

2Pqq κ z2e−κ2z2/2
, �Φπ|Φπ� = Pqq

• Find

�
φ(x) =

√
3fπx(1− x), fπ =

�
Pqq κ/

√
2π

�

Q2Fπγ(Q2) =
4√
3

� 1

0
dx

φ(x)
1− x

�
1− e−PqqQ2(1−x)/4π2f2

π x
�

normalized to the asymptotic DA [Pqq = 1 → Musatov and Radyushkin (1997)]

• Large Q2
TFF is identical to first principles asymptotic QCD result Q2Fπγ(Q2 →∞) = 2fπ

• The CS form is local in AdS space and projects out only the asymptotic form of the pion DA

LC 2011 2011, Dallas, May 23, 2011 Page 25
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Photon-to-pion transition form factor

F.-G. Cao, 
G. de Teramond, 

sjb

where α = 1/137. The form factor Fπγ(0) is also well described by the Schwinger, Adler,

Bell and Jackiw anomaly [31] which gives

F SABJ
πγ (0) =

1

4π2fπ
, (16)

in agreement within a few percent of the observed value obtained from the the decay

π0 → γγ.

Taking Pqq̄ = 0.5 in (14) one obtains a result in agreement with (16). Thus (13) repre-

sents a description on the pion TFF which encompasses the low-energy non-perturbative

and the high-energy hard domains, but includes only the asymptotic DA of the qq̄ com-

ponent of the pion wave function at all scales. The results from (13) are shown as dotted

curves in Figs. 1 and 2 for Q2Fπγ(Q2) and Fπγ(Q2) respectively. The calculations agree

reasonably well with the experimental data at low- and medium-Q2 regions (Q2 < 10

GeV2) , but disagree with BABAR’s large Q2 data.
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pion-gamma transition form factor, Q2Fpigamma 
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FIG. 1: The γγ∗ → π0 transition form factor shown as Q2Fπγ(Q2) as a function of Q2 = −q2.

The dotted curve is the asymptotic result predicted by the Chern-Simons form. The dashed

and solid curves include the effects of using a confined EM current for twist-two and twist-two

plus twist-four respectively. The data are from [15, 18, 19].

9

qq̄ components.

The simple valence qq̄ model discussed above should thus be modified at small Q2

by introducing the dressed current. In the case of soft-wall potential, the EM bulk-to-

boundary propagator is

V (Q2, z) = Γ

�
1 +

Q2

4κ2

�
U

�
Q2

4κ2
, 0, κ2z2

�
, (17)

where U(a, b, c) is the Tricomi confluent hypergeometric function. The modified current

V (Q2, z), (17), has the same boundary conditions as the free current (9), and reduces to

(9) in the limit Q2 → ∞. Eq. (17) can be conveniently written in terms of the integral

representation [33]

V (Q2, z) = κ2z2

� 1

0

dx

(1− x)2
x

Q2

4κ2 e−κ2z2x/(1−x). (18)

Inserting the pion wave function (5) for twist τ = 2 and the confined EM current (18)

in the amplitude (3) one finds

Fπγ(Q
2
) =

Pqq̄

π2fπ

� 1

0

dx

(1 + x)2
xQ2Pqq̄/(8π2f2

π). (19)

Eq. (19) gives the same value for Fπγ(0) as (14) which was obtained with the free current.

Thus the anomaly result Fπγ(0) = 1/(4π2fπ) is reproduced if Pqq̄ = 0.5 is also taken in

(19). Upon integration by parts, Eq. (19) can also be written as

Q2Fπγ(Q
2
) = 8fπ

� 1

0

dx
1− x

(1 + x)3

�
1− xQ2Pqq̄/(8π2f2

π)
�

. (20)

Noticing that the second term in Eq. (20) vanishes at the limit Q2 → ∞, one recovers

Brodsky-Lepage’s asymptotic prediction for the pion TFF: Q2Fπγ(Q2 →∞) = 2fπ. [11]

The results calculated with (19) for Pqq̄ = 0.5 are shown as dashed curves in Figs. 1

and 2. One can see that the calculations with the dressed current are larger as compared

with the results computed with the free current and the experimental data at low- and

medium-Q2 regions (Q2 < 10 GeV2). The new results again disagree with BABAR’s data

at large Q2.

11

Lepage,  sjb

(Chern-Simons)
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Prediction from AdS/CFT: Meson LFWF
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φM(x, Q0) ∝
�

x(1− x)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ−

q

φM(x, Q0) ∝
�

x(1− x)

ψM(x, k2
⊥)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ−

Increases PQCD prediction for Fπ(Q2) by 16/9



 
 Stan Brodsky,  SLACTransversity 2011  Light-Front Holography and 

Proton  Transversity

Prediction from AdS/CFT: Meson LFWF

ψ(x, k⊥)
0.20.40.60.8

1.3

1.4

1.5

0

0.05

0.1

0.15

0.2

0

5

       “Soft Wall” 
model

ψ(x, k⊥)(GeV)

de Teramond, sjb

173

φM(x, Q0) ∝
�

x(1− x)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ−

q

φM(x, Q0) ∝
�

x(1− x)

ψM(x, k2
⊥)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ−

κ = 0.375 GeV

massless quarks
Note coupling 

k2
⊥, x

Connection of Confinement to TMDs

ψM (x, k⊥) =
4π

κ
�

x(1− x)
e
− k2

⊥
2κ2x(1−x)
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φH(xi, Q)

φM (x,Q) =
� Q

d2�k ψqq̄(x,�k⊥)

P+ = P0 + Pz

Fixed τ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

ψ(σ, b⊥)

β = dαs(Q2)
d lnQ2 < 0

u

x

1− x

k2
⊥ < Q2

�

i

xi = 1

Lepage, sjb

Hadron Distribution Amplitudes

174

• Fundamental gauge invariant non-perturbative input to hard 
exclusive processes, heavy hadron decays. Defined for 
Mesons, Baryons

• Evolution Equations from PQCD, OPE, Conformal 
Invariance

• Compute from valence light-front wavefunction in light-
cone gauge

Braun, Gardi

Lepage, sjb
Efremov, Radyushkin

Sachrajda, Frishman Lepage, sjb
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Second Moment of  Pion Distribution Amplitude

< ξ2 >=
� 1

−1
dξ ξ2φ(ξ)

ξ = 1− 2x

φasympt ∝ x(1− x)
φAdS/QCD ∝

�
x(1− x)

Braun et al.

Donnellan et al.

< ξ2 >π= 1/5 = 0.20

< ξ2 >π= 1/4 = 0.25

Lattice (I) < ξ2 >π= 0.28± 0.03

Lattice (II) < ξ2 >π= 0.269± 0.039
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The nucleon helicity-independent generalized parton distributions (GPDs) of quarks are calculated

in the zero skewness case, in the framework of the AdS/QCD model. The present approach is based

on a matching procedure of sum rules relating the electromagnetic form factors to GPDs and AdS

modes.

PACS numbers: 11.10.Kk,12.38.Lg,13.40.Gp,14.20.Dh

Keywords: nucleon form factors and generalized parton distributions, AdS/CFT correspondence, holograph-

ical model

I. INTRODUCTION

One of the main goals in strong interaction theory is
to understand how nucleons and other hadrons are build
up from quarks and gluons. Studied in various scattering
processes, the hadronic structure can be encoded in the
so-called generalized parton distributions (GPDs) [1–4].
In particular, at leading twist-2, there exist two kinds
of helicity-independent GPDs of quarks in the nucleon,
denoted asHq(x, ξ, t) and E

q(x, ξ, t). Both quantities de-
pend in general on three variables: the momentum trans-
fer squared t = q

2, the light-cone momentum fraction x,
and the skewness ξ.

Due to their nonperturbative nature the GPDs can-
not be directly calculated from Quantum Chromodynam-
ics (QCD). There are essentially three ways to access
the GPDs (for reviews see e.g. [5, 6]): extraction from
the experimental measurement of hard processes, a di-
rect calculation in the context of lattice QCD, and dif-
ferent phenomenological models and methods. The last
procedure is based on a parametrization of the quark
wave functions/GPDs using constraints imposed by sum
rules [2, 3], which relate the parton distributions to nu-
cleon electromagnetic form factors (some examples of this
procedure can be found e.g. in [7–9]). On the other hand,
such sum rules can also be used in the other direction –
GPDs are extracted by calculating nucleon electromag-
netic form factors in some approach.

Following the last idea, here we show how to extract
the quark GPDs of the nucleon in the framework of a
holographical soft-wall model [10, 11]. In particular, we
use the results of Abidin and Carlson for the nucleon form

∗On leave of absence from Department of Physics, Tomsk State

University, 634050 Tomsk, Russia

factors [11] in order to extract the GPDs using the light-
front mapping – the key ingredient of light-front hologra-
phy (LFH). This is an approach based on the correspon-
dence of string theory in Anti-de Sitter (AdS) space and
conformal field theory (CFT) in physical space-time [12].
LFH is further based on a mapping of string modes in
the AdS fifth dimension to hadron light-front wave func-
tions in physical space-time, as suggested and developed
by Brodsky and de Téramond [10, 13–16] and extended
in [17–19]. In this paper we show how LFH can be used
to get the nucleon GPDs in the context of the soft-wall
model.
From the beginning the AdS/CFT [12] correspondence

has received considerable attention, which over time was
expanded into several directions, one of which is the pos-
sibility to address issues related to QCD phenomena. A
particular and easy way to consider AdS/CFT ideas ap-
plied to QCD is known as the bottom - up approach [20,
21], where one tries to build models that reproduce some
features of QCD in a dual 5-dimensional space which con-
tains gravity. This kind of models have been successful in
several QCD applications, among which are the follow-
ing examples: hadronic scattering processes [13, 22–24],
hadronic spectra [10, 19, 25–28], hadronic couplings and
chiral symmetry breaking [20, 21, 29–31], quark poten-
tials [32–34], etc.
In this paper we perform a matching of the nucleon

electromagnetic form factors considering two approaches
for them: we use sum rules derived in QCD [2, 3], which
contain GPDs for valence quarks, and we consider an ex-
pression obtained in the AdS/QCD soft-wall model [11].
As a result of the matching we obtain expressions for the
nonforward parton densities [4] Hq

v (x, t) = H
q(x, 0, t) +

H
q(−x, 0, t) and E

q
v(x, t) = E

q(x, 0, t)+E
q(−x, 0, t) – fla-

vor combinations of the GPDs (or valence GPDs), using
information from the AdS side. The procedure proposed
here is similar to the one used in LFH, which allows to ob-
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FIG. 3: Plots for q(x,b⊥). The upper panels correspond to u(x,b⊥) and the lower to d(x,b⊥). Both cases are taken for
x = 0.1.

where e
p
u = e

n
d = 2/3 and e

n
u = e

p
d = −1/3,

iii) transverse width of the impact parameter depen-
dent GPD q(x,b⊥)

�R2
⊥(x)�q =

�
d
2b⊥b2

⊥q(x,b⊥)�
d2b⊥q(x,b⊥)

= −4
∂ logHq

v (x,Q
2)

∂Q2

����
Q2=0

, (26)

iv) transverse rms radius

�R2
⊥�q =

�
d
2b⊥b2

⊥

1�

0
dxq(x,b⊥)

�
d2b⊥

1�

0
dxq(x,b⊥)

. (27)

Notice that the GPDs in impact space can be derived di-
rectly from the nucleon form factors using the procedure
of light-front mapping and the bulk-to-boundary propa-
gator in impact space V (b⊥, z). The latter is related to
V (k⊥, z) via the Fourier transform:

V (b⊥, z) =

�
d
2k⊥

(2π)2
V (k⊥, z)e

−ib⊥k⊥

=
κ4

z
2

π

1�

0

dx
e

−κ2
z
2
x

1− x
− b2

⊥κ
2

log(1/x)

(1− x)2 log(1/x)
. (28)
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Notice that the GPDs in impact space can be derived di-
rectly from the nucleon form factors using the procedure
of light-front mapping and the bulk-to-boundary propa-
gator in impact space V (b⊥, z). The latter is related to
V (k⊥, z) via the Fourier transform:
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u(x = 0.1,�b⊥) d(x = 0.1,�b⊥)
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Features of  AdS/QCD LF Holography

• Based on Conformal Scaling of Infrared QCD Fixed Point

• Conformal template: Use isometries of AdS5

• Interpolating operator of hadrons based on twist, superfield 
dimensions

• Finite Nc = 3: Baryons built on 3 quarks -- Large Nc limit not 
required

• Break Conformal symmetry with dilaton

• Dilaton introduces confinement -- positive exponent

• Origin of Linear and HO potentials: Stochastic arguments 
(Glazek); General  ‘classical’ potential  for Dirac Equation (Hoyer)

• Effective Charge from AdS/QCD at all scales

• Conformal Dimensional Counting Rules for Hard Exclusive 
Processes



 

Nearly conformal QCD?

42

Γp−n
1 ≡

� 1

0
dx

�
gp

1 (x, Q2)− gn
1 (x, Q2)

�
=

1
6
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π

�Define αs from 
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Recent JLab data from 
EG1(2008), CLAS, and Hall A

Gribov

Deur, de Teramond, sjb 178



 
 Stan Brodsky,  SLACTransversity 2011  Light-Front Holography and 

Proton  Transversity
179

Deur, Korsch, et al.
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Fig: Infrared conformal window ( from Deur et al., arXiv:0803.4119 )

From String to Things, INT, Seattle, April 10, 2008 Page 8

DSE  gluon  
couplings



 

5 Non-Perturbative QCD Coupling From LF Holography

With A. Deur and S. J. Brodsky

• Consider five-dim gauge fields propagating in AdS5 space in dilaton background ϕ(z) = κ2z2

S = −1
4

�
d4x dz

√
g eϕ(z) 1

g2
5

G2

• Flow equation

1
g2
5(z)

= eϕ(z) 1
g2
5(0)

or g2
5(z) = e−κ2z2

g2
5(0)

where the coupling g5(z) incorporates the non-conformal dynamics of confinement

• YM coupling αs(ζ) = g2
Y M (ζ)/4π is the five dim coupling up to a factor: g5(z)→ gY M (ζ)

• Coupling measured at momentum scale Q

αAdS
s (Q) ∼

� ∞

0
ζdζJ0(ζQ)αAdS

s (ζ)

• Solution

αAdS
s (Q2) = αAdS

s (0) e−Q2/4κ2
.

where the coupling αAdS
s incorporates the non-conformal dynamics of confinement

Hadron 2009, FSU, Tallahassee, December 1, 2009 Page 27

Running Coupling from  Modified AdS/QCD
Deur,  de Teramond, sjb
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Running Coupling from Light-Front Holography and AdS/QCD

αAdS
s (Q)/π = e−Q2/4κ2

αs(Q)
π

Deur,  de Teramond, sjb

κ = 0.54 GeV

Analytic, defined at all scales, IR Fixed Point

Q (GeV)

s(Q
)/
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• β-function

βAdS(Q2) =
d

d log Q2
αAdS

s (Q2) =
πQ2

4κ2
e−Q2/4κ2

.

Q (GeV)

!(
Q

)

"s,g1 (pQCD)

GDH sum rule
constraint on "s,g1

Lattice QCD
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Holography
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Hadron 2009, FSU, Tallahassee, December 1, 2009 Page 29

Deur,  de Teramond, sjb
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• Sivers Effect in SIDIS, Drell-Yan

• Double Boer-Mulders Effect in DY

• Diffractive DIS

• Heavy Quark Production at Threshold

183

Applications of Nonperturbative Running 
Coupling from AdS/QCD

All involve gluon exchange at small 
momentum transfer
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x (1− x) �b⊥

ψ(x,�b⊥) = ψ(ζ)

φ(z)

ζ =
�

x(1− x)�b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) �b⊥

ψ(x,�b⊥) = ψ(ζ)

φ(z)

ζ =
�

x(1− x)�b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) �b⊥

ψ(x,�b⊥) = ψ(ζ)

φ(z)

ζ =
�

x(1− x)�b2⊥

z

z∆

z0 = 1
ΛQCD

ψ(x,�b⊥) = ψ(ζ)

φ(z)

ζ =
�

x(1− x)�b2⊥

z

z∆

z0 = 1
ΛQCD

γd→ np

gu→ γu

pp→ γX

E dσ
d3p

(pp→ γX) = F (θcm,xT )
p4
T

− d
dζ2 ≡

k2
⊥

x(1−x)

Conjecture for massive quarks

− d
dζ2 → − d

dζ2 + m2
a

x +
m2

b
1−x ≡

k2
⊥+m2

a
x +

k2
⊥+m2

b
1−x

LF Kinetic Energy in 
momentum space 

Holographic Variable

u↓(x)
u↑(x)

∼ (1− x)2

Q2(GeV2)

�
− d2

d2ζ
+ V (ζ)

�
φ(ζ) =M2φ(ζ)

�
− d2

dζ2 + V (ζ)
�
φ(ζ) =M2φ(ζ)

ζ2 = x(1− x)b2
⊥.

�L = �P × �R

Assume LFWF is a dynamical function of the  quark-
antiquark invariant mass squared

− d

dζ2
→ − d

dζ2
+

m2
1

x
+

m2
2

1− x
≡ k2

⊥ + m2
1

x
+

k2
⊥ + m2

2

1− x

de Teramond, sjbm1

m2
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ψ(x,b⊥) =
cκ√

π

�
x(1− x) e

− 1
2κ2x(1−x)b2

⊥−
1

2κ2

»
m2

1
x −

m2
2

1−x

–

ψ(x,k⊥) =
4πc

κ
�

x(1− x)
e
− 1

2κ2

„
k2
⊥

x(1−x)+
m2

1
x +

m2
2

1−x

«

z → ζ → χ

χ2 = b2x(1− x) +
1
κ4

[
m2

1

x
+

m2
2

1− x
]

Result:  Soft-Wall LFWF  for massive constituents  

LF WF  in  impact space: soft-wall model 
with massive quarks 

+
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J êY: m1 = 1.25 GeV, m2 = 0
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where c is the dimensionless normalization factor

c−2 =
� 1

0
dx e

− 1
κ2

„
m2

1
x +

m2
2

1−x

«

. (5)

The Fourier transform of (4) is the impact space LFWF

�ψ(x,b⊥) =
c κ√

π

�
x(1− x) e−

1
2 κ2χ2

, (6)

where the invariant quantity χ is

χ2 = x(1− x)b2
⊥ +

1
κ4

�
m2

1

x
+

m2
2

1− x

�
. (7)

Impact space holographic LFWFs for the π, K, D, ηc, B
and ηb mesons are depicted in Fig. 1.

The non-perturbative input to hard exclusive processes
and heavy hadron decays can be computed in terms of
gauge invariant hadronic distribution amplitudes (DAs),
which describe the momentum-fraction distribution of
partons at zero transverse impact distance in a Fock
state with a fixed number of constituents. The me-
son DA is computed from the transverse integral of the
valence quark light-front wavefunction in the light-cone
gauge [17]

φM (x,Q) =
� k2

⊥<Q2
d2k⊥
16π3

ψM (x,k⊥), (8)

and thus φ(x) ≡ φ(x,Q → ∞) → �ψ(x,b⊥ → 0)/
√

4π.
From (6) we obtain the holographic distribution ampli-
tude φ(x)

φM (x) =
c κ

2π

�
x(1− x) e

− 1
2κ2

»
m2

1
x +

m2
2

1−x

–

, (9)

in the soft wall model. The distribution amplitudes for
the π, K, D, ηc, mesons are shown in Fig. 2. Predictions
for the first and second moment of the meson distribution
amplitude

�ξN �M =

� 1
−1 ξNφM (ξ)
� 1
−1 φM (ξ)

, (10)

and comparison with available lattice computations are
given on Table I . In the chiral limit, the AdS distribu-
tion amplitude φAdS(x) ∼

�
x(1− x) gives for the second

moment �ξ2�AdS → 1/4, compared with the asymptotic
value �ξ2�PQCD → 1/5 from the PQCD asymptotic DA
φPQCD(x) ∼ x(1− x) [17] .

...............

III. PARTONIC MASS SHIFT

We compute the partonic mass shift contribution to a
meson due to the constituents quark masses [21]

M2 =M2
massless +

�
m2

1

x

�
+

�
m2

2

1− x

�
, (11)

FIG. 1: Two-parton flavored meson holographic LFWF
ψ(x,b⊥): (a) |π+� = |ud�, (b) |K+� = |us�, (c) |D+� = |cd�,
(d) |ηc� = |cc�, (e) |B+� = |ub� and (f) |ηb� = |bb�. Values
for the quark masses used are mu = 2 MeV, md = 5 MeV,
ms = 95 Mev, mc = 1.25 GeV and mb = 4.2 GeV. The value
of κ = 0.375 GeV is extracted from the pion form factor [16].

for the holographic LFWF (4). Results for the partonic
mass shift contribution ∆M =

�
M2 −M2

massless

�1/2 are
compared with hadronic masses on Table II.

.....

IV. CONCLUSIONS

..........
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|D+ >= |cd̄ >
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mu = 2 MeV
md = 5 MeV

ms = 95 MeV

mc = 1.25 GeV

mb = 4.2 GeV

κ = 375 MeV

b[GeV−1]

x

|B+ >= |ub̄ >
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Static QQ Potential

• For heavy quarks LF holographic equations reduce to NR Schrödinger equation in configuration space

V (r) = −4
3

αV (r)
r

+ Vconf (r)

where Vconf � 1
2mredω2r2, mred = mQmQ/(mQ + mQ) and ω = κ2/(mQ + mQ)
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LC 2010, Valencia, June 20, 2010 Page 28
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de Teramond, sjb
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Features of Soft-Wall AdS/QCD

• Single-variable frame-independent radial Schrodinger 
equation

• Massless pion (mq =0)

• Regge Trajectories: universal slope in  n and L

• Valid for all integer J & S.   

• Dimensional Counting Rules for Hard Exclusive Processes

• Phenomenology: Space-like and Time-like Form Factors

• LF Holography: LFWFs;  broad distribution amplitude

• No large Nc limit required

• Add quark masses to LF kinetic energy

• Systematically  improvable -- diagonalize HLF on AdS basis
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Pauli, Hornbostel, 
Hiller, McCartor, Chabysheva, sjb

Use AdS/CFT orthonormal Light Front Wavefunctions
as a basis for diagonalizing the QCD LF Hamiltonian

• Good initial approximation

• Better than plane wave basis

• DLCQ discretization -- highly successful 1+1

• Use independent HO LFWFs, remove CM motion

• Similar to Shell Model calculations

• Hamiltonian light-front field theory within an AdS/QCD basis. 
J.P. Vary, H. Honkanen, Jun Li, P. Maris, A. Harindranath,                                             

G.F. de Teramond, P. Sternberg, E.G. Ng, C. Yang, sjb
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QCD Problem Solved if quark and gluon condensates reside within hadrons, not vacuum!

ΩΛ = 0.76(expt)
(ΩΛ)EW ∼ 1056

(ΩΛ)QCD ∼ 1045

June 10, 2008 12:22 WSPC/Guidelines-MPLA 02770

Modern Physics Letters A
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DARK ENERGY AND
THE COSMOLOGICAL CONSTANT PARADOX

A. ZEE

Department of Physics, University of California, Santa Barbara, CA 93106, USA
Kavil Institute for Theoretical Physics, University of California,

Santa Barbara, CA 93106, USA
zee@kitp.ucsb.edu

I give a brief and idiosyncratic overview of the cosmological constant paradox.

1.

Gravity knows about everything, whatever its origin, luminous or dark, even the
energy contained in fluctuating quantum fields.

As is well known, this leads us to one of the gravest puzzles of theoretical
physics. Consider the Feynman diagram with the graviton coupling to a matter
field (for example an electron field) loop. If we claim to understand the physics
of the electron field up to an energy scale of M, then the graviton sees an energy
density given schematically by Λ ∼ M 4 + M2m2

elog( M
me

) + m4
elog( M

me
) + · · · . Just

about any reasonable choice of M leads to a humongous energy density!!! In fact,
even if the first two terms were to be mysteriously deleted, there is still an energy
density of order m4

e, that is, an energy density corresponding to one electron mass
in a volume the size of the Compton wavelength of the electron, filling all of space,
which is clearly unacceptable.

Apparently, this disastrous prediction of quantum field theory has nothing to
do with quantum gravity. Indeed, the quantum field theory we need for the matter
field is merely free field theory: we are just adding up zero point energy of harmonic
oscillators.

The cosmological constant paradox may be summarized as follows. In some
suitable units, the cosmological constant was expected to have the value ∼ 10123.
This was so huge that it was decreed to be equal to = 0 identically, while the
measured value turned out to be ∼ 1. I have argued elsewhere that the proton
decay rate might offer an instructive lesson here.

I am presuming that the observed dark energy is the fabled cosmological con-
stant. The evidence seems increasingly to favor this simplest of hypotheses. Even
if this were not the case, much of the paradox still remains.

I define Λ by writing the Einstein-Hilbert action as
∫

d4x
√

g( 1
GR+Λ). It is useful

1336

“One of the gravest puzzles of 
theoretical physics”

191

(ΩΛ)QCD ∝< 0|qq̄|0 >4

Proc.Nat.Acad.Sci. 108 (2011) 45-50 “Condensates in Quantum Chromodynamics and the Cosmological Constant”R. Shrock, sjb

C. Roberts, R. Shrock, P. Tandy, sjb “New Perspectives on the Quark Condensate”Phys.Rev. C82 (2010) 022201
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Gell-Mann Oakes Renner Formula in QCD

current algebra: 
effective pion field

QCD: composite  pion
Bethe-Salpeter Eq.

vacuum condensate actually is an “in-hadron condensate”

Maris, Roberts, Tandyπ− < 0|q̄γ5q|π >

m2
π = − (mu + md)

fπ
< 0|iq̄γ5q|π >

m2
π = − (mu + md)

f2
π

< 0|q̄q|0 >
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Gell-Mann Oakes Renner Formula in QCD

current algebra: 
effective pion field

QCD: composite  pion
Bethe-Salpeter Eq.

vacuum condensate actually is an “in-hadron condensate”

Maris, Roberts, Tandyπ− < 0|q̄γ5q|π >

m2
π = − (mu + md)

fπ
< 0|iq̄γ5q|π >

m2
π = − (mu + md)

f2
π

< 0|q̄q|0 >
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Γπ(k;P ) = iγ5Eπ(k, P ) + γ5γ · PFπ(k;P )
+γ5γ · kGπ(k;P )− γ5σµνk

µ
P

ν
Hπ(k;P )

π−Γπ(k;P )
P/2 + k

P/2− k

< 0|q̄γ5q|π >< 0|q̄γ5γµq|π >Allows both and

General Form  of  Bethe-Salpeter Wavefunction

π−
+

π−

ū

-

d

-

-
Sz = 0, Lz = 0 Sz = −1, Lz = +1

LFWFs
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-

ū

π− d

+

-π− d

+
-

ū

< π|γ̄µqγ5q|0 >

Lz = +1, Sz = −1

Lz = 0, Sz = 0

Running constituent mass at vertex

-

Couples to

Angular 
Momentum 

Conservation

∼ fπ

< π|q̄γ5q|0 > ∼ ρπ

Jz =
n�

i

Sz
i +

n−1�

i

Lz
i

Light-Front Pion Valence Wavefunctions
Sz

ū + Sz
d = +1/2− 1/2 = 0

Sz
ū + Sz

d = −1/2− 1/2 = −1
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ū

Running constituent mass at vertex

LF wavefunction couples to 

< π|q̄γ5q|0 >

m(�2; ζ) = B(�2; ζ)/A(�2; ζ)

Lz = +1, Sz = −1

-

ū
u -+

-
-π− d

+-
-π− d

+
-

running quark mass

ū

Lz = 0, Sz = 0

LF wavefunction couples to 

< π|γ̄µqγ5q|0 >

Lz = +1, Sz = −1
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S−1(p) = iγ · p A(p2) + B(p2) m(p2) =
B(p2)
A(p2)

Running quark mass in QCD

Dyson-Schwinger

No. X Lei Chang et al: Exploring the light-quark interaction 2
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p [GeV]
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0.3

0.4

M
(p

) [
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] m = 0 (Chiral limit)

m = 30 MeV
m = 70 MeV

effect of gluon cloud
Rapid acquisition of mass is

Fig. 1. Dressed-quark mass function, M(p):

solid curves – DSE results,[6, 7] “data” – nu-

merical simulations of unquenched lattice-

QCD.[8] In this figure one observes the

current-quark of perturbative QCD evolving

into a constituent-quark as its momentum be-

comes smaller. The constituent-quark mass

arises from a cloud of low-momentum glu-

ons attaching themselves to the current-quark.

This is dynamical chiral symmetry breaking:

an essentially nonperturbative effect that gen-

erates a quark mass from nothing ; namely, it

occurs even in the chiral limit.

tion of the integral, with Λ the regularisation mass-
scale, Dµν is the renormalised dressed-gluon prop-
agator, Γν is the renormalised dressed-quark-gluon
vertex, and mbm is the quark’s Λ-dependent bare
current-mass. The vertex and quark wave-function
renormalisation constants, Z1,2(ζ2,Λ2), depend on
the gauge parameter. The solution to Eq. (1) has the
form

S(p) =
Z(p2,ζ2)

iγ ·p+M(p2)
(2)

and it is important that the mass function, M(p2) =
B(p2,ζ2)/A(p2,ζ2) is independent of the renormalisa-
tion point, ζ. The form this function takes in QCD
is depicted in Fig. 1.

The behaviour of the dressed-quark mass function
is one of the most remarkable features of the Standard
Model. In perturbation theory it is impossible in the
chiral limit to obtain M(p2) != 0: the generation of
mass from nothing is an essentially nonperturbative
phenomenon. On the other hand, it is a longstand-
ing prediction of nonperturbative DSE studies that
DCSB will occur so long as the integrated infrared
strength possessed by the gap equation’s kernel ex-
ceeds some critical value.[2] There are strong indica-
tions that this condition is satisfied in QCD.[6–8]

It follows that the quark-parton of QCD acquires
a momentum-dependent mass, which at infrared mo-

menta is roughly 100-times larger than the light-
quark current-mass. This effect owes primarily to a
dense cloud of gluons that clothes a low-momentum
quark. It means that the Higgs mechanism is largely
irrelevant to the bulk of normal matter in the uni-
verse. Instead, the single most important mass gener-
ating mechanism for light-quark hadrons is the strong
interaction effect of DCSB; e.g., one may identify it
as being responsible for 98% of a proton’s mass.

Confinement can be connected with the analytic
properties of QCD’s Schwinger functions.[2, 4, 5, 9] In-
deed, the presence of an inflexion point in the DSE
prediction for the dressed-quark mass function, which
lattice simulations may be argued to confirm, sig-
nals confinement of the dressed-quark.[4] Kindred be-
haviour is observed in the gluon and ghost self-
energies.[10, 11]

From this standpoint the question of light-quark
confinement can be translated into the challenge of
charting the infrared behavior of QCD’s universal β-
function. (Although this function may depend on the
scheme chosen to renormalise the theory, it is unique
within a given scheme.) This is a well-posed problem
whose solution is an elemental goal of modern hadron
physics and which can be addressed in any framework
enabling the nonperturbative evaluation of renormal-
isation constants.

Through the gap and Bethe-Salpeter equations
(BSEs) the pointwise behaviour of the β-function de-
termines the nature of chiral symmetry breaking; e.g.,
the evolution in Fig. 1. Moreover, the fact that DSEs
connect the β-function to experimental observables
entails that comparison between computations and
observations of hadron properties can be used to chart
the β-function’s long-range behaviour.

2 DSE truncations:

preserving symmetry

In order to realise this goal a nonperturbative
symmetry-preserving DSE truncation is necessary.
Steady quantitative progress continues with a scheme
that is systematically improvable.[12, 13] Indeed, its
mere existence has enabled the proof of exact non-
perturbative results in QCD. Amongst them are ve-
racious statements about the η-η′ complex and π0-
η-η′ mixing, with predictions of θηη′ = −15◦ and
θπ0η = 1◦.[14] Only studies that are demonstrably con-
sistent with the results proved therein can be consid-
ered seriously.

It is also true that significant qualitative ad-
vances can be made with symmetry-preserving kernel
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Is there evidence for a gluon vacuum condensate?

Look for higher-twist correction to current propagator 

e+e− → X, τ decay, QQ̄ phenomenology

γ∗ γ∗

X X
Shifman, Vainshtein, Zakharov
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Determinations of  the vacuum Gluon Condensate
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Figure 4: a): MS mass found from experimental moments Mn(Q2
n) for different n and Q2

n

determined by the equation M̄ (1)
n (Q2

n) = 0 for different values of the gluon condensate. The
shaded area shows the experimental error for

〈

αs

π G2
〉

= 0, for nonzero condensates only the
central lines are shown. b): m̄(m̄2) in GeV vs

〈

αs

π G2
〉

in GeV4 determined from n = 10 and
Q2 = 0.98 × 4m̄2. The αs is taken at the scale (41).

other experiments. In particular, as boundary condition in the RG equation (12) we put:

αs(m
2
τ ) = 0.330 ± 0.025 , mτ = 1.777 GeV (40)

found from hadronic τ -decay analysis [19] at the τ -mass in agreement with other data [20].
Another question is the choice of the scale µ2, at which αs should be taken. Since the

higher order perturbative corrections are not known, the moments Mn(Q2) will depend on
this scale. In the massless limit the most natural choice is µ2 = Q2. On the other hand
for massive quarks and Q2 = 0 the scale is usually taken µ2 ∼ m2. So we choose the
interpolation formula:

µ2 = Q2 + m̄2 (41)

At this scale αs is smaller than at µ2 = m̄2 for the price of larger M̄ (2)
n according to (39).

(Notice, that in the Tables in the Appendix as well as in the Fig 2 the ratio M̄ (2)/M̄ (0) is
given at the scale µ2 = m̄2.) Sometimes we will vary the coefficient before m̄2 (41) to test
the dependence of the results on the scale.

The sum rules for low order moments Mn(Q2), n ≤ 3 cannot be used because of large
contribution of high excited states and continuum as well as large α2

s corrections (see the
Tables in Appendix), especially at Q2 = 0. As the Fig 3 demonstrates, at n ≥ 4 the αs

correction to the gluon condensate is large at Q2 = 0. The 〈G3〉 condensate contribution is
also large (see below), which demonstrates, that the operator product expansion is divergent
here. For these reasons we will avoid using the sum rules at small Q2.

As the Fig 2 shows, the first correction to the moments M̄ (1)
n (Q2) vanishes along the

diagonal line, approximately parametrized by the equation Q2/(4m̄2) = n/5−1. The second-
order correction M̄ (2) and the correction to the condensate contribution M̄ (G,1) are also

12

< 0|αs
π G2|0 > [GeV4]

+0.009± 0.007 from charmonium sum rules
+0.006± 0.012 from τ decay.

Ioffe, Zyablyuk

Geshkenbein, Ioffe, Zyablyuk

Davier et al.−0.005± 0.003 from τ decay.

Consistent with zero 
vacuum condensate
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Effective Confinement potential from soft-wall AdS/QCD gives  Regge 
Spectroscopy plus higher-twist correction to current propagator 

e+e− → X, τ decay, QQ̄ phenomenology

γ∗ γ∗
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q
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q

q̄

mimics dimension-4 gluon condensate                                           in 

light-quark meson spectra

κ � 0.5 GeV

< 0|αs

π
Gµν(0)Gµν(0)|0 >

M2 = 4κ2(n + L + S/2)
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• Condensates do not exist as space-time-independent 
phenomena

• Property of hadron wavefunctions: Bethe-Salpeter or Light-
Front:   “In-Hadron Condensates”

• Find:

• Zero contribution to cosmological constant!     Included in 
hadron mass

• ρπ  survives for small mq -- enhanced running mass from 
gluon loops / multiparton Fock states

Summary on QCD `Condensates’

202

< 0|q̄q|0 >

fπ
→ − < 0|iq̄γ5q|π >= ρπ

< 0|q̄iγ5q|π > similar to < 0|q̄γµγ5q|π >



 
 Stan Brodsky,  SLACTransversity 2011  Light-Front Holography and 

Proton  Transversity

RAPID COMMUNICATIONS

PHYSICAL REVIEW C 82, 022201(R) (2010)

New perspectives on the quark condensate

Stanley J. Brodsky,1,2 Craig D. Roberts,3,4 Robert Shrock,5 and Peter C. Tandy6

1SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94309, USA
2Centre for Particle Physics Phenomenology: CP3-Origins, University of Southern Denmark, Odense 5230 M, Denmark

3Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
4Department of Physics, Peking University, Beijing 100871, China

5C.N. Yang Institute for Theoretical Physics, Stony Brook University, Stony Brook, New York 11794, USA
6Center for Nuclear Research, Department of Physics, Kent State University, Kent, Ohio 44242, USA

(Received 25 May 2010; published 18 August 2010)

We show that the chiral-limit vacuum quark condensate is qualitatively equivalent to the pseudoscalar meson
leptonic decay constant in the sense that they are both obtained as the chiral-limit value of well-defined gauge-
invariant hadron-to-vacuum transition amplitudes that possess a spectral representation in terms of the current-
quark mass. Thus, whereas it might sometimes be convenient to imagine otherwise, neither is essentially a constant
mass-scale that fills all spacetime. This means, in particular, that the quark condensate can be understood as a
property of hadrons themselves, which is expressed, for example, in their Bethe-Salpeter or light-front wave
functions.
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Nonzero vacuum expectation values of local operators,
i.e., condensates, are introduced as parameters in QCD sum
rules, which are used to estimate essentially nonperturbative
strong-interaction matrix elements. They are also basic to
current algebra analyses. It is widely held that such quark
and gluon condensates have a physical existence, which is
independent of the hadrons that express QCD’s asymptotically
realizable degrees-of-freedom; namely, that these condensates
are not merely mass-dimensioned parameters in a theoretical
truncation scheme, but in fact describe measurable spacetime-
independent configurations of QCD’s elementary degrees-of-
freedom in a hadronless ground state.

We share the view that these condensates are fundamental
dynamically-generated mass-scales in QCD. However, we
shall argue that their measurable impact is entirely expressed
in the properties of QCD’s asymptotically realizable states;
namely hadrons. In taking this position we have assumed
confinement, from which follows quark-hadron duality and
hence that all observable consequences of QCD can, in
principle, be computed using a hadronic basis. Here, the term
“hadron” means any one of the states or resonances in the
complete spectrum of color-singlet bound states generated by
the theory.

We focus herein on 〈0|q̄q|0〉, where |0〉 is viewed as
some hadronless ground state of QCD. This is the vacuum
quark condensate. Its nonzero value is usually held to signal
dynamical chiral symmetry breaking (DCSB), a concept
of critical importance in QCD, whose connection with the
dressed-quark propagator was anticipated [1–5] (see also
references therein). As reviewed elsewhere (most recently,
e.g., Refs. [6–8]), DCSB is a remarkably efficient mass-
generating mechanism, the origin of constituent-quark masses
and intimately connected with confinement. It is also the basis
for the successful application of chiral-effective field theories
(see, e.g., Refs. [9,10] for contemporary perspectives). On the
face of it, this seems far more than can be understood simply
in terms of a nonzero vacuum expectation value 〈0|q̄q|0〉.

The notion that nonzero vacuum condensates exist and
possess a measurable reality has long been recognized as
posing a conundrum for the light-front formulation of QCD.
This formulation follows from Dirac’s front form of relativistic
dynamics [11], and is widely and efficaciously employed
in perturbative and nonperturbative QCD [12,13]. In the
light-front formulation, the ground state is a structureless Fock
space vacuum, in which case it would seem to follow that
DCSB is impossible. In response, it was argued by Casher
and Susskind [14] that, in the light-front framework, DCSB
must be a property of hadron wave functions, not of the
vacuum. This thesis has also been explored in a series of recent
articles [15–17].

A nonzero spacetime-independent QCD vacuum conden-
sate also poses a critical dilemma for gravitational interactions
because it would lead to a cosmological constant some
45 orders of magnitude larger than observation. As noted
elsewhere [15], this conflict is avoided if strong interaction
condensates are properties of rigorously well-defined wave
functions of the hadrons, rather than the hadronless ground
state of QCD.

Given the importance of DCSB and the longstanding
puzzles described above, we will focus our attention on
the vacuum quark condensate. The essential issues become
particularly clear in the context of the Gell-Mann–Oakes–
Renner relation [18,19], which is usually understood as the
statement

f 2
π m2

π = −
(
mu

ζ + md
ζ

)
〈q̄q〉0

ζ , (1)

wherein mπ is the pion’s mass; fπ is its leptonic decay
constant; m

q
ζ , with q = u, d, is the current-quark mass at a

renormalization scale ζ ; and 〈q̄q〉0
ζ is the chiral-limit vacuum

quark condensate, with a precise definition of the chiral limit
given below in Eqs. (8), (9). In arriving at Eq. (1) using
standard methods, one makes truncations; namely, soft-pion
techniques [20] have been used to relate an in-pion matrix
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Casher and Susskind Maris, Roberts, Tandy Shrock and sjb 
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Quark and Gluon condensates reside 

within hadrons, not vacuum 

• Bound-State Dyson Schwinger Equations 

• AdS/QCD

• Implications for cosmological constant --                      
Eliminates  45 orders of magnitude conflict
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Features of  AdS/QCD LF Holography

• Based on Conformal Scaling of Infrared QCD Fixed Point

• Conformal template: Use isometries of AdS5

• Interpolating operator of hadrons based on twist, superfield dimensions

• Finite Nc = 3: Baryons built on 3 quarks -- Large Nc limit not required

• Break Conformal symmetry with dilaton

• Dilaton introduces confinement -- positive exponent for spacelike observables

• Origin of Linear and HO potentials: Stochastic arguments (Glazek); General  
‘classical’ potential  for Dirac Equation (Hoyer)

• Effective Charge from AdS/QCD at all scales

• Conformal Dimensional Counting Rules for Hard Exclusive Processes

• Use CRF (LF Constituent Rest Frame) to reconstruct 3D Image of Hadrons 
(Glazek, de Teramond, sjb)
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Transversity 

Angular Momentum Structure, and 
the  Spin Dynamics of  Hadrons

• Test Fundamentals of Gauge Structure of QCD 

• Fundamental Measures of Hadron Structure

• Angular Momentum of Confined Quarks and Gluons

• Breakdown of Conventional Wisdom

• Breakdown of Factorization Ideas

• Crucial Experiment Tests, Measurements  

Remarkable array of theory and experimental talks
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Fixed τ = t + z/c
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β = dαs(Q2)
d lnQ2 < 0
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TRANSVERSITY 2011
Third International Workshop on Transverse
Polarization Phenomena in Hard Scattering

Veli Lo!inj, Croatia, 29 August - 2 September 2011

Transversity and transverse spin effects are of growing theoretical and experimental
interest. Modern developments in hadron physics emphasize the role of correlations
between spin and transverse parton momentum, which are crucial to our
understanding of the orbital and spin structure of the nucleon in terms of the quark
and gluon degrees of freedom in QCD and beyond the collinear approximation.

The main aim of the workshop is to provide a playground in which present knowledge
in the field of transversity and transverse-momentum dependent distribution and
fragmentation functions will be illustrated while allowing new theoretical ideas and
experimental perspectives to be aired and discussed vigorously.

The workshop venue will be on Lo"inj, a Croatian island in the northern part of the
Adriatic Sea, about 100 km south of Trieste. Transportation will be provided by the
workshop organization from Trieste to Lo"inj on Sunday, 28th August and from Lo"inj
to Trieste on Saturday, 3rd September.

The scientific programme will consist of some 40 presentations (by invitation only) in
addition to one or two round-table discussions.

Transversity 2011 is supported and sponsored by the International Spin Physics
Committee. The workshop is organized by the Trieste unit of the PRIN 2008 project in
collaboration with ECSAC together with the Trieste section of the INFN. The Local
Organizing Committee coordinating the scientific programme comprises colleagues
from the Italian Institutes participating in the PRIN 2008 project.
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