A Renewable Lignin–Lactide Copolymer and Application in Biobased Composites
- Yi-Lin Chung
- ,
- Johan V. Olsson
- ,
- Russell Jingxian Li
- ,
- Curtis W. Frank
- ,
- Robert M. Waymouth
- ,
- Sarah L. Billington
- , and
- Elizabeth S. Sattely
Abstract
The need for renewable alternatives to traditional petroleum-derived plastics has driven recent interest in biobased composite materials that are sourced from carbon-neutral feedstocks. Lignin, an abundant plant-derived feedstock, has been a candidate for renewable materials; however, it is often difficult to blend with other biopolymers. In order to improve the miscibility of lignin with other bioplastics, we developed a catalytic and solvent free method for synthesis of a lignin–PLA copolymer. Graft polymerization of lactide onto lignin catalyzed by triazabicyclodecene (TBD) resulted in a lignin-g-poly(lactic acid) copolymer; chain length of the PLA is controlled by varying of the lignin/lactide ratio and preacetylation treatment. End-group analysis reveals high grafting efficiency and preferential grafting on lignin aliphatic hydroxyls over phenolic hydroxyls. The lignin-g-PLA copolymers display a glass transition temperature range from 45 to 85 °C and multiphase melting behavior. The lignin-g-PLA copolymers are used as dispersion modifiers in PLA-based materials to enhance UV absorption and reduce brittleness without a sacrifice in the modulus of elasticity.
Cited By
This article is cited by 260 publications.
- Muhammad Abu Taher, Xiaolin Wang, K. M. Faridul Hasan, Mohammad Raza Miah, Jin Zhu, Jing Chen. Lignin Modification for Enhanced Performance of Polymer Composites. ACS Applied Bio Materials 2023, 6
(12)
, 5169-5192. https://doi.org/10.1021/acsabm.3c00783
- Zhen Chen Huimin Wu Xianming Deng Xin Wang . Green Synthesis of Polymers under Solvent-Free Conditions. , 125-147. https://doi.org/10.1021/bk-2023-1451.ch006
- Maofan Zhou, Gengping Wan, Guizhen Wang, Tom Wieme, Mariya Edeleva, Ludwig Cardon, Dagmar R. D’hooge. Carbon Nitride Grafting Modification of Poly(lactic acid) to Maximize UV Protection and Mechanical Properties for Packaging Applications. ACS Applied Materials & Interfaces 2023, 15
(38)
, 45300-45314. https://doi.org/10.1021/acsami.3c10085
- Kang Shi, Guoshuai Liu, Hui Sun, Biao Yang, Yunxuan Weng. Grafting Polymerization of Long-Chain Hydrophobic Acrylic Monomer onto Lignin and Its Application in Poly(Lactic Acid)-Based Wholly Green UV Barrier Composite Films. ACS Omega 2023, 8
(30)
, 26926-26937. https://doi.org/10.1021/acsomega.3c01738
- Alice Boarino, Harm-Anton Klok. Opportunities and Challenges for Lignin Valorization in Food Packaging, Antimicrobial, and Agricultural Applications. Biomacromolecules 2023, 24
(3)
, 1065-1077. https://doi.org/10.1021/acs.biomac.2c01385
- Sican Zhou, Kaifeng Huang, Xiwei Xu, Binbo Wang, Weiqiong Zhang, Yi Su, Kezhen Hu, Chuanzhi Zhang, Jin Zhu, Gengsheng Weng, Songqi Ma. Rigid-and-Flexible, Degradable, Fully Biobased Thermosets from Lignin and Soybean Oil: Synthesis and Properties. ACS Sustainable Chemistry & Engineering 2023, 11
(8)
, 3466-3473. https://doi.org/10.1021/acssuschemeng.2c06990
- Zahra Shomali, Pedram Fatehi. Carboxyalkylated Lignin Nanoparticles with Enhanced Functionality for Oil–Water Pickering Emulsion Systems. ACS Sustainable Chemistry & Engineering 2022, 10
(50)
, 16563-16577. https://doi.org/10.1021/acssuschemeng.2c04143
- Fengping Liu, Jing Sun, Qiang Fang. Biobased Low-k Polymers at High Frequency Derived from Isoeugenol. ACS Applied Polymer Materials 2022, 4
(10)
, 7173-7181. https://doi.org/10.1021/acsapm.2c01051
- Saurabh Pawale, Karun Kalia, Shallal Alshammari, Dylan Cronin, Xiao Zhang, Amir Ameli. Deep Eutectic Solvent-Extracted Lignin as an Efficient Additive for Entirely Biobased Polylactic Acid Composites. ACS Applied Polymer Materials 2022, 4
(8)
, 5861-5871. https://doi.org/10.1021/acsapm.2c00742
- Alice Boarino, Aigoul Schreier, Yves Leterrier, Harm-Anton Klok. Uniformly Dispersed Poly(lactic acid)-Grafted Lignin Nanoparticles Enhance Antioxidant Activity and UV-Barrier Properties of Poly(lactic acid) Packaging Films. ACS Applied Polymer Materials 2022, 4
(7)
, 4808-4817. https://doi.org/10.1021/acsapm.2c00420
- Diana Kim, Addie Bahi, Li-Yang Liu, Thomas Bement, Steven Rogak, Scott Renneckar, Frank Ko, Parisa Mehrkhodavandi. Poly(Lactide)-Modified Lignin Nanofibers: Investigating the Role of Polymer Tacticity on Fiber Properties and Filtration Efficiency. ACS Sustainable Chemistry & Engineering 2022, 10
(8)
, 2772-2783. https://doi.org/10.1021/acssuschemeng.1c08053
- Weijun Yang, Liqiang Xiao, Hui Ding, Pengwu Xu, Yunxuan Weng, Piming Ma. Fabrication of UV- and Heat-Resistant PDLA/PLLA-g-Nanolignin Composite Films by Constructing Interfacial Stereocomplex Crystallites. ACS Sustainable Chemistry & Engineering 2021, 9
(47)
, 15875-15883. https://doi.org/10.1021/acssuschemeng.1c05559
- Si-Jie Zhou, Han-Min Wang, Shao-Jun Xiong, Jing-Meng Sun, Yun-Yan Wang, Shixin Yu, Zhuohua Sun, Jia-Long Wen, Tong-Qi Yuan. Technical Lignin Valorization in Biodegradable Polyester-Based Plastics (BPPs). ACS Sustainable Chemistry & Engineering 2021, 9
(36)
, 12017-12042. https://doi.org/10.1021/acssuschemeng.1c03705
- Haitang Yang, Bingbing Shi, Yijiao Xue, Zhewen Ma, Lina Liu, Lei Liu, Youming Yu, Zhanying Zhang, Pratheep K. Annamalai, Pingan Song. Molecularly Engineered Lignin-Derived Additives Enable Fire-Retardant, UV-Shielding, and Mechanically Strong Polylactide Biocomposites. Biomacromolecules 2021, 22
(4)
, 1432-1444. https://doi.org/10.1021/acs.biomac.0c01656
- Shou Zhao, Mahdi M. Abu-Omar. Materials Based on Technical Bulk Lignin. ACS Sustainable Chemistry & Engineering 2021, 9
(4)
, 1477-1493. https://doi.org/10.1021/acssuschemeng.0c08882
- Aditi Nagardeolekar Mathew Ovadias Prajakta Dongre Biljana Bujanovic . Prospects and Challenges of Using Lignin for Thermoplastic Materials. 2021, 231-271. https://doi.org/10.1021/bk-2021-1377.ch010
- Marleny Cáceres Najarro, Miroslav Nikolic, Joseph Iruthayaraj, Ib Johannsen. Tuning the Lignin-Caprolactone Copolymer for Coating Metal Surfaces. ACS Applied Polymer Materials 2020, 2
(12)
, 5767-5778. https://doi.org/10.1021/acsapm.0c01026
- Pattaraporn Posoknistakul, Chanasit Tangkrakul, Pornchita Chaosuanphae, Sireethorn Deepentham, Weerawich Techasawong, Natnicha Phonphirunrot, Saharat Bairak, Chularat Sakdaronnarong, Navadol Laosiripojana. Fabrication and Characterization of Lignin Particles and Their Ultraviolet Protection Ability in PVA Composite Film. ACS Omega 2020, 5
(33)
, 20976-20982. https://doi.org/10.1021/acsomega.0c02443
- Erlantz Lizundia, Ilaria Armentano, Francesca Luzi, Federico Bertoglio, Elisa Restivo, Livia Visai, Luigi Torre, Debora Puglia. Synergic Effect of Nanolignin and Metal Oxide Nanoparticles into Poly(l-lactide) Bionanocomposites: Material Properties, Antioxidant Activity, and Antibacterial Performance. ACS Applied Bio Materials 2020, 3
(8)
, 5263-5274. https://doi.org/10.1021/acsabm.0c00637
- Yiqi Sun, Zhewen Ma, Xiaodong Xu, Xiaohuan Liu, Lina Liu, Guobo Huang, Lei Liu, Hao Wang, Pingan Song. Grafting Lignin with Bioderived Polyacrylates for Low-Cost, Ductile, and Fully Biobased Poly(lactic acid) Composites. ACS Sustainable Chemistry & Engineering 2020, 8
(5)
, 2267-2276. https://doi.org/10.1021/acssuschemeng.9b06593
- Chen Shi, Shuai Zhang, Wenya Wang, Robert J. Linhardt, Arthur J. Ragauskas. Preparation of Highly Reactive Lignin by Ozone Oxidation: Application as Surfactants with Antioxidant and Anti-UV Properties. ACS Sustainable Chemistry & Engineering 2020, 8
(1)
, 22-28. https://doi.org/10.1021/acssuschemeng.9b05498
- Hoi Chun Ho, Peter V. Bonnesen, Ngoc A. Nguyen, David A. Cullen, David Uhrig, Monojoy Goswami, Jong K. Keum, Amit K. Naskar. Method To Synthesize Micronized Spherical Carbon Particles from Lignin. Industrial & Engineering Chemistry Research 2020, 59
(1)
, 9-17. https://doi.org/10.1021/acs.iecr.9b05143
- Daichi Yokota, Arihiro Kanazawa, Sadahito Aoshima. Alternating Degradable Copolymers of an Ionic Liquid-Type Vinyl Ether and a Conjugated Aldehyde: Precise Synthesis by Living Cationic Copolymerization and Dual Rare Thermosensitive Behavior in Solution. Macromolecules 2019, 52
(16)
, 6241-6249. https://doi.org/10.1021/acs.macromol.9b00634
- Qianqiu Xing, Pietro Buono, David Ruch, Philippe Dubois, Linbo Wu, Wen-Jun Wang. Biodegradable UV-Blocking Films through Core–Shell Lignin–Melanin Nanoparticles in Poly(butylene adipate-co-terephthalate). ACS Sustainable Chemistry & Engineering 2019, 7
(4)
, 4147-4157. https://doi.org/10.1021/acssuschemeng.8b05755
- Dan Kai, Kangyi Zhang, Sing Shy Liow, Xian Jun Loh. New Dual Functional PHB-Grafted Lignin Copolymer: Synthesis, Mechanical Properties, and Biocompatibility Studies. ACS Applied Bio Materials 2019, 2
(1)
, 127-134. https://doi.org/10.1021/acsabm.8b00445
- Liang Yuan, Yaqiong Zhang, Zhongkai Wang, Yanming Han, Chuanbing Tang. Plant Oil and Lignin-Derived Elastomers via Thermal Azide–Alkyne Cycloaddition Click Chemistry. ACS Sustainable Chemistry & Engineering 2019, 7
(2)
, 2593-2601. https://doi.org/10.1021/acssuschemeng.8b05617
- Liping Zhang, Hao Dong, Min Li, Liangan Wang, Yining Liu, Lejun Wang, Shaohai Fu. Fabrication of Polylactic Acid-Modified Carbon Black Composites into Improvement of Levelness and Mechanical Properties of Spun-Dyeing Polylactic Acid Composites Membrane. ACS Sustainable Chemistry & Engineering 2019, 7
(1)
, 688-696. https://doi.org/10.1021/acssuschemeng.8b04264
- Sudheer Kumar, Sukhila Krishnan, Sushanta K. Samal, Smita Mohanty, and Sanjay K. Nayak . Toughening of Petroleum Based (DGEBA) Epoxy Resins with Various Renewable Resources Based Flexible Chains for High Performance Applications: A Review. Industrial & Engineering Chemistry Research 2018, 57
(8)
, 2711-2726. https://doi.org/10.1021/acs.iecr.7b04495
- Love-Ese Chile, Samuel J. Kaser, Savvas G. Hatzikiriakos, and Parisa Mehrkhodavandi . Synthesis and Thermorheological Analysis of Biobased Lignin-graft-poly(lactide) Copolymers and Their Blends. ACS Sustainable Chemistry & Engineering 2018, 6
(2)
, 1650-1661. https://doi.org/10.1021/acssuschemeng.7b02866
- Enmin Zong, Xiaohuan Liu, Lina Liu, Jifu Wang, Pingan Song, Zhongqing Ma, Jie Ding, and Shenyuan Fu . Graft Polymerization of Acrylic Monomers onto Lignin with CaCl2–H2O2 as Initiator: Preparation, Mechanism, Characterization, and Application in Poly(lactic acid). ACS Sustainable Chemistry & Engineering 2018, 6
(1)
, 337-348. https://doi.org/10.1021/acssuschemeng.7b02599
- Qianqiu Xing, David Ruch, Philippe Dubois, Linbo Wu, and Wen-Jun Wang . Biodegradable and High-Performance Poly(butylene adipate-co-terephthalate)–Lignin UV-Blocking Films. ACS Sustainable Chemistry & Engineering 2017, 5
(11)
, 10342-10351. https://doi.org/10.1021/acssuschemeng.7b02370
- Dan Kai, Kangyi Zhang, Lu Jiang, Hua Zhong Wong, Zibiao Li, Zheng Zhang, and Xian Jun Loh . Sustainable and Antioxidant Lignin–Polyester Copolymers and Nanofibers for Potential Healthcare Applications. ACS Sustainable Chemistry & Engineering 2017, 5
(7)
, 6016-6025. https://doi.org/10.1021/acssuschemeng.7b00850
- Jia-Feng Ru, Shu-Gui Yang, Jun Lei, and Zhong-Ming Li . Thicker Lamellae and Higher Crystallinity of Poly(lactic acid) via Applying Shear Flow and Pressure and Adding Poly(ethylene Glycol). The Journal of Physical Chemistry B 2017, 121
(23)
, 5842-5852. https://doi.org/10.1021/acs.jpcb.7b02241
- Shou Zhao and Mahdi M. Abu-Omar . Synthesis of Renewable Thermoset Polymers through Successive Lignin Modification Using Lignin-Derived Phenols. ACS Sustainable Chemistry & Engineering 2017, 5
(6)
, 5059-5066. https://doi.org/10.1021/acssuschemeng.7b00440
- Anju Gupta, William Simmons, Gregory T. Schueneman, Donald Hylton, and Eric A. Mintz . Rheological and Thermo-Mechanical Properties of Poly(lactic acid)/Lignin-Coated Cellulose Nanocrystal Composites. ACS Sustainable Chemistry & Engineering 2017, 5
(2)
, 1711-1720. https://doi.org/10.1021/acssuschemeng.6b02458
- Jianfeng Zhang Michael A. Brook . Exploiting Lignin: A Green Resource. 2017, 91-116. https://doi.org/10.1021/bk-2017-1268.ch006
- Dan Kai, Wei Ren, Lingling Tian, Pei Lin Chee, Ye Liu, Seeram Ramakrishna, and Xian Jun Loh . Engineering Poly(lactide)–Lignin Nanofibers with Antioxidant Activity for Biomedical Application. ACS Sustainable Chemistry & Engineering 2016, 4
(10)
, 5268-5276. https://doi.org/10.1021/acssuschemeng.6b00478
- Fenggui Chen, Wanshuang Liu, Seyed Ismail Seyed Shahabadi, Jianwei Xu, and Xuehong Lu . Sheet-Like Lignin Particles as Multifunctional Fillers in Polypropylene. ACS Sustainable Chemistry & Engineering 2016, 4
(9)
, 4997-5004. https://doi.org/10.1021/acssuschemeng.6b01369
- Fengkai He, Yu Gao, Kaikai Jin, Jiajia Wang, Jing Sun, and Qiang Fang . Conversion of a Biorenewable Plant Oil (Anethole) to a New Fluoropolymer with Both Low Dielectric Constant and Low Water Uptake. ACS Sustainable Chemistry & Engineering 2016, 4
(8)
, 4451-4456. https://doi.org/10.1021/acssuschemeng.6b01065
- Shupin Luo, Jinzhen Cao, and Armando G. McDonald . Interfacial Improvements in a Green Biopolymer Alloy of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and Lignin via in Situ Reactive Extrusion. ACS Sustainable Chemistry & Engineering 2016, 4
(6)
, 3465-3476. https://doi.org/10.1021/acssuschemeng.6b00495
- Brianna M. Upton and Andrea M. Kasko . Strategies for the Conversion of Lignin to High-Value Polymeric Materials: Review and Perspective. Chemical Reviews 2016, 116
(4)
, 2275-2306. https://doi.org/10.1021/acs.chemrev.5b00345
- Veluska Arias, Karin Odelius, Anders Höglund, and Ann-Christine Albertsson . Homocomposites of Polylactide (PLA) with Induced Interfacial Stereocomplex Crystallites. ACS Sustainable Chemistry & Engineering 2015, 3
(9)
, 2220-2231. https://doi.org/10.1021/acssuschemeng.5b00498
- Laurie Mbotchak, Clara Le Morvan, Khanh Linh Duong, Brigitte Rousseau, Martine Tessier, and Alain Fradet . Purification, Structural Characterization, and Modification of Organosolv Wheat Straw Lignin. Journal of Agricultural and Food Chemistry 2015, 63
(21)
, 5178-5188. https://doi.org/10.1021/acs.jafc.5b02071
- Suxin Xu, Jiangang Chen, Bijia Wang, and Yiqi Yang . Sustainable and Hydrolysis-Free Dyeing Process for Polylactic Acid Using Nonaqueous Medium. ACS Sustainable Chemistry & Engineering 2015, 3
(6)
, 1039-1046. https://doi.org/10.1021/sc500767w
- Xinyan Dai, Zhu Xiong, Songqi Ma, Chao Li, Jinggang Wang, Haining Na, and Jin Zhu . Fabricating Highly Reactive Bio-based Compatibilizers of Epoxidized Citric Acid To Improve the Flexural Properties of Polylactide/Microcrystalline Cellulose Blends. Industrial & Engineering Chemistry Research 2015, 54
(15)
, 3806-3812. https://doi.org/10.1021/ie504904c
- Liang Yuan, Zhongkai Wang, Nathan M. Trenor, and Chuanbing Tang . Robust Amidation Transformation of Plant Oils into Fatty Derivatives for Sustainable Monomers and Polymers. Macromolecules 2015, 48
(5)
, 1320-1328. https://doi.org/10.1021/acs.macromol.5b00091
- Yu Yang, Yonghong Deng, Zhen Tong, and Chaoyang Wang . Renewable Lignin-Based Xerogels with Self-Cleaning Properties and Superhydrophobicity. ACS Sustainable Chemistry & Engineering 2014, 2
(7)
, 1729-1733. https://doi.org/10.1021/sc500250b
- Sarai Agustin-Salazar, Nohemi Gamez-Meza, Luis Àngel Medina-Juàrez, Herlinda Soto-Valdez, and Pierfrancesco Cerruti . From Nutraceutics to Materials: Effect of Resveratrol on the Stability of Polylactide. ACS Sustainable Chemistry & Engineering 2014, 2
(6)
, 1534-1542. https://doi.org/10.1021/sc5002337
- Vijay Kumar Thakur, Manju Kumari Thakur, Prasanth Raghavan, and Michael R. Kessler . Progress in Green Polymer Composites from Lignin for Multifunctional Applications: A Review. ACS Sustainable Chemistry & Engineering 2014, 2
(5)
, 1072-1092. https://doi.org/10.1021/sc500087z
- Wanshuang Liu, Rui Zhou, Hwee Li Sally Goh, Shu Huang, and Xuehong Lu . From Waste to Functional Additive: Toughening Epoxy Resin with Lignin. ACS Applied Materials & Interfaces 2014, 6
(8)
, 5810-5817. https://doi.org/10.1021/am500642n
- Huan Xu, Lan Xie, Xin Jiang, Xu-Juan Li, Yue Li, Zi-Jing Zhang, Gan-Ji Zhong, and Zhong-Ming Li . Toward Stronger Transcrystalline Layers in Poly(l-lactic acid)/Natural Fiber Biocomposites with the Aid of an Accelerator of Chain Mobility. The Journal of Physical Chemistry B 2014, 118
(3)
, 812-823. https://doi.org/10.1021/jp409021q
- Huan Xu, Lan Xie, Yan-Hui Chen, Hua-Dong Huang, Jia-Zhuang Xu, Gan-Ji Zhong, Benjamin S. Hsiao, and Zhong-Ming Li . Strong Shear Flow-Driven Simultaneous Formation of Classic Shish-Kebab, Hybrid Shish-Kebab, and Transcrystallinity in Poly(lactic acid)/Natural Fiber Biocomposites. ACS Sustainable Chemistry & Engineering 2013, 1
(12)
, 1619-1629. https://doi.org/10.1021/sc4003032
- Esakkiammal Sudha Esakkimuthu, Veerapandian Ponnuchamy, Mika H. Sipponen, David DeVallance. Elucidating intermolecular forces to improve compatibility of kraft lignin in poly(lactic acid). Frontiers in Chemistry 2024, 12 https://doi.org/10.3389/fchem.2024.1347147
- Tim Langletz, Philipp M. Grande, Jörn Viell, Daniel Wolters, Josia Tonn, Holger Klose, Sascha G. Schriever, Alexander Hoffmann, Andreas Jupke, Thomas Gries, Sonja Herres-Pawlis. Toward a Greener Bioeconomy: Synthesis and Characterization of Lignin–Polylactide Copolymers. Advanced Energy and Sustainability Research 2024, 5
(2)
https://doi.org/10.1002/aesr.202300187
- Qiang Li, Mingjun Huang, Fucheng Li, Zhe Ling, Yao Meng, Fushan Chen, Zhe Ji, Songlin Wang. Biomimetic stable cellulose based superhydrophobic Janus paper sheets engineered with industrial lignin residues/nano-silica for efficient oil-water separation. Industrial Crops and Products 2024, 207 , 117774. https://doi.org/10.1016/j.indcrop.2023.117774
- Arvindh Somanathan, Nikhila Mathew, Anupama M. Pillai, Pabitra Mondal, Tanvir Arfin. Bioplastics for clean environment. 2024, 313-354. https://doi.org/10.1016/B978-0-323-95199-9.00009-3
- Dimitris D. S. Argyropoulos, Claudia Crestini, Christian Dahlstrand, Erik Furusjö, Claudio Gioia, Kerstin Jedvert, Gunnar Henriksson, Christian Hulteberg, Martin Lawoko, Clara Pierrou, Joseph S. M. Samec, Elena Subbotina, Henrik Wallmo, Martin Wimby. Kraft Lignin: A Valuable, Sustainable Resource, Opportunities and Challenges. ChemSusChem 2023, 16
(23)
https://doi.org/10.1002/cssc.202300492
- Sangwoo Park, Jungkyu Kim, June-Ho Choi, Jong-Chan Kim, Jonghwa Kim, Youngmin Cho, Seungoh Jung, Hyo Won Kwak, In-Gyu Choi. Biodegradation behavior of acetylated lignin added polylactic acid under thermophilic composting conditions. International Journal of Biological Macromolecules 2023, 253 , 127472. https://doi.org/10.1016/j.ijbiomac.2023.127472
- Koushik Dutta, Ankumoni Saikia, Ajit Singh. Epoxidation and grafting route to prepare thin and flexible polymer film with high lignin content. Reactive and Functional Polymers 2023, 192 , 105720. https://doi.org/10.1016/j.reactfunctpolym.2023.105720
- Sumin Lee, Byungjin Koo. Lignin‐based materials for the detection and adsorption of metal ions. Bulletin of the Korean Chemical Society 2023, 44
(10)
, 818-826. https://doi.org/10.1002/bkcs.12761
- Tejasvi Laxminarayan, Alessio Truncali, Narayanan Rajagopalan, Claus Erik Weinell, Mats Johansson, Søren Kiil. Chemically-resistant epoxy novolac coatings: Effects of size-fractionated technical Kraft lignin particles as a structure-reinforcing component. Progress in Organic Coatings 2023, 183 , 107793. https://doi.org/10.1016/j.porgcoat.2023.107793
- , ASADULLA ASRAF ALI, SHIRSA MAZUMDAR, , ROBIN KUMAR DUTTA, . A STUDY OF CELLULOSE AND LIGNIN EXTRACTED FROM SĀNCI BARK AND THEIR MODIFICATION. Cellulose Chemistry and Technology 2023, 57
(7-8)
, 699-716. https://doi.org/10.35812/CelluloseChemTechnol.2023.57.63
- Koushik Dutta, Ankumoni Saikia, Binoy Kumar Saikia, Ajit Singh. Functionalization and Thereafter Grafting with Lactic Acid to Synthesize Lignin-polylactic Acid Copolymer for Thin Film Preparation. Journal of Polymers and the Environment 2023, 31
(8)
, 3393-3403. https://doi.org/10.1007/s10924-023-02825-x
- Peerawat Prathumrat, Mostafa Nikzad, Zakiya Shireen, Elnaz Hajizadeh, Igor Sbarski. A combined experimental and molecular dynamic studies of curing of shape memory lignin-liquid crystalline elastomeric composites. Composites Science and Technology 2023, 240 , 110099. https://doi.org/10.1016/j.compscitech.2023.110099
- Kang Shi, Guoshuai Liu, Hui Sun, Yunxuan Weng. Polylactic Acid/Lignin Composites: A Review. Polymers 2023, 15
(13)
, 2807. https://doi.org/10.3390/polym15132807
- K. Shikinaka, Y. Otsuka. Lignin-based UV-protective Materials. 2023, 247-261. https://doi.org/10.1039/BK9781839167843-00247
- Jonathon Tanks, Kenji Tamura, Kimiyoshi Naito, Thi Thi Nge, Tatsuhiko Yamada. Glycol lignin/MAH-g-PP blends and composites with exceptional mechanical properties for automotive applications. Composites Science and Technology 2023, 238 , 110030. https://doi.org/10.1016/j.compscitech.2023.110030
- Camila C.O. Santos, Filipe V. Ferreira, Ivanei F. Pinheiro, Liliane M.F. Lona. Lignin valorization through polymer grafting by ring-opening polymerization and its application in health, packaging, and coating. Journal of Environmental Chemical Engineering 2023, 11
(3)
, 109691. https://doi.org/10.1016/j.jece.2023.109691
- Sofia P. Makri, Eleftheria Xanthopoulou, Miguel Angel Valera, Ana Mangas, Giacomo Marra, Víctor Ruiz, Savvas Koltsakidis, Dimitrios Tzetzis, Alexandros Zoikis Karathanasis, Ioanna Deligkiozi, Nikolaos Nikolaidis, Dimitrios Bikiaris, Zoi Terzopoulou. Poly(Lactic Acid) Composites with Lignin and Nanolignin Synthesized by In Situ Reactive Processing. Polymers 2023, 15
(10)
, 2386. https://doi.org/10.3390/polym15102386
- Wen-Xiang Ou, Yunxuan Weng, Jian-Bing Zeng, Yi-Dong Li. Fully biobased poly(lactic acid)/lignin composites compatibilized by epoxidized natural rubber. International Journal of Biological Macromolecules 2023, 236 , 123960. https://doi.org/10.1016/j.ijbiomac.2023.123960
- Shuang Zhang, Xin Zhao, Pengchao Chen, Guangwei Sun, Yao Li, Ying Han, Xing Wang, Jigeng Li. High-performance adhesives modified by demethylated lignin for use in extreme environments. New Journal of Chemistry 2023, 47
(14)
, 6721-6729. https://doi.org/10.1039/D2NJ06225A
- Kazunori Ushimaru, Takuma Nakamura, Shoto Fukuoka, Kanae Takahashi, Keita Sakakibara, Maito Koga, Ryota Watanabe, Tomotake Morita, Tokuma Fukuoka. Easy and scalable synthesis of a lignosulfonate-derived thermoplastic with improved thermal and mechanical properties. Composites Part B: Engineering 2023, 255 , 110628. https://doi.org/10.1016/j.compositesb.2023.110628
- Filippo Fabbri, Sabrina Bischof, Sebastian Mayr, Sebastian Gritsch, Miguel Jimenez Bartolome, Nikolaus Schwaiger, Georg M. Guebitz, Renate Weiss. The Biomodified Lignin Platform: A Review. Polymers 2023, 15
(7)
, 1694. https://doi.org/10.3390/polym15071694
- Oluwatoyin J. Gbadeyan, Linda Z. Linganiso, Nirmala Deenadayalu. Assessment and Optimization of Thermal Stability and Water Absorption of Loading Snail Shell Nanoparticles and Sugarcane Bagasse Cellulose Fibers on Polylactic Acid Bioplastic Films. Polymers 2023, 15
(6)
, 1557. https://doi.org/10.3390/polym15061557
- Fangyuan Jiang, Jiemei Zhang, Hui Xu, Yaoqin Lu, Shuxia Wei, Zhili Li. In situ preparation of monodisperse lignin-poly (lactic acid) microspheres for efficient encapsulation of 2,4-dichlorophenoxyacetic acid and controlled release. Reactive and Functional Polymers 2023, 184 , 105517. https://doi.org/10.1016/j.reactfunctpolym.2023.105517
- Leman Buzoglu Kurnaz, Yishayah Bension, Chuanbing Tang. Facile Catalyst‐Free Approach toward Fully Biobased Reprocessable Lignin Thermosets. Macromolecular Chemistry and Physics 2023, 224
(3)
https://doi.org/10.1002/macp.202200303
- Karolina Komisarz, Tomasz M. Majka, Krzysztof Pielichowski. Chemical and Physical Modification of Lignin for Green Polymeric Composite Materials. Materials 2023, 16
(1)
, 16. https://doi.org/10.3390/ma16010016
- Ashish Kumar, Venkatappa Rao Tumu. Electron Beam Irradiation-Induced Compatibilization of Poly (Lactic Acid)-Based Blends. 2023, 79-106. https://doi.org/10.1007/978-981-19-9048-9_3
- Mykola Melnychuk, Igor Shevchuk, Vitalii Kashytskyi, Yurii Feshcuk, Nina Polivoda. Mechanical Properties of Hybrid Composites Based on Polypropylene Modified with Natural Fillers. 2023, 221-229. https://doi.org/10.1007/978-3-031-32774-2_22
- Ashish Kumar, G. Anil Kumar. Modification of lignin properties using alpha particles and gamma-rays for diverse applications. Radiation Physics and Chemistry 2023, 202 , 110562. https://doi.org/10.1016/j.radphyschem.2022.110562
- Ruilong Jia, Chengen He, Qing Li, Shi-Yong Liu, Guangfu Liao. Renewable plant-derived lignin for electrochemical energy systems. Trends in Biotechnology 2022, 40
(12)
, 1425-1438. https://doi.org/10.1016/j.tibtech.2022.07.017
- Singam Suranjoy Singh, Amr Zaitoon, Sonu Sharma, Annamalai Manickavasagan, Loong-Tak Lim. Enhanced hydrophobic paper-sheet derived from Miscanthus × giganteus cellulose fibers coated with esterified lignin and cellulose acetate blend. International Journal of Biological Macromolecules 2022, 223 , 1243-1256. https://doi.org/10.1016/j.ijbiomac.2022.11.066
- Aown Abbas, Zheng Wang, Yiru Zhang, Pai Peng, Diao She. Lignin-based controlled release fertilizers: A review. International Journal of Biological Macromolecules 2022, 222 , 1801-1817. https://doi.org/10.1016/j.ijbiomac.2022.09.265
- Lv Ke, Han Shang, Mengke Tang, Xinyu Li, Liang Jiang, Sijia Lu, Daoyuan Tang, Donghui Huang, Jintuo Zhu, Changhui Liu, Huan Xu, Xinjian He, Jiefeng Gao. High-heat and UV-barrier poly(lactic acid) by microwave-assisted functionalization of waste natural fibers. International Journal of Biological Macromolecules 2022, 220 , 827-836. https://doi.org/10.1016/j.ijbiomac.2022.08.114
- Oihana Gordobil, Huisi Li, Ana Ayerdi Izquierdo, Ainhoa Egizabal, Olena Sevastyanova, Anna Sandak. Surface chemistry and bioactivity of colloidal particles from industrial kraft lignins. International Journal of Biological Macromolecules 2022, 220 , 1444-1453. https://doi.org/10.1016/j.ijbiomac.2022.09.111
- Yingchao Wang, Niloofar Alipoormazandarani, Lauren Skye Puumala, Weijue Gao, Shanshan Liu, Fangong Kong, Qiang Wang, Pedram Fatehi. Amphiphilic Lignin Nanoparticles Made from Lignin-Acrylic Acid-Methyl Methacrylate Copolymers. Nanomaterials 2022, 12
(15)
, 2612. https://doi.org/10.3390/nano12152612
- Akhila Raman, Avani Sankar, Abhirami S. D., Abhirami Anilkumar, Appukuttan Saritha. Insights into the Sustainable Development of Lignin‐Based Textiles for Functional Applications. Macromolecular Materials and Engineering 2022, 307
(8)
https://doi.org/10.1002/mame.202200114
- Koushik Dutta, Ajit Singh. Chemical modification of lignin and thereafter grafting with lactic acid for flexible polymer film preparation. Journal of Applied Polymer Science 2022, 139
(23)
https://doi.org/10.1002/app.52320
- June-Ho Choi, Jong-Hwa Kim, Sang Youn Lee, Soo-Kyeong Jang, Hyo Won Kwak, Hoyong Kim, In-Gyu Choi. Thermoplasticity reinforcement of ethanol organosolv lignin to improve compatibility in PLA-based ligno-bioplastics: Focusing on the structural characteristics of lignin. International Journal of Biological Macromolecules 2022, 209 , 1638-1647. https://doi.org/10.1016/j.ijbiomac.2022.04.090
- Qi Chen, Rafael Auras, Ilke Uysal-Unalan. Role of stereocomplex in advancing mass transport and thermomechanical properties of polylactide. Green Chemistry 2022, 24
(9)
, 3416-3432. https://doi.org/10.1039/D1GC04520B
- Nan Zhang, Man Zhao, Guangfa Liu, Jiaoyang Wang, Yunzhi Chen, Zhengjian Zhang. Alkylated lignin with graft copolymerization for enhancing toughness of PLA. Journal of Materials Science 2022, 57
(19)
, 8687-8700. https://doi.org/10.1007/s10853-022-07101-2
- Muhammad Rasyidur Ridho, Erika Ayu Agustiany, Muslimatul Rahmi Dn, Elvara Windra Madyaratri, Muhammad Ghozali, Witta Kartika Restu, Faizatul Falah, Muhammad Adly Rahandi Lubis, Firda Aulya Syamani, Yeyen Nurhamiyah, Sri Hidayati, Asma Sohail, Petro Karungamye, Deded Sarip Nawawi, Apri Heri Iswanto, Nadras Othman, Nor Anizah Mohamad Aini, M. Hazwan Hussin, Kannika Sahakaro, Nabil Hayeemasae, Muhammad Qasim Ali, Widya Fatriasari, . Lignin as Green Filler in Polymer Composites: Development Methods, Characteristics, and Potential Applications. Advances in Materials Science and Engineering 2022, 2022 , 1-33. https://doi.org/10.1155/2022/1363481
- Qiang Gu, Thomas L. Eberhardt, Jingjing Shao, Hui Pan. Preparation of an oxyalkylated
lignin‐g‐
polylactic acid copolymer to improve the compatibility of an organosolv lignin in blended poly(lactic acid) films. Journal of Applied Polymer Science 2022, 139
(16)
https://doi.org/10.1002/app.52003
- Bruna L. C. Cunha, Juliana O. Bahú, Letícia F. Xavier, Sara Crivellin, Samuel D. A. de Souza, Leandro Lodi, André L. Jardini, Rubens Maciel Filho, Maria I. R. B. Schiavon, Viktor O. Cárdenas Concha, Patricia Severino, Eliana B. Souto. Lactide: Production Routes, Properties, and Applications. Bioengineering 2022, 9
(4)
, 164. https://doi.org/10.3390/bioengineering9040164
- Xinyu Lu, Xiaoli Gu. Fabrication of a bi-hydroxyl-bi-DOPO compound with excellent quenching and charring capacities for lignin-based epoxy resin. International Journal of Biological Macromolecules 2022, 205 , 539-552. https://doi.org/10.1016/j.ijbiomac.2022.02.103
- Hans R. Kricheldorf, Steffen M. Weidner. Syntheses of polylactides by means of tin catalysts. Polymer Chemistry 2022, 13
(12)
, 1618-1647. https://doi.org/10.1039/D2PY00092J
- Valentin Carretier, Monica Francesca Pucci, Clément Lacoste, Arnaud Regazzi, José-Marie Lopez-Cuesta. An efficient solution to determine surface energy of powders and porous media: Application to untreated and treated lignin. Applied Surface Science 2022, 579 , 152159. https://doi.org/10.1016/j.apsusc.2021.152159
- Vandana Chaudhary, Sneh Punia Bangar, Neha Thakur, Monica Trif. Recent Advancements in Smart Biogenic Packaging: Reshaping the Future of the Food Packaging Industry. Polymers 2022, 14
(4)
, 829. https://doi.org/10.3390/polym14040829
- Ajay Vasudeo Rane, Deepti Yadav, Krishnan Kanny. Modification techniques for carbohydrate macromolecules. 2022, 69-93. https://doi.org/10.1016/B978-0-323-85759-8.00004-X
- X. Lu, M. Yu, D. Wang, P. Xiu, C. Xu, A.F. Lee, X. Gu. Flame-retardant effect of a functional DOPO-based compound on lignin-based epoxy resins. Materials Today Chemistry 2021, 22 , 100562. https://doi.org/10.1016/j.mtchem.2021.100562