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Abstract: We experimentally demonstrate endoscopic imaging through a 
multi-mode fiber (MMF) in which the number of resolvable image features 
approaches four times the number of spatial modes per polarization 
propagating in the fiber. In our method, a sequence of random field patterns 
is input to the fiber, generating a sequence of random intensity patterns at 
the output, which are used to sample an object. Reflected power values are 
returned through the fiber and linear optimization is used to reconstruct an 
image. The factor-of-four resolution enhancement is due to mixing of 
modes by the squaring inherent in field-to-intensity conversion. The 
incoherent point-spread function (PSF) at the center of the fiber output 
plane is an Airy disk equivalent to the coherent PSF of a conventional 
diffraction-limited imaging system having a numerical aperture twice that 
of the fiber. All previous methods for imaging through MMF can only 
resolve a number of features equal to the number of modes. Most of these 
methods use localized intensity patterns for sampling the object and use 
local image reconstruction. 
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1. Introduction 

Multi-mode fibers (MMFs) can convey multiple physical variables, but these are subject to 
random scattering by mode coupling. The use of MMFs for imaging or analog image 
transmission has long been of fundamental interest [1, 2] and is now being pursued 
vigorously [3–13] for applications such as endoscopic in vivo imaging. An endoscope using 
one MMF would be potentially much more compact than current endoscopes, which may 
employ either a bundle of fibers or one fiber with a scanning probe head [14]. 

In most previously known methods for imaging through MMF [4-6], a spot of light is 
formed in the fiber output plane and scanned to a sequence of locations to sample an object. 
We refer to this sampling method as “spot scanning” or “localized sampling”. When using 
localized sampling, an image may be obtained using simple local reconstruction. In this paper, 
we show that when using local reconstruction, the number of independently resolvable image 
features is bounded by N, the number of spatial modes per polarization propagating in the 
fiber. A recently demonstrated fiber imaging method uses random speckle patterns to sample 
an object and reconstructs an image using turbid lens imaging techniques [13]. Because this 
imaging method treats the high-spatial-frequency features of speckle as a “noise” to be 
“smoothed out”, the number of resolvable features is bounded by N, as in local reconstruction. 

We further show in this paper that nonlocal reconstruction based on linear optimization 
can increase the number of resolvable features to 4N. We experimentally demonstrate an 
endoscopic imaging method that achieves this resolution limit. At the MMF input, a spatial 
light modulator (SLM) excites a sequence of different superpositions of modal fields. At the 
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output, these generate a sequence of intensity patterns for sampling an object. The squaring 
inherent in field-to-intensity conversion mixes modal fields, so the output intensity patterns 
are described using modes of higher order than the fields propagating in the MMF. Reflected 
power values are returned via the MMF and an image is reconstructed using linear 
optimization. As N becomes sufficiently large, the number of resolvable image features 
approaches 4N, provided the object is sampled using at least 4N intensity patterns. These 
intensity patterns at the fiber output must be measured to enable image reconstruction, but the 
intensity patterns can be chosen randomly, so calibration does not require an adaptive 
algorithm [15-18] or measurement of the fiber transfer matrix [5, 19-21], which may be 
polarization-dependent. 

In conventional incoherent imaging through a circular pupil, the diffraction-limited point-
spread function (PSF) is an Airy disk whose peak-to-zero width depends only on / NAλ , the 
ratio of the free-space wavelength to numerical aperture [22]. The MMF imaging techniques 
considered here, which use intensity patterns to sample an object’s reflectivity, are incoherent. 
We show when using local reconstruction, the PSF at the center of the fiber output plane 
depends only on / NAλ , and is ideally the same as that of a conventional imaging system 
with the same / NAλ . When using optimization-based reconstruction, the PSF at the center of 
the fiber output plane depends only on / NAλ , but its peak-to-zero width is halved compared 
to local reconstruction, consistent with a fourfold increase in resolvable features. When using 
either reconstruction method, however, depending on the index profile of the fiber, the PSF 
width may increase at points away from the center of the fiber output plane, such that the total 
number of resolvable features ultimately becomes N or 4N. The number of modes N depends 
not only on / NAλ , but on the square of  the normalized frequency NA /V dπ λ= , where d is 
the fiber core diameter, and also on the refractive index profile [23]. 

The remainder of this paper is as follows. In Section 2, we describe our imaging 
apparatus, which can be used either for spot-scanning or random-pattern imaging. In Section 
3, we review imaging using spot scanning with local reconstruction. In Section 4, we 
introduce imaging using random sampling patterns and optimization-based reconstruction. In 
Section 5, we analyze the number of image features resolvable using optimization-based 
reconstruction. In Section 6, we study the PSFs and their relationship to the number of 
resolvable features for the two imaging methods. We provide discussion and conclusions in 
Sections 7 and 8, respectively. 

2. Imaging apparatus 

The imaging apparatus, identical to that in [15], is shown in Fig. 1. A 1550-nm laser beam is 
coupled through a polarization-maintaining single-mode fiber, collimated using lens L1 (f1 = 
10.4 mm), and illuminates a phase-only nematic liquid crystal-on-silicon SLM. The SLM 
controls the field pattern at the MMF input, and thus the field or intensity pattern at the MMF 
output. The SLM has 256×256 pixels, each 18×18 µm2 in size, with a phase controllable 
independently from 0 to 2π with 5-to-6-bit resolution, and with a switching time of about 50 
ms (0↔2π, 10%↔90%). More than 95% of the incident beam’s energy is contained in a 
circle of diameter 2.3 mm, corresponding to 128 pixels. The beam reflected from the SLM is 
coupled by lens L2 (f2 = 5.5 mm) into a parabolic-index MMF having 50-µm core diameter 
and NA = 0.19, which supports N = 45 modes at 1550 nm. The coupled beam subtends an NA 
of 0.21, slightly overfilling the MMF. The MMF is 1 m long, and its output facet is anti-
reflection-coated with reflectivity <1%. Adjustment of the input polarization by half-wave 
and quarter-wave plates (λ/2 and λ/4) has no observable effect on the output intensity pattern 
in this short MMF with low birefringence, which justifies our neglect of polarization effects in 
the remainder of this paper. 

Before an object can be imaged, the apparatus is calibrated, as shown in Fig. 1(a). Using 
an f = 4.5 mm aspherical lens, the MMF output pattern is magnified 65× and imaged onto a 
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phosphor-coated charge-coupled device (CCD) camera. The output intensity pattern is 
monitored by a personal computer (PC), which adjusts the SLM pattern as described in 
Sections 3 and 4. After calibration, a test object is placed at the MMF output to be imaged, as 
shown in Fig. 1(b). Under control of the PC, a sequence of M different intensity patterns is 
displayed at the MMF output, and is used to sample the object. When a pattern is displayed, 
the total power reflected from the object and coupled into the fiber is measured using a power 
meter and recorded. Using the sequence of M reflected power values, an image is 
reconstructed. Details of calibration and image reconstruction for the two methods are 
described in Section 3 and 4. The fiber orientation is not changed between the calibration and 
the image recording procedures, and using either method, imaging can be performed up to a 
week after calibration without observable degradation.  The effect of fiber bending has not 
been studied here, but is expected to be similar to that observed in [6, 13]. Each fiber mode 
exits the MMF as a beam having radius w0 = 8.1 µm and Rayleigh range 

2
0 / 132 μmRz wπ λ= = . In all measurements, the MMF output pattern is calibrated in a plane 

approximately 25 µm from the end of the MMF, and the test object is placed in the same 
plane, so most of the light reflected from it is coupled back into the MMF. 
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Fig. 1. Experimental setup for imaging through a multi-mode fiber (MMF). (a) In calibration, a 
65× objective lens and camera are placed at the MMF output to record intensity patterns 
generated there. (b) In imaging, an object is placed at the MMF output and illuminated by 
intensity patterns, and the reflected power coupled back into the MMF is recorded. The setup 
can use localized spots or random patterns at the MMF output for sampling the object. 

3. Imaging by local sampling and reconstruction 

The system in Fig. 1 can be used as a spot-scanning microscope. In this operating mode [4, 5, 
15], the SLM forms a sequence of localized intensity patterns (spots) at the MMF output for 
sampling an object, and an image is obtained by local reconstruction. We briefly review this 
operating mode and its resolution limits. 

Calibration involves determining the set of M SLM patterns that form a sequence of spots 
on a grid of M positions in the fiber output plane. One such spot is shown in Fig. 2(a). In 
calibration, the camera is placed at the MMF to measure the output intensity pattern, as shown 
in Fig. 1(a). As in [15], the SLM can be optimized iteratively to form a spot at each of the M 
output positions. Alternatively, the transfer matrix between each pixel of the SLM and each 
pixel of the camera can measured, after which each of the M SLM patterns can be computed 
directly [19, 20]. In imaging, an object is placed at the MMF output, as shown in Fig. 1(b). 
When the ith intensity pattern ),(, yxI iout  is displayed at the MMF output, the reflected power 
coupled back into the MMF is given approximately by: 

 , ( , ) ( , ) ,i out i objp I x y R x y dxdyκ≈ ∫∫   (1) 
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where ( , )objR x y is the object reflectivity and κ is a coupling coefficient. The integral is 
performed over an ( , )x y plane at the MMF output, which is assumed to coincide with the 
object plane for simplicity. Equation (1) assumes the coupling coefficient κ for every spot is 
equal, which may not be strictly true in general, as the electric field reflected from the object 
may contain modes not supported by the MMF. Violation of this assumption may introduce 
noise into the reconstructed image. 
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Fig. 2. Spot (a) and random pattern (b) generated at the MMF output by the setup shown in Fig. 
1 and used for sampling an object. The white circle denotes the area in which spots or random 
patterns can be generated. A gamma adjustment of 1.5 is used in displaying the images. 

In local reconstruction, an image ( , )W x y is computed from the M samples as: 

 
1

( , ) ( , ) ,
M

i i
i

W x y p s x y
=

= ∑   (2) 

where ( , )is x y is unity for ( , )x y inside the ith pixel and zero otherwise. The ith pixel is 
centered at ( , )i ix y , the centroid of , ( , )out iI x y .  

In local sampling and reconstruction, the number of resolvable image features cannot 
exceed the number of mutually orthogonal intensity patterns that can be formed at the MMF 
output, which cannot exceed the number of modes N. This statement is justified more 
precisely in Section 5. Previous simulations confirmed that the number of resolvable image 
features approximately equals the number of modes N [15]. As shown in [6], resolving N 
image features requires sampling using NM 4≥  localized intensity patterns. 

Local sampling and reconstruction, described by Eq. (1) and Eq. (2), has a PSF 
proportional to , ( , )out iI x y , assuming M N . As explained in Section 6, in a graded-index 
fiber, the PSF shape and width varies as a function of the spot centroid ( , )i ix y . It is narrowest 
at the center of the output plane, where, in the limit of many modes N, it ideally approaches a 
diffraction-limited Airy disk: 

 
2

1
0

2 ( )
( ) ,A

J rI r I
r
η

η
η

 
=  

 
  (3) 

where 2 2r x y= + , 2 NA /η π λ= and 0I is a normalization constant. Observe that the ideal 
PSF in Eq. (3) depends only on / NAλ and not on N. It has peak-to-zero width 0.61 / NAλ and 
half-width at half-maximum (HWHM) 0.26 / NAλ . The theoretical PSF in Eq. (3) for our 
system is shown by the dashed blue curve in Fig. 3, and has peak-to-zero width of 5.0 µm and 
HWHM of 2.1 µm.  

The experimentally measured PSF at the center of the fiber output plane is shown by the 
solid blue curve in Fig. 3, which has HWHM of 2.4 µm, about 14% larger than the theoretical 
PSF. The PSF shape and width are observed to vary with position in the output plane, as 
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observed in [15] and explained in Section 6 below. For comparison, the system in [5] 
achieved a PSF width about 59% larger than the corresponding theoretical limit. 
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Fig. 3. Point-spread functions (PSFs) at center of fiber output plane for two imaging methods. 
Dashed and solid blue curves (squares) show theoretically optimal and experimental PSFs for 
local sampling with local reconstruction. Dashed and solid red curves (circles) show 
theoretically optimal and experimental PSFs for random sampling and optimization-based 
reconstruction.  

In experiments reported here, the SLM is optimized iteratively to form each spot at the 
MMF output. SLM pixels are grouped into blocks of 8×8 pixels, with the phase piecewise-
constant over each block. The phases in the central 224 blocks, which cover more than 95% 
of the incident beam energy, are adapted in a single pass using the continuous-phase 
sequential coordinate ascent method [15]. Adaptation of each SLM block requires about 1.2 s, 
of which about 0.2 s is allocated for four SLM phase changes, and about 1 s is allocated for 
three measurements of the fiber output intensity pattern. Adaptation of 224 blocks requires 
about 270 s. For recording of images, which requires calibration of the SLM to form spots at 
many positions in the fiber output plane, it would be far faster to calibrate by measuring the 
SLM-to-camera transfer matrix, as in [5, 19, 20]. 

4. Imaging by random-pattern sampling and optimization-based reconstruction 

The system in Fig. 1 may be used to sample an object by a sequence of random intensity 
patterns, allowing an image to be reconstructed by a linear optimization. 

In calibration, the camera is placed at the MMF output, as shown in Fig. 1(a). A sequence 
of M random phase patterns is displayed on the SLM, each creating a random field pattern at 
the MMF input, and the corresponding sequence of M random intensity patterns at the MMF 
output is recorded by the camera. One such random intensity pattern is shown in Fig. 2(b). To 
create random phase patterns, SLM pixels are grouped into blocks of 8×8 pixels, with the 
phase piecewise-constant over a block, and each block is independently assigned a random 
phase uniformly distributed between 0 and 2π. The central 224 blocks cover more than 95% 
of the energy of the incident beam. In order to independently control all N modes of the 
MMF, the number of SLM blocks K that overlap the beam should be at least N. Here, the 
number of pixels per block is chosen to make K somewhat larger than N to ensure sufficiently 
random intensity patterns with sufficient power launched into the MMF core. Choosing K far 
larger than N does not improve randomness, but causes most of the beam’s energy to be 
scattered away from the MMF core. 

In imaging, a test object is placed at the MMF output, as shown in Fig. 1(b), and the 
sequence of M random intensity patterns is displayed to sample the object. When the ith 
random intensity pattern , ( , )out iI x y is displayed at the MMF output, the reflected 
power ip coupled back into the MMF is given approximately by Eq. (1). Discretizing 
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the ( , )x y plane at the MMF output into a grid of L pixels with spacing x y∆ = ∆ , with the kth 
pixel centered at ( , )k kx y , the integral in Eq. (1) can be approximated as a summation: 

 ,
1

( , ) ( , ) ,
L

i out i k k obj k k
k

p I x y R x yκ
=

≈ ∑   (4) 

where x yκ κ= ∆ ∆ is the normalized coupling coefficient. 
In order to reconstruct an image, we define p to be an 1M × vector whose ith entry 

is ip and define I  to be an M×L matrix whose ith row is , ( , )out i k kI x y . An image ( , )W x y in 

discretized form ( , )k kW x y is represented as an 1L× vector w whose kth entry is ( ),k kW x y . 
The reconstructed image ŵ is obtained by solving a linear optimization problem: 

 
2

ˆ arg min ,= −
w

w p Iw   (5) 

where
2

denotes an l2-norm. Intuitively, ŵ represents the object reflectivity pattern which, if 

sampled by the intensity patterns I , would yield samples closest to the observed samples p. 
The solution to Eq. (5) is given by [24]: 

 1ˆ ,T−=w VD U p   (6) 

where superscript T denotes matrix transpose, and T=I UDV is the compact singular value 
decomposition of I . V is an L Q× matrix of the first Q right singular vectors of I and 1−D is a 

Q Q× diagonal matrix of the reciprocals of the Q singular values of I . After ŵ is computed 

using Eq. (6), yielding a corresponding ˆ ( , )k kW x y , the reconstructed image is 

1
ˆ ˆ( , ) ( , ) ( , )

L

k k kk
W x y W x y s x y

=
= ∑ , where ( , )ks x y is defined below Eq. (2). Unlike the object 

reflectivity ( , )obj k kR x y , the reconstructed image ˆ ( , )k kW x y is not constrained to be 

nonnegative everywhere, so any negative values in ˆ ( , )k kW x y are set to zero. 
The number of singular values Q corresponds to the number of resolvable image features, 

as explained further in Section 5. As shown there, for a MMF supporting a large number of 
modes N, the number of resolvable features Q can be as high as 4N. Achieving this resolution 
obviously requires a number of random intensity patterns and a number of pixels at least that 
large, i.e., 4M N≥ and 4L N≥ . 

The idealized PSF for random-pattern sampling with optimization-based reconstruction is 
discussed in Section 6. In a graded-index MMF, the PSF shape and width varies as a function 
of the pixel coordinate ( , )k kx y . It is narrowest at the center of the output plane where, in the 
limit of many modes N, it ideally approaches a diffraction-limited Airy disk: 

 1
0

2 (2 )
(2 ) ,

2A
J rE r E

r
η

η
η

=   (7) 

where 2 4 NA /η π λ=  and 0E  is a normalization constant. Like Eq. (3) the ideal PSF on Eq. 
(7) depends only on / NAλ and not on N. Its peak-to-zero width is 0.3 / NAλ , precisely half 
that of Eq. (3), while its HWHM is 0.18 / NAλ , about 0.69 times that of Eq. (3). The ideal 
PSF in Eq. (7) for our system is shown by the dashed red curve in Fig. 3, and has peak-to-zero 
width of 2.5 µm and HWHM of 1.4 µm. To estimate the PSF for our experimental system, we 
observe that if the object reflectivity ( , )obj k kR x y is set to unity for k l=  and zero otherwise, 
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then p is the lth column of I , and the reconstructed image corresponds to the PSF for an 
object point at ( , )l lx y . This method has been used to compute the solid red curve in Fig. 3, 
which is in excellent agreement with the idealized PSF in Eq. (7). In estimating the PSF, 3000 
random patterns have been used, and only the strongest 131 singular values have been used to 
minimize the effect of noise.  

Figure 4 shows experimental images of chrome-on-glass objects from groups 6 and 7 of a 
USAF 1951 resolution target. Using random-pattern sampling and optimization-based 
reconstruction, all four objects are resolved, including bars with pitches of 9.8, 6.2 and 4.4 
µm. This is to be expected, since all pitches exceed the experimental estimate of the PSF 
peak-to-zero width of 2.5 µm. By contrast, when using spot scanning and local reconstruction, 
the bars with 6.2-µm pitch are barely resolvable, while those with 4.4-µm pitch are not 
resolvable, consistent with the PSF peak-to-zero width of well over 5.0 µm. Each image in 
Fig. 4 represents an average of 15 preliminary images, each recorded using a different 
sequence of M = 200 random patterns, and has L = 75×75 = 5625 pixels. As explained in 
Section 5, in this fiber with N = 45 modes, up to 153 image features may be resolvable. In 
order to minimize noise, only the strongest 131 singular values are used in the images of Fig. 
4.  
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Fig. 4. Images formed by random-pattern sampling and optimization-based reconstruction: (a) 
numeral 2, (b) bars of 9.8-µm pitch, (c) bars of 6.2-µm pitch, (d) bars of 4.4-µm pitch. Using 
the spot-scanning method with local reconstruction, (a) and (b) are easily resolved, (c) is barely 
resolved, while (d) is not resolved. Features are from groups 6 and 7 of 1951 USAF chrome-
on-glass resolution target. Portions of other features can be seen in images (c) and (d). The 
white circle denotes the area in which spots and random patterns can be generated.  A gamma 
adjustment of 1.5 is used in displaying the images.  

Experiments reported here employ extensive averaging to minimize noise. In calibration, 
20 camera frames are averaged for each random pattern, requiring 82 min for 3000 patterns. 
In imaging, 20 power meter readings are averaged for each random pattern, requiring 36 min 
for 3000 patterns. Reconstruction of a 75×75-pixel image (similar to the images in Fig. 4) 
requires 12 s. Redesign of the apparatus can significantly speed up calibration, imaging and 
reconstruction, while improving resolution, as described in Section 7. 

5. Number of resolvable features 

In this section, we explain how optimization-based reconstruction allows resolution of up to 
4N image features, the factor of four becoming exact for large N. We show that at the output 
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of an N-mode fiber, an ensemble of electric field patterns has a dimensionality of at most N, 
whereas an ensemble of intensity patterns has a dimensionality up to 4N. Optimization-based 
reconstruction can exploit this full dimensionality of 4N, whether the intensity patterns are 
localized spots or random. By contrast, local reconstruction requires localized spot patterns, 
so it can only resolve N image features. The fourfold resolution enhancement corresponds to a 
twofold reduction in the width of the PSF at the center of the fiber output plane. 

A graded-index MMF with finite core diameter d supports 2(1/ 8)N V= =  
2(1/ 8)( NA / )dπ λ electric field modes per polarization for large V [25]. Here we consider 

propagation of a finite but large number of modes N in a fiber having an infinite parabolic 
index profile. In polar coordinates ( , )r ϕ , the modes can be approximated well by Laguerre-
Gaussian modes [25]. Without loss of generality we can consider the modes in the plane z = 0, 
allowing us to ignore z-dependent phase factors and write: 
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where ( )l
mL ⋅ is the generalized Laguerre polynomial, 0 2 NAw dλ π= is the mode radius, 

( )2 !/ !lmc m l mπ= + is a normalization constant and max0 2 2m l n N≤ + ≤ = .  

Using an SLM, any linear combination of these modes can be generated at the fiber 
output, so the total output field distribution can be described by: 
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where the lma can be obtained from the lma . Since 2
max / 2N n= , the total number of “field 

modes” N is proportional to the square of the upper limit of summation nmax. The output 
intensity distribution is the squared modulus of Eq. (9): 
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where the lmb can be obtained from the lma and the lmb can be obtained from the lmb . The 
output intensity distribution in Eq. (10) is a linear combination of Laguerre-Gaussian modes 
with mode radius reduced to 0 / 2w . Since the upper limit of summation is 2nmax, the total 
number of “intensity modes” is 4N. 

All 4N degrees of freedom can be exploited by the optimization-based reconstruction in 
Eq. (6). Using Eq. (4), neglecting noise, the vector of reflected powers can be written as 

=p Ir , where r is an 1L× vector representing the object reflectivity values ( , )obj k kR x y in the 
L pixels. Then Eq. (6) takes the form: 

 1ˆ ,T−=w VD U Ir   (11) 

which simplifies to: 

 ˆ .T=w VV r   (12) 

Each of the Q rows of VT corresponds to an “intensity mode” of the fiber, recovered from the 
random intensity pattern matrix I . The object r is thus projected into the space spanned by 
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linear combinations of Q orthogonal “intensity modes” of the fiber. Neglecting noise, all 
components of the object corresponding to these Q “intensity modes” appear in the image 
ŵ with unit gain, while other components are passed with zero gain and do not appear in the 
image. 

Neglecting noise, based on Eq. (10), we expect the number of significant singular values 
of the matrix of field patterns to be approximately N, and the number of significant singular 
values Q of the matrix of intensity patterns to approach 4N, regardless of whether the patterns 
are random or represent localized spots. This is verified by Fig. 5, which presents simulations  
for the experimental apparatus of Fig. 1, which uses a graded-index MMF supporting N = 45 
modes. The exact LP modes of the finite-core fiber are used, and an ensemble of 500 patterns 
is used in each matrix. Random or localized electric field patterns, shown in Fig. 5(a), have 45 
significant singular values. The corresponding intensity patterns, shown in Fig. 5(b), have 153 
significant singular values (153 is the precise number of “intensity modes” obtained by 
squaring linear combinations of 45 “field modes”). Figure 5(b) also shows singular values 
measured experimentally for an ensemble of 500 random intensity patterns.  These do not 
exhibit a sharp drop at 153, presumably because of noise. In our experimental images shown 
in Fig. 4, we use only singular values that are at least 1% (−20 dB) with respect to the largest, 
resulting in 131 usable singular values. 
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Fig. 5. Singular values (SVs) for (a) electric field patterns and (b) intensity patterns at the 
output of a 45-mode graded-index MMF. Red circles and blue squares show SVs of random 
patterns and spots, respectively, simulated using the exact LP modes of finite-core MMF. 
Green diamonds denote SVs of random patterns measured experimentally. 500 patterns are 
used in each matrix.  

A step-index MMF supports 2 2(1/ 4) (1/ 4)( NA / )N V dπ λ= = modes for large N, twice 
as many as a graded-index fiber having the same normalized frequency V [26]. Simulations of 
step-index fibers show results similar to Fig. 5, i.e., they confirm that the number of singular 
values of intensity patterns (and thus the number of resolvable image features) approaches 4N. 

6. Point-spread function 

In this section, we show analytically that in graded-index MMF, the idealized PSFs at the 
center of the output plane are given by Eq. (3) for local sampling and reconstruction and by 
Eq. (7) for optimization-based reconstruction. Using simulation, we compare the PSFs for 
optimization-based reconstruction in graded-index and step-index MMFs, showing how they 
vary with position in the fiber output plane.  

We discuss optimization-based reconstruction first, deriving the idealized PSF in Eq. (7). 
By definition, the PSF is the reconstructed image obtained when the test object reflectivity 

( , )objR x y is an ideal impulse ( , )x yδ and noise is negligible. Based on the optimization 
method in Eq. (5), this PSF should be an approximation of ( , ) ( ) /x y r rδ δ= using the set of 
4N “intensity modes” appearing in Eq. (10) that minimizes the L2-norm of the approximation 
error. As shown in [15, Eq. (A4)], this approximation ( , )E rδ ϕ is a linear combination of the 
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“intensity modes” with coefficients equal to the complex-conjugated samples of the modes at 
the origin: 

 
max0 2 2
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We would like to show that ( , )E rδ ϕ given by Eq. (13) approaches the Airy disk in Eq. (7) in 
the limit of a large number of “intensity modes”.  

Using Eq. (8), (0,0)lmE∗
 is nonzero only for 0l = and hence ( , )E rδ ϕ  has no ϕ dependence 

and can be written as: 
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According to the Heine-Mehler theorem, for any large n we have [27]: 
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Letting 1α = , replacing r by 2 2 /r nη and rearranging, we get: 
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Using properties of Laguerre polynomials we have 1 0
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Setting 2 2
0 / 4n wη= and 2

0 / 2E η π= we get: 
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Hence, in the limit of a large number of “intensity modes”, the optimization-based PSF at the 
center of the fiber output plane converges to the Airy disk in Eq. (7), whose width depends 
only on 2 4 NA /η π λ= . Although Eq. (7) represents an incoherent PSF, its functional form is 
suggestive of the coherent PSF of a conventional imaging system having an NA twice that of 
the fiber [28]. Since Eq. (7) arises from a computational reconstruction process, it is not 
constrained to be nonnegative everywhere in the fiber output plane, unlike a PSF arising from 
conventional physical incoherent imaging.  

In a system using local sampling and reconstruction, the idealized PSF at the center of the 
fiber output plane is the narrowest intensity pattern , ( , )out iI x y that can be formed there. As 
shown in [15], the corresponding field pattern is the approximation of ( , ) ( ) /x y r rδ δ= using 
the set of N “field modes” that minimizes the L2-norm of the approximation error. Following 
the arguments given above, replacing η  by / 2η , maxn by max / 2n , and 0w by 02w , this field 

pattern is 0 1( / 4)2 ( ) /E J r rη η and its square is the PSF ( )2
0 1( ) 2 ( ) /AI r I J r rη η η= given in Eq. 

(3). 
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Through simulation, we have studied the PSFs in fibers with different index profiles and at 
different positions in the fiber output plane. We modeled the exact LP modes in fibers having 
NA = 0.19 and core diameter d = 50 µm, like the experimental system in Fig. 1. Graded-index 
and step-index fibers support N = 45 and 94 modes, respectively. Using random-pattern 
sampling with optimization-based reconstruction, at the center of the fiber output plane, the 
shape and width of PSFs for graded-index or step-index fibers are both very similar to the 
idealized PSF in Eq. (7), shown in Fig. 3 by the dashed red line, despite the roughly twofold 
disparity in number of propagating modes. Figure 6 presents PSF widths for centroid 
positions displaced from the center of the output plane for the two fiber types. The transverse 
and longitudinal directions are parallel and perpendicular to the direction of displacement, 
respectively. In graded-index fibers the PSF widths (blue lines) increase from the ideal limit at 
points away from the center of the output plane, whereas in step-index fibers the PSF widths 
(red lines) are close to the ideal limit over the entire range. This observed difference is 
consistent with the roughly twofold disparity in the number of modes and the corresponding 
number of observable features. 
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Fig. 6. Peak-to-zero widths of PSFs for optimization-based reconstruction at different radial 
positions in the fiber output plane. Dashed and solid blue lines (squares) show transverse and 
longitudinal widths for the graded-index fiber. Dashed and solid red lines (circles) show 
transverse and longitudinal widths for the step-index fiber. PSFs were obtained from 
simulation of a noiseless random-pattern imaging system with optimization-based 
reconstruction using exact LP modes of fibers having NA = 0.19 and core diameter d = 50 µm. 
The dashed black line corresponds to idealized PSF given by Eq. (7).  

Analogous results are observed for local sampling and reconstruction. At the center of the 
fiber output plane, the PSFs for graded-index and step-index fibers are both very similar to the 
idealized PSF in Eq. (3), shown by the dashed blue line in Fig. 3. In graded-index fibers, the 
PSF widths increase at points away from the center of the output plane, but in step-index 
fibers, the PSF widths remain nearly constant for displacements beyond 20 µm. 

For either imaging method, the relationship between the PSF and the number of resolvable 
features can be understood intuitively in step-index fibers, where the PSF shape and width are 
nearly invariant over the fiber output plane. Under the Rayleigh criterion [29], two object 
points are resolvable if their spacing is at least equal to the peak-to-zero width of the 
appropriate PSF (given by Eq. (7) or Eq. (3) for optimization-based or local reconstruction, 
respectively). Arraying a hexagonal lattice of points with such spacing, one finds that the fiber 
core encloses 1.02N or 4.07N lattice points for optimization-based or local reconstruction, 
respectively. These are very close to the N or 4N resolvable features found by the rigorous 
analysis in Section 5.  

7. Discussion 

Random-pattern sampling with optimization-based reconstruction may be considered 
somewhat analogous to local sampling and reconstruction with deconvolution. In the latter 
method, after local reconstruction, deconvolution involves multiplying the reconstructed 
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image spatial frequency spectrum by the inverse transfer function of the imaging system, 
assuming the  PSF is approximately spatially invariant [30], as in step-index fiber. If the PSF 
is spatially variant, as in graded-index fiber, deconvolution is possible, but becomes much 
more complicated [31]. In either case, deconvolution sharpens the image by enhancing spatial 
frequencies approaching the incoherent cutoff, but leads to noise enhancement. Similarly, in 
the former method, optimization-based reconstruction in Eq. (6) includes multiplication by the 
matrix D−1, which compensates for the diminishing singular values of the intensity pattern 
matrix I  approaching the incoherent cutoff, but leads to noise enhancement. We have not yet 
fully compared the two methods in terms of the tradeoff between resolution and noise 
enhancement. In the former method, this tradeoff may perhaps be optimized by designing a 
set of intensity patterns having minimal variation among the singular values. 

The experimental apparatus in Fig. 1, designed originally for data transmission at 1550 nm 
[32] and retrofitted at minimal cost for imaging experiments [15], has several limitations that 
significantly compromise image resolution and noise levels and slow down calibration and 
image acquisition. These include the long wavelength, graded-index fiber, SLM (slow 
interface and switching speed), phosphor-coated CCD camera (low frame rate, poor 
sensitivity, high noise level, slow interface), power meter (slow interface) and PC. If the 
system were redesigned to use a 532-nm wavelength and 50-µm, NA = 0.19, step-index fiber 
supporting N = 787 modes, it would achieve a resolution of 0.3λ/NA ≈ 0.84 µm over most of 
the fiber output plane, corresponding to 4N = 3148 resolvable features. Using a high-speed 
SLM, high-frame-rate CCD camera and high-performance PC, estimated times for calibration, 
image recording and reconstruction are 11.5 min, 17 s and 10 s.  

8. Conclusion 

We have demonstrated a method for imaging through an N-mode fiber that can resolve up to 
4N image features. An SLM forms a sequence of at least 4N random input field patterns, 
which create a sequence of random intensity patterns for sampling an object placed at the 
fiber output. Reflected power values are returned through the fiber and an image is 
reconstructed by linear optimization. Although the 4N field patterns span the set of N “field 
modes”, the squaring inherent in field-to-intensity conversion mixes the modes, so the 
intensity patterns span a set of 4N “intensity modes”.  Most previous fiber imaging methods 
use localized intensity patterns for sampling and use local reconstruction, and all of them can 
only resolve N image features. The number of modes N, and thus the number of image 
features resolvable by these methods (4N or N) depend on the square of the normalized 
frequency NA /V dπ λ= and on the fiber refractive index profile. Nevertheless, the shape and 
width of the PSF at the center of the fiber output plane appear to depend only on / NAλ . 
Experiments described here used graded-index fibers with d = 50 mm and NA = 0.19 
supporting N = 45 modes at λ = 1550 nm. Resolution may be enhanced in future experiments 
using larger-diameter, higher-NA step-index fibers and shorter optical wavelengths. 
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