
The Event Heap: A Coordination Infrastructure for Interactive Workspaces

Brad Johanson and Armando Fox
Stanford University

Gates 3B-376
Serra Mall

Stanford, CA 94305-9035
bjohanso@graphics.stanford.edu, fox@cs.stanford.edu

Abstract

Coordinating the interactions of applications running
on the diversity of both mobile and embedded devices that
will be common in ubiquitous computing environments is
still a difficult and not completely solved problem. We
look at one such environment, an interactive workspace,
where groups come together to collaborate on solving
problems. Such a space will contain a heterogeneous
collection of both new and legacy applications and
devices. We propose the Event Heap, a coordination
model most similar to tuplespaces, as being appropriate
for such environments. We also present a prototype
implementation of the Event Heap, and show that the
system has performed well in actual use over the last two
years in our prototype interactive workspace, the iRoom.

1 Introduction

Improvements in device technologies and falling costs
are rapidly enabling the original vision of ubiquitous
computing [26]. Devices from large wall-sized displays
to small PDAs can easily (and wirelessly) be networked
together in localized areas, forming the hardware side of
the ubiquitous computing environment. Once connected
together, however, the problem becomes how to allow
software programs running on the devices to coordinate
with one another in a flexible and intuitive manner. Such
devices do not generally integrate easily, either with one
another or with existing software, unless they were
designed to do so a priori.

Many programming models and systems have been
proposed for this type of coordination in ubiquitous
computing scenarios. Based on our experience with a
prototype room-based ubiquitous computing environment
(interactive workspace), the realities of this type of
environment make the existing models incomplete or

inadequate. Interactive workspaces systems must be able
to tolerate a dynamic environment, as mobile devices
come and go, as well as maintain a high degree of
robustness and availability despite inevitable software and
hardware failures. Further, both because this research
area is still young and growing rapidly, and because of the
implicit ad-hoc nature of ubiquitous computing
interactions, it is important that any coordination model
allow the rapid integration of new devices and systems.

Our own project, Interactive Workspaces, investigates
the systems and HCI issues that arise in these technology
rich spaces. People gather in these environments to do
naturally collaborative activities such as design review,
and brainstorming. Compared to other projects, which we
review more thoroughly toward the end of the paper, we
are focusing on providing infrastructure for dynamic,
heterogeneous and ad hoc collections of devices,
applications and operating systems, all of which may be
either new or legacy.

From our observations of usage and application
development in our prototype interactive workspace, the
iRoom, we determined that a coordination infrastructure
for such a space must be:

• Applicable to many different types of ubiquitous
computing applications.

• Able to support portability of applications across
installations.

• Friendly to existing languages and environments, and
portable to new ones, in order to make it
straightforward to support a wide range of devices and
leverage their existing application bases.

• Robust to transient failures, so that experimentation
with new devices does not destabilize an existing
system.

In light of the above observations and requirements, we
make the following contributions:

First, we identify the need for a general-purpose
coordination system, in the spirit of [10], for interactive
workspaces. Further, we propose that the Event Heap, a
model derived from tuplespaces, is suitable for such a
system, and show why we found tuplespaces to be a good
starting point.

Next, we explain how the Event Heap differs from the
basic tuplespace model that, and why we found these
changes necessary in an interactive workspace.
Specifically, the changes are the addition of flexible,
typed, self-describing tuples, tuple sequencing, tuple
expiration, default mechanisms for tuple routing, and
query registration.

Finally, we present our implementation of the Event
Heap and discuss our experience with applications using
the infrastructure across a wide variety of devices and
software platforms over the past two years.

1.1 Interactive Workspaces

An interactive workspace is a localized ubiquitous
computing environment where people come together for
collaborations. To explore this space, we built a
prototype interactive workspace, the iRoom, which
features three rear projected SMART Board touch
screens [22] along one wall, a bottom projected table, and
a custom 12 projector tiled front display driven by a
workstation cluster. Except for the front display, all of
the machines driving displays are Windows machines in
order to facilitate running legacy applications. In
addition, the room has wireless LAN coverage, which
allows laptops or PDA’s to communicate with the other
machines in the room. Figure 1a shows the layout of the
iRoom.

We now provide a scenario set in the iRoom that
reflects how research groups collaborating with us hope to

use interactive workspaces (a video version is linked on
the web from: http://iwork.stanford.edu).

Consider a group of construction management
engineers and contractors using the iRoom to plan a major
construction project. (We are working with the civil
engineering department on just such a project [15], but
similar scenarios apply for many domains requiring multi-
person collaborations and interaction with large amounts
of data.) Upon entering the workspace, one group
member uses a touch sensitive tablet at the room entrance
to turn on the lights and the three projectors for the touch
screens on the side wall.

They begin the meeting by following a web-page
outline the meeting leader has prepared and brought in on
his laptop which he displays on the left most touch screen.
Each topic is a hyperlink that brings up related data for
that topic on the other displays in the room. Some of that
data is in the form of web pages, while other data is
brought up in specific construction site modeling and
planning applications, some of which were not originally
designed to run in the iRoom. Figure 1b shows a
photograph of the iRoom in use for a prototype of such a
scenario.

Later in the meeting, it becomes clear that there is a
problem with completing part of the construction on
schedule. They bring up a top down map of the
construction site on the table, a 3D model of the
construction site which shows the project state for any
given date on one touch screen, some financial
information on another touch screen, and the project
scheduling software on the third. All of these are separate
stand-alone applications, but the data being displayed
across the applications is automatically associated. Thus
when the users select or make changes in one view, the
other views immediately reflect the new state. When they
have solved the problem and the meeting is over, the
users store the updates on their laptops, and shut down the

multi-headed computer

laptop drop

front

smartboard 1 smartboard 3smartboard 2

table

room controller

computer

laptop
sourcecluster

(a) iRoom Layout

(b) Construction Management in the iRoom

Fig. 1. The iRoom

room using a simple web based room control page they
load on their laptop using the wireless network in the
room.

The goal of the coordination infrastructure is to
facilitate the kind of fluid application association and
linking, and the multiple pathways of control as presented
in this scenario.

The rest of the paper proceeds as follows. We first
discuss coordination languages, and our choice of the
tuplespace model as a starting point for the Event Heap.
We next present the extensions to tuplespaces we made to
create the Event Heap, our prototype implementation, and
applications implemented using the prototype. We
conclude with some discussion and a review of similar
projects.

2 A Tuplespace Coordination Model For
Interactive Workspaces

We assert that most room wide applications will
consist of traditional applications and devices composed
into an ensemble. The problem is therefore to determine
which coordination model best facilitates these types of
composition such that the user has the impression of using
one distributed application.

2.1 Coordination-Based Programming
Background

In [10], Gelernter and Carriero proposed that
computation languages and coordination languages
should be thought of as orthogonal, with computation
languages expressing how calculations proceed, and
coordination languages expressing the interaction
between autonomous processes. They assert that
providing a coordination mechanism separate from the
computational language provides two key features:
portability, by providing a computation language
independent mechanism of coordination, and support for
heterogeneity by allowing devices and applications to
coordinate with one another even if they are based on
different hardware or languages. Further, providing a
general-purpose coordination language, as opposed to
many specialized ones, is economical, because
programmers need learn only one coordination language,
and provides flexibility, since it can be used to express
any style of coordination. They propose that Linda [1],
which is based on the tuplespace model, is one such
general purpose coordination language, and therefore has
these features.

In the tuplespace model all participants coordinate
through a commonly accessible tuplespace. Tuples,
which are a collection of ordered type-value fields, may
be posted to the space, or read from the space in either a
destructive or non-destructive manner. The tuple to be

retrieved is chosen by a template tuple specified by the
retrieving application. The template contains precise
values for the fields to be matched, and wild cards for
fields containing data to be retrieved. This system is
simple, can be shown to be general, and has flexible
matching semantics.

2.2 Tuplespace Advantages for Interactive
Workspaces

The features of tuplespaces advocated by Gelernter and
Carriero—portability, heterogeneity, economy and
flexibility—are the same as ones which are important for
an interactive workspaces coordination model. This
makes the tuplespace model a good starting point for an
infrastructure in this domain. Other characteristics of the
tuplespace model that are important for interactive
workspace coordination are simplicity, and good failure
isolation and tolerance.

Since tuplespaces are simple and flexible they are easy
to deploy on many devices and platforms. There are only
three primitives, making it simple to port to new
platforms, add support to an existing application, or write
a wrapper for an application with a programmatic
interface. Coordination state is stored in the infrastructure
instead of in individual clients which makes client code
small and straightforward to implement even for
impoverished devices. Since tuplespaces are general-
purpose, other coordination types, such as RPC, can be
implemented on top of it if they are more appropriate for
some task.

Tuplespaces also support easy coordination among
multiple applications, including the ability to adapt
applications not originally designed to work together.
Multicast communication between disparate groups of
devices and applications is easy since multiple
applications can get a copy of the same tuple if they all
match for it. Tuplespaces also inherently provide the
following features:

• Anonymous communication: There is no need to
explicitly rendezvous applications—as long as two
applications understand the same event types they will
automatically coordinate with each other. Users can
bring up applications on the display they want in an
interactive workspace and the applications should
coordinate correctly.

• Interposability: Since tuples are public and indirectly
sent between applications, an intermediary can pick up
a tuple from a source and put back one or more tuples
of different types which will cause the appropriate
action in a receiver or receivers. This allows
applications not originally intended to work together to
coordinate.

• Snooping: The tuplespace model allows one
component to snoop on tuples being sent among other
components without impinging on their behavior.
Information in that tuple can then be used to affect the
local behavior of the snooping application.

The indirect interaction mechanism of the tuplespace
discourages strongly interdependent applications, which
helps with failure isolation. As long as the tuplespace
infrastructure can tolerate failure in clients, a client should
not cause others to fail. Tuples also persist, decoupling
applications in time as well as space. This allows
applications to retrieve communications that were sent
before they were running, or as they were restarting after
a crash.

2.3 Adapting Tuplespaces for Interactive
Workspaces

While the tuplespace model is a good general-purpose
system for coordination, we found that certain extensions
were necessary for the interactive workspaces domain. It
should be noted that while some of these extensions have
been implemented in other systems which extend the
tuplespace model, we are aware of no single system that
incorporates the specific set which we have found
necessary for this domain. The extensions are:

Flexible, typed, self-describing tuples: In an
interactive workspace, applications may not have been
designed to work together. To allow developers to infer
meaning of tuples by spying on application
communication, it is important to make fields self-
describing in tuples. This means that every field needs a
name in addition to the type and value. For extensibility,
it is desirable to permit applications to add extra fields to
tuples without breaking the matching semantics of older
applications. Thus, we make extra fields allowable, and
field-order irrelevant to matching. Finally, there is a need
to disambiguate the semantic meaning of tuples, so a field
that indicates the type of the tuple is included. This type
also implies some minimal set of fields that will be
present, and allows the differentiation of events with
fields of the same name but different intent. For example,
an “ItemSelected” field may be present in both a database
update event and a 3d-model selection event. Tuple
typing is used in Javaspaces [21], L2imbo [9], and other
systems. TSpaces [27] allows self-describing fields.
Although some object oriented tuplespace
implementations support matching by subclass, as far as
we know no tuplespace system supports allowing
templates to match tuples that are a superset of
themselves.

Tuple Sequencing: Traditionally, if multiple tuples
exist that match the template tuple on a retrieve operation,
any of the matching tuples can be returned. Tuple

sequencing means that receivers always get the earliest
matching tuple they haven’t yet seen. Sequencing insures
that applications requesting state change tuples will get
tuples exactly once, and in order, rather than fetching the
same tuple repeatedly. Since applications may sometimes
want to peek at tuples, a ‘snoop’ method is needed to
return copies of all matching tuples without effecting
sequencing. Sequencing has also been found useful when
applying the tuplespace model to other domains. See, for
example, [14]and [19].

Expiration of Tuples: Since sources and receivers are
decoupled, a source need not have a corresponding
running receiver. This may cause emitted tuples to build
up in the tuplespace—for a real world system this means
that the performance steadily decreases. To ameliorate
this problem, all tuples are given a ‘TimeToLive’ field
that specifies how long they will persist in the tuplespace
before being “garbage collected.” The expiration also
facilitates human time-scale inter-application coordination
by preventing action upon a submitted tuple from
occurring long after the triggering event. For example, a
light should turn on within a few seconds, or not at all—
turning on hours or days later when some key component
comes back on line is not acceptable. Tuple expiration is
also implemented in the TSpaces system [27].

Default Routing Fields: While anonymous
communication tends to minimize the interdependency
between applications, it makes it more difficult to route
information between the appropriate parties. To allow
targeting of transmitted tuples to specific applications or
groups of applications, a standard set of routing fields are
provided which are filled out automatically by the
tuplespace infrastructure. For example, the infrastructure
automatically sets a source application field to indicate
who created the tuple, and automatically sets template
tuples to match tuples with a destination application field
set to match them. Details of the implementation of this
are in Section 3.2. While it is possible for an application
programmer to create a standard set of fields for routing
for his own application, only by specifying the fields at
the infrastructure level can interoperability be assured
among applications written by different authors. Further,
having the fields created and set automatically makes it
more likely that they will be used, since authors do not
have to write routing code themselves.

Query Registration: The standard tuplespace model
requires polling in order to retrieve tuples. This
introduces the problem that tuples which expire or are
destructively removed between successive polls by an
application will be missed. In the cases of applications
that are snooping, debugger applications, and logger
applications, this is a serious problem. To alleviate this,
the Event Heap model allows applications to register
template tuples with the system. As long as they remain
registered, a callback is made to the application every

time a matching tuple is placed. This mechanism is
similar to the primary message dissemination method in
publish-subscribe systems. TSpaces [27] and LIME [16]
both support similar registration methods.

For an interactive workspace, users need to be able to
dynamically compose the application components they
are using into an ensemble. This differs from the original
intended use of tuplespaces which was to construct a set
of applications designed from the ground up to act as an
ensemble. In our case, the programmer doesn’t know in
advance with which other applications their component
will be coordinating. By adding flexible, typed, self-
describing events, and using intermediation and snooping,
the tuplespace model is adapted to help support this sort
of dynamic composition.

2.4 Design Alternatives

The tradeoffs between tuplespaces and other
coordination mechanisms are well known, and one of our
main contributions is to identify tuplespaces as well suited
to interactive workspaces. We also considered publish-
subscribe, RMI/RPC, and message passing systems.

Publish-subscribe provides many of the same
advantages as tuplespaces. The main difference is that
messages in publish-subscribe systems have no
persistence, so there is no inherent way for restarting
applications to pick up recent messages. This makes it
more difficult to keep things running through a failure.

Both RMI/RPC and message passing suffer from
drawbacks similar to one another in the interactive
workspaces domain. Like publish-subscribe, there is no
temporal persistence to coordination. In RMI/RPC,
language independence is more difficult since different
languages have differing method call protocols. Since
communication is direct, getting programs not designed to
work with each other to rendezvous is more difficult, and
non-point-to-point communication is more difficult. In
particular snooping and intermediation are not well
facilitated by the basic coordination model. Finally, since
applications need to be aware of the other application to
which they are communicating, some additional
rendezvous mechanism must be provided by any
infrastructure based on RMI/RPC or message passing.

3 The Event Heap Implementation

Although early versions of our prototype
implementation of the Event Heap were built on top of a
tuplespace implementation from IBM called TSpaces
from IBM [27], our current version is stand alone. The
system is client-server based with tuplespace state stored
on the server machine. While the server is a single point
of failure, individual Event Heap client applications
automatically reconnect if the server goes down and is

then restarted. This combined with a dedicated web
server that handles requests to restart the server minimizes
the problems with server failure.

Since the semantics as described in section 2.3 are
slightly different from a standard tuplespace, in the Event
Heap tuples are called events. This reflects their intended
use as a means of notifying other applications in the
workspace of an occurrence, or of requesting that other
applications update their state or perform some task. In
the sequel the term event will be used when referring to
tuples in the Event Heap, and tuple will be used to refer to
the standard Linda-style tuple.

Although under most normal loads the current
implementation has a latency of less than 20 ms, the
current version of the Event Heap is used primarily for
coarse, high-latency coordination between applications
running in the iRoom.

3.1 Event Format Description

The basic event used by the Event Heap is a tuple with
certain mandatory fields. As mentioned in section 2.3,
flexible typing provides several advantages in the
interactive workspace domain, so we ignore field order
and tuple size in performing matching. This means that
fields are always referred to by name and type rather than
their index in the tuple. The fields include the
‘EventType’ field which, as the name implies, is used to
indicate the type of the event, a ‘TimeToLive’ field,
which determines expiration, some fields for routing, and
some internal fields that aid in sequencing the events. All
fields except for ‘TimeToLive’ and the internal use only
fields are string type fields. This makes events relatively
easy to parse when looking at them using the Event Heap
debugger or debug traces.

3.2 Event Retrieval and Routing

The Event Heap provides additional operations to
retrieve events beyond the basic destructive and non-
destructive read operations in the standard tuplespace
model. There are non-blocking versions of the basic
calls, and all of the calls will accept an array of template
events and return an event that matches one or more of
these. There is a ‘snoopEvents’ call which retrieves
events without effecting sequencing. Finally, events can
be retrieved using query registration, one of the
aforementioned extensions.

As mentioned in section 2.3, one of the desired
additional capabilities for a tuplespace-based system in an
Interactive Workspaces is some means of routing tuples.
The Event Heap accomplishes this by providing standard
source and target fields which allow routing to or from
individual objects using the Event Heap, applications,
devices, people, or groups.

This works as follow: when events are posted, the
source version of each field is automatically set by the
Event Heap client code. For example, the
‘SourceApplication’ field is set to the name of the
application. Receivers can then match on certain
application names in that field to receive events from that
application. Further, when an application retrieves using
a template, the target version of each field is also
automatically set. The ‘TargetPerson’ field, for example,
might get set to ‘Bob.’ Now sources can set the
‘TargetPerson’ field to ‘Bob’ if they want their event only
to be picked up by applications currently being used by
‘Bob.’ If a source sets does nothing to the target fields,
they default to being wildcards, which means the event
will be picked up by all receivers that match the rest of
the fields correctly. This system allows flexible and
standardized point-to-point, multicast and broadcast
communication.

3.3 Event Sequencing

To perform sequencing, each source tags every
generated event with a Source, a SessionID, and a
SequenceNum (sequence number). The Source needs to
be unique among all sources participating in the Event
Heap, so a random integer is always appended to the
name specified by the calling application.1 The SessionID
is chosen randomly every time a source is instantiated,
and is used to differentiate between events from before
and after an application restart. SequenceNum starts at
one and is incremented for each new event of a given type
submitted during a given session.

Event Heap Server

EventHeap EventHeap C++
Wrapper

Java servlet

ProxiWeb

ProxiWare
Gateway

���������������������������������������
���������������������������������������
���������������������������������������

Netscape/IE

ProxiNetStanford iRoom

PDA app
(Web-based)

Desktop app
(Web-based)

Desktop app
(Java)

Desktop app
(C/C++)

HTTP TCP/IP

Java EventHeap

EventHeap Python
Wrapper

Java EventHeap

Desktop app
(Python)

The Event Heap

Fig. 2. Methods of Accessing the Event Heap

On the receiver side, sequencing is accomplished by
keeping track of the most recent event received from any
given source. This information is sent with retrieval
requests and the server will only send back events that are

1 If no source name is specified, the application name with a

random integer is used instead.

newer than the most recent one indicated as seen by the
receiver. Keeping the receiver specific state on the
receivers insures that it isn’t lost if the server gets
restarted.

3.4 Integrating Diverse Programming
Environments and Devices

A key design goal is supporting a heterogeneous
collection of machines and legacy applications. To do so,
we have implemented a variety of ways for applications
to access the Event Heap as shown in Figure 2. The main
client and server implementations of the Event Heap are
in Java. The total size of the Event Heap client library in
Java is about 45KB, so it is deployable to most devices.
There is also a native C++ Event Heap client under
Windows, and a Python client which works by wrapping
the Java client. We also provide a web pathway that lets
users encode event submission in URLs on web pages.
This works via HTTP form submission to a Java servlet,
and has allowed many basic interactions to be easily
prototyped by simply creating a web page with the
appropriate event submission URLs. This path has
proven useful in allowing PDAs to participate in
controlling the iRoom, since currently even Palm-type
devices have web browsers available (for example the
ProxiWeb [18] browser).

Using the currently available paths and software API’s,
the Event Heap is currently supported in some form on
Windows, Linux, Palm OS, and Windows CE. There is
also a well defined TCP/IP protocol for speaking to the
Event Heap server, so it is relatively straight-forward to
write a client for any new platform that has socket
support.

4 Event Heap Applications

In this section we present some applications built on
the Event Heap that are in use in the iRoom or are
deployed in other interactive workspaces that use the
Event Heap. Ten to twenty applications have been
written which use the Event Heap since we deployed the
first version. In this section we share some exemplary
applications—Multibrowsing, SmartPresenter and the
CIFE Suite—that demonstrate how the Event Heap is able
to facilitate coordination and provides the desirable
features we outlined in the introduction.

4.1 Multibrowsing

Multibrowsing [13] is a system that allows one to call
up web pages or other data on any machine in the iRoom
by submitting a multibrowse event. Each machine that is
a valid target for multibrowsing runs a multibrowse
daemon that waits for events with the ‘Target’ field set to

itself, and then executes the command embedded within.
Since the daemon uses Windows shell extensions to
execute commands, URLs are brought up in the default
web browser and any other file based data is opened in
the appropriate application.

Using the web path to the Event Heap, users are able to
encode requests to pull up web pages, data, or
applications on the other machines in the iRoom using
links on web pages. We also have a script/plug-in that
works with Internet Explorer and allows users to redirect
the current page, or the target of a hyperlink to any
display in the iRoom using the right-click menu. The
same menu allows web pages to be pulled from remote
displays by requesting the URL displayed on that page
from the remote multibrowse daemon. Finally, there is a
Java applet that allows users to drag content from any
machine running a web browser to an iconic
representation of the displays in the room, causing the
information to brought up on that display.

Currently most multibrowse content and applications
are designed only for the iRoom, so URLs and other hard-
coded triggers for multibrowse event submission are not
portable to other environments. Due to the ability to
intermediate, however, we were able to construct
mbforward, a simple application that picks up
multibrowse events with a certain values in their ‘Target’
fields and automatically re-routes them to different
machines. Using this mechanism the CIFE group [15] has
been able to demonstrate multibrowse scenarios tailored
for the iRoom on a set of laptops for demonstrations in
other locations.

4.2 SmartPresenter

SmartPresenter is a multi-display, multi-object
presentation program for interactive workspaces. While
traditional presentation programs coordinate the display
of slides across time, SmartPresenter coordinates the
display of information across both time and display
surfaces. For example, a presentation might specify that
at time-step 4, slide 17 from a Power Point presentation
be shown on the left touch screen, a 3-d model be
displayed on the high-resolution front screen, and web
pages be displayed on the other two touch screens.

The presenter application proper is written in Java and
can be run anywhere in the iRoom. It reads a stored script
that specifies which events are to be sent at any point
during the presentation. It waits for presentation control
events telling it to advance, step backward, or jump to
some specific point in the presentation, and then sends the
events appropriate for that point in the presentation.

Each machine with a display in the room runs a viewer
daemon which responds to viewer control events by
loading the specified information. There is special
support for PowerPoint which has been wrapped using

Microsoft Office Automation [4], a programmatic
interface to control applications in the Microsoft Office
suite. The wrapper allows the viewer to explicitly call
forward, backward and build commands.

Event Heap

Presenter
Application

Presentation Control
Events

Viewer Control
Events,

Multibrowse Events

Multibrowse
Servlet

Presentation Control Events

Presentation Control Events

Browser

HTTP Post

Multibrowse Daemon

Browser
Machine

2

Viewer Daemon

PowerPoint
Machine

1

Multibrowse
Events

Viewer Control
Events

Wireless
Buttons

Audience
Applet

Snoop Viewer Control
Events

Fig. 3. Application Paths into the Event Heap

We could also easily construct an audience applet
which allows users on a laptop to snoop on the
presentation control events and display presentation
content on their laptop. Figure 3 shows how all the pieces
fit together. Note that view control and multibrowse are
the only type of event shown, but theoretically any event
can be emitted by the presenter application.

The SmartPresenter application demonstrates several
of the important features of the Event Heap:

• Composability: By creating one presenter application
any number of Event Heap enabled applications can be
coordinated to create a presentation—this includes
applications that have not yet been created.

• Fault Isolation: A presentation may continue even if
one of the data viewers or event receivers is down,
although clearly that specific desired action will not
take place.

• Snooping: Without the master presenter or any of the
specific data viewers even being aware, the audience
applet would allow users to follow the presentation
from their laptops.

• Adaptability: PowerPoint was enabled as an Event
Heap target by wrapping it with a simple Event Heap
program that translated events to actions in
PowerPoint.

While SmartPresenter was only recently completed, the
ease of coupling applications and devices through the
Event Heap has already allowed us to extend it. We have
a set of wireless buttons in the iRoom that can be bound
to any event, and we found that we were able to make a
presenter control by simply binding the advance
presentation event to one button, and reverse to another.
Now presenters can walk around the iRoom as they

present, returning to the main web-based controls only if
they need to jump to a specific point in the presentation.

4.3 The CIFE Suite

The CIFE group [15], who inspired our scenario from
section 1.1, are a group of civil engineers working on
construction management. They designed a set of
viewers for their data that could be run on the various
displays in the room, and have since built an interactive
workspace of their own where they use the same
applications:

• A construction site map that allows the selection of
various view points in the construction site and then
emits an appropriate view change event.

• A “4D” viewer that shows a 3D model of projected
state of the construction site for any date during
construction. It responds to events that change the
view, select objects and zones (e.g. building 3), and
change the date for the current model view.

• Another map viewer that highlights zones based on
zone selection events.

• A web based viewer that displays tables of
construction site information and emits zone and date
selection events as table information is selected and
listens for the same events to select information in the
table.

All of the applications are essentially stand-alone, but
communicate through the Event Heap. The 4D viewer
was designed for use on a single-PC and was modified to
use the Event Heap by adding around 100 lines of code.
Since they use common event types, the various
components of the suite retain their ability to coordinate
while still being able to be brought up on any screen in
the room. Since the components are loosely coupled, if
no event source is running, or there is no event sink, it
does not affect any of the application components
currently in use. Much of the CIFE application is
essentially plain HTML using the web event submission
path; only the custom 4D viewer and the zone map viewer
were coded specifically to communicate with the Event
Heap, using the C++ and Java versions of the Event Heap
respectively. To implement the top-down map mentioned
in the scenario in section 1.1, the map and previews of the
desired views were created in Macromedia Flash [17]
with embedded URLs triggered by selecting a region of
the map. This made it possible to create this new
application with a minimum of development time.

Using the components they have constructed they have
created a demonstration scenario that works almost
exactly like the one presented in section 1.1.

5 Discussion

5.1 Experience With Robustness, Extensibility
and Portability

Three of our goals for our coordination infrastructure
were robustness, extensibility and portability. Since our
code has been under development, and Java is still a
rapidly evolving product, the system has not been as
inherently robust as would be ideal. Still the system has
been remarkably stable. While individual machines or the
interactive workspace daemons on the machines have
failed on many occasions, the rest of the infrastructure has
continued to function correctly. During development the
server itself hasn’t always been stable. The automatic
client-reconnect and quick web path to restart the Event
Heap server and servlets have meant that it seldom has
taken more than a few minutes to get the infrastructure
back up and running after a problem. We have recently
done some work on modular re-startability [6] that we
hope to apply to the iRoom to make the system even more
robust.

The Event Heap system has also worked out well for in
terms of extensibility and adaptability to new platforms
and legacy applications. The Python port took only a
week or so for one graduate student to complete. The
Event Heap servlets were similarly straightforward,
although they took slightly longer to complete due to a
lack of familiarity with Java servlets. We were able to
create a wrapper for PowerPoint using Microsoft Office
Automation that took less than a day once we figured out
Office Automation. Now that we have standard template
code for integrating OLE applications it should be easy to
make most Windows applications valid interactive
workspace components.

We are still in the preliminary stages of testing
portability across other interactive workspaces. The CIFE
group has been able to take the CIFE suite on the road
with the aid of the mbforward tool for rerouting
multibrowse events, and have recently deployed an
iRoom of their own where they have been running the
CIFE suite with minimal modifications. The Stanford
Learning Lab (SLL) has done a preliminary deployment
of the Event Heap and has the multibrowsing system up
and running in their interactive workspace. Several other
locations on Stanford campus are also testing use of the
Event Heap and other software from our research group,
including one actively used classroom. In early April,
2002, following an initial release in Summer 2001, we
released our second set of installers for either setting up
an interactive workspace with some of the basic programs
we have developed, or to creating a development setup for
users to write their own applications. The current
installers were used for the latest installation in the iRoom

and in the other on-campus interactive workspace
installations. The software has been downloaded for
testing at locations around the world. The software is
freely available for anyone to try at:
http://iwork.stanford.edu.

The Event Heap code along with other infrastructure
for interactive workspaces being developed by our group
is also being released as Open Source to allow others to
use and extend it for their own locations. The code is
available through http://iros.sourceforge.net.

5.2 Limits and Performance of the Event Heap

Since the Event Heap was designed for the interactive
workspace domain, it has some drawbacks that make it
less useful outside of the space. Due to the use of a
shared medium, it is difficult to scale the system to large
numbers of simultaneously communicating entities.
Among other things, this makes it unsuitable for Internet
scale coordination across tens or hundreds of thousands of
devices. While the indirect communication mechanism
provides nice properties for our domain, it forces two
hops of communication, which adds latency (although in
[7] it has been shown that for a static communication
pattern a properly implemented tuplespace will adapt over
time to single-hop communication). Both latency and
scalability in an interactive workspace are, however,
bounded by social constraints and human factors which
makes these drawbacks less of an issue. Specifically,
latency on a local sub-net is small enough that even
doubling it keeps the response fast enough to be
perceptually instantaneous for humans. Similarly,
scalability is bounded by the number of people that can
meaningfully interact with one another and a set of
devices to solve some problem.

The actual performance of the Event Heap has been
satisfactory so far. A performance study with the server
running on a Pentium II, 450 MHz with 256 MB of RAM
shows that under the pathologically worst case scenario
for our implementation, the system can provide sub-100
ms latency to 12 different applications each generating
and receiving 10 events per second. In practice, the event
generation rate due to user interaction with applications is
likely to fall far below this. The quiescent latency of the
system, including network time, is around 2 ms. Our
implementation was done as a proof of concept, so we
anticipate a more finely tuned system would be able to
perform much better than this.

Finally, it should be noted that although generality was
one goal of the Event Heap, this does not make it
appropriate for all types of communication. Some data
probably should not be sent through the Event Heap even
if a suitably efficient implementation could be made. For
example, streaming video through the Event Heap is
inappropriate since the video stream does not represent a

stream of events to which other applications could or
should react. In general, the Event Heap should be used
to communicate events where anonymity, failure
isolation, and the ability to perform intermediation or
snooping are useful capabilities. Thus broadcasting of
state, or requesting that appropriate applications perform
some action are appropriate uses of the coordination
facilities provided by the Event Heap. For practical
purposes, not all events of this nature can currently be
routed through the Event Heap. In particular, due to
latency concerns, we use an alternative communication
infrastructure right now for routing mouse events in our
pointer control system. Some initial tests with our most
recent implementation have shown it to be capable of
handling these events, so perhaps in the future even these
will be routed through the Event Heap.

5.3 Open Research Issues

We plan to investigate the effects of flexible typing in
this system, with the ultimate goal of producing a
systematic framework for event intermediation to enable
ad-hoc interactions. Clearly we also have a problem with
collision on the EventType field between application
writers that do not coordinate. For a single interactive
workspace with a tight knit community this hasn’t been a
problem, but it needs to be addressed before our
infrastructure can be more widely deployed.

We also plan to construct a set of flexible Event Heap
managers to control application composition and
coordination, both automatically and via human
intervention, for arbitrary ensembles of Event Heap
enabled applications.

Security and privacy are un-addressed problems, in
part because we lack a social model to indicate what
mechanisms would be appropriate in collaborative
settings: there is a tradeoff between user convenience and
authentication as is typical in security systems. To
complicate matters, our legacy-OS building blocks have
varying security and privacy models. Currently our
security model is to firewall off the room, and keep it
physically secured, while giving users in the iRoom, who
are assumed to be trusted, full access. All communication
among applications in the iRoom through the Event Heap
is public.

We are starting to investigate tele-connection of
interactive workspaces—in fact, the Stanford Learning
Laboratory [23] is already starting experiments
connecting their prototype interactive workspace to our
own. We envision that each connected workspace will
have its own separate Event Heap, with selective
communication of certain events across heaps. We
suspect that some sort of ‘meta-Event Heap’ might be a
useful abstraction, with coordination between Event

Heaps in different interactive workspaces being analogous
to coordination between processes running on machines.

6 Related Work

A large number of interesting and complex, yet non-
interoperable, projects ([2][3][5][8][24]) are investigating
room or work-area based ubiquitous computing. Each has
uncovered important insights in ubiquitous computing but
have yet to propagate and deploy their software
significantly beyond the project’s boundaries.

Two such project are the MIT Intelligent Room project
and Microsoft Research’s Easy Living project [5]. They
are both looking primarily at how to incorporate
intelligence into ubiquitous computing rooms. For
example, networks of observers should be able to track
where you are in a room, and do the appropriate thing
based on voice commands and gestures. MIT’s
infrastructure framework is called metaglue [8] and is
based on agents written in Java. Coordination between
agents is done using RMI, but standard interfaces and
automatic mechanisms for composing agents together are
provided. The Easy Living project currently only
provides ad hoc mechanisms for extending the
capabilities of their environment. Neither project focuses
on addressing dynamic heterogeneous environments, and
our project is not attempting to build intelligence into the
environment.

The i-Land project [24] at Darmstadt is investigating a
physical environment that is almost identical to the one
we have set up in the iRoom. They are focused more on
design and human computer interaction concerns for
room and building based ubiquitous computing. They use
a Smalltalk based framework derived from COAST [20],
which was originally designed for computer supported
collaborative work (CSCW) among geographically
distributed users each at their own computer. It is
intended for applications to be written from scratch for
this framework, and in fact the group at Darmstadt has
done some initial work using the Event Heap in
conjunction with their own system.

The Portolano project at the University of Washington
is exploring how to enable working environments with
computer infrastructure. Their current work is on an
instrumented and enhanced biology lab workbench [3].
Their One.world [11] world infrastructure aims to enable
pervasive computing in general, but is primarily an event
driven system focused on easy check-pointing,
aggregation and migration of applications.

Jini [25] provides a rendezvous mechanism for Java-
based entities to begin coordinating with one another
when they connect to a new network. It plus Java RMI
could serve as a coordination model for an interactive
workspace, but would have the drawbacks of RMI
mentioned in section 2.4. A related technology

distributed with Jini is JavaSpaces [21], which is another
Java based tuplespace implementation. It would be
possible to build the Event Heap on top of Javaspaces, but
its Java-centric nature would make it difficult to provide
clients on different platforms.

In [12], Hasha describes some of the requirements for a
distributed object OS, mostly in his case for controlling
homes filled with smart appliances, sensors and
input/output devices. His proposal to use publish-
subscribe meshes well with the function of the Event
Heap, although, as discussed earlier, we believe
tuplespaces to be a better suited starting point for an
interactive workspace coordination infrastructure than
publish-subscribe.

7 Conclusions

In this paper we have demonstrated that the Event
Heap, a model derived from tuplespaces, is an appropriate
general-purpose coordination system for interactive
workspaces due to its portability, extensibility, flexibility,
and ability to deal with heterogeneous environments. We
identified several key extensions to the basic tuplespace
model for this domain: flexible, typed, self-describing
tuples, tuple sequencing, tuple expiration, support for
default routing and query registration. To validate our
choice we have implemented a version of the Event Heap.
The system has been in use in our prototype environment,
the iRoom, for over two years, and in the past six months
has been deployed in several other locations. Application
ensembles have been created and successfully run in the
various workspaces. Our experience suggests that the
loosely-coupled nature of our model makes it ideal for an
interactive workspace, and we propose that it would also
work well for many other ubiquitous computing
situations.

Acknowledgments

The Interactive Workspaces project is the result of
efforts by too many students to name, both in our research
group and in collaborator groups from other departments.
Susan Shepard and Brian Luehrs deserve special thanks
for maintaining the iRoom and keeping it functional. See
http://iwork.stanford.edu for an exhaustive list of
participants and more complete project information. The
work described here is supported by DoE grant B504665,
by NSF Graduate Fellowships, and by donations of
equipment and software from Intel Corp., InFocus, IBM
Corp. and Microsoft Corp.

References

[1] Ahuja, S., Carriero, N., and Gelernter, D., Linda and Friends,
IEEE Computer, August, 1986.

[2] Abowd, G., “Classroom 2000:An Experiment with the
Instrmentation of a Living Educational Environment,” IBM
Systems J.,Vol.38,No.4,Oct.1999,pp.508-530.

[3] Arnstein, L. et al. Ubiquitous computing in the biology
laboratory. Journal of Laboratory Automation, March
2001.

[4] Automation programmer's reference : using ActiveX
technology to create programmable applications. Microsoft
Press, Redmond, Wash., c1997.

[5] Brumitt, B., Meyers, B., Krumm, J., Kern, A. and Shafer, S.,.
Easyliving: Technologies for intelligent environments. In
Handheld and Ubiquitous Computing 2000 (HUC2K),
September 2000.

[6] Candea, G. and Fox, A., Recursive Restartability: Turning
the Reboot Sledgehammer Into a Scalpel, In Proc. Eighth
Intl Workshop on Hot Topics in Operating Systems
(HotOS-VIII), Oberbayern, Germany, May 2001

[7] Carriero, N., Gelernter, D., Mattson, T., and Sherman, A.,
“The Linda alternative to message-passing systems”,
Parallel Computing, 20, 633-655, 1994.

[8] Coen, M., Phillips, B., Warshawsky, N., Weisman, L.,
Peters, S., and Finin, P. Meeting the Computational Needs
of Intelligent Environments: The Metaglue System,
Managing Interactions in Smart Environments,. Paddy
Nixon, Gerard Lacey and Simon Dobson eds. Dublin,
Ireland, 1999

[9] Davies, N., et al., L2imbo: a distributed systems platform for
mobile computing. Mobile Networks and Applications,
1998. 3(2): p. 143-56.

[10] Gelernter, D., and Carriero, N., Coordination Languages
and their Significance, Communications of the ACM, Vol.
32, Number 2, February, 1992.

[11] Grimm, R., Anderson, T,. Bershad, B., and Wetherall, D.,
A system architecture for pervasive computing (PDF, 128
KB). In Proceedings of the 9th ACM SIGOPS European
Workshop, pages 177-182, Kolding, Denmark, September
2000.

[12] Hasha, R., Needed: A common distributed object platform,
IEEE Intelligent Systems. March/April 1999.

[13] Johanson, B., Ponnekanti, S., Sengupta, C., Fox, A.,
"Multibrowsing: Moving Web Content Across Multiple
Displays," Proceedings of Ubicomp 2001, September 30-
October 2, 2001.

[14] Leler, W., Linda meets Unix. Computer, 1990. 23(2): p. 43-
54.

[15] Liston, K., Kunz, J., and Fischer, M., “Requirements and
Benefits of Interactive Information Workspaces in
Construction,” The 8th International Conference on
Computing in Civil and Building Engineering, Stanford,
USA, 2000.

[16] Murphy, A.L., G.P. Picco, and G.C. Roman. LIME: a
middleware for physical and logical mobility. in CF- 21st
International Conference on Distributed Computing
Systems. 2001. Mesa, AZ, USA: Los Alamitos, CA, USA :
IEEE Comput. Soc, 2001.

[17] Macromedia Corporation, Macromedia Flash,
http://www.macromedia.com.

[18] ProxiNet Inc. ProxiWeb browser. See
http://www.proxinet.com.

[19] Rowstron, A.I.T. and A.M. Wood. BONITA: a set of tuple
space primitives for distributed coordination. in Thirtieth

Hawaii International Conference on System Sciences.
1997. Wailea HI USA: Los Alamitos, CA, USA : IEEE
Comput. Soc. Press, 1997.

[20] Schuckmann, C., Kirchner, L., Schummer, J., and Haake,
J.,. Designing object-oriented synchronous groupware with
COAST, ACM Computer Supported Collaborative Work,
November 1996.

[21] Sun Microsystems Labs, JavaSpaces Specification,
http://www.sun.com/jini/specs/js.pdf.

[22] Smart Technologies SMART Board,
http://www.smarttech.com/smartboard/.

[23] The Stanford Learning Laboratory, http://sll.stanford.edu/.
[24] Streitz, N.A. et al., i-LAND: An interactive Landscape for

Creativity and Innovation. In Proc. ACM Conference on
Human Factors in Computing Systems (CHI '99) ,
Pittsburgh, Pennsylvania, U.S.A., May 15-20, 1999. ACM
Press, New York, 1999, pp. 120-127.

[25] Waldo, Jim, Jini Technology Architectural Overview, Sun
White Paper, 1999

[26] Weiser, M., The computer for the twenty-first century.
Scientific American, pages 94–100, September 1991.

[27] Wyckoff, P., McLaughry, S. W., Lehman, T. J. and Ford,
D. A., TSpaces. IBM Systems Journal 37(3). Also
available at http://www.almaden.ibm.com/cs/TSpaces.

