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Figure 1: A comparison of a conventional camera pipeline (left, middle) and our burst photography pipeline (right) running on the same
cell-phone camera. In this low-light setting (about 0.7 lux), the conventional camera pipeline under-exposes (left). Brightening the image
(middle) reveals heavy spatial denoising, which results in loss of detail and an unpleasantly blotchy appearance. Fusing a burst of images
increases the signal-to-noise ratio, making aggressive spatial denoising unnecessary. We encourage the reader to zoom in. While our pipeline
excels in low-light and high-dynamic-range scenes (for an example of the latter see figure 10), it is computationally efficient and reliably
artifact-free, so it can be deployed on a mobile camera and used as a substitute for the conventional pipeline in almost all circumstances. For
readability the figure has been made uniformly brighter than the original photographs.

Abstract

Cell phone cameras have small apertures, which limits the number
of photons they can gather, leading to noisy images in low light.
They also have small sensor pixels, which limits the number of
electrons each pixel can store, leading to limited dynamic range.
We describe a computational photography pipeline that captures,
aligns, and merges a burst of frames to reduce noise and increase
dynamic range. Our solution differs from previous HDR systems
in several ways. First, we do not use bracketed exposures. Instead,
we capture frames of constant exposure, which makes alignment
more robust, and we set this exposure low enough to avoid blowing
out highlights. The resulting merged image has clean shadows and
high bit depth, allowing us to apply standard HDR tone mapping
methods. Second, we begin from Bayer raw frames rather than
the demosaicked RGB (or YUV) frames produced by hardware
Image Signal Processors (ISPs) common on mobile platforms. This
gives us more bits per pixel and allows us to circumvent the ISP’s
unwanted tone mapping and spatial denoising. Third, we use a novel
FFT-based alignment algorithm and a hybrid 2D/3D Wiener filter
to denoise and merge the frames in a burst. Our implementation
is built atop Android’s Camera2 API, which provides per-frame
camera control and access to raw imagery, and is written in the
Halide domain-specific language (DSL). It runs in 4 seconds on
device (for a 12 Mpix image), requires no user intervention, and
ships on several mass-produced cell phones.
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1 Introduction

The main technical impediment to better photographs is lack of light.
In indoor or night-time shots, the scene as a whole may provide
insufficient light. The standard solution is either to apply analog or
digital gain, which amplifies noise, or to lengthen exposure time,
which causes motion blur due to camera shake or subject motion.
Surprisingly, daytime shots with high dynamic range may also suffer
from lack of light. In particular, if exposure time is reduced to avoid
blowing out highlights, then insufficient light may be collected in
shadowed areas. These areas can be brightened using local tone-
mapping, but this again amplifies noise.

Ways to gather more light include using a larger-aperture lens, op-
tical image stabilization, exposure bracketing, or flash. However,
each method is a tradeoff. If the camera is a cell phone, then it
is thickness-constrained, so making its aperture larger is difficult.
Such devices are also power-constrained, making it challenging to
create a synthetic aperture by increasing the number of cameras
[Wilburn et al. 2005]. Optical image stabilization allows longer
exposures while minimizing camera shake blur, but it cannot control
blur caused by subject motion. With exposure bracketing followed




by image fusion, different parts of the fused image represent the
scene at different times, which makes it hard to achieve a single
self-consistent composition. The most frequent artifact caused by in-
correct fusion is ghosting (figure 2a), due to the difficulty of aligning
images captured at different times. Sensors that alternate exposure
times between adjacent scanlines ameliorate ghosting somewhat, but
sacrifice detail and make accurate demosaicking difficult. To many
photographers, an on-camera flash is the least palatable option. It
adds light, but can change the scene in an unpleasant way. Flash/no-
flash photography [Petschnigg et al. 2004] addresses this issue but
is not sufficiently robust.

In this paper we describe a camera system that addresses these
problems by capturing a burst of images and combining them with
dynamic range compression. While algorithms for doing this are
well known [Debevec and Malik 1997], building a system based on
these algorithms and deploying it commercially on a mobile camera
is challenging. In building our system we have found the following
design principles to be important:

* Be immediate. The system must produce a photograph within
a few seconds, and display it on the camera, even when the
camera is not connected (wired or wirelessly). This means we
cannot defer processing to a desktop computer or the cloud.

* Be automatic. The method must be parameter-free and fully
automatic. Photographers should get better pictures without
knowing the strategy used for capture or image processing.

* Be natural. The photographs we produce must be faithful to
the appearance of the scene. In high-dynamic-range situations
we must therefore limit the amount of local tonemapping we
do to avoid cartoonish or surrealistic images. In very low-light
scenes we must not brighten the image so much that it changes
the apparent illumination or reveals excessive noise.

* Be conservative. It should be possible to use this as the de-
fault picture-taking mode. This means that the photographs
produced must not contain artifacts, and must always be at
least as good as conventional photographs. Moreover, in ex-
treme situations it must degrade gradually to a conventional
photograph.

Given this conservative constraint, we have found the most reliable
approach to burst mode photography is to capture each image in
the burst with the same exposure time. In other words we do not
bracket. We arrived at this unexpected protocol because of the
inherent difficulty in accurately aligning images captured using
different exposure times. Small exposure variation may compromise
alignment due to differing levels of noise and motion blur, and
large variation may render local alignment impossible if a patch is
exposed with no image content visible. Recent HDR fusion methods,
e.g. [Hu et al. 2013], address this with sophisticated alignment and
inpainting, but can produce physically inconsistent results.

Given this protocol, we choose an exposure that is low enough to
avoid clipping (blowing out highlights) for the given scene. In other
words we deliberately down-expose. We do this to capture more
dynamic range. We also choose shorter than typical exposure times
to mitigate camera shake blur, regardless of scene content [Telleen
et al. 2007]. Although using lower exposures would seem to worsen
noise, we offset this effect by capturing and merging multiple frames.

A second design decision arising from our conservative constraint
is that we select one of the images in the burst as a “reference”
frame, then align and merge into this frame those patches from other
“alternate” frames where we are confident that we have imaged
the same portion of the scene. Although we would gain the most
signal-to-noise by being liberal and merging many patches, we
choose instead to be conservative, merging image content only if the
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Figure 2: Typical image processing artifacts for high dynamic range
and low-light scenes. (a) Ghosting due to misalignment of different
exposures. (b) Excessive range compression and saturation produces
a flat “cartoony” rendition. (c) Excessive denoising under low
illumination causes loss of fine detail and “splotchy” textures.

alternate patch appears similar to the reference patch. Furthermore,
to reduce computational complexity, we merge only a single patch
from each alternate frame. Our conservative merging strategy may
cause some parts of the final image to appear noisier than others, but
this artifact is seldom noticeable.

By aligning and merging multiple frames, we produce an intermedi-
ate image with higher bit depth, higher dynamic range, and reduced
noise compared to our input frames. This would let us produce a
high-quality (albeit under-exposed) photograph merely by discard-
ing the low-order bits. However, one of our goals is to produce
natural-looking photographs even if the scene contains strong con-
trast. Therefore, we instead boost shadows, preserving local contrast
while judiciously sacrificing global contrast. This process is called
HDR tone mapping, and has been well studied [Reinhard et al. 2010].
Its effect is similar to that produced by traditional “dodging and burn-
ing” methods in print photography [Adams 1981]. We use a variant
of exposure fusion [Mertens et al. 2007], because it is computation-
ally efficient and produces natural-looking images; however, other
algorithms are possible.

One challenge in writing a systems paper about a commercial com-
putational photography system is that academic papers in this area
describe only algorithms, not complete systems, and the algorithms
in existing commercial systems are proprietary, not described in
available textbooks, and not easily reverse-engineered. This situa-
tion is worse in the camera industry than in the computer graphics
community, where textbooks do exist and public APIs have led to a
tradition of openness and comparison [Levoy 2010]. This secrecy
makes it hard for us to compare our results quantitatively with com-
peting systems. To address this issue, we have structured this paper
around an enumeration of design principles, a description of our
implementation, and a sampling of our results—good and bad. We
also present in supplemental material a detailed comparison with
several state of the art JPEG-based fusion methods [Liu et al. 2014,
Dabov et al. 2007a; Adobe Inc. 2016], evaluating our method for
aligning and merging frames in isolation from the rest of our system.
Finally, we have created an archive of several thousand raw input
bursts (with associated capture metadata) and output photographs
[Google Inc. 2016b], so others can improve upon or compare against
our technique.

2 Overview of capture and processing

Figure 3 summarizes our processing system, which consists of a real-
time pipeline (top row) that produces a continuous low-resolution
viewfinder stream, and a non-real-time pipeline (bottom row) that
produces a single high-resolution image.
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Figure 3: Overview of our two processing pipelines. The input to both pipelines is a stream of Bayer mosaic (raw) images at full sensor
resolution (for example, 12 Mpix) at up to 30 frames per second. When the camera app is launched, only the viewfinder (top row) is active.
This pipeline converts raw images into low-resolution images for display on the mobile device’s screen, possibly at a lower frame rate. In
our current implementation the viewfinder is 1.6 Mpix and is updated at 15-30 frames per second. When the shutter is pressed, this pipeline
suspends briefly, a burst of frames is captured at constant exposure, stored temporarily in main memory, and the software pipeline (bottom row)
is activated. This pipeline aligns and merges the frames in the burst (sections 4 and 5), producing a single intermediate image of high bit depth,
then applies color and tone mapping (section 6) to produce a single full-resolution 8-bit output photograph for compression and storage in
Sflash memory. In our implementation this photograph is 12 Mpix and is computed in about 4 seconds on the mobile device.

In our current implementation the viewfinder stream is computed
by a hardware Image Signal Processor (ISP) on the mobile device’s
System on a Chip (SoC). By contrast the high-resolution output
image is computed in software running on the SoC’s application
processor. To achieve good performance this software is written in
Halide [Ragan-Kelley et al. 2012]. We utilize an ISP to handle the
viewfinder because it is power efficient. However, its images look
different than those computed by our software. In other words our
viewfinder is not WYSIWYG. Addressing this problem is future
work.

A key enabling technology for our approach is the ability to request
a specific exposure time and gain for each frame in a burst. For this
we employ the Camera2 API [Google Inc. 2016a] available on select
Android phones. Camera2 utilizes a request-based architecture based
on the Frankencamera [Adams et al. 2010]. Another advantage of
Camera? is that it provides access to Bayer raw imagery, allowing
us to bypass the ISP. As shown in figure 3 we use raw imagery
in two places: (1) to determine exposure and gain from the same
stream used by the ISP to produce the viewfinder, and (2) to capture
the burst used to compute a high-resolution photograph. Using raw
images conveys several advantages:

* Increased dynamic range. The pixels in raw images are typ-
ically 10 bits, whereas the YUV (or RGB) pixels produced
by mobile ISPs are typically 8 bits. The actual advantage is
less than 2 bits, because raw is linear and YUV already has a
gamma curve, but it is not negligible.

Linearity. After subtracting a black level offset, raw images
are proportional to scene brightness, whereas images output
by ISPs include nonlinear tone mapping. Linearity makes it
easier to estimate gain and exposure, and lets us model sensor
noise accurately, making patch comparisons for alignment
more reliable.

Portability. Merging the images produced by an ISP entails
modeling and reversing its processing, which is proprietary
and scene dependent [Kim et al. 2012]. By starting from raw
images we can omit these steps, which also makes it easier to

port our system to new cameras.

One drawback of raw imagery is that we need to implement the
entire photographic pipeline, including correction of lens shading
and chromatic aberration, and demosaicking. (These correction
steps have been omitted from figure 3 for brevity.) Fortunately, since
our alignment and merging algorithm operates on raw images, the
expensive demosaicking step need only be performed once—on a
single aligned and merged image, rather than on every frame in the
burst.

3 Estimating exposure for the burst

An important function of a mobile ISP is to continuously adjust
exposure time, gain, focus, and white balance as the user aims the
camera. In principle we could read back exposure and gain using the
Camera2 API and use them when requesting our constant-exposure
burst.

For scenes having a moderate dynamic range this works well. Typi-
cal autoexposure algorithms will strive to avoid blowing out high-
lights, or allow only a small percentage of pixels to remain overex-
posed, hoping that these pixels represent light sources or specular
reflections that we are content to see rendered as white. However,
for scenes having a high dynamic range this strategy does not work,
because either too many pixels will be overexposed or too many
pixels will be left dark. Our solution to this problem consists of
three steps:

1. deliberately underexpose so that fewer pixels saturate,
2. capture multiple frames to reduce noise in the shadows, and
3. compress the dynamic range using local tone mapping.

Underexposure is a well-known approach for high dynamic range
capture, popularized for digital SLRs as “expose to the right” [Mar-
tinec 2008]. What makes underexposure viable in our solution is its
combination with the noise reduction provided by capturing a burst.



In effect we treat HDR imaging as denoising [Hasinoff et al. 2010;
Zhang et al. 2010].

Given this solution we must choose how much to underexpose, how
many frames to capture, and how much to compress the dynamic
range. If we underexpose too much our photograph will be noisy
even if we capture multiple frames, and we cannot capture an un-
limited number since capture and merging take time and power.
Conversely, if we compress the dynamic range too much our pho-
tograph will look cartoony (see figure 2b). We therefore clamp our
maximum compression factor to 8. Fortunately, few scenes in the
real world require more compression than this (see figure 4).

Auto-exposure using a database of examples A key difficulty
in choosing exposure automatically in HDR situations is that this
choice is often scene dependent. For example, it is usually acceptable
to let the sun blow out, but if the scene is a sunset at the beach the
sun should remain colored, and the rings of color around the sun
should not be overexposed, even if the beach must be left dark. To
address this problem we have created a database of scenes captured
using traditional HDR bracketing, which we have hand-tuned to
look as natural as possible when rendered using our tone mapping
method (see section 6). The success of this approach depends on
covering every kind of scene consumers are likely to encounter. Our
database contains about 4, 500 labeled scenes, collected over the
course of several years.

Given this labelled database and a viewfinder frame in raw format,
we compute features of the frame and search our database for scenes
that closely match it. The features we use are histogram quan-
tiles, measured on a white-balanced and aggressively downsampled
version of the viewfinder frame. We have found quantiles to be
better features than histogram buckets when analyzing HDR scenes.
Specifically, we compute four sets of 64 non-uniformly spaced quan-
tiles, at two different scales, and for both the maximum and the
average of the RGB channels. This helps us represent exposure at
different frequencies while accounting for color clipping. In comput-
ing these quantiles, we apply a fixed weighting to favor the center
of the image, and we strongly boost the weight of regions where
faces are detected. We also restrict the set of candidates to examples
whose luminance is within a factor of 8 of the current scene. This
helps retain perception of scene brightness, avoiding, for example,
unnatural day-for-night renditions.

Once we have found a set of candidate matching scenes, we com-
pute a weighted blend of our hand-tuned parameters for those scenes.
This blend yields two parameters: an overall exposure for capture,
and an amount of dynamic range compression to apply to during
tone mapping. Since the mapping from overall exposure (the prod-
uct of exposure time, analog gain, and digital gain) to final image
brightness is smooth and monotonic, we can recover the overall
exposure using a few steps of binary search. Translating this overall
exposure into capture settings entails factoring it into exposure time
and gain (ISO). For this step we use a schedule that balances motion
blur against noise. Specifically, for the brightest scenes we hold gain
at its minimum level, allowing exposure times of up to 8 ms. As
scenes become darker this factorization changes. First we increase
gain, up to 4 x. Next, we begin to increase both exposure time and
gain in parallel (in log space). This factorization proceeds up to
the maximums of 100 ms exposure time, with 96 x gain. Camera
sensors have a limited amount of analog gain they can apply; any
gain above this limit we apply digitally in our pipeline.

In addition to determining exposure time, gain, and dynamic range
compression, we must also decide how many frames to capture in a
burst. The number we capture, IV, is a tradeoff between signal-to-
noise ratio, capture latency, and computation and memory. In low
light, or in very high dynamic range scenes where we’ll be boosting
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Figure 4: The amount of dynamic range compression required to
squeeze each scene in our quality verification database of 26,071
real world scenes into an 8-bit output image, as evaluated by the au-
toexposure algorithm described in section 3. The distribution shows
that while most scenes benefit from some compression, indicated by
a ratio more than 1, the recommended amount of compression is
generally mild, and only 4% of scenes require a compression above
8 (dotted line). Such extreme scenes are hard to tone map in a way
that looks natural.

the shadows later, we want more frames to drive down noise, but
they take more time and memory to capture, buffer, and process.
In bright scenes, 1-2 images is usually sufficient, although more
images are generally beneficial in combating camera shake blur. In
practice, we limit our bursts to 2—8 images, informing the decision
using our model for raw image noise (see section 5 for more detail).

Although this algorithm takes only 10 ms to run in our implementa-
tion, analyzing every viewfinder frame is unnecessary, since rapid
changes in scene brightness are uncommon. We therefore compute
exposure on every 4th frame, mainly to save power.

One problem with our algorithm is that for a very HDR scene, a
single viewfinder image will contain many overexposed pixels. This
can make it tricky to estimate the right amount of underexposure
to apply. To circumvent this problem we have experimented with
continuous bracketing during viewfinding. However, differently-
exposed images cannot be displayed to the user during viewfinding,
and capturing them in the background disrupts the smoothness of
the viewfinder. Fortunately, we have found that by designing our
matching metric to be tolerant to clipped pixels, a single viewfinder
image seldom produces bad matches. Our algorithm predicts expo-
sures within 10% of the bracketing result for 87% of shots; the shots
with larger variations tend to be both more strongly HDR and more
forgiving to exposure precision.

Selecting a reference frame After capturing a burst of images,
we have one more decision to make before beginning alignment—
we must select a single reference frame to which all other frames
are aligned. When the user releases the shutter, images are often
blurred due to physical camera shake, which typically lasts for 50—
100 ms. While optical image stabilization can mitigate this blur, we
address blur induced by both hand and scene motion by choosing the
reference frame to be the sharpest frame in the burst. This approach
is commonly known as lucky imaging [Joshi and Cohen 2010]. To
minimize perceived shutter lag, we restrict the reference frame to be
from the first 3 frames in the burst.

4 Aligning Frames

In the context of our high-resolution pipeline, alignment consists of
finding a dense correspondence from each alternate (non-reference)
frame of our burst to the chosen reference frame. This correspon-
dence problem is well-studied, with solutions ranging from optical
flow [Horn and Schunk 1981; Lucas and Kanade 1981], which per-
forms iterative optimization under assumptions of smoothness and
brightness constancy, to more recent techniques that use patches or
feature descriptors to construct and “densify” a sparse correspon-



dence [Liu et al. 2011; Brox and Malik 2011], or that use image
oversegmentations and directly reason about geometry and occlusion
[Yamaguchi et al. 2014]. In the computer vision literature, optical
flow techniques are evaluated primarily by quality on established
benchmarks [Baker et al. 2011; Menze and Geiger 2015]. As a
result, most techniques produce high-quality correspondences, but
at a significant computational cost—at time of submission, the top
5 techniques on the KITTI optical flow benchmark [Menze and
Geiger 2015] require between 1.7 and 107 minutes per megapixel
in desktop environments.

Unfortunately, our strong constraints on speed, memory, and power
preclude nearly all of these techniques. However, because our merg-
ing procedure (section 5) is robust to both small and gross alignment
errors, we can construct a simple algorithm that meets our require-
ments. Much like systems for video compression [Wiegand et al.
2003], our approach is designed to strike a balance between compu-
tational cost and correspondence quality. Our alignment algorithm
runs at 24 milliseconds per megapixel on a mobile device.

Handling raw images Because our input consists of Bayer raw
images, alignment poses a special challenge. The four color planes
of a raw image are undersampled, making alignment an ill-posed
problem. Although we could demosaic the input to estimate RGB
values for every pixel, running even a low-quality demosaic on all
burst frames would be prohibitively expensive. We circumvent this
problem by estimating displacements only up to a multiple of 2
pixels. Displacements subject to this constraint have the convenient
property that displaced Bayer samples have coincident colors. In
effect, our approach to Bayer alignment defers the undersampling
problem to our merge stage, where image mismatch due to aliasing
is treated like any other form of misalignment. We implement this
by averaging 2 x 2 blocks of Bayer RGGB samples, so that we
align downsampled 3 Mpix grayscale images instead of 12 Mpix
raw images.

Hierarchical alignment To align an alternate frame to our refer-
ence frame, we perform a coarse-to-fine alignment on four-level
Gaussian pyramids of the downsampled-to-gray raw input. As fig-
ure 5 illustrates, we produce a tile-based alignment for each pyramid
level, using the alignments from the coarser scale as an initial guess.
Each reference tile’s alignment is the offset that minimizes the fol-
lowing distance measure relating it to candidate tiles in the alternate
image:

n—1ln—1
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where T is a tile of the reference image, [ is a larger search area of
the alternate image, p is the power of the norm used for alignment
(1 or 2, discussed later), n is the size of the tile (8 or 16, discussed
later), and (uo, vo) is the initial alignment inherited by the tile from
the coarser level of the pyramid.

The model in equation 1 implies several assumptions about mo-
tion in our bursts. We assume piecewise translation, which is true
in the limit as the patch approaches a single pixel, but can be a
limiting assumption for larger patches. By minimizing absolute
error between image patches instead of, say, maximizing normal-
ized cross-correlation, we are not invariant to changes in brightness
and contrast. However, this is not a disadvantage, because camera
exposure is fixed and illumination is unlikely to change quickly over
the duration of our bursts.

Upsampling the coarse alignment to the next level of the pyramid
is challenging when the coarse alignment straddles object or mo-
tion boundaries. In particular, standard upsampling methods like
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Figure 5: (a) A pair of 3 Mpix grayscale images. (b) The intermedi-
ate and final outputs of our multi-scale alignment, where hue and
saturation indicate direction and magnitude of displacement (see the
inset color circle). At the finest pyramid level (bottom right), tiles
are 32 X 32 pixels and the maximum displacement is 64 pixels. The
large regions of saturated colors show that a hierarchical algorithm
is essential; our method supports displacements up to 169 pixels.
Although our displacements contain errors, they are cheap to com-
pute and sufficiently accurate to use as input to our merging stage.

nearest-neighbor and bilinear interpolation can fail when the best
displacement for an upsampled tile is not represented in the search
area around the initial guess. In our system, we address this problem
by evaluating multiple hypotheses for each upsampled alignment.
We take as candidates the alignments for the nearest coarse-scale
tiles, choosing the alignment with minimum L1 residual between
the reference and alternate frames. This approach is similar in spirit
to SimpleFlow [Tao et al. 2012], which also uses image content to
inform the upsampling.

In our approach we make a number of heuristic decisions regarding
decimation, patch size, search radius, and the choice of norm in
equation 1. One crucial decision is to align differently depending on
pyramid scale. In particular, at coarse scales we compute a sub-pixel
alignment, minimize L2 residuals, and use a large search radius. Sub-
pixel alignment is valuable at coarse scales because it increases the
accuracy of initialization and allows aggressive pyramid decimation.
At the finest scale of our pyramid, we instead compute pixel-level
alignment, minimize L1 residuals, and limit ourselves to a small
search radius. Only pixel-level alignment is needed here, as our
current merging procedure cannot make use of sub-pixel alignment.
More detail explaining these decisions, plus a description of how the
computation of D; can be made fast with a brute-force implemen-
tation, can be found in the supplement. However, because D> uses
a larger search radius, it must be made efficient using algorithmic
techniques.

4.1 Fast subpixel L2 alignment

As just explained, naively computing equation 1 over a large search
radius is prohibitively expensive. However, similar to the way nor-
malized cross-correlation can be accelerated [Lewis 1995], the L2
version of equation 1 can be computed more efficiently with a box
filter and a convolution:

Dy = ||T||5 + box(I o I,n) — 2 (F ' {F{I}* o F{T}}) (2

where the first term is the sum of the squared elements of 7', the sec-
ond term is the squared elements of [ filtered with a non-normalized
box filter of size n X n (the same size as T'), and the third term is
proportional to the cross-correlation of I and 7", computed efficiently



using a fast Fourier transform. For a complete derivation, see the
supplement.

Having computed D it is cheap to identify the integer displacement
(@, ©) that minimizes the displacement error. To produce a subpixel
estimate of motion, we fit a bivariate polynomial to the 3 x 3 win-
dow surrounding (@, ) and find the minimum of that polynomial.
This improves on the standard approach of fitting two separable
functions [Stone et al. 2001] by avoiding the assumption that motion
is independently constrained to the respective axes. Formally, we
approximate:

Da(u,v) ~ %[u v] A {Z] +b" [ﬂ +c 3)

where A is a 2 X 2 positive semi-definite matrix, b isa 2 x 1 vector,
and c is a scalar. We construct a weighted least-squares problem
fitting a polynomial to the 3 x 3 patch of D, centered around (i, ).
Solving this system is equivalent to taking the inner product of D>
with a set of six 3 x 3 filters, derived in the supplement, each corre-
sponding to a free parameter in (A, b, ¢). The process is similar to
the polynomial expansion approach of [Farnebick 2002]. Once we
have recovered the parameters of the quadratic, its minimum follows
by completing the square:

p=-A""b 4

The vector p represents the sub-pixel translation that must be added
to our integer displacement (4, 0).

5 Merging Multiple Frames

The key premise of burst photography is that we can realize noise
reduction by combining multiple observations of the scene over time.
However, to be useful in a photographic application, our merging
method must be robust to alignment failures. As figure 6 shows,
while alignment is important to help compensate for camera and
object motion, we cannot rely on alignment alone, which can fail
for a variety of reasons, such as occlusions, non-rigid motion, or
changes in lighting.

With our performance goals in mind, we develop a merging method
that is robust to misalignment, based on a pairwise frequency-domain
temporal filter operating on the tiles of the input. In our setting, each
tile in the reference is merged with one tile taken from each of the
alternate frames, corresponding to the result of our alignment. Our
approach takes inspiration from frequency-domain video denoising
techniques that operate on 3D stacks of matching images patches
[Kokaram 1993; Bennett and McMillan 2005; Dabov et al. 2007a].
In particular, Kokaram [1993] proposed a variant of classic Wiener
filtering in the 3D DFT domain, attenuating small coefficients more
likely to be noise.

V-BM3D [Dabov et al. 2007a] takes a similar approach, reinterpret-
ing the Wiener filter and similar operators as “shrinkage” operators
favoring the sparsity that is a statistical property of natural images
in the transform domain. Techniques in this family are robust to
misalignment because, for a given spatial frequency, any mismatch
to the reference that cannot be ascribed to the expected noise level
will be suppressed.

We adopt this strategy but depart from these methods in several
ways. First, because we process raw images we have a simple model
describing noise in the image. This improves robustness by letting
us more reliably discriminate between alignment failures and noise.
Second, instead of applying the DFT or another orthogonal trans-
formation in the temporal dimension, we use a simpler pairwise
filter, merging each alternate frame onto the reference frame inde-
pendently. While this approach sacrifices some noise reduction for

well-aligned images, it is cheaper to compute and degrades more
gracefully with alignment failures (see figure 7). Third, as a conse-
quence of this filter operating only over the temporal dimension, we
run spatial denoising in a separate post-processing step, applied in
the 2D DFT. Fourth, we apply our filter to the color planes of Bayer
raw images independently, then reinterpret the filtered result as a
new Bayer image. This method is simple but surprisingly robust,
in that we observe little degradation even though we are ignoring
Bayer undersampling. In the following, we expand on each these
points and discuss artifacts that can result in extreme conditions.

Noise model and tiled approximation Because we operate on
Bayer raw data, noise is independent for each pixel and takes a
simple, signal-dependent form. In particular, for a signal level of
x, the noise variance o2 can be expressed as Az + B, following
from the Poisson-distributed physical process of photon counting
[Hasinoff et al. 2010]. The parameters A and B depend only on the
analog and digital gain settings of the shot, which we control directly.
To validate this model of sensor noise, we empirically measured how
noise varies with different signal levels and gain settings.

In the transform domain where we apply our filtering, directly using
a signal-dependent model of noise is impractical, as the DFT requires
representing a full covariance matrix. While this could be addressed
by applying a variance stabilizing transform [Mékitalo and Foi 2013]
to the input, for computational efficiency we instead approximate
the noise as signal independent within a given tile. For each tile, we
compute the variance by evaluating our noise model using the root-
mean-square (RMS) of the samples in the windowed tile, normalized
for the gain of the window function. Using RMS has the effect of
biasing the signal estimate toward brighter image content. For low-
contrast tiles, this is similar to using the mean; high-contrast tiles
will be filtered more aggressively, as if they had a higher average
signal level.

Robust pairwise temporal merge Our merge method operates
on image tiles in the spatial frequency domain. For a given reference
tile, we assemble a set of corresponding tiles across the burst, one
per frame, and compute their respective 2D DFTs as T, (w), where
w = (wg,wy) denotes spatial frequency, z is the frame index, and,
without loss of generality, we take frame O to be the reference.

Where our method departs from other frequency-based denoising
methods is our pairwise treatment of frames in the temporal dimen-
sion. To build intuition, a simple way to merge over the temporal
dimension would be to compute the average for each frequency co-
efficient. This naive averaging filter can be thought of as expressing
an estimate for the denoised reference frame:

T.(w) (&)

While this performs well when alignment is successful, it is not
robust to alignment failure (see figure 6¢). Because the 2D DFT is
linear, this filter is actually equivalent to a temporal average in the
spatial domain.

To add robustness, we instead construct an expression similar to
equation 5, but incorporate a filter that lets us control the contribution
of alternate frames:



Successful alignment Full image

Alignment failure

(a) Reference frame (b) Temporal mean

(d) Robust merge with alignment

(¢) Temporal mean with alignment

Figure 6: Merging 8 frames of a moving scene. The top row is the full image, the middle row shows a crop where alignment succeeds, and the
bottom row shows a crop where alignment partially fails. (a) One frame from the burst is chosen as the reference. (b) Averaging all 8 frames
without alignment produces ghosts in regions exhibiting motion. (c) Averaging with alignment eliminates ghosts in some regions (middle), but
fails in others (bottom). When alignment is successful (middle row), the temporal mean resembles the reference; however, when alignment fails
(bottom) the mean is different from the reference frame, leaving ghosts. (d) The result of our robust merge closely resembles the reference frame
even when alignment fails. Despite alignment failure, some features are partially denoised. Note the yellow roof light in the foreground and the

person in the background.

For a given frequency, A controls the degree to which we merge
alternate frame z into the final result versus falling back to the
reference frame. The body of this sum can be rewritten as (1 — A ) -
T. + A. - Ty to emphasize that A, controls a linear interpolation
between 7, and Tp. Since the contribution of each alternate frame is
adjusted on a per-frequency basis, alignment failure can be partial, in
that rejected image content for one spatial frequency will not corrupt
other frequencies.

We are now left with the task of defining A, to attenuate frequency
coefficients that do not match the reference. In particular, we want
T to contribute to the merged result when its difference from T
can be ascribed to noise, and for its contribution to be suppressed
when it differs from 7y due to poor alignment or other problems. In
other words, A is a shrinkage operator. Our definition of A is a
variant of the classic Wiener filter:

) — —ID=(@)]

B |D;(w)|? + co? @

where D, (w) = Ty(w) — T, (w), the noise variance o is provided
by our noise model, and c is a constant that accounts for the scaling
of noise variance in the construction of D and includes a further
tuning factor (in our implementation, fixed to 8) that increases noise
reduction at the expense of some robustness. The construction of
D, scales the noise variance by a factor of n? for the number of 2D

DFT samples, a factor of 1/47 for the window function, and a factor
of 2 for its definition as a difference of two tiles. We tried several
alternative shrinkage operators, such as hard and soft thresholding
[Donoho 1995], and found this filter to provide the best balance
between noise reduction strength and visual artifacts.

We found our pairwise temporal operator to produce higher quality
images than a full 3D DFT, particularly in the presence of alignment
failure. As figure 7 illustrates, a single poorly aligned frame renders
the entire DFT transform domain non-sparse, leading the shrinkage
operator to reject the contribution from all of the alternate frames,
not only the poorly aligned one. By contrast, our temporal operator
evaluates the contribution of each alternate frame independently,
letting us degrade more gracefully with alignment failure. Our
temporal filtering also has the advantage of being cheaper to compute
and requiring less memory to evaluate. The contribution of each
alternate frame can be computed and discarded before moving on to
the next.

Spatial denoising Because our pairwise temporal filter above
does not perform any spatial filtering, we apply spatial filtering as
a separate post-processing step in the 2D DFT domain. Starting
from the temporally filtered result, we perform spatial filtering by
applying a pointwise shrinkage operator, of the same form as equa-
tion 7, to the spatial frequency coefficients. To be conservative, we
limit the strength of denoising by assuming that all N frames were
averaged perfectly. Accordingly, we update our estimate of the noise
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Figure 7: Behavior of temporal filtering with alignment failure.
For illustration, we created a toy sequence by sampling a single
noisy pixel (o = 4). When alignment is successful (left column),
all differences from the reference (frame 0) are due to noise. In the
well-aligned case, the DFT domain signal is strongly concentrated
in the DC bin. Applying a pointwise shrinkage operator similar to
equation 7 suppresses noise, for both the DFT (c) and our robust
pairwise merge (e). The filtered output signal at the reference frame,
as shown in (a), is very close to the true signal. When alignment
is unsuccessful (right column), the two methods behave differently,
even in the presence of a single outlier (frame 5). In the DFT domain
(d), the outlier raises all coefficients above the noise level, i.e., makes
the signal non-sparse, which reduces the effectiveness of shrinkage.
In contrast, our pairwise temporal filter (f) allows shrinkage to be
effective on all but the misaligned frame. The net result is that our
robust pairwise merge has significantly more denoising than the DFT,
producing an output signal closer to the true signal (b). For the DFT,
a single outlier is enough to make the result degrade conservatively
to the noisy reference signal.

variance to be 2/N. In our experiments, we found that we can
filter high spatial frequency content more aggressively than lower
spatial frequency content without introducing noticeable artifacts.
Therefore, we apply a “noise shaping” function & = f(w) o which
adjusts the effective noise level as a function of w, increasing its
magnitude for higher frequencies. We represent this function by
defining a piecewise linear function, tuned to maximize subjective
image quality.

Merging Bayer raw Note that up to this point, we have presented
our merging algorithm in terms of single-channel images. How-
ever, as mentioned above, both our input and output consist of
Bayer-mosaicked raw images. Our design handles raw images in
the simplest way possible: we merge each plane of the Bayer image
independently, and we do not use alignment any more precise than
pixel level in the Bayer color planes. Aligning to higher precision
would require interpolation for both align and merge, which would
increase computational cost significantly. While our approach is fast
and effective, it is less sophisticated than multi-frame demosaick-
ing algorithms (e.g., [Farsiu et al. 2006]) designed to recover high

(a) Without spatial denoising

(b) With spatial denoising

Figure 8: Spatial denoising failing to suppress noise around strong
high contrast features. Note the spatial denoising is effective through-
out the image, except near the strong specular highlights on the
metallic rivets.

frequency content lost to Bayer undersampling.

Because Bayer color planes are undersampled by a factor of four, one
might pessimistically assume that 75% of frames will be rejected on
average, leading to compromised denoising. While our robust filter
will indeed reject aliased image content not fitting our noise model,
this rejection only happens on a per-DFT bin basis and aliasing
issues are likely to be confined to a subset of DFT bins. The same
behavior can be observed in figure 6, where despite poor alignment
(figure 6¢, bottom), our robust temporal filter is able to significantly
reduce noise without introducing any visible ghosting (figure 6d,
bottom).

Overlapped tiles Our merge method operates on tiles overlapped
by half in each spatial dimension. By smoothly blending between
overlapped tiles, we avoid visually objectionable discontinuities at
tile boundaries. Additionally, we must apply a window function to
the tiles to avoid edge artifacts when operating in the DFT domain.
We use a modified raised cosine window, 3 — 1 cos(27(z + 3)/n)
for 0 < z < n, and 0 otherwise. This differs from the conventional
definition: first, the denominator of the cosine argument is n, not n—
1. Unlike the conventional window, when this function is repeated
with n/2 samples of overlap, the total contribution from all tiles sum
to one at every position. Second, the window is shifted by half to
avoid zeros in the window resulting from the modified denominator.
Zeros in the window correspond to pixels not contributing to the
output, which implies we could have used a smaller tile size (with
the associated computational savings) to achieve the same result.

Artifacts We have observed several classes of artifacts resulting
from this system. First, this filter tends to fail to suppress noise
around strong high contrast features, as shown in figure 8. This is a
result of high contrast features having a non-sparse representation
in the spatial DFT domain, reducing the effectiveness of spatial
denoising.

Second, because our shrinkage function never fully rejects a poorly
aligned tile, mild ghosting artifacts can sometimes occur, as shown
in figure 9. In our experience, these ghosting artifacts are subtle, and
very often are difficult to distinguish from motion blur.

Finally, our filter can occasionally produce ringing artifacts typically
associated with frequency-domain filters. While ringing is largely
mitigated by our windowing approach, in challenging situations clas-
sic Gibbs phenomenon can be visible, particularly after being ampli-
fied by sharpening and other steps in our finishing pipeline. Ringing
is most frequently visible in the neighborhood of poorly-aligned
clipped highlights, which exhibit high spatio-temporal contrast. In
our experience, ringing has a negligible visual effect for most scenes.
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Figure 9: Example of subtle ghosting artifacts produced by our
merge algorithm due to large motion. Note the horizontal structure
from the benches visible through the moving person’s head in the
robust merged result (c), which is not visible in the reference frame
(a). The temporal mean with alignment is included to demonstrate
the scale of motion and degree of alignment failure (b).

6 Finishing

Aligning and merging the captured Bayer raw frames produces
a single raw image with higher bit depth and SNR. This image
must now undergo correction, demosaicking, and tone mapping—
operations that would normally be performed by an ISP, but in our
case is implemented are software and include the key additional
step of dynamic range compression. In order of application, these
operations are:

1. Black-level subtraction deducts an offset from all pixels, so
that pixels receiving no light become zero. We obtain this
offset from optically shielded pixels on the sensor.

2. Lens shading correction brightens the corners of the image
to compensate for lens vignetting and corrects for spatially
varying color due to light striking the sensor at an oblique
angle. These corrections are performed using a low-resolution
RGGB image supplied by the ISP.

3. White balancing linearly scales the four (RGGB) channels so
that grays in the scene map to grays in the image. These scale
factors are supplied by the ISP.

4. Demosaicking converts the image from a Bayer raw image to
a full-resolution linear RGB image with 12 bits per pixel. We
use a combination of techniques from Gunturk et al. [2005],
including edge directed interpolation with weighted averaging,
constant-hue based interpolation, and second order gradients
as correction terms.

5. Chroma denoising to reduce red and green splotches in dark
areas of low-light images. For this we use an approximate
bilateral filter, implemented using a sparse 3x3 tap non-linear
kernel applied in two passes in YUV.

6. Color correction converts the image from sensor RGB to
linear sSRGB using a 3x3 matrix supplied by the ISP.

7. Dynamic range compression See description below.

8. Dehazing reduces the effect of veiling glare by applying a
global tone curve that pushes low pixel values even lower
while preserving midtones and highlights. Specifically, we
allow up to 0.1% of pixels to be clamped to zero, but only
pixels below 7% of the white level.

9. Global tone adjustment, to increase contrast and apply SRGB
gamma correction, by concatenating an S-shaped contrast-

enhancing tone curve with the standard SRGB color component
transfer function.

10. Chromatic aberration correction to hide lateral and longitu-
dinal chromatic aberration. We do not assume a lens model,
but instead look for pixels along high-contrast edges, and re-
place their chroma from nearby pixels less likely to be affected
by chromatic aberration.

11. Sharpening using unsharp masking, implemented using a sum
of Gaussian kernels constructed from a 3-level convolution
pyramid [Farbman et al. 2011].

12. Hue-specific color adjustments to make blue skies and veg-
etation look more appealing, implemented by shifting bluish
cyans and purples towards light blue, and increasing the satu-
ration of blues and greens generally.

13. Dithering to avoid quantization artifacts when reducing from
12 bits per pixel to 8 bits for display, implemented by adding
blue noise from a precomputed table.

Dynamic range compression For high dynamic range scenes
we use local tonemapping to reduce the contrast between highlights
and shadows while preserving local contrast. The tonemapping
method we have chosen is a variant of exposure fusion [Mertens
et al. 2007]. Given input images that depict the same scene at
different brightness levels, exposure fusion uses image pyramids to
blend the best-exposed parts of the input images to produce a single
output image that looks natural and has fewer badly exposed areas
than the inputs.

Exposure fusion is typically applied to images captured using brack-
eting. In our pipeline we capture multiple frames with constant
exposure, not bracketing. To adapt exposure fusion to our pipeline,
we derive “synthetic exposures” from our intermediate HDR image
by applying gain and gamma correction to it, then fuse these as if
they had been captured using bracketing. We perform these extrac-
tions in grayscale, and we create only two synthetic exposures—one
short and one long. The short exposure tells us how many pixels will
blow out, and becomes the overall exposure used during capture,
while the ratio between the short and long exposures tells us how
much dynamic range compression we are applying. Both values
come from our autoexposure algorithm.

Fusing grayscale instead of color images, and using only two syn-
thetic exposures, reduces computation and memory requirements. It
also allows us to simplify the per-pixel blend-weights compared to
those in the work by Mertens et al. [2007]. In particular, we use a
fixed weighting function of luma that favors moderately bright pixels.
This function can be expressed as a one-dimensional lookup table.
After fusing the synthetic exposures we undo the gamma-correction
of the resulting grayscale image and re-colorize it by copying per-
pixel chroma ratios from the original linear RGB image.

7 Results

Figure 10 shows example photos taken with our system side-by-side
with single-exposure photos produced by a conventional imaging
pipeline. Our system almost always produces results superior to
a conventional single-exposure pipeline, and in scenes with high
dynamic range or low light the improvement is often dramatic—fewer
blown-out highlights or crushed shadows, less noise, less motion
blur, better color, sharper details, and more texture.

For a more detailed evaluation of our system’s align and merge
method, demonstrating its robustness compared to state of the art
JPEG-based fusion [Liu et al. 2014; Dabov et al. 2007a; Adobe Inc.
2016], please refer to the supplement.
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Figure 10: A comparison of photos produced by our method with similar photos produced by a standard single-exposure processing pipeline
on the same device. Readers are encouraged to zoom in to these figures. The top row shows a classic HDR scene: stained-glass windows in a
church. In this example our method retains more detail in both the bright windows and the darker walls around them. The middle row shows a
dark scene (3 lux is roughly equivalent to candlelight). Here our method produces a brighter and image than a standard pipeline. Also, by
relying less on spatial denoising we are able to preserve low-contrast detail. The bottom row shows a fast-moving subject in moderately low
light. In this situation we use shorter exposure times for each frame in our burst than the single exposure in a conventional pipeline, reducing
motion blur. We also benefit in this scene from lucky imaging, which selects the sharpest frame it can find near the beginning of the burst.

Failure cases Despite generally good image quality, our system
does fail in extreme situations. We have designed it to degrade
gracefully in these situations, but we wish it were even better. Some
of these situations are shown in figure 11.

In addition, if a scene’s dynamic range is so high that exposure fusion
using two synthetic exposures would yield cartoony results, then we
treat the scene as if its dynamic range was low and allow more pixels
to blow out. Using three synthetic exposures might work better,
but is expensive to compute and requires more subtle tuning of our
autoexposure database. Also, if a scene contains such fast motions
that features blur despite our short exposure time, then alignment
might fail, leaving excessive noise in the output photograph.

Our most serious failure mode is that at very low light levels the ISP’s
autofocus and white balance estimation begin failing. Although
merging and alignment may still work, the photograph might be out
of focus or have a color cast. Slight casts are visible in figure 1.

Performance To make our pipelines fast enough to deploy on
mobile devices, we have selected algorithms for their computa-
tional efficiency. This means avoiding non-local communication and
data dependencies that preclude parallelization, consuming as little
memory as possible, and employing fixed point arithmetic wher-
ever possible. These same concerns preclude using algorithms with
global iteration (e.g., FlexISP [Heide et al. 2014]), large or dynamic
spatial support (e.g., BM3D [Dabov et al. 2007b]), or expensive
tonemapping (e.g., local Laplacian filters [Aubry et al. 2014]).

Our system has shipped on devices having 12—13 Mpix sensors, on

which we capture bursts of up to 8 frames. Thus, we may be required
to store and process as much as 104 Mpix per output photograph.
Although we have selected algorithms for efficiency, processing this
much data still requires a highly-optimized implementation. Most
of our code is written in Halide [Ragan-Kelley et al. 2012], which
enables us to more easily fuse pipeline stages for locality and to
make use of SIMD and thread parallelism. In addition, since we
compute many small 2D real DFTs for align and merge, we have
implemented our own FFT in Halide. For the small DFTs in our
pipeline, this implementation is five times faster than FFTW [Frigo
and Johnson 2005] on an ARM-based mobile phone.

Summarizing, on a Qualcomm Snapdragon 810 not subject to ther-
mal throttling the time required to produce an output photograph
ranges from 2.5 to 4 seconds, depending on the number of frames in
the burst. For a low light shot taking 4 seconds, this breaks down
as 1 second to capture the frames, 500 ms for alignment, 1200 ms
for merging, and 1600 ms for finishing. For a daylight shot taking
2.5 seconds, we measure 100 ms for capture, 250 ms for alignment,
580 ms for merging, and 1600 ms for finishing.

8 Conclusions

In this paper we have described a system for capturing a burst of
underexposed frames, aligning and merging these frames to produce
a single intermediate image of high bit depth, and tone mapping
this image to produce a high-resolution photograph. Our results
have better image quality than single-exposure photos produced
by a conventional imaging pipeline, especially in high dynamic
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Figure 11: Situations we do not handle well. Top: in this extremely
high dynamic scene, we preferentially exposed for the face and
building interior, thereby losing detail in the bright open doorways.
Middle: In low light scenes with fast motions, we clamp to a short
exposure time, producing excessive noise to avoid motion blur. Bot-
tom: High contrast scenes can exhibit mild medium frequency halos
(dark blue patches in sky) due to our use of exposure fusion.

range or low-light scenes, and almost never exhibit objectionable
artifacts. The system is deployed on several mass-produced cell
phones, marketed as “HDR+" in the Nexus 6, 5X, and 6P. Consumers
using our system are unaware that they are capturing bursts of frames
with each shutter press, or that their final photograph is generated
from multiple images using computational photography.

It is difficult in a technical paper to prove our general claim of supe-
rior image quality, or to cover the range of corner cases our system
handles robustly. What we can say is that our system has received
positive reviews in the press, has scored higher than most competing
commercial systems in evaluations by independent agencies [DxO
Inc. 2015], and that in millions of pictures captured by consumers
each week, we have not seen disastrous results.

In order that others may judge our image quality and improve on our
algorithms, we have created an archive of several thousand bursts of
raw images in DNG format [Google Inc. 2016b]. For each burst we
include our merged raw output and final JPEG output. EXIF tags
and additional files describe our camera parameters, noise model,
and other metadata used to generate our results.

Limitations and future work The most significant drawback of
our system is that after the user presses the shutter there is a sensible
lag before the burst begins and the reference frame is captured.
Since this frame sets the composition for the photograph, it can be
difficult to capture the right moment in an action scene. Some of
this lag is due to our autoexposure algorithm, some to Camera2’s
software structure, and some to our use of lucky imaging, which
adds a variable delay, depending on which frame was chosen as the
reference.

To avoid shutter lag, many mobile phones employ zero shutter lag

(ZSL), in which the camera continuously captures full-resolution
YUYV frames, stores them in a circular buffer, and responds to shutter
press by selecting one image from this buffer to finish and store.
Since focus, exposure, and white balance change continuously dur-
ing aiming, it’s not obvious how ZSL can be adapted to capture
constant-exposure bursts. This is a topic for future work.

Another limitation of our system is that computing the output pho-
tograph takes several seconds and occupies a significant amount of
memory until it finishes. If the user presses the shutter several times
in rapid succession, we can easily run out of memory, causing the
camera app to stall. Programmable hardware might solve this prob-
lem, but incorporating such hardware into mass-produced mobile
devices is not easy.

Finally, the discrepancy between our ISP-generated viewfinder and
software-generated photograph produces a non-ideal user experience.
In extreme situations, a user might abandon photographing a scene
because it looks poor in the viewfinder, when in fact our software
would produce a usable photograph of that scene. Programmable
hardware might solve this problem as well, and is a topic for future
work.
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