
 1

Authoring Sensor-based Interactions by Demonstration
with Direct Manipulation and Pattern Recognition

Björn Hartmann1, Leith Abdulla1, Manas Mittal2, Scott R. Klemmer1
1Stanford University HCI Group

Computer Science Dept, Stanford, CA 94305
[bjoern | srk | leith.abdulla]@cs.stanford.edu

2The MIT Media Laboratory
20 Ames St., Cambridge, MA 02139

manas@media.mit.edu

ABSTRACT
Sensors are becoming increasingly important in interaction
design. Authoring a sensor-based interaction comprises
three steps: choosing and connecting the appropriate hard-
ware, creating application logic, and specifying the
relationship between sensor values and application logic.
Recent research has successfully addressed the first two
issues. However, linking sensor input data to application
logic remains an exercise in patience and trial-and-error
testing for most designers. This paper introduces techniques
for authoring sensor-based interactions by demonstration. A
combination of direct manipulation and pattern recognition
techniques enables designers to control how demonstrated
examples are generalized to interaction rules. This approach
emphasizes design exploration by enabling very rapid
iterative demonstrate-edit-review cycles. This paper de-
scribes the manifestation of these techniques in a design
tool, Exemplar, and presents evaluations through a first-use
lab study and a theoretical analysis using the Cognitive
Dimensions of Notation framework.

Author Keywords
Sensors, physical computing, design tools, PBD

ACM Classification Keywords
H.5.2. [Information Interfaces]: User Interfaces — input
devices and strategies; interaction styles; prototyping;
user-centered design. D.2.2 [Software Engineering]:
Design Tools and Techniques — User interfaces.

INTRODUCTION
Sensing technologies are becoming pervasive, and sensor
hardware is increasingly diverse and economical. Recent
work in physical computing toolkits has lowered the
threshold for connecting sensors and actuators to PCs [6, 7,
18-20]; to design self-contained physical interfaces [1, 8];
and to prototype and evaluate the application logic of sys-
tems that make use of sensors and actuators [19]. Accessing

sensor data from software has come within reach of design-
ers and end users.

However, our experience of first learning and later teaching
physical interaction design, and our experience of deploy-
ing d.tools [19] in the classroom, has shown that specifying
the relationship between sensor input and application logic
remains problematic for designers for three reasons. First,
most current tools, such as Arduino [1], require using
textual programming to author sensor-based behaviors.
Representations are most effective when the constraints
embedded in the problem are visually manifest in the repre-
sentation [31]. Thus, numbers alone are a poor choice for
making sense of continuous signals as the relationship
between performed action and reported values is not visu-
ally apparent. Second, existing visual tools (e.g., LabView
[2]) were created with the intent of helping engineers and
scientists to perform signal analysis; as such, they do not
directly support interaction design. This leaves users with a
sizeable gulf of execution, the gap between their goals and
the actions needed to attain those goals with the system
[21]. Third, the significant time and cognitive commitments
implied by a lack of tools inhibit rapid iterative exploration.
Creating interactive systems is not simply the activity of
translating a pre-existing specification into code; there is
significant value in the epistemic experience of exploring
alternatives [22]. One of the contributions of direct manipu-
lation and WYSIWYG design tools for graphical interfaces is
that they enable this “thinking through doing” — this paper’s

Figure 1. Iterative programming by demonstration for
sensor-based interactions: A designer performs an action;
annotates its recorded signal in Exemplar; tests the gener-
ated behavior, and exports it to a supported authoring tool.

research aims to provide a similarly beneficial experience
for sensor-based interaction.

This paper contributes techniques for enabling a wider
audience of designers and application programmers to turn
raw sensor data into useful events for interaction design
through programming by demonstration. It introduces a
rapid prototyping tool, Exemplar (see Figure 1), which
embodies these ideas. The goal of Exemplar is to enable
users to focus on design thinking (how the interaction
should work) rather than algorithm tinkering (how the
sensor signal processing works). Exemplar frames the
design of sensor-based interactions as the activity of per-
forming the actions that the sensor should recognize — we
suggest this approach yields a considerably smaller gulf of
execution than existing systems. With Exemplar, a designer
first demonstrates a sensor-based interaction to the system
(e.g., she shakes an accelerometer). The system graphically
displays the resulting sensor signals. She then edits that
visual representation by marking it up, and reviews the
result by performing the action again. Through iteration
based on real-time feedback, the designer can refine the
recognized action and, when satisfied, use the sensing
pattern in prototyping or programming applications. The
primary contributions of this work are:
• A method of programming by demonstration for sensor-

based interactions that emphasizes designer control of
the generalization criteria for collected examples.

• Integration of direct manipulation and pattern recogni-
tion through a common visual editing metaphor.

• Support for rapid exploration of interaction techniques
through the application of the design-test-analyze para-
digm [19, 24] on a much shorter timescale as the core
operation of a design tool.

The rest of this paper is organized as follows: we first
introduce programming by demonstration, and then de-
scribe relevant characteristics of sensors and sensor-based
interactions to position our work. We provide an overview
of the Exemplar research system and describe its interaction
techniques and implementation. We then report the results
of two evaluations we have employed to measure Exem-
plar’s utility and usability, and discuss related work.

PROGRAMMING BY DEMONSTRATION
Programming by demonstration (PBD) is the process of
inferring general program logic from observation of exam-
ples of that logic. Because PBD builds program logic “under
the hood” and does not require textual programming, it has
been employed for end-user development [30]. In many
PBD systems, the examples or demonstrations are provided
as mouse and keyboard actions in a direct manipulation
interface (cf. [13, 26, 27]). These systems often take the
form of visual programming environments. PBD has been
employed in educational software to introduce children to
programming concepts; for the specification of macros; and
in robotics to specify navigation [5], or grasp motions for
assembly arms [29]. Our research builds upon the idea of

using actions performed in physical space as the example
input.

The crucial step in the success or failure of PBD systems is
the generalization from examples to rules that can be ap-
plied to new input [26]. This inference step often leverages
machine learning and pattern recognition techniques. But
what if the system’s generalization does not match the
author’s intent? Our research addresses the central impor-
tance of guided generalization by proposing a direct-
manipulation environment for editing the generalization
rules applied to examples performed in physical space.

SENSOR-BASED INTERACTIONS
This section introduces an analysis of the space for sensor-
based interactions from the designer’s point of view. Prior
work has successfully used design spaces as tools for think-
ing about task performance [12] and communicative aspects
[9] of sensing systems. Here we apply this approach to
describe the interaction designer’s experience of working
with sensors and authoring for them. This design space
foregrounds three central concerns: the nature of the input
signals, the types of transformations applied to continuous
input, and techniques for specifying the correspondence
between continuous signals and discrete application events.

Binary, Categorical, and Continuous Signals
As prior work points out [33], one principal distinction is
whether sensing technologies report continuous or discrete
data. Most technologies that directly sample physical phe-
nomena (e.g., temperature, pressure, acceleration, magnetic
field) output continuous data. For discrete sensors — be-
cause of different uses in interaction design — it is helpful to
distinguish two sub-types: binary inputs such as buttons and
switches are often used as general triggers; categorical
(multi-valued) inputs such as RFID are principally used for
identification. A similar division can be made for the
outputs or actuators employed. Exemplar focuses on
continuous input in single and multiple dimensions.

Working with Continuous Signals
Sensor input is nearly always transformed for use in an
interactive application. Continuous transformation opera-
tions fall into three categories: conditioning, calibration,
and mapping. Signal conditioning is about “tuning the
dials” so the signal provides a good representation of the
phenomenon of interest, thus maximizing the signal-to-
noise ratio. Common steps in conditioning are de-noising a
signal and adjusting its range through scaling and offset-
ting. Calibration relates input units to real-world units. In
scientific applications, the exact value in real-world units of
a measured phenomenon is of importance. However, for
many sensor-based interfaces, the units of measurement are
not of intrinsic value. Mapping refers to a transformation
from one parameter range into another. Specifying how
sensor values are mapped to application parameters is a
creative process, one in which design intent is expressed.
Exemplar offers support for both conditioning sensor sig-
nals and for mapping their values into binary, discrete, or

 3

Figure 2. The Exemplar authoring environment offers direct manipulation of live sensor data.

Figure 3. In Exemplar, sensor data flows from left to right.

continuous sets. When calibration is needed, experts can
use Exemplar’s extensible filter model.

Generating Discrete Events
A tool to derive discrete actions from sensor input requires
both a detection algorithm and appropriate interaction
techniques for controlling that algorithm. The most compu-
tationally straightforward approach is thresholding —

comparing a single data point to fixed limits. However,
without additional signal manipulations, e.g., smoothing
and derivatives, thresholds are susceptible to noise and
cannot characterize events that depend on change over time.
Tasks such as gesture recognition require more complex
pattern matching techniques. Exemplar offers both thresh-
olding with filtering as well as pattern matching.

The user interface technique employed to control how the
computation happens is equally important. Threshold limits
can be effectively visualized and manipulated as horizontal
lines overlaid on a signal graph. In our experience, the
parameters of more complex algorithms are less well under-
stood. Exemplar thus frames threshold manipulation as the
principle technique for authoring discrete events. Exemplar
contributes an interaction technique to cast parameterization
of the pattern matching algorithm as a threshold operation
on matching error. Through this technique, Exemplar cre-
ates a consistent user experience of authoring with both
thresholding and pattern matching.

In the next section, we describe how the design concerns
outlined here — support for continuous input, techniques for
transforming that input, and techniques for discretizing
input to application events — are manifest in Exemplar’s UI.

DESIGNING WITH EXEMPLAR
Designers begin by connecting sensors to a compatible
hardware interface, which in turn is connected to a PC
running Exemplar (see Figure 2). As sensors are connected,
their data streams are shown inside Exemplar. The Exem-
plar UI is organized according to a horizontal data-flow
metaphor: hardware sensor data arrives on the left-hand

side of the screen, undergoes user-specified transformations
in the middle, and arrives on the right-hand side as discrete
or continuous events (see Figure 3). The success of data-
flow authoring languages such as Max/MSP attests to the
accessibility of this paradigm to non-programmers.

Peripheral Awareness
Live data from all connected sensors is shown in a small
multiples configuration. Small multiples are side-by-side
“graphical depictions of variable information that share
context, but not content” [38]. The small multiples configu-
ration gives a one-glance overview of the current state of all
sensors and enables visual comparison (see Figure 2A).
Whenever a signal is “interesting,” its preview window
briefly highlights in red to attract attention, then fades back
to white. In the current implementation, this occurs when
the derivative of a sensor signal exceeds a preset value.
Together, small multiple visualization and highlighting
afford peripheral awareness of sensor data and a visual
means of associating sensors with their signals. This tight
integration between physical state and software representa-
tion encourages discovery and narrows the gulf of evalua-
tion, the difficulty of determining a system’s state from its
observable output [21]. For example, to find out which
output of a multi-axis accelerometer responds to a specific
tilt action, a designer can connect all axes, tilt the acceler-
ometer in the desired plane, and look for the highlighted
thumbnail to identify the correct channel for her design.

Constant view of all signals is also helpful in identifying
defective cables and connections.

Drilling Down and Filtering
Designers can bring a sensor’s data into focus in the large
central canvas by selecting its preview thumbnail (see
Figure 2C). The thumbnails and the central canvas form an
overview plus detail visualization [36]. Designers can bring
multiple sensor data streams into focus at once by control-
clicking on thumbnails. Between the thumbnail view and
the central canvas, Exemplar interposes a filter stack (see
Figure 2B). Filters transform sensor data interactively: the
visualization always reflects the current set of filters and
their parameter values. Exemplar maintains an independent
filter stack for each input sensor. When multiple filters are
active, they are applied in sequence from top to bottom, and
these filters can be reordered.

Exemplar’s filter stack library comprises four operations for
conditioning and mapping — offset: adds a constant factor;
y-axis scaling: multiplies the sensor value by a scalar value,
including signal inversion; smoothing: convolves the signal
with one-dimensional Gaussian kernel to suppress high
frequency noise; and rate of change: takes the first deriva-
tive. These four operations were chosen as the most impor-
tant for gross signal conditioning and mapping; a later
section addresses filter set extensibility.

Interaction with the filtered signal in the central canvas is
analogous to a waveform editor of audio recording soft-
ware. By default, the canvas shows the latest available data
streaming in, with the newest value on the right side.
Designers can pause this streaming visualization, scroll
through the data, and change how many samples are shown
per screen. When fully zoomed out, all the data collected
since the beginning of the session is shown.

Demonstration and Mark-up
To begin authoring, the designer performs the action she
wants the system to recognize. As an example, to create an
interface that activates a light upon firm pressure, the
designer may connect a force sensitive resistor (FSR) and
press on it with varying degrees of force. In Exemplar, she
then marks the resulting signal curve with her mouse. The
marked region is highlighted graphically and analyzed as a
training example. The designer can manipulate this example
region by moving it to a different location through mouse
dragging, or by resizing the left and right boundaries. Mul-
tiple examples can be provided by adding more regions.
Examples can be removed by right-clicking on a region.

In addition to post-demonstration markup, Exemplar also
supports real-time annotation through a foot switch, chosen
because it leaves the hands free for holding sensors. Using
the switch, designers can mark regions and simultaneously
work with sensors. Pressing the foot switch starts an exam-
ple region. The region grows while the switch remains
depressed, and concludes when the switch is released.
While this technique requires some amount of hand-foot
coordination, it enables truly interactive demonstration.

Recognition and Generalization
Recognition works as follows: interactively, as new data
arrives for a given sensor, Exemplar analyzes if the data
matches the set of given examples. When the system finds a
match with a portion of the input signal, that portion is
highlighted in the central canvas in a fainter shade of the
color than the one used to draw examples. This region
grows for the duration of the match, terminating when the
signal diverges from the examples.

Exemplar provides two types of matching calculations —

thresholds and patterns — selectable as modes for each event
(see Figure 2D). With thresholding, the minimum and
maximum values of the example regions are calculated. The
calculation is applied to filtered signals, e.g., it is possible
to look for maxima in the smoothed derivative of the input.
Incoming data matches if its filtered value falls in between
the extrema. Pattern matching compares incoming data
against the entire example sequence and calculates a dis-
tance metric, the extent to which incoming data resembles
the example.

Matching parameters can be graphically adjusted through
direct manipulation. For threshold events, min and max
values are shown as horizontal lines in the central canvas.
These lines can be dragged with the mouse to change the
threshold values (see Figure 2G). When parameters are
adjusted interactively, matched regions are automatically
recalculated and redrawn. Thus, Exemplar always shows
how things would have been classified. This affords rapid
exploration of how changes affect the overall performance
of the matching algorithm.

Sensor noise can lead to undesirable oscillation between
matching and non-matching states. Exemplar provides three
mechanisms for addressing this problem. First, a smoothing
filter can be applied to the signal. Second, the designer can
apply hysteresis, or double thresholding, where a boundary
is represented by two values which must both be traversed
for a state change. Dragging the hysteresis field of a graphi-
cal threshold (indicated by “H” in Figure 2G) splits a
threshold into two lines. Designers specify the difference
between boundary values through the drag distance. Third,
designers can drag a timeout bar from the right edge of the
central canvas to indicate the minimum duration for a
matching or non-matching state to be stable before an event
is fired.

For pattern matching, Exemplar introduces a direct manipu-
lation technique that offers a visual thresholding solution to
the problem of parameterizing the matching algorithm.
Exemplar overlays a graph that shows distance between the
incoming data and the previously given example on the
central canvas’s vertical axis. The lower the distance, the
better the match. Designers can then adjust a threshold line
indicating the maximum distance for a positive match. An
event is fired when the distance falls below the threshold
line. With this technique, the designer’s authoring experi-
ence is consistent whether applying thresholds or pattern

 5

matching: dragging horizontal threshold bars tunes the
specificity of the matching criteria.

Output
Exemplar supports the transformation from sensor input
into application events. Exemplar generates two kinds of
output events: continuous data streams that correspond to
filtered input signals, and discrete events that fire whenever
a thresholding or pattern matching region is found. With
these events in hand, the designer then needs to author
some behavior, e.g., she needs to specify the application’s
response to the force sensor push. To integrate Exemplar
with other tools, events and data streams can be converted
into operating system input events such as key clicks or
mouse movements. Injecting OS events affords rapid con-
trol over third party applications (cf. [19, 20]). However,
injection is relatively brittle because it does not express
association semantics (e.g., that the “P” key pauses play-
back in a video application). For tighter integration with
application logic, Exemplar can also be linked to the d.tools
authoring environment [19] for rapid off-the-desktop proto-
types. Exemplar events are then used to trigger transitions
in d.tools’ interaction models.

Many Sensors, Many Events
Exemplar scales to more complex applications by providing
mechanisms to author multiple events for a single sensor; to
author individual events that depend on multiple sensors;
and to run many independent events simultaneously.

To the right of the central canvas, Exemplar shows a list of
event definitions for the currently active sensors (see Figure
2E). Designers can add new events and remove unwanted
ones in this view. Each event is given a unique color. A
single event from this list is active for editing at a time to
keep mouse actions in the central canvas unambiguous:
regions drawn by the designer in the canvas always apply to
that active event.

Exemplar enables combining sensor data in Boolean AND
fashion (e.g., “scroll the map only if the accelerometer is
tilted to the left and the center button is pressed”). When
designers highlight multiple sensor thumbnails, their signals
are shown stacked in the central canvas. Examples are now
analyzed across all shown sensor signals and events are
only generated when all involved sensors match their ex-
amples. Boolean OR between events is supported implicitly
by creating multiple events. Together, AND/OR combina-
tions enable flexibility in defining events. They reduce —

but do not replace — the need to author interaction logic
separately.

The authored events for all sensors are always evaluated —

and corresponding output is fired — regardless of which
sensor is in focus in the central canvas. This allows design-
ers to test multiple interactions simultaneously. To keep this
additional state visible, a tree widget shows authored events
for all sensors along with their example regions in the lower
right corner of the UI (see Figure 2F).

Demonstrate-Edit-Review
The demonstrate-edit-review cycle embodied in Exemplar
is an application of the design-test-think paradigm for tools
[19, 24]. This paradigm suggests that integrating support for
evaluation and analysis into a design tool enables designers
to more rapidly gain insight about their project. Exemplar is
the first system to apply design-test-think to the domain of
sensor data analysis. More importantly, through making
demonstrate, edit, and review actions the fundamental
authoring operations in the user interface, Exemplar radi-
cally shortens iteration times by an order of magnitude
(from hours to minutes).

ARCHITECTURE AND IMPLEMENTATION
Exemplar was written using the Java 5.0 SDK as a plug-in
for the Eclipse IDE. Integration with Eclipse offers two
important benefits: the ability to combine Exemplar with
the d.tools prototyping tool to add visual authoring of inter-
action logic; and extensibility for experts through an API
that can be edited using Eclipse’s Java tool chain. The
graphical interface was implemented with the Eclipse
Foundation’s SWT toolkit [3].

Signal Input, Output and Display
Consistent with the d.tools architecture, our hardware
communicates with Exemplar using OpenSoundControl
(OSC). This enables Exemplar to connect to any sensor
hardware that supports OSC. In addition to the d.tools I/O
board [19], the Exemplar implementation also supports
Wiring [8] and Arduino [1] boards with OSC firmware. OSC
messages are also used to send events to other applications,
e.g., d.tools, Max/MSP, or Flash (with the aid of a relay
program). Translation of Exemplar events into system key
presses and mouse movements or mouse clicks is realized
through the Java Robots package.

Exemplar visualizes up to eight inputs. This number is not
an architectural limit; it was chosen based on availability of
analog-to-digital ports on common hardware interfaces.
Sensors are sampled at 50 Hz with 10-bit resolution and
screen graphics are updated at 15-20 Hz. These sampling
and display rates have been sufficient for human motion
sensing and interactive operation. However, we note that
other forms of input, e.g., microphones, require higher
sampling rates (8-40 kHz). Support for such devices is not
yet included in the current library.

Pattern Recognition
We implemented a Dynamic Time Warping (DTW) algo-
rithm to match demonstrated complex patterns with incom-
ing sensor data. DTW was first used as a spoken-word
recognition algorithm [34], and has recently been used in
HCI for gesture recognition from sensor data [28]. DTW
compares two time-series data sets and computes a metric
of the distortion distance required to fit one to the other. It
is this distance metric that we visualize and threshold
against in pattern mode. DTW was chosen because, contrary
to other machine learning techniques, only one training
example is required. The DTW technique used in this work
is sufficiently effective to enable the interaction techniques

we have introduced. However, we point out that — like
related work utilizing machine learning in UI tools [14, 15]

— we do not claim optimality of this algorithm in particular.

More broadly, this research — and that of related projects —

suggests that significant user experience gains can be real-
ized by integrating machine learning and pattern recogni-
tion with direct manipulation. From a developer’s perspec-
tive, taking steps in this direction may be less daunting than
it first appears. For example, Exemplar’s DTW technique
comprises only a small fraction of code size and develop-
ment time. We have found that the primary challenge for
HCI researchers is the design of appropriate interfaces for
working with these techniques, so that users have sufficient
control over their behavior without being overwhelmed by a
large number of machine-centric “knobs.”

Extensibility
While Exemplar’s built-in filters are sufficient for many
applications, developers also have the option of writing
their own filters. Exemplar leverages Eclipse’s auto-
compilation feature for real-time integration of user-
contributed code. This architecture allows engineers on
design teams to add to the set of available filters and for
users to download filters off the web. Exemplar’s filter
architecture was inspired by audio processing architectures
such as Steinberg’s VST [4], which defines a mechanism for
how plug-ins receive data from a host, process that stream,
and send results back. VST has dramatically expanded the
utility of audio-editing programs by enabling third parties to
extend the audio-processing library.

EVALUATION
Our evaluation employed a two-pronged approach. First,
we applied the Cognitive Dimensions of Notation frame-
work to Exemplar to evaluate its design tradeoffs as a visual
authoring environment. Second, we conducted a first-use
study in our lab to determine threshold and utility for nov-
ices, as well as to assess usability.

Cognitive Dimensions Usability Inspection
The Cognitive Dimension of Notation (CDN) framework
[16, 17] offers a high-level inspection method to evaluate
the usability of information artifacts. In CDN, artifacts are
analyzed as a combination of a notation they offer and an
environment that allows certain manipulations of the nota-
tion. CDN is particularly suitable for analysis of visual
programming languages. We conducted a CDN evaluation
of Exemplar following Blackwell and Green’s Cognitive
Dimensions Questionnaire [11]. This evaluation offers an
analysis of Exemplar according to categories independently
identified as relevant, and facilitates comparison with future
research systems. We begin with an estimate of how time is
spent within the authoring environment, and then proceed
to evaluate the software against the framework’s cognitive
dimensions.

Parts of the System
Exemplar’s main notation is a visual representation of
sensor data with user-generated mark-up. Lab use of Exem-
plar led us estimate that time is spend as follows:

30% Searching for information within the notation
(browsing the signal, visually analyzing the signal)

10% Translating amounts of information into the system
(demonstration)

20% Adding bits of information to an existing description
(creating and editing mark up, filters)

10% Reorganizing and restructuring descriptions (chang-
ing analysis types, re-defining events)

30% Playing around with new ideas in notation without
being sure what will result (exploration)

This overview highlights the importance of search, and the
function of Exemplar as an exploratory tool.

Dimensions of the Main Notation
Given space constraints, we only present a subset of the 14
CDN dimensions that we deemed most relevant here.

Visibility and Juxtaposability (ability to view components
easily): All current sensor inputs are always visible simul-
taneously as thumbnail views, enabling visual comparison
of input data. Viewing multiple signals in close-up is also
possible; however, since such a view is exclusively associ-
ated with “AND” events combining the shown signals, it is
not possible to view independent events at the same time.

Viscosity (ease or difficulty of editing previous work):
Event definitions and filter settings in Exemplar are
straightforward to edit through direct manipulation. The
hardest change to make is improving the pattern recognition
if it does not work as expected. Thresholding matching
error only allows users to adjust a post-match metric as the
internals (the “how” of the algorithm) are hidden.

Diffuseness (succinctness of language): Exemplar’s nota-
tion is brief, in that users only highlight relevant parts of a
signal and define a small number of filter parameters
through graphical interaction. However, the notation is not
Turing-complete: the set of expressible statements is lim-
ited. The length of event descriptions is dependent on the
Boolean complexity of the event expressed (how many
ORs/ANDs of signal operations there are).

Hard Mental Operations: The greatest mental effort is
required to keep track of events that are defined and active,
but not visible in the central canvas. To mitigate against this
problem, we introduced the overview list of all defined
interactions (see Figure 2F) which minimizes cost to switch
between event views. One important design goal was to
make results of operations immediately visible.

Error-proneness (syntax provokes slips): One slip occurred
repeatedly in our use of Exemplar: resizing example regions
by dragging their boundaries. This was problematic because
no visual feedback was given on what the valid screen area
was to initiate resizing. Lack of feedback resulted in dupli-

 7

Figure 4. Prior experience of our study participants.

cate regions being drawn, with an accompanying undesired
recalculation of thresholds or patterns. Improved input
controls on regions can alleviate this problem.

Closeness of Mapping: The sensor signals are the primitives
that users operate on. This direct presentation of the signal
facilitates consistency between the user’s mental model and
the system’s internal representation.

Role-expressiveness (purpose of a component is readily
inferred): Role-expressiveness problems often arise when
compatibility with legacy systems is required. Since Exem-
plar was designed from scratch for the express purpose of
viewing, manipulating and marking up signals, this it not a
concern. While the result of applying operations is always
visible, the implementation “meaning” of filters and pattern
recognition is hidden.

Secondary Notations: Currently, Exemplar permits users to
label events, but not filter settings or signal regions. As
comments allow users to capture information outside the
“syntax” of Exemplar, this is an area for future work.

Progressive Evaluation: Real-time visual feedback enables
fluid evaluation of the state of an interaction design at any
point. Furthermore, Exemplar sessions can be saved and
retrieved for subsequent sessions through disk serialization.

In summary, Exemplar performs well with respect to visi-
bility, closeness of mapping, and progressive evaluation.
Many of the identified challenges stem from the difficulties
of displaying multiple sensor visualizations simultaneously.
These can be addressed through interface improvements —

they are not intrinsic shortcomings of the approach.

First-use Study
We conducted a controlled study of Exemplar in our labora-
tory to assess the ease of use and felicity of our tool for
design prototyping. The study group comprised twelve
participants. Ten were graduate students or alumni of our
university; two were undergraduates. While all participants
had some prior HCI design experience, they came from a
variety of educational backgrounds: four from Computer
Science/HCI, four from other Engineering fields, two from
Education, and two from the Humanities. Participants’ ages
ranged from 19 to 31; five were male, seven female. Two of
the twelve participants served as pilot testers. Eight partici-
pants had had some prior exposure to sensor programming,
but none self-reported to be experts (see Figure 4).

Study Protocol
Participants were seated at a dual-screen workstation with
an Exemplar hardware interface. The Exemplar software
was shown on one screen; a help document on sensors was
shown on the other. Participants were asked to author inter-
actions that controlled graphics on a large projection dis-

play (see Figure 5). We chose
this large display to encourage
participants to think beyond
the desktop in their designs.
We chose graphical instead of
physical output since our
study focused on authoring
responses to sensor input, not
on actuation.

Individual study sessions
lasted two hours. Sessions
started with a demonstration of Exemplar. We also intro-
duced the set of available sensors, which comprised but-
tons, switches, capacitive touch sensors, light sensors,
infrared distance rangers, resistive position sensors, force-
sensitive resistors (FSRs), load cells, bend sensors, 2D joy-
sticks, and 3D accelerometers. Participants were given three
design tasks. For each, we provided a mapping of triggers
available in Exemplar to behaviors in the instructions (e.g.,
sending an event called “hello” activated the display of the
hello graphic in the first task).

The first task was a “Hello World” application. Subjects
were asked to display a hello graphic when a FSR was
pressed (through thresholding) while independently show-
ing a world graphic when a second FSR was pressed three
times in a row (through pattern recognition).

The second task required participants to augment a bicycle
helmet with automatic blinkers such that tilting the helmet
left or right caused the associated blinkers to signal. Partici-
pants had to attach sensors to and test with a real helmet.
Blinker output was simulated with graphics on a “mirror”
on the projection display. This task was inspired by Selker
et al.’s Smart Helmet [35].

The last task was an open-ended design exercise to author
new motion-based controls for at least one of two computer
games. The first was a spaceship navigation game in which
the player has to keep a ship aloft, collect points and safely
land using three discrete events to fire thrusters (up, left,
and right). The second game was a shooting gallery with
continuous X/Y position control used to aim, and a discrete
trigger to shoot moving targets.

Study Results
In our post-test survey, participants ranked Exemplar highly
for decreasing the time required to build prototypes
compared to their prior practice (mean = 4.8, median = 5 on a
5-point Likert scale, σ = 0.42); for facilitating rapid modifi-
cation (mean = 4.7, median = 5, σ = 0.48); for enabling them to
experiment more (mean = 4.7, median = 5, σ = 0.48); and for
helping them understand user experience (mean = 4.3, me-
dian = 4; σ = 0.48). Responses were less conclusive on how
use of Exemplar would affect the number of prototypes
built, and whether it helped focus or distracted from design
details (σ > 1.0 in each case). Detailed results are presented
in Figure 6.

Figure 5. Physical setup
of the first-use study.

Successes
All participants successfully completed the two first two
tasks and built at least one game controller. The game
controller designs spanned a wide range of solutions (see
Figure 7). Once familiar with the basic authoring tech-
niques, many participants spent the majority of their time
sketching and brainstorming design solutions, and testing
and refining their design. In aggregate, implementation
composed less than a third of their design time. This rapid
iteration enabled participants to explore up to four different
control schemes for a game. We see this as a success of
enabling epistemic activity: participants spent their time on
design thinking rather than implementation tinkering.

Exemplar was used for exploration: given an unfamiliar
sensor, participants were able to figure out how to employ it
for their purposes. For example, real-time feedback enabled
participants to find out which axes of a multi-axis acceler-
ometer were pertinent for their design. Participants also
tried multiple sensors for a given interaction idea to explore
the fit between design intent and available technologies.

Interestingly, performance of beginners and experts under
Exemplar was comparable in terms of task completion time
and breadth of ideation. Two possible explanations for this
situation are that either Exemplar was successful in lower-
ing the threshold to entry for the types of scenarios tested,
or that it encumbered experts from expressing their knowl-
edge. The absence of complaints by experts in the post-test
surveys provides some support for the first hypothesis.

Shortcomings discovered
Participants identified two key areas for improvement. One
recurring theme in the feedback was the need for visualiza-
tion of hidden state. At the time of the study, participants
could only see events that corresponded to the sensor in
focus. Although other events were still active, there was no
comprehensive way of listing them. Also, the highlighted
regions corresponding to training examples were hard to
retrieve after time had passed because the example regions
were pushed too far off-screen into the history. To address
these difficulties, Exemplar now displays a full list of active

events, along with the corresponding example regions.
Selecting those regions jumps to the time of their definition
in the central canvas.

Expert users expressed a need for finer control over hys-
teresis parameters for thresholding, and a visualization of
time and value units on the axes of the signal display. In
response, we added direct manipulation of hysteresis and
timeout parameters to threshold events.

The importance of displaying numerical data in the visuali-
zation to aid understanding of signal properties deserves
further study. Participants also requested ways to provide
negative examples, techniques for displaying multiple large
sensor visualizations simultaneously, and finer control over
the timing for pattern matching (in terms of both latency
and duration). We leave these to future work.

RELATED WORK
The research embodied in Exemplar was directly motivated
by our experience with d.tools [19], which introduced a
value entry by demonstration technique: in a visualization
of a single sensor's signal, a user could copy the latest value
into the threshold property of a state transition with a key
press. Exemplar extends the d.tools work by introducing:
• Direct manipulation techniques to control generalization

from examples.
• Pattern matching for complex signals with graphical

editing of matching criteria.
Figure 6. Post-experiment questionnaire results. Error bars
indicate ½ standard deviation in each direction.

Figure 7. Interaction designs from the user study. A: turning
on blinkers by detecting head tilt with bend sensors; B:
accelerometer used as continuous 2D head mouse; C:
aiming and shooting with accelerometer and bend sensor;
D: navigation through full body movement; E: bi-pedal navi-
gation through FSRs; F: navigation by hitting the walls of a
booth (vibration sensed with accelerometers).

 9

• Graphical feedback of matching criteria for sensor
histories.

• A raised ceiling by working with multiple sensors, multi-
ple events, and extensible filters.

• Evaluation through a lab study and CDN analysis.
Exemplar also relates to three larger areas of work: research
into programming by demonstration for ubiquitous comput-
ing, tools for musical controller design, and signal process-
ing and analysis software. We discuss each in turn.

Ubicomp PBD
The closest predecessor to Exemplar in approach and scope
is a CAPella [14]. This system focused on authoring binary
context recognizers by demonstration (e.g., is there a meet-
ing going on in the conference room?), through combining
data streams from discrete sensors, a vision algorithm, and
microphone input. Exemplar shares inspiration with a
CAPella, but it offers important architectural contributions
beyond this work. First, a CAPella was not a real-time
interactive authoring tool: the authors of a CAPella reported
the targeted iteration cycle to be on the order of days, not
minutes as with Exemplar. Also, a CAPella did not provide
strong support for continuous data. More importantly, a
CAPella did not offer designers control over how the gener-
alization step of the PBD algorithm was performed beyond
marking regions. We believe that this limitation was par-
tially responsible for the low recognition rates reported
(between 50% and 78.6% for binary decisions).

We also drew inspiration for Exemplar from Fails and
Olsen’s interaction technique for end-user training of vision
recognizers, Image Processing with Crayons [15]. It enables
users to draw on training images, selecting image areas
(e.g., hands or note cards) that they would like the vision
system to recognize. Crayons complements our work well,
offering a compelling solution to learning from independent
images, where as Exemplar introduces an interface for
learning from time-series data.

Monet [25] is a sketch-based prototyping system for ani-
mating hand-drawn widgets. Monet learns geometric trans-
formations applied to widgets through mouse movement.
Monet is a GUI-centric application of PBD that supports
both continuous and discrete outputs. It uses a different
mathematical approach (continuous function approximation
using radial basis functions centered on screen pixels).

Papier-Mâché [23], while not a PBD system, also makes
physical input processing more accessible. It supports how
designers specify input of interest — its main insight was to
create software event abstractions that were common across
a set of input technologies. This enables designers to rap-
idly exchange input technologies. Papier-Mâché focused on
identity-based input and discrete events.

Tools for musical controller design
Design tools for electronic musical instruments also address
the issue of mapping continuous sensor input. There are two
important differences between using sensors as inputs for

user interfaces and using sensors as controls for real-time
music synthesis: musicians are often concerned with con-
tinuous-to-continuous mappings, and the frequency of the
output signal (the music) is much greater than that of the
input signal (the performer’s actions). Exemplar focuses on
sparser output events that are frequently of discrete nature.

Steiner’s [hid] toolkit [37], is a set of objects, called “exter-
nals,” that support USB Human Interface Device input in Pd
[32], the visual multimedia programming environment. The
toolkit does not focus on the interaction design for explor-
ing and specifying signal transformations. It uses Pd’s
existing object architecture and does not offer example-
based learning. MnM [10], also an extension for Pd and
Max/MSP, focuses on advanced mathematical signal trans-
formations. It aims to make complex operations accessible
to those already familiar with sensor interaction design but
does not integrate exploration, design, and test functions.

FlexiGesture is an electronic instrument that can learn
gestures to trigger sample playback [28]. It embodies
programming by demonstration in a fixed form factor.
Users can program which movements should trigger which
samples by demonstration, but they cannot change the set of
inputs. Exemplar generalizes FlexiGesture’s approach into
a design tool for variable of input and output configura-
tions. We share the use of the DTW algorithm for pattern
recognition with FlexiGesture.

Electrical Engineering Signal Analysis
Digital Signal Processing (DSP) software packages such as
LabView [2] are the state-of-the art engineering tools for
working with sensors. LabView and Exemplar support
different user populations, with different respective needs
and expectations. LabView offers a sophisticated Turing-
complete visual programming language that allows profes-
sional users to create dataflow algorithms and signal
visualizations. LabView’s focus on measuring, analyzing,
and processing signals supports professional engineers and
trades off generality for a high threshold for use. In con-
trast, Exemplar integrates a subset of the DSP functions
LabView offers into an integrated design environment that
encourages exploration and rapid iteration by designers.

CONCLUSION
This paper introduced techniques for authoring sensor-
based interactions through programming by demonstration,
where the crucial generalization step is user-editable
through direct manipulation of thresholding and pattern
matching. Future work consists of investigating how inter-
active editing can be extended to other time-series signals
and different kinds of matching strategies. Exemplar has
been released as open source under the BSD license.

ACKNOWLEDGMENTS
We thank Wendy Ju for illustrating Figures 5 and 7, Intel
for donating PCs, and MediaX/DNP for funding.

REFERENCES
 1 Arduino Physical Computing Platform, 2006.

http://www.arduino.cc

 2 LabView, 2006. National Instruments.
http://www.ni.com/labview

 3 SWT: The Standard Widget Toolkit, 2006. The Eclipse Foun-
dation. http://www.eclipse.org/swt

 4 Virtual Studio Technology (VST), 2006. Steinberg.
http://steinbergcanada.com/technology/vst.htm

 5 Andreae, P., Justified Generalization: Acquiring Procedures
from Examples, Unpublished PhD Thesis, MIT, Dept. of
Electrical Engineering and Computer Science, 1985.

 6 Avrahami, D. and S. E. Hudson. Forming interactivity: A tool
for rapid prototyping of physical interactive products. In Pro-
ceedings of DIS: ACM Conference on Designing Interactive
Systems. pp. 141–46, 2002.

 7 Ballagas, R., M. Ringel, M. Stone, and J. Borchers. iStuff: A
physical user interface toolkit for ubiquitous computing envi-
ronments. In Proceedings of CHI: ACM Conference on Hu-
man Factors in Computing Systems. pp. 537–44, 2003.

 8 Barragan, H., Wiring: Prototyping Physical Interaction De-
sign, Interaction Design Institute Ivrea, Italy, 2004.

 9 Bellotti, V., M. Back, W. K. Edwards, R. E. Grinter, A. Hen-
derson, and C. Lopes. Making sense of sensing systems: five
questions for designers and researchers. In Proceedings of
CHI: ACM Conference on Human Factors in Computing Sys-
tems. pp. 415–422, 2002.

10 Bevilacqua, F., R. Müller, and N. Schnell, MnM: a Max/MSP
mapping toolbox. In Proceedings of NIME: Conference on
New Interfaces for Musical Expression. pp. 85–88, 2005.

11 Blackwell, A. and T. Green, A Cognitive Dimensions Ques-
tionnaire, 2000. http://www.cl.cam.ac.uk/~afb21/
CognitiveDimensions/CDquestionnaire.pdf

12 Card, S. K., J. D. Mackinlay, and G. G. Roebertson. A mor-
phological analysis of the design space of input devices. ACM
Trans. Inf. Systems. 9(2): ACM Press. pp. 99–122, 1991.

13 Cypher, A., ed. Watch What I Do - Programming by Demon-
stration. MIT Press: Cambridge, MA. 652 pp., 1993.

14 Dey, A. K., R. Hamid, C. Beckmann, I. Li, and D. Hsu.
a CAPpella: Programming by demonstration of context-aware
applications. In Proceedings of CHI: ACM Conference on
Human Factors in Computing Systems. pp 33–40, 2004.

15 Fails, J. and D. Olsen. A design tool for camera-based interac-
tion. In Proceedings of CHI: ACM Conference on Human
Factors in Computing Systems. pp 449–456, 2003.

16 Green, T. R. G. Cognitive dimensions of notations. People
and Computers V. pp. 443-60, 1989.

17 Green, T. R. G. and M. Petre. Usability Analysis of Visual
Programming Environments: A ‘Cognitive Dimensions’
Framework. Journal of Visual Languages and Computing
7(2). pp. 131–74, 1996.

18 Greenberg, S. and C. Fitchett. Phidgets: Easy development of
physical interfaces through physical widgets. In Proceedings
of UIST: ACM Symposium on User Interface Software and
Technology. pp. 209–18, 2001.

19 Hartmann, B., S. R. Klemmer, M. Bernstein, L. Abdulla, B.
Burr, A. Robinson-Mosher and J. Gee. Reflective physical
prototyping through integrated design, test, and analysis. In
Proceedings of UIST 2006: ACM Symposium on User Inter-
face Software and Technology. pp. 299–308, 2006.

20 Hudson, S. and J. Mankoff. Rapid Construction of Function-
ing Physical Interfaces from Cardboard, Thumbtacks, Tin Foil
and Masking Tape. In Proceedings of UIST: ACM Symposium

on User Interface Software and Technology. pp 289–298,
2006.

21 Hutchins, E. L., J. D. Hollan, and D. A. Norman. Direct
Manipulation Interfaces. Human-Computer Interaction 1(4).
pp. 311–38, 1985.

22 Klemmer, S. R., B. Hartmann, and L. Takayama. How Bodies
Matter: Five Themes for Interaction Design. In Proceedings of
DIS: ACM Conference on Designing Interactive Systems. pp.
140–149, 2006.

23 Klemmer, S. R., J. Li, J. Lin, and J. A. Landay. Papier-Mâché:
Toolkit Support for Tangible Input. In Proceedings of CHI:
ACM Conference on Human Factors in Computing Systems.
pp. 399–406, 2004.

24 Klemmer, S. R., A. K. Sinha, J. Chen, J. A. Landay, N. Aboo-
baker, and A. Wang. SUEDE: A Wizard of Oz Prototyping
Tool for Speech User Interfaces. In Proceedings of UIST:
ACM Symposium on User Interface Software and Technology.
pp. 1–10, 2000.

25 Li, Y. and J. A. Landay. Informal prototyping of continuous
graphical interactions by demonstration. In Proceedings of
UIST: ACM Symposium on User Interface Software and Tech-
nology. pp. 221–30, 2005.

26 Lieberman, H., ed. Your Wish is my Command. Morgan
Kaufmann. 416 pp., 2001.

27 Lieberman, H., F. Paternò, and V. Wulf, ed. End-User Devel-
opment. Springer: Dordrecht, Netherlands. 492 pp., 2006.

28 Merrill, D. J. and J. A. Paradiso, Personalization, Expressivity,
and Learnability of an Implicit Mapping Strategy for Physical
Interfaces. In Extended Abstracts of CHI: ACM Conference on
Human Factors in Computing Systems. 2005.

29 Munch, S., J. Kreuziger, M. Kaiser, and R. Dillmann. Robot
programming by demonstration – using machine learning and
user interaction methods for the development of easy and
comfortable robot programming systems. In Proceedings of
International Symposium on Industrial Robots. 1994.

30 Nardi, B. A., A Small Matter of Programming: Perspectives
on End User Computing. Cambridge, MA: MIT Press. 1993.

31 Norman, D. A., Things that make us smart: Defending human
attributes in the age of the machine: Addison Wesley Publish-
ing Company. 290 pp., 1993.

32 Puckette, M., Pd, 2006.
http://crca.ucsd.edu/~msp/software.html

33 Rogers, Y. and H. Muller. A framework for designing sensor-
based interactions to promote exploration and reflection in
play. International Journal of Human-Computer Studies
64(1). pp. 1–14, 2006.

34 Sakoe, H. and S. Chiba. Dynamic programming algorithm
optimization for spoken word recognition. IEEE Transactions
on Acoustics, Speech, and Signal Processing 26(1): IEEE. pp.
43–49, 1978.

35 Selker, T., A bike helmet built for road hazards, 2006.
http://news.com.com/2300-1008_3-6111157-2.html

36 Shneiderman, B., Overview + Detail, in Readings in Informa-
tion Visualization, S.K. Card, J.D. Mackinlay, and B. Shnei-
derman, ed. Morgan Kaufmann, 1996.

37 Steiner, H.-C., [hid] toolkit: a unified framework for instru-
ment design. In Proceedings of NIME: Conference on New In-
terfaces for Musical Expression. pp. 140-143, 2005.

38 Tufte, E. R., Envisioning Information. Cheshire, CT: Graphics
Press LLC. 126 pp. 1990.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

