
The Jabberwocky Programming Environment for
Structured Social Computing

Salman Ahmad
saahmad@stanford.edu

Alexis Battle
ajbattle@stanford.edu

Zahan Malkani
zahanm@stanford.edu

Sepandar D. Kamvar
sdkamvar@stanford.edu

ABSTRACT
We present Jabberwocky, a social computing stack that con-
sists of three components: a human and machine resource
management system called Dormouse, a parallel program-
ming framework for human and machine computation called
ManReduce, and a high-level programming language on top
of ManReduce called Dog. Dormouse is designed to enable
cross-platform programming languages for social computa-
tion, so, for example, programs written for Mechanical Turk
can also run on other crowdsourcing platforms. Dormouse
also enables a programmer to easily combine crowdsourcing
platforms or create new ones. Further, machines and peo-
ple are both first-class citizens in Dormouse, allowing for
natural parallelization and control flows for a broad range
of data-intensive applications. And finally and importantly,
Dormouse includes notions of real identity, heterogeneity,
and social structure. We show that the unique properties
of Dormouse enable elegant programming models for com-
plex and useful problems, and we propose two such frame-
works. ManReduce is a framework for combining human
and machine computation into an intuitive parallel data flow
that goes beyond existing frameworks in several important
ways, such as enabling functions on arbitrary communication
graphs between human and machine clusters. And Dog is a
high-level procedural language written on top of ManReduce
that focuses on expressivity and reuse. We explore two appli-
cations written in Dog: bootstrapping product recommenda-
tions without purchase data, and expert labeling of medical
images.

ACM Classification: H5.2 [Information interfaces and pre-
sentation]: User Interfaces. - Graphical user interfaces.

General terms: Languages, Human Factors

Keywords: social computing, crowdsourcing

INTRODUCTION
In the last few years, there has been a heightened interest in
human computation, where tasks that are difficult for com-
puters (such as image labeling or transcription) are split into
microtasks and dispatched to people. Human computation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UIST’11, October 16-19, 2011, Santa Barbara, CA, USA.
Copyright 2011 ACM 978-1-4503-0716-1/11/10...$10.00.

Dog ManReduce Dormouse

Compute Clusters Crowd Workers

Dog Compiler Runtime

Dog Script User-Defined
Functions

ManReduce
Library

ManReduce Script

D
ep

lo
y

AP
I

D
or

m
ou

se

Li
br

ar
y

Dormouse Master

Figure 1: Overview of Jabberwocky

has been used to address large-scale goals ranging from la-
beling images [23], to finding 3-D protein structures [3], to
creating a crowdsourced illustrated book [8], to classifying
galaxies in Hubble images [1].

In existing paradigms, human workers are often treated as
homogeneous and interchangeable, which is useful in han-
dling issues of scale and availability. However, the limited
notions of identity, reputation, expertise, and social relation-
ships limit the scope of tasks that can be addressed with these
systems. Incorporating real identities, social structure, and
expertise modeling has proven valuable in a range of ap-
plications, for example, in question-answering with Aard-
vark [11]. Building general frameworks for human computa-
tion that include these notions will enable complex applica-
tions to be built more easily.

A second drawback of existing platforms is that each defines
a stand-alone system with rigid structure and requirements,
and thus demands significant work in order to integrate hu-
man computation into larger applications. Each new applica-
tion may require building a pipeline from the ground up, and
in many cases, a new community. Particularly for complex
applications, which may involve several steps of human com-
putation using different crowdsourcing platforms interleaved
with machine computation, constructing such a pipeline can
be a tedious effort. In practice, complex systems are discour-
aged, and most uses of human computation avoid multiple
interleaved processing steps.

To address these issues, we designed Jabberwocky, a social
computing stack that consists of Dormouse, ManReduce, and
Dog. Dormouse is the “virtual machine” layer of the Jab-
berwocky stack, consisting of low-level software libraries
that interact with both people and traditional computing ma-
chines. Dormouse maintains real identities, rich user pro-

files, and social relationships for the people who comprise
the system, and allows end users to define arbitrary person-
level properties and social structures in the system. Further,
Dormouse allows programmers to interact with several dif-
ferent crowdsourcing platforms using the same primitives.
This enables the development of cross-platform program-
ming languages for social computing. And finally, because
Dormouse defines communications protocols for both peo-
ple and machines, programmers can very naturally interact
with both in unified control flows even for complex parallel
processing tasks.

On top of Dormouse, we built ManReduce, a programming
framework inspired by MapReduce [4] (and related to Crowd-
Forge [13]) to facilitate complex data processing tasks. ManRe-
duce, like MapReduce, gives the programmer the ability to
specify map and reduce steps, but allowing either step to
be powered by human or machine computation. The data
flow, resource allocation, and parallelization necessary for
each step are handled by ManReduce with no onus on the
programmer. In addition to combining machine and human
computation, ManReduce also provides the ability to choose
particular types of people to complete each task (based on
Dormouse), and allows arbitrary dependencies between mul-
tiple map and reduce steps. Many interesting social com-
puting applications fit naturally into this paradigm, as they
frequently involve the need for parallelization of subtasks
across people or machines, and subsequent aggregation such
as writing a summary or averaging ratings. As a simple ex-
ample, conducting a survey and tabulating summary statis-
tics for each question (breaking down according to a variety
of demographics) can be expressed using a human map step
that sends the survey in parallel to many people, and one or
more machine reduce steps on the output that aggregate the
responses keyed by question and/or user demographic.

While ManReduce offers flexibility and power, it can be too
low-level for several classes of applications. In many cases,
it is useful to trade some flexibility for expressivity, main-
tainability, and reuse. To that end, we designed Dog, a high-
level scripting language that compiles into ManReduce. In-
spired by the Pig [19] and Sawzall [21] languages for data
mining, Dog defines a small but powerful set of primitives
for requesting computational work from either people or ma-
chines, and for interfacing with workers (and their proper-
ties) through Dormouse. In addition, it defines simple inter-
faces for using, creating, and sharing functions (human or
machine) and microtask templates, making it easy to quickly
implement a wide range of applications.

Together, the components of the Jabberwocky stack allow
programmers to implement applications in a few lines of
code that would otherwise require writing large amounts of
ad hoc infrastructure. We explore several such applications in
this paper, including a journal transcription application that
maintains the privacy of the journal-writer, a recommender
system that requires no pre-existing co-occurrence data, and
a medical image tagging application that allows experts to
leverage low-cost generalists (and generalists to learn from
experts).

DORMOUSE
The lowest level of the Jabberwocky stack is Dormouse, a
“virtual machine” layer that enables cross-platform social
computation. Similar to process virtual machines (such as
the Java Virtual Machine) in traditional computing, Dor-
mouse sits on top of existing crowdsourcing platforms, pro-
viding a platform-independent programming environment that
abstracts away the details of the underlying crowdsourcing
platform. Importantly, Dormouse also enables programmers
to seamlessly create new crowdsourcing communities and
add social features (such as worker profiles and relationships)
to existing ones.

Design Goals
Our design goals for Dormouse are to:

Support cross-platform programming languages for social
computing. Programming languages run on Dormouse can
work with any crowdsourcing platform that hooks into Dor-
mouse, and can support execution across several platforms in
the same program. For example, a programmer may, in one
step, routes tasks to a large number of inexpensive workers
from one crowdsourcing platform, and in a next step, routes
tasks to a smaller number of vetted experts from another plat-
form, without the needing to learn the separate (and often
complex) API calls from multiple platforms.

Make it easy for programmers to build new crowdsourcing
communities. In addition to being able to reside on top of
existing crowdsourcing platforms, Dormouse makes it easy
for programmers to create new worker communities given a
set of e-mail addresses.

Enable rich personal profiles and social structures. Pro-
gramming languages run on Dormouse allow the program-
mer to route tasks based personal properties such as expertise
and demographic, and also to set and modify expertise levels
based on task performance. Further, programmers may route
tasks based on social structure (for example, an application
that matches technical papers to reviewers may route papers
to computer science graduate students to review, and then to
their advisor to validate the review).

Combine human and machine computation into a single
parallel computing framework. Programming languages run
on Dormouse allow the programmer to allocate machines and
people in similar ways, leading to more natural control flows
for parallelization.

Make it easy for programmers to create and reuse human
tasks. Dormouse has a straightforward mechanisms to cre-
ate new templates for human tasks, and importantly, to reuse
those created by others. This minimizes redundant work and
allows programmers to focus on control flows rather than cre-
ating and optimizing task templates.

Architecture
Dormouse is implemented as a set of software components
that reside on a Dormouse master machine. These compo-
nents communicate with one another, as well as an exter-
nal Dormouse machine cluster and a set of human workers.
These software components are described below and shown
in Figure 2.

API (D)

Dormouse Server (E)

Process
Queue (B) Task Pool (C)

Data

Application

Dormouse
Standard

Library (G)

Processes

User Profiles

Application
State

Task Records

Crowdsourcing
Platforms

Crowd Workers

Tasks

Data Store (A)

Application
Package

Service Adapters (H)Compute Clusters

(1)

(2)

(3)

(4)

(6)

(5)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

Dormouse
Communities

Dormouse Workers

Front End (F)

DeployApplication() PerformTask()

Figure 2: Internal Architecture of Dormouse

The Dormouse Data Store (A) is a set of distributed SQL
databases that store user profiles, community information,
and application-specific information and data for each run-
ning process.

The Dormouse Process Queue (B) schedules the top level
control flow of an application, as well as any computational
steps that require the Dormouse machine cluster. All Dor-
mouse applications are registered with the Process Queue.

The Dormouse Task Pool (C) maintains a set of tasks that are
waiting to be performed by human workers. Each task in the
pool is annotated with specifications for the type of workers
that are eligible to complete the task. Worker specifications
are predicates represented by a binary expression tree and
encoded using JSON.

The Dormouse API (D) is a low-level API that contains func-
tions to process and update Dormouse system resources (for
example, to register a task, to update a profile, to terminate
an application, etc.).

The Dormouse Server (E) is a continuously running service
that manages programs as they are executed, human tasks
as they are dispatched, people as they join or leave, etc., by
calling Dormouse API functions when appropriate. For ex-
ample, when the Dormouse Server gets a request to run a new
Dormouse package, it calls add, which adds the package to
the Process Queue.

The Dormouse Front End (F) is a Ruby on Rails web ap-
plication that serves as a UI for both workers and develop-
ers. Workers use the Frontend to manage profile information,
view tasks for which they are eligible, and select and com-
plete tasks. Developers can use the interface to manage their
developer accounts and deploy their applications.

The Dormouse Standard Library (G) provides runtime hooks
that communicate between an application and Dormouse,
convenient data serialization routines, and a set of human

tasks (e.g. Label and Compare) that can be called from
any Dormouse application. A human task is an object that
consists of a UI template1, input parameters, and a return
value.

The Dormouse Service Adapters (H) manage communication
between Dormouse and other crowdsourcing platforms, such
as Mechanical Turk. To hook into Dormouse, a crowdsourc-
ing platform need only provide an API that minimally allows
for the posting of tasks. The Task Pool uses these adapters to
invoke the target service’s API to post tasks.

Process Deployment
To show how these components interact with one another,
we walk through deploying an application on the Dormouse
architecture. Figure 2 illustrates the process.

The developer begins by writing an application that links to
the Dormouse Standard Library (1), packaging the applica-
tion using the Dormouse Command-line Utility (2), and de-
ploying the package through the Dormouse Server (3).

The Dormouse Server unpacks the application, reads the
manifest file to find the main executable (the program that
contains the top-level control flow of the application) and
sends that executable to the Process Queue (4).

The Process Queue begins running the executable (5), which
may pause for one of two reasons: it either needs access
to machine resources to perform a computational step or it
needs to ask human workers to perform a task. In either case,
the executable automatically saves its state to the Dormouse
Data Store using the Dormouse Standard Library serializa-
tion routines (7), and temporarily terminates.

The Process Queue exploits the parallelism in computational
steps by running them over a compute cluster (6). It does
this by copying the application package to each node in the
cluster and invoking the runtime hooks provided by the Dor-
mouse Standard Library to selectively execute a single step
over a subset of key-value input parameters. Once all of the
steps from all the different nodes are finished, the results are
sent back to the Process Queue, and then to the executable,
which starts to run again.

When the executable reaches a point where no further work
can be done without human input, it saves its state, termi-
nates, and outputs a list of human tasks using JSON. The
executable will be started again once the human tasks are
complete.

The Process Queue takes the JSON output and sends infor-
mation to the Task Pool (8). The Task Pool creates a record
that includes a link back to the process, worker specifica-
tion information, and the name of the Service Adapter, if
any, that should be used to post tasks (9). The Task Pool in-
vokes the “submit” method on the specified Service Adapter
(10), which performs the steps necessary to post each task on
the appropriate crowdsourcing platform (11). If no Service
Adapter is provided, the tasks will be available on Dormouse
to existing users (12).

1written in ERB, a template language used by Ruby on Rails

Once a task is completed, the Task Pool sends the answer
back to the Process Queue (13). When all needed human
tasks are finished, the process is re-executed, starting up from
where it left off. The process continues until it once again
needs human input or it finishes running. When the process is
finished, it outputs a return code signaling the Process Queue
to mark it as done and sends the developer a notification,
which includes a download link to a JSON file containing
the results.

MANREDUCE
In order to make Dormouse readily usable for complex data-
intensive applications, we specify a programming frame-
work called ManReduce, based on the simple functional
programming paradigm and resource management scheme
used by MapReduce [4]. ManReduce shares some concep-
tual similarities with the independently conceived Crowd-
Forge [13], but ManReduce has some important advantages
to both MapReduce and Crowdforge that we discuss below.

Design Goals
With ManReduce, while providing power and flexibility, we
aimed to maintain a conceptually simple design that can be
rapidly understood and easily used. In addition, ManReduce
has three key features that, in combination, allow us to de-
velop a wide range of applications for social computation:
the ability to dispatch jobs both to machines and people, to
utilize social structure and choose which people to whom to
send jobs, and to introduce arbitrary dependencies between
multiple map and reduce steps. These features, in particular,
are absent in both CrowdForge and MapReduce. We discuss
each core contribution below.

Conceptual simplicity and ease of use. We begin with a
clean conceptual foundation for our framework. Like in
MapReduce, a program is broken down into steps that are
each written as a map or a reduce . A ManReduce map step
consists of a set of small, equivalent chunks of work, per-
formed in parallel when possible on independent inputs, pro-
ducing outputs in the form of key-value pairs. A reduce step
collects several input items (according to a shared key), and
performs some computation over all of them to produce a fi-
nal output. These two steps can be used to encode a wide
range of parallelized computational applications.

In addition to the conceptual simplicity, our particular im-
plementation is easy to use and allows a programmer to cre-
ate full applications in few lines of code. The ManReduce
framework is written in Ruby2. Internally, map and reduce
are convenience wrappers that instantiate a Ruby Step ob-
ject that accepts an anonymous function. A simple ManRe-
duce script, shown in Figure 3, conducts a survey (utilizing
the Dormouse function Survey). In this example, a map step
survey map sends the survey to human workers, and a re-
duce step avg reduce takes the mean of their responses
to each question. Notice that the user does not need to write
any scaffolding code, such as parsing input or writing output.
The appendix includes the full source code of Survey and
Average

2We are also working on Python and Java implementations.

1 map :name => "survey_map" do |key, value|
2
3 task = Survey.prepare
4 :task_name => "Respond to survey",
5 :replication => 1000
6
7 task.ask do |answer|
8 for a in answer
9 emit(a["question"], a["response"])
10 end
11 end
12 end
13
14 reduce :step =>"Average",:name =>"avg_reduce"

Figure 3: Survey ManReduce Script.

ManReduce can be run simply on the command line, and it is
then deployed it on the Dormouse server. Once all the tasks
have been completed, ManReduce will write the output to a
destination file and terminate the process. Note that ManRe-
duce automatically serializes all worker answers, allowing us
to re-run (and even debug) a script many times, automatically
using the available answers to compute new (or corrected)
statistics without re-doing human tasks. Thus, designing,
coding, and executing ManReduce programs is straightfor-
ward.

MapReduce with both humans and machines. In the ManRe-
duce framework, either people or machines can perform the
work necessary for both map and reduce steps. This allows
users to implement complex applications which interleave
both human and machine steps.

Many computation tasks fit naturally into this hybrid ManRe-
duce paradigm. For example, ManReduce makes it easy
to specify a human-assisted information extraction system.
This application has a variety of uses for large corpora of
documents, where automatic information extraction cuts down
on human work significantly, but alone does not always pro-
vide sufficient accuracy. A machine map step could specify
automatic information extraction of facts from a set of sci-
entific papers, such as genetic and environmental risk fac-
tors for a set of candidate diseases. Then, a human reduce
step could aggregate the proposed facts about each disease,
check their accuracy and convert them into a summary. The
ManReduce code for this example is shown in Figure 4.

In the example explored in Figure 4, the reduce step includes
asking people to aggregate and summarize a set of facts. As
shown on line 12, this was accomplished by instantiating a
Dormouse Task object in Ruby and calling the ask method.
Custom human map and reduce steps can include any of
the human tasks available through the Dormouse libraries, or
custom human functions. Likewise, machine map and reduce
steps can call functions from existing Ruby libraries and cus-
tom libraries, as used on line 2. In addition, the ManRe-
duce libraries include a range of pre-defined map and reduce
steps, including image labelling, ranking items from a list,
and free text-entry. The built-in libraries, and the ability to
define and share custom steps, provide a large and grow-
ing codebase with which to easily create new ManReduce
scripts.

1 map :name => :extract_disease_facts do |key,
value|

2 facts = RiskExtractor.extract (value)
3
4 for fact in facts do
5 emit (fact["disease"], fact["risk_factor"

])
6 end
7
8 end
9
10 reduce :name => :summarize do |key, values|
11
12 task = SummarizeFacts.prepare
13 :task_name => "Summarize disease risks:

#{key}"
14 task.facts = values
15
16 task.ask do |answer|
17 emit (key, answer)
18 end
19
20 end

Figure 4: Human-Assisted Information Extrac-
tion

1 task = ImagePersonTask.prepare
2 :task_name => "Tag person: #{key}",
3 :replication => 5
4
5 task.worker_namespace = "facebook"
6 task.worker_predicate = Predicate.parse(["

friends CONTAINS ?", key])

Figure 5: User Specification with Predicate

Utilization of social structure through Dormouse. ManRe-
duce takes advantage of the social structure and worker pro-
files provided by Dormouse, finding people whose attributes
match those needed for a particular task. This is a natural ex-
tension from MapReduce, which allows specification of ma-
chines by their properties, such as processor speed or mem-
ory. Using functionality from Dormouse, we can specify that
certain map or reduce tasks be dispatched only to people
with graduate degrees in biology, or expertise in computer
science, or simply to people under 25.

Adding identities and relationships opens many possibilities
in human computation. For instance, accurately tagging peo-
ple in photographs is important for image search engines.
Using current techniques, search engines can identify a set of
images and candidate names associated with each, but many
pictures contain multiple people and many names correspond
to several real people. The people in these photos can, how-
ever, be identified quickly and accurately by their friends.
By identifying Facebook users according to each name, we
could define a map step that asks friends of each user to judge
whether an image contains their friend.

A user specification is used in ManReduce by simply setting
the worker predicate and namespace properties of a Task ob-
ject before it is asked. The specification is created using a
Predicate object, as shown in Figure 5.

Complex ManReduce dependency graphs. Going beyond

1 map :name => "collect_survery" do |key,value|
2 ...
3 end
4
5 reduce :name => "sort_by_gender", :from => "

collect_survey"
6 ...
7 end
8
9 reduce :name => "sort_by_age", :from => "

collect_survey"
10 ...
11 end

Figure 6: Complex ManReduce Dependencies

the original MapReduce model, ManReduce allows arbitrary
chaining of map and reduce steps, similar to the Dryad (ma-
chine computational) framework [12]. Not only can a pro-
grammer specify multiple map and reduce steps in arbitrary
order, she can also specify several different reduce steps that
operate on the output of a single map step, or have a map
step follow a map step directly. The ability to define func-
tions on a generalized graph rather than a single map and
reduce holds particular importance in the social computing
domain. For instance, even a simple case like two sequential
map steps may not fit naturally into single map, if a human
step follows a machine step, or if a one human step is fol-
lowed by another with different worker expertise constraints.

In ManReduce, each Step (map or reduce) may have mul-
tiple parents and multiple children. A step receives inputs
from its parents and sends its output to each of its children.
By default, ManReduce infers dependencies by the order in
which they are defined – each Step’s parent is assumed to
be the Step immediately preceding it in the source code. To
specify complex dependencies, we provide the from spec-
ifier in the man and reduce declarations, which specifies
the name of the step whose output to use as input, as shown
in Figure 6.

An interesting example with complex control flow is privacy-
preserving journal transcription. Many researchers and de-
signers keep handwritten notebooks, which would be use-
ful to digitize and make searchable. Since OCR has limited
accuracy with handwriting, we use human transcription, but
split each page up into small chunks to make the tasks man-
ageable and reduce the likelihood of revealing sensitive con-
tent. A ManReduce program for this application begins with
a machine map step that “shreds” each scanned page into
small overlapping images, each of which contains just a few
words. A human map step then classifies the snippet as to
whether it contains text, an image, or an equation. The result
is sent to three human transcription map steps, one which
is public and operates on the text, and two that are sent to
people who are proficient in latex or illustrator to transcribe
figures and equations. A human reduce step then votes on
the best transcription for each snippet, and a machine reduce
step then pastes the chunks from a single page back together
into a PDF. Optionally, a final human reduce step, perhaps
restricted to a trusted set of workers (e.g. people from your
own institution or even just yourself) is used to rapidly ver-

Shred uploaded scan Classify as text snippet,
figure, or equation

Transcribe figures and add
captions Transcribe text in snippets Transcribe equations

Vote on selection within
accepted transcriptions

Combine transcribed
segments

Trusted

Qualified Public Qualified

Public

Map

Reduce

Key:

Figure 7: Illustration of dependency graph in the Jour-
nal Transcription Application

ify the complete output of several pages at a time and output
the final document. The control flow for this application is
shown in Figure 7.

Discussion
While ManReduce takes inspiration for its name from MapRe-
duce, it takes inspiration for its design from a number of
parallel programming frameworks, including MapReduce,
Dryad [12], and GPU shader languages [22]. Each of these
frameworks was developed in an environment characterized
by data-intensive applications and the availability of paral-
lel computing resources. This characterization also holds for
many applications in human computation, for example, in
image processing or machine learning.

At the same time, there are some applications where ManRe-
duce is not suitable, for example, for using a single worker
in the crowd to control a robot [14]. Data-processing ap-
plications are well-suited to ManReduce, while real-time or
single-worker sequential applications are not.

In fact, while we believe MapReduce-based models are com-
pelling for variety of human computation applications, we
recognize that other paradigms may be more appropriate for
certain tasks, or preferred by some programmers. Dormouse
makes it possible to implement other such frameworks, and
we hope to see a variety of paradigms for social computation
implemented for use with Dormouse. These programming
paradigms could take advantage not only of the features pro-
vided by Dormouse, but also the wide array of human tasks
that are written for Dormouse3.

DOG
While ManReduce is flexible and powerful, one drawback is
that it can be too low level for many applications. ManRe-
duce requires programmers to think in terms of explicit map
and reduce steps, even in common cases where it is more nat-

3As an analogy, languages like Scala [18] and Clojure [10] are implemented
for use with the Java Virtual Machine, allowing these languages to make use
of the platform independence of the JVM as well as the function libraries
written for Java.

ural to think in terms of reusing and assembling basic build-
ing blocks. It also requires some knowledge of advanced
programming constructs (for example, ManReduce uses call-
back functions for human steps).

To address these issues, we developed Dog, a high-level pro-
cedural programming language that sits on top of ManRe-
duce and focuses on reusability, maintainability, and ease-of-
use. Our approach of writing a high-level language that com-
piles into ManReduce is inspired by similar techniques in the
large-scale data-processing world. For example, Pig [19] and
Sawzall [21] are high-level languages built on top of MapRe-
duce, and Nebula [12] and DryadLINQ [24] are high-level
languages built on top of Dryad.

Design Goals
In creating Dog, we had three main design goals. First, we
wanted to make Dog a highly expressive language, so that
even people with little knowledge of programming languages
could understand and write a Dog program. This is an es-
pecially appropriate design goal for a social computing lan-
guage, where many of the constructs involve specifying peo-
ple and asking them to do something. Such constructs are un-
derstood even by non-programmers, and having a language
that reflects the natural way that people express these re-
quests would make social computation accessible to a broad
audience.

Our second goal was reusability. In traditional MapReduce,
many programs are written by combining pre-existing maps
and reduces in ad hoc ways. In human computation, there
are a large number of common patterns, for example, hu-
man verification, human voting, machine summarization of
human inputs. We wanted to make it very easy for Dog pro-
grammers to express and combine these common patterns.

And finally, we wanted to achieve these goals without dimin-
ishing the efficiency, power and flexibility of ManReduce.

We achieve the first two goals as follows. We define a large
number of library functions that express common human and
machine functions, such as the human functions Vote, Label,
Compare, Extract, and Answer, and the machine functions
Histogram, Filter, Median, and Sort. Dog then contains a set
of easily-understandable primitives for (a) human and ma-
chine resource allocation and (b) and parameterization and
execution of these library functions.

This approach abstracts away not only the code for paral-
lelization, but also the code for defining human or machine
functions, and lets the programmer focus on defining the con-
trol flow. This is an exciting feature of Dog that will be-
come apparent in the code samples later in this paper. Dog
scripts are very easily readable and writable. Even with just
the functions that are included in default Dog libraries, a
programmer can write a large number of powerful programs
simply and compactly.

To achieve our third goal of maintaining the power and flex-
ibility of ManReduce, we allow programmers to write their
own libraries of human and machine functions in ManRe-
duce, and import those libraries into Dog programs. In this
sense, our design of Dog gives the same power of ManRe-

duce behind the scenes, while still achieving our goals of
expressivity and reuse.

The Dog compiler is implemented as a recursive descent
parser that parses Dog programs and generates ManReduce
code. The Dog standard library functions are simply wrap-
pers around mappers and reducers in the ManReduce stan-
dard library. The Dog command-line utility includes conve-
nience methods to compile and deploy Dog programs in a
single step.

Language Specification
At its core, Dog is organized around four high-level language
primitives:

PEOPLE, which specifices the type of people to perform
some function
ASK, which asks a group of people to perform some human
function
FIND, which instantiates those people
COMPUTE, which asks a set of machines to perform some
function
as well as default libraries that include a number of human
tasks (such as Label) and computational steps (such as
Histogram).

For example, a simple Dog program to review UIST submis-
sions and compute a tag cloud on words in the reviews can
be written:

students = PEOPLE FROM facebook WHERE university =
'mit' AND degree = 'computer science'

reviews = ASK students TO Review ON
uist_submissions USING payment = 0 and
replication = 3

words = COMPUTE Split ON reviews
histogram = COMPUTE Histogram ON words

People
The PEOPLE command returns a specification of people.
The common use case for the PEOPLE command is to spec-
ify a certain type of people to perform a given task. PEOPLE
requires a FROM clause that specifies the Dormouse commu-
nity or crowdsourcing service from which the people will be
selected. For example:

workers = PEOPLE FROM mechanical_turk;

will return a specification for mechanical turk workers.

Each Dormouse community defines properties on the peo-
ple in the community, and these properties can be accessed
through the WHERE clause. For example, a Dog programmer
may write:

workers = PEOPLE FROM gates WHERE expertise
CONTAINS 'theory' AND advisor='don knuth'

Note that the PEOPLE command doesn’t return actual per-
son ids; it returns a worker specification, stored internally as
a predicate. The specification is instantiated when ASK or
FIND is called on the specification.

Ask
The ASK command executes a human function. It takes as
arguments a human task, a specification of people to perform

it, and (optionally) a set of parameters for the human task,
and (optionally) a data set on which the human task should
operate.

So for example, a Dog programmer may write:

labels = ASK workers TO Label ON image_data USING
layout='game'

Each human function has default parameters, so unless a pro-
grammer wants to change these default parameters, she can
omit the USING clause. Further, programmers can omit the
ON clause for human tasks that don’t take input data.

Dog inherits a number of human tasks from Dormouse, for
example: Vote, Label, Compare, and Answer. Programmers
may also create libraries of other human functions for their
own use and reuse by others in Dormouse, and import them
into Dog.

Compute
The COMPUTE command executes a machine function. COMPUTE
takes as its arguments a machine function, a data set upon
which the function acts, and (optionally) any additional pa-
rameters required by the function. For example:

tag_cloud = COMPUTE TagCloud ON words USING
color_scheme = 'random'

Like human tasks, the Dog standard libraries inherit a num-
ber of machine functions from Dormouse, including Histogram,
Average, and Filter. Additionally, Dog programmers
may create libraries of machine functions for their own use
and reuse by others using Dormouse or ManReduce.

Find
In some cases, a Dog programmer may want to instantiate
a specification of people independently of the ASK function.
For example, she may be interested in computing summary
demographic information on a given Dormouse community.
The FIND command does this. For example, the code snip-
pet:
workers = PEOPLE FROM gates WHERE expertise

CONTAINS 'machine learning'
ids = FIND workers

returns the Dormouse ids of machine learning experts in the
gates community. FIND may also be used to return people
who have successfully performed a task. For example:
workers = PEOPLE FROM facebook
labels = ASK workers TO Label ON data
workers_who_labeled = FIND PEOPLE FROM labels

Data Model
Dog is designed to support sequential transformations on
large-scale data, either by parallel human or machine func-
tions. Dog is also designed to make it easy to express control
flows that involve selecting people and specifying tasks for
them to perform.

As such, Dog supports two primary data types: people spec-
ifications and data maps. A people specification is returned
by the PEOPLE command, and is stored internally as a pred-
icate4.
4For example, the Dog code PEOPLE FROM facebook

A data map in Dog is expressed as a wrapper around a key-
value store. Key-value stores lend themselves naturally to
parallelism, and crowdsourcing is by its nature parallel. They
also lend themselves well to serialization, which is an impor-
tant part of Dog, especially as human steps can be expensive
to re-run, and intermediate steps are often too big to fit in
memory. And finally, having all data items be a key-value
store helps our goal of simplicity, as new human and ma-
chine functions can be easily written in ManReduce, and the
output of any data transform can be used as the input to any
other data transform.

An important design feature of Dog is that all data returned
by human functions retains information about who performed
that function. This is a useful feature in a number of contexts,
including reputation updating and routing data based on so-
cial relationships.

Routing Tasks
A key feature of Dog is the ability to route tasks to workers
based on expertise, demographic, or social structure. While
FROM handles basic routing, some applications require rout-
ing based on properties of each individual task or data item.
The SUCH THAT clause enables such routing. In the follow-
ing example, we show a program where students are asked to
review papers in their areas of expertise, and their advisors
are asked to validate them, matching the particular reviewer
with her advisor for each paper.

students = PEOPLE FROM gates
reviews = ASK students TO Review ON

uist_submissions SUCH THAT uist_submission.
topic IS IN student.areas_of_expertise

reviewers = FIND PEOPLE FROM reviews
advisors = PEOPLE FROM gates WHERE advisees

CONTAINS reviewers
validated_reviews = ASK advisors TO Validate ON

reviews SUCH THAT review.reviewer = advisor.
student

Function Libraries and Input Data
To create a library, a programmer simply creates a directory
with a .doghouse extension that contains the appropriate Dor-
mouse and ManReduce program files that define the human
and machine functions. To import a library, a Dog program-
mer uses the REQUIRE command in the header, followed by
a path to the Doghouse file, as well as an optional library
namespace. For example:

REQUIRE "/dog/lib/statistics.doghouse" AS stats

To import a data file, a programmer uses the IMPORT com-
mand in the header:

IMPORT "/dog/lib/image_file.js" AS images

Other Dog Features
Dog supports a number of other commands as well. Joining
of communities and data is supported through the MERGE,
SHIFT, UNSHIFT, and CROSS commands. The PARAMETERS
command is a convenience command that encapsulates pa-
rameters for the ASK function. The PRINT command prints

WHERE gender = "female" is equivalent to the Ruby code:
Condition.new(["facebook","gender"],"female","=")

variable values, and the INSPECT command prints a small
selection of large maps for debugging purposes.

A convenient feature of Dog is that the primitives are com-
posable, allowing Dog programmers to produce compact,
readable code. For example, the following code snippet

workers = PEOPLE FROM mechanical_turk
preferred_candidates = ASK workers TO Vote ON

candidates

can be rewritten as:

workers = ASK PEOPLE FROM mechanical_turk TO Vote
ON candidates

Composability can be arbitrarily complex, and entire pro-
grams can be written in one line:

COMPUTE ranking ON (ASK PEOPLE FROM
mechanical_turk TO Vote ON candidates)

Debugging Environment
A challenge when writing programs with human tasks is that
it can be expensive to test and debug, as human workers may
need to be paid, or may get frustrated by errors in their task
templates. This discourages programmers from iterative im-
provements to their programs. A second challenge to de-
bugging is that many times, programs will need to run over
large amounts of input data (for example, labeling a large
image corpus) that take time. What programmers will often
do is create separate truncated input data sets for debugging,
which requires additional work.

The Dog command-line utility has a debug mode that ad-
dresses both of these issues in simple but effective ways. In
debug mode, Dog programs are deployed on a local version
of Dormouse, which uses the programmer’s local machine
as the Dormouse master, and routes tasks to the programmer
or whomever the programmer specifies. Second, in debug
mode, input data is automatically truncated to a reasonable
size based on a number of heuristics.

This allows programmers to easily test out their control flow
and human functions on a small set of people and data before
deploying.

EXAMPLES
Bootstrapping Recommendations
As a case study of the Dormouse framework, we developed
a prototype pipeline for personalization of product offerings
(such as Groupon deals). Based on evaluating demographic
preferences for deals, this pipeline would enable significantly
improved targeting of deals to people, but without the need
for large amounts of proprietary usage data. Small compa-
nies and brand-new services rarely have access to the volume
of usage data needed for standard personalization approaches
such as collaborative filtering, making this an exciting use of
human-powered computation.

For this use case, we used the facebook community through
Dormouse, allowing us to easily access demographic infor-
mation (location, gender, and age) for each of the people con-
tributing preferences, in addition to the friendship graph for
people. We collected a set of 500 Groupon deals, and paired

Figure 8: Deals Application

them randomly, creating 12,500 total pairs. We asked work-
ers from the facebook community to state which of the
two deals in a pair they preferred, and why. Three hundred
workers performed an average of 42 comparisons each. Note
that soliciting ratings of individual deals would be problem-
atic, as there is no absolute scale of quality or interest. So-
liciting preferences between pairs is a simple and robust way
around this problem. At the end, we collected a set of pref-
erences for any subset of people (of a certain age group, for
instance), and using ordering by the number of “wins” for
each item, produce an approximate ranking of all deals for
that demographic. We showed ManReduce code in Figure 6
illustrating components of this pipeline, so here we show a
simple Dog script that could be used, requiring even fewer
lines of code (Figure 10).

This pilot study demonstrated the convenience and simplic-
ity of the Jabberwocky framework. With just a few lines of
code and minimal setup, we specified the entire pipeline. In
addition, we gained evidence that product targetting could
benefit from such a system, as the preferences did indeed
vary noticeably by demographic. For example, the top five
deals prefered by males over females, and the top five deals
prefered by females over males, are shown in the table at
the end of this section. Anecdotally, we noticed that the fe-
male raters preferred many deals related to beauty, fitness,
and home improvement, while the male raters often preferred
dining and hobbies. We also note that the male and female
rankings showed low Spearman correlation (r = 0.24), com-
pared with correlation between rankings segregated by a ran-
dom split (r = 0.71). The difference between these empirical
correlations is highly significant (p < 1e− 4).

To target deals to a particular individual, we can combine the
preferences according to each relevant demographic (such as
“male” and “18-25” and “San Francisco”) using a probabilis-
tic noisy-or model [5]. This would combine the probability
of each demographic segment liking a deal with the proba-

bilities that an individual will agree with each of their demo-
graphics. Also, we can can incorporate a feedback loop, in
which deals with uncertain ranking are re-submitted for fur-
ther user feedback. Additionally, and importantly, we can in-
corporate the friend graph directly, asking users which deals
they believe their friends would prefer, and up-weighting
agreements5.

Male-preferred Female-preferred

Artisan Cheese Experience ** Manicure or Deluxe Mani/Pedi **
Shooting range, Dinner, Drinks ** Paddleboard Rental and Lesson **
Chiropractic, Massage, or Allergy
Treatment **

Keratin Treatment **

Panoramic Wall Mural ** RedAwning.com (Vacation)**
Wine Tour and Tasting ** Custom Massage *

Figure 9: Deal preferences by gender.
** p < .01; * p < .05 by Fisher’s exact method.

Medical Image Analysis
A second application of Jabberwocky is to use people to im-
prove the performance and evaluation of a machine learning
framework for complex medical data. This case study ex-
plores the role of expertise in human computation.

In medicine, a common method of clarifying the subcellular
location of proteins is immunohistochemical staining, where
flourescently tagged antibodies are introduced into a tissue,
binding with the protein the scientist wants to localize. The
resulting images are then evaluated by pathologists. This
technique is used in a wide range of applications, from ex-
ploring gene function in Parkinson’s [25] to diagnosing can-
cerous tumors.

There are large quantities of immunohistochemical stains
generated each year. Because of this, some researchers have
started to explore image-recognition techniques to analyze
these stains. However, these techniques are not often used in
practice, because the idiosyncracies in how staining methods
work make it difficult for a single image-recognition algo-
rithm to work across many different stains.

We used Dog to write a program that routes IHC stains to
generalists to localize the stains via a human image-segmentation
function in Dormouse (Figure 11), and then routes those non-
expert localizations to experts to perform a faster validation
step. The expert validation feedback was then rerouted to the
original generalists, who could use the feedback to improve.
The validated localizations can then be used as input into a
machine learning algorithm. An extension of this would be
that as the generalists got more right, they increased in repu-
tation in the system.

What is interesting is that what we originally built as a tool
to aid machine learning ended up also aiding human learn-
ing. One can imagine that such systems can get even more
nuanced, with active learning algorithms that have input as
to what labeling tasks to route to which people. We call this
social machine learning, where social learning systems inter-
act with the machine learning systems, and both benefit from
5reminiscent of the Newlywed Game.

1 #!/usr/bin/env dog
2
3 IMPORT "deals.js" AS deal_pairs
4 REQUIRE "rank_deals.doghouse"
5
6 CONFIG title = "Compare Deals"
7 CONFIG description = "..."
8
9 answers = ASK PEOPLE TO RankDeals ON

deal_pairs
10
11 age = COMPUTE Projection ON answers USING

key_name = "age" AND value_name = "deals"
12 gender = COMPUTE Projection ON answers USING

key_name = "gender" AND value_name = "
deals"

13 ethnicity = COMPUTE Projection ON answers
USING key_name = "ethnicity" AND
value_name = "deals"

14 education = COMPUTE Projection ON answers
USING key_name = "education" AND
value_name = "deals"

15
16 age_ranking = COMPUTE PairwiseRank ON age
17 gender_ranking = COMPUTE PairwiseRank ON

gender
18 ethnicity_ranking = COMPUTE PairwiseRank ON

ethnicity
19 education_ranking = COMPUTE PairwiseRank ON

education

Figure 10: Deals Application in Dog

the other. We believe that this will be an area with much
opportunity.

RELATED WORK
A number of programming frameworks for human computa-
tion have been introduced in recent years. Crowdforge [13],
a MapReduce-inspired framework that was developed simul-
taneously but independently from ManReduce, defines par-
tition, map, and reduce steps, and allows nested map and
reduce steps. TurKit [16] is a toolkit for deploying itera-
tive tasks to Mechanical Turk that maintains a straighforward
procedural model. Soylent [2], a word-processing interface
that calls Mechanical Turk workers to edit parts of a docu-
ment on demand, introduces the Find-Fix-Verify crowd pro-
gramming pattern, which splits tasks into a series of gener-
ation and review stages. Each of these specifies and imple-
ments a design pattern rather than building a full stack, and
are platform dependent.

Recently, a trio of declarative query languages for human
computation have been proposed: hQuery [20], CrowdDB [6],
and Qurk [17]. These languages view crowdsourcing ser-
vices as databases where facts are computed by human pro-
cessors. These languages are different from Dog in that
they are declarative rather than imperative. The imperative
model of Dog is particularly important for social computa-
tion, where we want the programmer to be able to specify
the type of person who will compute the result, not just the
desired outcome.

Heymann et. al propose hProc [9], a programming environ-
ment that focuses on modularity and reuse. It shares with
Dormouse the notions of easy reuse of human function tem-
plates, and of abstracting out the specific crowdsourcing ser-

Figure 11: Immunohistochemical Staining Application

vice through its marketplace drivers. However, there are
also many key differences; for example, hProc does not have
mechanisms for interleaving human and machine computa-
tion or abstracting away details of parallel processing. More
substantively, since hProc has not been implemented, the de-
sign decisions are described as high-level proposals.

Much of the Jabberwocky software stack has taken its inspi-
ration from related constructs in traditional and parallel com-
puting. The Dormouse Virtual Machine is inspired in part
from the Java Virtual Machine [15], a platform-independent
execution environment that converts Java bytecode into ma-
chine language and executes it. In practice, Dormouse is not
a true virtual machine in that it operates on top of crowd-
sourcing platforms rather than microprocessor architectures.
In this sense, it is perhaps more reminiscent to Google’s
Global Workqueue, or some of the cluster management pro-
tocols used in scientific computing such as Parallel Virtual
Machine [15] or MPI [7]. ManReduce takes its inspira-
tion from MapReduce [4], Dryad [12], and GPU shader lan-
guages [22]. And Dog takes its inspiration from Pig [19],
Sawzall [21], Nebula [12] and DryadLINQ [24]. The popu-
larity of these existing tools suggests that the paradigms we
present here will be useful and natural for many program-
mers.

CONCLUSION
To date, the programming frameworks for crowd comput-
ing have been single-platform frameworks. Further, the pro-
gramming frameworks for crowdsourcing have viewed the
crowd as a collection of largely independent and interchange-
able workers, rather than an ecosystem of connected, hetero-
geneous people. And finally, despite a clearly differentiated
domain, no domain-specific programming languages have
been developed for social computing, requiring programmers
to define control flows for people in languages designed for
computers.

The Jabberwocky software stack represents a step forward in

the tools available to programmers for social computation.
A programmer may deploy a non-trivial application in Dog
without having to build labor-intensive sociotechnical infras-
tructure, allowing developers to easily tap into people and
their heterogeneous skillsets in an organized manner. Jab-
berwocky puts a wide range of possibilities for data-intensive
applications within reach of a broad class of developers, and
we believe it holds the potential to change the way program-
mers interact with people using code.

REFERENCES
1. S Bamford and et al. Galaxy Zoo.

2. M. Bernstein, G. Little, R.. Miller, B. Hartmann, M. Acker-
man, D. Karger, D. Crowell, and K. Panovich. Soylent: a
word processor with a crowd inside. In Proc. UIST (2010).

3. S Cooper, F. Khatib, A. Treuille, J. Barbero, J. Lee, M. Bee-
nen, A. Leaver-Fay, D. Baker, and Z. Popovic. Predicting pro-
tein structures with a multiplayer online game. Nature, June
2010.

4. J. Dean and S. Ghemawat. MapReduce: simplified data pro-
cessing on large clusters. Communications ACM, January
2008.

5. FJ Diez. Parameter adjustment in bayes networks. the gener-
alized noisy or-gate. In Proc. UAI (1993).

6. Michael J. Franklin, Donald Kossmann, Tim Kraska, Sukriti
Ramesh, and Reynold Xin. CrowdDB: answering queries with
crowdsourcing. In Proc. SIGMOD (2011), pages 61–72.

7. William Gropp, Ewing Lusk, Nathan Doss, and Anthony
Skjellum. A high-performance, portable implementation of
the MPI message passing interface standard. Parallel Com-
puting, 1996.

8. B. Hartmann. Amazing but True Cat Stories.
http://bjoern.org/projects/catbook/, April 2009.

9. P. Heymann and H. Garcia-Molina. Human processing. Tech-
nical report.

10. R. Hickey. The clojure programming language. In Proc. DLS
(2008).

11. D. Horowitz and S.D. Kamvar. The anatomy of a large-scale
social search engine. In Proc. WWW (2010).

12. M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad:
distributed data-parallel programs from sequential building
blocks. SIGOPS Operating Systems Review, March 2007.

13. A. Kittur, B. Smus, and R. E. Kraut. CrowdForge: Crowd-
sourcing Complex Work.

14. W. Lasecki, K. Murray, S. White, R. Miller, and F. Bigham.
Legion: closed-loop crowd control of existing interfaces. In
Proc. UIST (2011).

15. T. Lindholm and F. Yellin. Java Virtual Machine Specification.
Addison-Wesley Longman Publishing Co., Inc., 2nd edition,
1999.

16. G. Little, L. Chilton, M. Goldman, and R. Miller. TurKit:
Tools for Iterative Tasks on Mechanical Turk. In Proc.
HCOMP (2009).

17. A. Marcus, E. Wu, S. Madden, and R. C. Miller. Crowd-
sourced Databases: Query Processing with People. In Proc.
CIDR (2011).

18. M. Odersky, P. Altherr, V. Cremet, B. Emir, S. Maneth,
S. Micheloud, N. Mihaylov, M. Schinz, E. Stenman, and
M. Zenger. An overview of the Scala programming language.
Technical report, EPFL Lausanne, Switzerland.

19. C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins.
Pig Latin: A Not-So-Foreign Language for Data Processing.
In Proc. SIGMOD (2008).

20. A. Parameswaran and N Polyzotis. Answering Queries using
Humans, Algorithms and Databases. Technical report.

21. R. Pike, S. Dorward, R. Griesemer, and S. Quinlan. Interpret-
ing the data: Parallel analysis with Sawzall. Scientific Pro-
gramming, October 2005.

22. D. Tarditi, S. Puri, and J. Oglesby. Accelerator: using data par-
allelism to program GPUs for general-purpose uses. SIGOPS
Operating Systems Review, October 2006.

23. L. von Ahn. Games with a Purpose. Computer, June 2006.

24. Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson,
P. Gunda, and J. Currey. DryadLINQ: a system for general-
purpose distributed data-parallel computing using a high-level
language. In Proc. OSDI (2008).

25. L. Zhang, M. Shimoji, B. Thomas, D. Moore, S. Yu,
N. Marupudi, R. Torp, I. Torgner, O. Ottersen, T. Dawson, and
V. Dawson. Mitochondrial localization of the Parkinson’s dis-
ease related protein DJ-1. Human Molecular Genetics, June
2005.

Appendix
The source code of Survey and Average from Figure 3.

survey.rb:
1 class Survey < ManReduce::Task
2 def render
3 include_file("survey.erb")
4 end
5
6 def process_response(response)
7 answers = []
8 answers << {"rating" => response["rating"]}
9 answers << {"length" => response["length"]}
10 return answers
11 end
12 end

survey.erb:
1 <label>
2 How long have you been using the service?
3 </label>
4 <input type="text" name="length">
5
6 <label>
7 How is the quality of your service?
8 (10 is good, 0 is bad)
9 </label>
10 <input type="text" name="rating">

average.rb:
1 class Average < ManReduce::Reduce
2 def reduce(key, values)
3 count = values.length
4 sum = values.inject(0) {|sum, x| sum += x}
5 if count == 0 then
6 emit(key, 0)
7 else
8 emit(key, sum / count)
9 end
10 end
11 end

